WO2017179463A1 - 構造体、電子機器、加飾フィルム、及び構造体の製造方法 - Google Patents

構造体、電子機器、加飾フィルム、及び構造体の製造方法 Download PDF

Info

Publication number
WO2017179463A1
WO2017179463A1 PCT/JP2017/014167 JP2017014167W WO2017179463A1 WO 2017179463 A1 WO2017179463 A1 WO 2017179463A1 JP 2017014167 W JP2017014167 W JP 2017014167W WO 2017179463 A1 WO2017179463 A1 WO 2017179463A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
region
film
base film
structure according
Prior art date
Application number
PCT/JP2017/014167
Other languages
English (en)
French (fr)
Inventor
下田 和人
淳博 阿部
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201780022029.1A priority Critical patent/CN108883607B/zh
Priority to JP2018511971A priority patent/JPWO2017179463A1/ja
Priority to US16/091,239 priority patent/US20190152186A1/en
Publication of WO2017179463A1 publication Critical patent/WO2017179463A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14811Multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14827Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using a transfer foil detachable from the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1679Making multilayered or multicoloured articles applying surface layers onto injection-moulded substrates inside the mould cavity, e.g. in-mould coating [IMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/04Metal casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/14Noble metals, e.g. silver, gold or platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2715/00Condition, form or state of preformed parts, e.g. inserts
    • B29K2715/006Glues or adhesives, e.g. hot melts or thermofusible adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/722Decorative or ornamental articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present technology relates to a structure that can be applied to an electronic device or the like, an electronic device to which the structure is applied, a decorative film, and a method for manufacturing a casing component. About.
  • Patent Document 1 discloses an exterior component for mounting an automobile radar on an emblem of an automobile.
  • indium is vapor-deposited on a resin film, and this film is attached to the surface layer of the emblem by an insert molding method.
  • the method of forming an indium island structure has a problem that it is difficult to form a uniform film thickness as a whole when the deposition area is large. There is also a problem that the island-like structure is easily destroyed by the temperature of the poured resin when molding the casing parts (paragraphs [0007] and [0008] of Patent Document 1).
  • Patent Document 1 discloses the following technique. That is, a sea-island structure in which the metal region is an island and the metal-free region surrounding the island is the sea is formed with artificial regularity. Each metal region is insulated from each other by a metal-free region, and the area of the metal region and the interval between adjacent metal regions are appropriately controlled. As a result, an electromagnetic wave-transmitting material that is inferior to that of a film on which indium is deposited is obtained (paragraph [0013] and the like in the specification of Patent Document 1).
  • an object of the present technology is to provide a highly-designed structure that can transmit radio waves while having a metallic appearance, an electronic device to which the structure is applied, a decorative film, and It is providing the manufacturing method of a structure.
  • a structure according to an embodiment of the present technology includes a decorative film and a casing.
  • the decorative film includes a first region in which an addition concentration of a predetermined element is relatively high, a second region in which the addition concentration is relatively lower than the first region, and the first region. It includes a metal layer having fine cracks formed as a reference.
  • casing part has a to-be-decorated area
  • the metal layer can be made of aluminum having a high reflectance. As a result, it is possible to realize a highly designable structure that can transmit radio waves while having a metallic appearance.
  • the predetermined element may be oxygen or nitrogen. By adding oxygen or nitrogen, it is possible to form fine cracks while maintaining high reflectivity, and it is possible to realize a structure with high design properties.
  • the metal layer may be aluminum or silver. Since a metal layer capable of transmitting radio waves can be realized using aluminum or silver having high reflectivity, high design properties can be exhibited.
  • the metal layer may have a thickness of 50 nm to 300 nm. This makes it possible to exhibit sufficient radio wave transmission while maintaining a high reflectance.
  • the fine cracks may be included in a pitch range of 1 ⁇ m to 500 ⁇ m. This makes it possible to exhibit sufficient radio wave transmission.
  • the metal layer may have a surface reflectance in the visible light region of 70% or more. This makes it possible to exhibit very high design properties due to metallic luster.
  • the decorative film has a protective layer laminated on the metal layer, and the surface reflectance of the visible light region in the protective layer may be 65% or more. Even when a protective layer is formed, it is possible to exhibit very high design properties.
  • the fine cracks may be formed in a mesh shape. For example, it is possible to easily form fine mesh-like cracks based on the first region by biaxial stretching. For example, it becomes possible to form fine cracks with a low stretch ratio. As a result, it is possible to suppress the deformation of the decorative film due to stretching, and it is possible to sufficiently suppress the occurrence of problems during the manufacture of the structure.
  • the decorative film may have a base portion that has a tensile breaking strength smaller than that of the metal layer and supports the metal layer.
  • a base portion having a tensile strength that is lower than that of the metal layer it is possible to form fine cracks with a low stretch ratio.
  • the base portion may be a base film.
  • a metal layer may be formed on a base film having a low tensile breaking strength.
  • the base portion may be a coating layer formed on a base film.
  • the addition concentration of the metal layer may be lower overall in a region closer to the surface of the metal layer. Thereby, it becomes possible to improve the reflectance on the surface of the metal layer, and to exhibit high designability.
  • the addition concentration of the metal layer may be lower overall in a region closer to the surface opposite to the surface of the metal layer. As a result, the reflectance on the surface opposite to the surface of the metal layer can be improved, and high designability can be exhibited.
  • An electronic apparatus includes the decorative film, the casing, and an electronic component housed in the casing.
  • the decorative film according to one embodiment of the present technology includes a base film and a metal layer.
  • the metal layer is formed on the base film, a first region having a relatively high addition concentration of a predetermined element, a second region having a relatively lower addition concentration than the first region, And a fine crack formed on the basis of the first region.
  • a method for manufacturing a structure according to an embodiment of the present technology includes forming a metal layer to which a predetermined element is added by vapor deposition on a base film.
  • a fine crack is formed in the metal layer by stretching the base film.
  • a decorative film including a metal layer in which the fine cracks are formed is formed.
  • a transfer film is formed by adhering a carrier film to the decorative film.
  • a molded part is formed such that the decorative film is transferred from the transfer film by an in-mold molding method, a hot stamp method, or a vacuum molding method.
  • a metal layer to which a predetermined element is added is formed, and a fine crack is formed by stretching the metal layer.
  • aluminum having a high reflectance can be used as the metal layer.
  • by adding a predetermined element it becomes possible to form fine cracks with a low stretch ratio. As a result, it becomes possible to suppress the deformation of the base film due to stretching, and the occurrence of problems during the manufacture of the structure can be sufficiently suppressed.
  • a transfer film including the metal layer in which the fine cracks are formed is formed. Further, the molded part is formed so that the metal layer peeled off from the base film is transferred by an in-mold molding method, a hot stamp method, or a vacuum molding method.
  • a molded part is formed integrally with the decorative film by an insert molding method.
  • vapor deposition may be performed while supplying a gas containing the predetermined element.
  • a metal layer to which a predetermined element is added can be easily formed.
  • the base film may be biaxially stretched at a stretching ratio of 2% or less in each axial direction. Since a predetermined element is added, fine cracks can be formed at a low stretch rate.
  • vacuum deposition may be performed on the base film conveyed along the peripheral surface of the rotating drum from the unwinding roll toward the winding roll.
  • the roll-to-roll method can easily mass-produce decorative films at low cost.
  • FIG. 1 It is the schematic which shows the structural example of the portable terminal as an electronic device which concerns on one Embodiment. It is typical sectional drawing which shows the structural example of the metal decoration part shown in FIG. It is a table
  • FIG. 1 is a schematic diagram illustrating a configuration example of a mobile terminal as an electronic apparatus according to an embodiment of the present technology.
  • FIG. 1A is a front view showing the front side of the mobile terminal 100
  • FIG. 1B is a perspective view showing the back side of the mobile terminal 100.
  • the portable terminal 100 includes a casing unit 101 and electronic components (not shown) accommodated in the casing unit 101.
  • a front unit 102 that is the front side of the housing unit 101 is provided with a call unit 103, a touch panel 104, and a facing camera 105.
  • the call unit 103 is provided to make a call with a telephone partner, and includes a speaker unit 106 and a voice input unit 107.
  • the other party's voice is output from the speaker unit 106, and the user's voice is transmitted to the other party via the voice input unit 107.
  • Various images and GUI are displayed on the touch panel 104.
  • the user can browse still images and moving images via the touch panel 104.
  • the user inputs various touch operations via the touch panel 104.
  • the facing camera 105 is used when photographing a user's face or the like.
  • the specific configuration of each device is not limited.
  • a metal decoration portion 10 decorated to have a metallic appearance is provided on the back surface portion 108 which is the back surface side of the housing portion 101.
  • the metal decoration unit 10 can transmit radio waves while having a metallic appearance.
  • the decorated area 11 is set in a predetermined area of the back surface portion 108.
  • the metal decoration part 10 is comprised by the decorating film 12 adhere
  • a structural body according to the present technology is configured as a casing component by the casing unit 101 having the decorated region 11 and the decorative film 12 bonded to the decorated region 11.
  • the structure which concerns on this technique may be used for some housing components.
  • the metal decoration part 10 is partially formed in the approximate center of the back surface part 108.
  • the position where the metal decoration part 10 is formed is not limited and may be set as appropriate.
  • the metal decoration part 10 may be formed on the entire back surface part 108. As a result, the entire back surface portion 108 can have a uniform metallic appearance.
  • the entire back surface 108 uniform and metallic in appearance by making the other parts around the metal decorating part 10 have an appearance substantially equal to that of the metal decorating part 10.
  • an antenna unit 15 capable of communicating with an external reader / writer or the like via radio waves is housed as an electronic component housed in the housing unit 101.
  • the antenna unit 15 includes, for example, a base substrate (not shown), an antenna coil 16 (see FIG. 2) formed on the base substrate, a signal processing circuit unit (not shown) electrically connected to the antenna coil 16, and the like. Have.
  • the specific configuration of the antenna unit 15 is not limited. Note that various electronic components such as an IC chip and a capacitor may be accommodated as the electronic components accommodated in the housing unit 101.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the metal decorating unit 10.
  • the metal decorating unit 10 is configured by the decorated region 11 set in a region corresponding to the position of the antenna unit 15 and the like, and the decorated film 12 bonded to the decorated region 11. .
  • the decorative film 12 includes an adhesive layer 18, a base film 19, a metal layer 20, and a sealing resin 21.
  • the adhesive layer 18 is a layer for bonding the decorative film 12 to the decorated region 11.
  • the adhesive layer 18 is formed by applying an adhesive material to the surface of the base film 19 opposite to the surface on which the metal layer 20 is formed.
  • the type of adhesive material, the application method, etc. are not limited.
  • the sealing resin 21 is made of a transparent material and functions as a protective layer (hard coat layer) that protects the base film 19 and the metal layer 20.
  • the sealing resin 21 is formed by applying, for example, a UV curable resin, a thermosetting resin, or a two-component curable resin. By forming the sealing resin 21, for example, smoothing, antifouling, peeling prevention, scratch prevention, and the like are realized. An acrylic resin or the like may be coated as a protective layer.
  • the base film 19 is made of a stretchable material, and a resin film is typically used.
  • a material of the base film 19 for example, PET (polyethylene terephthalate), PC (polycarbonate), PMMA (polymethyl methacrylate), PP (polypropylene), or the like is used. Other materials may be used.
  • the metal layer 20 is formed to make the decorated region 11 have a metallic appearance.
  • the metal layer 20 is a layer formed on the base film 19 by vacuum deposition, and a large number of fine cracks (hereinafter referred to as fine cracks) 22 are formed.
  • the fine cracks 22 form a plurality of discontinuous surfaces in the metal layer 20, and the surface resistance value is almost in an insulating state. Therefore, it is possible to sufficiently suppress the generation of eddy current when the radio wave hits the casing unit 101. As a result, reduction of electromagnetic wave energy due to eddy current loss can be sufficiently suppressed, and high radio wave permeability is realized.
  • the film thickness of the metal layer 20 is set, for example, in the range of 50 nm to 300 nm. If the film thickness is too small, the light is transmitted, so that the reflectance in the visible light region is lowered. If the film thickness is too large, the surface shape tends to be rough, and thus the reflectance is lowered. Further, the smaller the film thickness, the larger the amount of decrease in reflectance after the high temperature and high humidity test (for example, after 75 ° C. and 90% RH48H). RH is relative humidity (RelativeelHumidity).
  • the film thickness of the metal layer 20 may be appropriately set so that desired characteristics are exhibited. Further, for example, an optimal numerical range may be set anew within the range of 50 nm to 300 nm.
  • the decorative film 12 when the decorative film 12 is formed, first, the gloss film 23 composed of the base film 19 and the metal layer 20 is formed. Thereafter, the adhesive layer 18 and the sealing resin 21 are formed on the gloss film 23. Note that the order in which the layers are formed is not limited to this. Further, the adhesive layer 18 and the sealing resin 21 may be omitted in the molding conditions of the housing unit 101. In this case, the gloss film 23 is bonded to the decorated area 11 as a decorative film according to the present technology.
  • FIG. 3 is a table including a photograph taken by enlarging the surface state of the metal layer 20 of the glossy film 23 with a microscope.
  • FIG. 3 five photographs M1 to M5 are shown, but the surface of the glossy film 23 according to the present embodiment is a photograph M3. Other photos will be described later.
  • the photos M1 to M5 there is preparation to submit color photos.
  • an aluminum layer to which oxygen is added as a predetermined element is formed on the base film 19 as a metal layer 20 (hereinafter, the same reference numeral may be used to describe the aluminum layer 20). Then, the base film 19 is biaxially stretched under the conditions of a stretching ratio (stretching amount with respect to the original size) of 2% and substrate heating at 130 ° C., whereby the fine cracks 22 are formed.
  • a stretching ratio stretching amount with respect to the original size
  • fine cracks 22 are formed in the metal layer 20 in a mesh shape along the biaxial direction. That is, the fine cracks 22 are formed so as to cross each other along two directions substantially orthogonal to each other.
  • the pitch (crack interval) of the fine cracks 22 in each direction is set, for example, in a range of 1 ⁇ m to 500 ⁇ m.
  • the pitch is too small, the light reflected on the surface of the metal layer 20 is scattered, and the area of voids (gap) having optical transparency increases relatively, so that the reflectivity decreases.
  • the radio wave permeability is lowered.
  • the pitch is not limited to this range, and the pitch of the fine cracks 22 may be appropriately set so that desired characteristics are exhibited.
  • the pitch in the range of 50 ⁇ m or more and 200 ⁇ m or less, high reflectivity and high radio wave permeability were sufficiently exhibited.
  • an optimal numerical value range may be set anew within a range of 1 ⁇ m to 500 ⁇ m.
  • FIG. 4 is a diagram showing a result of analyzing the metal layer 20 using SEM / EDX (scanning electron microscope / energy dispersive X-ray spectroscopy).
  • FIG. 4A is an image of the surface acquired by SEM.
  • FIG. 4B is a composition ratio of constituent elements at points P1 and P2 shown in FIG. 4A.
  • the ratio of the added oxygen is relatively high at the point P1 where the fine cracks 22 intersect. Relative means that it is compared with the point P2 where the fine crack 22 is not generated.
  • the “other” composition ratio is mainly the composition ratio of the constituent elements contained in the base film 19. Although it is conceivable that oxygen is contained in the base film 19, the ratio is equal to each other at the points P1 and P2. Therefore, in the metal layer 20, the point P1 has a higher oxygen ratio.
  • the inventor has a relatively high oxygen addition concentration region (first region) and a relatively high oxygen addition concentration. It was found that the metal layer 20 includes a very low region (second region). That is, it has been found that a region having a high oxygen density is generated locally. In the example shown in FIG. 4, the region including the point P1 is the first region, and the region including the point P2 is the second region. It has also been found that fine cracks 22 are formed on the basis of the first region. Probably, the tensile strength at break decreases with increasing oxygen concentration.
  • a fine crack 22 is formed starting from a certain point of the first region, and the crack extends along the biaxial direction.
  • the growing cracks may intersect. That is, not all the intersections of the fine cracks 22 are included in the first region. However, at least some intersections (possibly with one point) are included in the first region where the oxygen concentration is high.
  • the formation of the fine crack 22 based on the first region includes, for example, that at least a part of the intersection of the fine crack 22 as described above is included in the first region.
  • the present invention is not limited to this, and other situations where an arbitrary point in the first region is the starting point of the formation of the fine crack 22 are also included in the formation of the fine crack 22 based on the first region.
  • the crack width of the fine crack 22 in the first region is relatively larger than the crack in the second region.
  • FIG. 5 is a schematic diagram showing a configuration example of a vacuum deposition apparatus.
  • the vacuum vapor deposition apparatus 500 includes a film transport mechanism 501, a partition wall 502, a crucible 503, a heating source (not shown), and an oxygen introduction mechanism 520 disposed in a vacuum chamber (not shown).
  • the film transport mechanism 501 has an unwinding roll 505, a rotating drum 506, and a winding roll 507.
  • the base film 19 is conveyed along the peripheral surface of the rotating drum 506 from the unwinding roll 505 toward the winding roll 507.
  • the crucible 503 is disposed at a position facing the rotating drum 506.
  • the crucible 503 contains aluminum 90 as a metal material constituting the metal layer 20.
  • a region of the rotating drum 506 facing the crucible 503 is a film formation region 510.
  • the partition wall 502 regulates the fine particles 91 of the aluminum 90 that advance at an angle toward the region other than the film formation region 510.
  • the oxygen introduction mechanism 520 is disposed upstream of the film formation region 510 (on the unwinding roll 505 side). An arbitrary device may be used as the oxygen introduction mechanism 520.
  • the base film 19 is conveyed with the rotating drum 506 sufficiently cooled.
  • Oxygen is sprayed toward the base film 19 by the oxygen introduction mechanism 520.
  • the oxygen supplied by the oxygen introduction mechanism 520 corresponds to a gas containing a predetermined element.
  • the aluminum 90 in the crucible 503 is heated by a heating source (not shown) such as a heater, a laser, or an electron gun. As a result, steam containing fine particles 91 is generated from the crucible 503.
  • the fine particles 91 of aluminum 90 contained in the vapor are deposited on the base film 19 that travels through the film formation region 510, so that the aluminum layer 20 to which oxygen is added is formed on the base film 19.
  • the present technology can also be applied when a batch-type vacuum deposition apparatus is used.
  • the oxygen supply device 520 is disposed on the upstream side, the amount of oxygen added to the metal layer 20 formed on the base film 19 on the upstream side of the film formation region 510 increases. On the other hand, the amount of oxygen added to the metal layer 20 formed on the downstream side is reduced. Accordingly, in the thickness direction of the metal layer 20, the concentration of oxygen added is generally lower in the region closer to the surface. As a result, the reflectance of the visible light region on the surface of the metal layer 20 can be improved, and a metallic luster having a high design property can be realized.
  • FIG. 6 is a schematic diagram showing a configuration example of a biaxial stretching apparatus.
  • the biaxial stretching apparatus 550 includes a base member 551 and four stretching mechanisms 552 that are disposed on the base member 551 and have substantially the same configuration.
  • the four extending mechanisms 552 are arranged so as to face each other on each axis, two for each of two axes (x axis and y axis) orthogonal to each other.
  • description will be made with reference to a stretching mechanism 552a that stretches the glossy film 23 'in the direction opposite to the arrow in the y-axis direction.
  • the stretching mechanism 552a includes a fixed block 553, a movable block 554, and a plurality of clips 555.
  • the fixed block 553 is fixed to the base member 551.
  • a stretching screw 556 extending in the stretching direction (y direction) is passed through the fixed block 553.
  • the movable block 554 is movably disposed on the base member 551.
  • the movable block 554 is connected to an extension screw 556 that passes through the fixed block 553. Therefore, the movable block 554 can be moved in the y direction by operating the extending screw 556.
  • the plurality of clips 555 are arranged along a direction (x direction) orthogonal to the extending direction.
  • a slide shaft 557 extending in the x direction passes through each of the plurality of clips 555.
  • Each clip 555 can change the position in the x direction along the slide shaft 557.
  • Each of the plurality of clips 555 and the movable block 554 are connected by a connection link 558 and a connection pin 559.
  • the stretching rate is controlled by the amount of operation of the stretching screw 556.
  • the stretching ratio can also be controlled by appropriately setting the number and positions of the plurality of clips 555, the length of the connecting link 558, and the like.
  • the configuration of the biaxial stretching device 550 is not limited.
  • the biaxial stretching apparatus 550 according to the present embodiment biaxially stretches the film with a full cut sheet, but it is also possible to continuously biaxially stretch with a roll.
  • continuous biaxial stretching can be achieved by applying tension perpendicular to the traveling direction by the tension between the rolls in the traveling direction and the clip 555 that moves in synchronization with the traveling provided between the rolls.
  • the gloss film 23 ′ after vacuum deposition is disposed on the base member 501, and a plurality of clips 555 of the stretching mechanism 552 are attached to each of the four sides.
  • Biaxial stretching is performed by operating the four stretching screws 556 while the glossy film 23 ′ is heated by a temperature-controlled heating lamp (not shown) or a temperature-controlled hot air.
  • the base film 19 is biaxially stretched under the conditions of a stretching ratio of 2% in each axial direction and a substrate heating of 130 ° C. Thereby, as shown in FIG. 3, the fine crack 22 used as a mesh shape is formed along the direction (biaxial direction) orthogonal to an extending
  • the stretching rate is too low, the appropriate fine cracks 22 are not formed, and the metal layer 20 has conductivity. In this case, sufficient radio wave permeability is not exhibited due to the influence of eddy currents and the like.
  • the stretching ratio is too large, damage to the base film 19 after stretching increases. As a result, when the decorative film 12 is bonded to the decorated region 11, the yield may be deteriorated due to air biting or wrinkling.
  • the design property of the metal decoration part 10 may fall by the deformation
  • the fine cracks 22 can be appropriately formed at a low stretch rate of 2% or less in the direction of each axis. Thereby, damage to the base film 19 can be sufficiently prevented, and the yield can be improved. Moreover, the design property of the metal decoration part 10 with which the decorating film 12 was adhere
  • the stretching ratio can be set as appropriate, and a stretching ratio of 2% or more may be set as long as the above-described problems do not occur.
  • the table shown in FIG. 3 shows photographs when the amount of oxygen introduced (flow rate: sccm) is varied as the formation condition of the metal layer 20.
  • flow rate flow rate: sccm
  • the fine cracks 22 were hardly formed at a stretch rate of 2%, and the conductive metal layer 20 was formed on the surface (surface resistance value: about 2 ⁇ ). / ⁇ ).
  • the reflectances before and after the stretching step were 91.0% and 84.4%, respectively, which were high numerical values.
  • the fine cracks 22 can be appropriately formed by biaxial stretching at a stretching rate of 2%.
  • the flow rate of oxygen is increased, the ratio of aluminum is lowered, so that the reflectance is lowered.
  • the supply amount of oxygen is appropriately set in a range from an amount at which the surface of the metal layer 20 is in an insulating state to an amount at which the reflectance after the stretching process is less than 70%.
  • the reflectance of less than 70% may be used or when it is desired to suppress the reflectance, more oxygen may be supplied.
  • the supply amount of oxygen may be appropriately set within a range until the metal layer 20 becomes an oxide film by oxygen.
  • the surface reflectance decreases by about 5%. Even in consideration of this, by using the decorative film 12 according to the present technology, the surface reflectance can be set to a high value of 65% or more in a state where the protective layer is formed.
  • FIG. 7 is a schematic diagram for explaining the in-mold molding method.
  • In-mold molding is performed by a molding apparatus 600 having a cavity mold 601 and a core mold 602 as shown in FIG.
  • the cavity mold 601 is formed with a recess 603 corresponding to the shape of the casing 101.
  • the transfer film 30 is disposed so as to cover the recess 603.
  • the transfer film 30 is formed by adhering the decorative film 12 shown in FIG.
  • the transfer film 30 is supplied from the outside of the molding apparatus 600 by, for example, a roll-to-roll method.
  • the cavity mold 601 and the core mold 602 are clamped, and the molding resin 35 is injected into the recess 603 through the gate portion 606 formed in the core mold 602.
  • the cavity mold 601 is formed with a sprue portion 608 to which the molding resin 35 is supplied and a runner portion 609 connected thereto.
  • the runner part 609 and the gate part 606 are connected.
  • the molding resin 35 supplied to the sprue portion 608 is injected into the recess 603.
  • the configuration for injecting the molding resin 35 is not limited.
  • the molding resin 35 for example, a general-purpose resin such as ABS (acrylonitrile butadiene styrene) resin, a PC resin, an engineering plastic such as a mixed resin of ABS and PC, or the like is used.
  • a general-purpose resin such as ABS (acrylonitrile butadiene styrene) resin, a PC resin, an engineering plastic such as a mixed resin of ABS and PC, or the like is used.
  • the material and color (transparency) of the molded resin may be appropriately selected so that a desired housing portion (housing component) is obtained.
  • the molding resin 35 is injected into the recess 603 in a state of being melted at a high temperature.
  • the molding resin 35 is injected so as to press the inner surface of the recess 603.
  • the transfer film 30 disposed in the recess 603 is pressed and deformed by the molding resin 35.
  • the adhesive layer 18 formed on the transfer film 30 is melted by the heat of the molding resin 35, and the decorative film 12 is bonded to the surface of the molding resin 35.
  • the molding resin 35 After the molding resin 35 is injected, the cavity mold 601 and the core mold 602 are cooled and the clamp is released.
  • the molding resin 35 to which the decorative film 12 is transferred is attached to the core mold 602.
  • the housing unit 101 in which the metal decorating unit 10 is formed in a predetermined region is manufactured.
  • the clamp When the clamp is released, the carrier film 31 is peeled off.
  • the in-mold molding method it is easy to align the decorative film 12, and the metal decorative portion 10 can be easily formed. Further, the degree of freedom in designing the shape of the casing 101 is high, and the casing 101 having various shapes can be manufactured.
  • the antenna unit 15 housed inside the housing unit 101 may be attached by an in-mold molding method when the housing unit 101 is molded.
  • the antenna unit 15 may be attached to the inside of the casing unit 101 after the casing unit 101 is molded.
  • the antenna part 15 may be incorporated in the inside of a housing.
  • FIG. 8 is a schematic diagram for explaining the insert molding method.
  • the decorative film 12 is disposed as an insert film in the cavity mold 651 of the molding apparatus 650. 8B, the cavity mold 651 and the core mold 652 are clamped, and the molding resin 35 is injected into the cavity mold 651 through the gate portion 656.
  • the housing part 101 is formed integrally with the decorative film 12.
  • the metal decoration part 10 can be easily formed also by using an insert molding method.
  • casing part 101 which has various shapes can be manufactured.
  • the configuration of the molding apparatus that performs in-mold molding and insert molding is not limited.
  • FIG. 9 is a schematic view showing a configuration example of a transfer film including a base film and a metal layer.
  • the transfer film 430 includes a base film 419, a release layer 481, a hard coat layer 482, a metal layer 420, an adhesive resin 421, and an adhesive layer 418.
  • the release layer 481 and the hard coat layer 482 are formed on the base film 419 in this order.
  • the metal layer 420 is formed on the base film 419 on which the release layer 481 and the hard coat layer 482 are formed. Then, the base film 419 is stretched to form fine cracks 422 in the metal layer 420.
  • the base film 419 and the release layer 481 are peeled off, and the decorative film 412 including the metal layer 420 is used as a decoration region. 411 is adhered.
  • the base film 419 may be used as a carrier film.
  • the base film 419 on which the release layer 481 is formed can also be regarded as a base film according to the present technology.
  • the case 101 in which the decorative film 12 including the metal layer 20 is transferred to the decorated region 11 is formed by the hot stamp method. Good.
  • the decorative film 12 may be bonded to the housing unit 101 by any method such as pasting.
  • vacuum forming, pressure forming, etc. may be used.
  • the housing unit 101 which is the structure according to the present embodiment
  • oxygen is added to the metal layer 20 and the fine crack 22 is formed on the basis of the first region where the addition concentration is relatively high. Is done.
  • the metal layer 20 can be made of, for example, aluminum having a high reflectance. As a result, it is possible to realize the casing 101 having a high design property that can transmit radio waves while having a metallic appearance.
  • Silver (Ag) may be used instead of aluminum. Also in this case, by adding oxygen, it becomes possible to properly form the fine cracks 22 with a stretching ratio of 2% or less, and it is possible to realize the metal layer 20 with a reflectance of 70% or more. Become.
  • the element to be added is not limited to oxygen, and for example, nitrogen (N) may be added.
  • nitrogen N
  • a nitrogen introduction mechanism may be arranged and nitrogen may be blown as the introduction gas.
  • the supply amount may be appropriately set in a range from the addition amount at which the surface of the metal film after the stretching step is in an insulating state to the nitriding of the metal layer.
  • Other elements may be added.
  • the reflectance is as low as about 50% to 60%. This is due to the optical constants of the materials, and it is very difficult to realize a reflectance of 70% or more like the glossy film 23 according to the present implementation Keita. In addition, since In is a rare metal, the material cost is increased.
  • a metal material film is formed by vacuum deposition, a material such as Al or Ti that is difficult to form on a resin by wet plating such as electroless plating can be used. Accordingly, a metal material having a very wide selection range of usable metal materials and high reflectance can be used. Moreover, since the fine crack 22 is formed by biaxial stretching, the metal layer 20 can be formed with high adhesion in vacuum deposition. As a result, the casing 101 can be appropriately formed without the metal layer 20 flowing down during in-mold molding or insert molding. Moreover, durability of the metal decoration part 10 itself can also be improved.
  • the gloss film 23 can be realized by using only a single metal film. Accordingly, it is possible to use a simple vapor deposition process with a simple vapor deposition source configuration, so that the apparatus cost and the like can be suppressed.
  • the method for forming the metal layer to which oxygen or nitrogen is added is not limited to the case where gas is blown toward the film transport mechanism 501. For example, oxygen or the like may be included in the metal material in the crucible.
  • This technology can be applied to almost all electronic devices in which built-in antennas are housed.
  • electronic devices such as mobile phones, smartphones, personal computers, game machines, digital cameras, audio devices, TVs, projectors, car navigation systems, GPS terminals, digital cameras, wearable information devices (glasses type, wristband type), etc.
  • Various devices such as a device, a remote controller that operates these devices by wireless communication, an operation device such as a mouse and a touch penn, and an electronic device provided in a vehicle such as an in-vehicle radar and an in-vehicle antenna are included. It can also be applied to IoT devices connected to the Internet or the like.
  • the present technology is not limited to housing parts such as electronic devices, but can be applied to vehicles and buildings. That is, the structure which comprises the decorating part which concerns on this technique, and the member which has the to-be-decorated area
  • the vehicle includes any vehicle such as an automobile, a bus, and a train.
  • the building includes an arbitrary building such as a detached house, an apartment house, a facility, and a bridge.
  • FIG. 10 is a cross-sectional view showing a configuration example of a glossy film according to another embodiment.
  • a base portion 250 having a tensile strength at breakage smaller than that of the metal layer 220 is provided as a member that supports the metal layer 220.
  • FIGS. 10A and 10B this is considered to be because the metal layer 220 breaks following the breakage of the surfaces of the base portions 250A and B having a small tensile breaking strength.
  • a base film having a low tensile breaking strength may be used as the base portion 250A.
  • biaxially stretched PET has a tensile breaking strength of about 200 to about 250 MPa, which is often higher than the tensile breaking strength of the aluminum layer 220.
  • the tensile strength at break of unstretched PET, PC, PMMA, and PP is as follows. Unstretched PET: about 70 MPa PC: about 69 to about 72 MPa PMMA: about 80 MPa PP: about 30 to about 72 MPa Therefore, by using a base film made of these materials as the base portion 250A, it is possible to properly form the fine cracks 222 with a low stretch rate.
  • a coating layer may be formed on the base film 219 as the base portion 250B.
  • the hard coat layer can be easily formed as the base portion 250B.
  • the durability of the glossy film 223B is maintained high, and the fine cracks 222 due to a low stretching ratio are maintained. Formation can be realized. It is also effective when PET must be used in the manufacturing process. It should be noted that the fracture of the surface of the base film or hard coat layer functioning as the base portions 250A and B shown in FIGS. 10A and 10B is as small as the width of the fine crack 222. Therefore, it does not cause air entrainment or a decrease in design.
  • FIG. 11 is a diagram showing the relationship between the thickness of the coating layer formed as the base portion 250B and the pitch (crack interval) of the fine cracks 222 formed in the metal layer 220.
  • FIG. 11 shows the relationship when an acrylic layer is formed as the coating layer.
  • the pitch of the fine cracks 222 was 50 ⁇ m to 100 ⁇ m.
  • the thickness of the acrylic layer was set in the range of 1 ⁇ m to 5 ⁇ m, the pitch of the fine cracks 222 was 100 ⁇ m to 200 ⁇ m.
  • the pitch of the fine cracks 222 can be adjusted by appropriately controlling the thickness of the acrylic layer.
  • the thickness of the acrylic layer is 0.1 ⁇ m or more and 10 ⁇ m or less, the thickness of the fine crack 222 can be adjusted within a desired range.
  • the range is not limited to this range.
  • an optimal numerical range may be set anew within a range of 0.1 ⁇ m to 10 ⁇ m.
  • the base film 19 and the casing 101 are bonded via the adhesive layer 18.
  • the sealing resin 21 side may be bonded to the housing unit 101.
  • a transparent base film 19 is used, and the sealing resin 21 may be opaque. That is, the arbitrarily colored resin 21 may be used as the sealing resin 21, thereby improving the design.
  • the base film 19 can also function as a protective layer.
  • the region closer to the surface opposite to the surface of the metal layer 20 has a lower oxygen concentration as a whole.
  • a gloss film 23 may be formed.
  • the surface of the metal layer 20 corresponds to the vapor deposition end surface, and the opposite surface corresponds to the vapor deposition start surface.
  • the surface visually recognized through the transparent base film 19 corresponds to the surface opposite to the surface of the metal layer 20.
  • the region closer to the surface on the side of the base film 19 has a lower oxygen concentration overall, so that the reflectance of the visible light region on the surface can be improved, and a metallic luster with a high design property can be realized. Is possible.
  • the oxygen introduction mechanism 520 is disposed on the downstream side (winding roll 507 side) of the film formation region 510 so that the region near the surface on the base film 19 side can be easily added. It is possible to reduce the concentration as a whole.
  • the stretching for forming the fine cracks 22 is not limited to biaxial stretching. Uniaxial stretching or stretching of three or more axes may be performed. Further, biaxial stretching may be further performed on the base film 19 wound on the winding roll 507 shown in FIG. 5 by a roll-to-roll method. Further, after vacuum deposition, biaxial stretching may be performed before being wound on the winding roll 507.
  • this technique can also take the following structures.
  • the predetermined element is oxygen or nitrogen.
  • the structure according to (1) or (2), The metal layer is aluminum or silver.
  • the structure according to any one of (1) to (3), The metal layer has a thickness of 50 nm to 300 nm.
  • the structure according to any one of (1) to (4), The fine crack is included in a pitch range of 1 ⁇ m to 500 ⁇ m.
  • the structure according to (10), The base body is a base film.
  • the structure according to (10), The base body is a coating layer formed on a base film.
  • the structure according to any one of (1) to (12), In the thickness direction of the metal layer, the metal layer In the thickness direction of the metal layer, the metal layer generally has a lower additive concentration in a region closer to the surface opposite to the surface of the metal layer.
  • An electronic device comprising: a casing having a decorated area to which the decorative film is bonded; and an electronic component housed in the casing.
  • a base film a base film; A first region formed in the base film and having a relatively high addition concentration of a predetermined element; a second region having a relatively lower addition concentration than the first region; and the first region.
  • the manufacturing method according to any one of (17) to (21), The formation step of the metal layer is a structure in which vacuum deposition is performed on the base film conveyed along the peripheral surface of the rotating drum from the unwinding roll toward the winding roll.
  • P1 Point where oxygen concentration is high
  • P2 Point where oxygen concentration is low
  • Metal decoration part 11, 411 ... Decorated area 12, 412 ... Decoration film 15 ... Antenna part 19, 219, 419 ... Base Film 20, 220, 420 ... Metal layer (aluminum layer) 22, 222, 422 ... fine cracks 23, 223 ... gloss film 30, 430 ... transfer film 31 ... carrier film 90 ... aluminum 100 ... portable terminal 101 ... housing part 250A and B ... base part 482 ... hard coat layer 500 ... Vacuum deposition apparatus 501 ... Film transport mechanism 510 ... Film formation region 520 ... Oxygen introduction mechanism 550 ... Biaxial stretching apparatus 600, 650 ... Molding apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

本技術の一形態に係る構造体は、加飾フィルムと、筐体部とを具備する。前記加飾フィルムは、所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する金属層を含む。前記筐体部は、前記加飾フィルムが接着される被加飾領域を有する。

Description

構造体、電子機器、加飾フィルム、及び構造体の製造方法
 本技術は、電子機器等に適用可能な構造体、当該構造体が適用された電子機器、加飾フィルム、及び筐体部品の製造方法に関する。
に関する。
 従来、電子機器等の筐体部品として、金属的な外観を有しつつもミリ波等の電磁波を透過可能である部材が考案されている。例えば特許文献1には、自動車のエンブレムに自動車レーダーを搭載するための外装部品について開示されている。例えば樹脂フィルム上にインジウムが蒸着され、このフィルムがインサートモールド法により、エンブレムの表層に取り付けられる。これにより装飾的に金属光沢を持ち、かつインジウムの島状構造によって電磁波周波数帯で吸収域を持たない外装部品を製造することが可能となっている(特許文献1の明細書段落[0006]等)。
 しかしながらインジウムの島状構造を形成する方法では、蒸着面積が大きい場合等において、全体に均一な膜厚を作るのが難しいという問題がある。また筐体部品を成形する際に、流し込まれる樹脂の温度により、容易に島状構造が破壊されてしまうという問題もある(特許文献1の明細書段落[0007][0008]等)。
 この問題を解決するために特許文献1には、以下の技術が開示されている。すなわち金属領域を島とし、この島をとりまく無金属領域を海とした海島構造を、人工的に規則性をもたせて形成する。そして各金属領域を無金属領域で互いに絶縁するとともに、金属領域の面積及び隣接する金属領域との間隔を適正に制御する。これにより、インジウムが蒸着されたフィルムと遜色のない電磁波透過性の材料が得られるとのことである(特許文献1の明細書段落[0013]等)。
特開2010-251899号公報
 このように金属の光沢を有しつつも電波を透過可能であり、さらに意匠性の高い部材を製造するための技術が求められている。
 以上のような事情に鑑み、本技術の目的は、金属的な外観を有しつつも電波を透過可能な意匠性の高い構造体、当該構造体が適用された電子機器、加飾フィルム、及び構造体の製造方法を提供することにある。
 上記目的を達成するため、本技術の一形態に係る構造体は、加飾フィルムと、筐体部とを具備する。
 前記加飾フィルムは、所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する金属層を含む。
 前記筐体部は、前記加飾フィルムが接着される被加飾領域を有する。
 この構造体では、金属層に所定の元素が添加され、添加濃度が相対的に高い第1の領域を基準として微細なクラックが形成される。これにより例えば反射率が高いアルミニウム等により、上記の金属層を構成させることが可能となる。この結果、金属的な外観を有しつつも電波を透過可能な意匠性の高い構造体を実現することができる。
 前記所定の元素は、酸素又は窒素であってもよい。
 酸素又は窒素を添加させることで、高い反射率を維持したまま微細クラックを形成することが可能となり、意匠性の高い構造体を実現することが可能となる。
 前記金属層は、アルミニウム又は銀であってもよい。
 反射率の高いアルミニウムや銀を用いて、電波を透過可能な金属層を実現することが可能となるので、高い意匠性を発揮させることが可能となる。
 前記金属層は、50nm以上300nm以下の厚みを有してもよい。
 これにより高い反射率を維持しつつ十分な電波透過性を発揮することが可能となる。
 前記微細なクラックは、ピッチが1μm以上500μm以下の範囲に含まれてもよい。
 これにより十分な電波透過性を発揮することが可能となる。
 前記金属層は、可視光領域の表面反射率が70%以上であってもよい。
 これにより金属光沢による非常に高い意匠性を発揮することが可能となる。
 前記加飾フィルムは、前記金属層に積層された保護層を有し、当該保護層における可視光領域の表面反射率は、65%以上であってもよい。
 保護層が形成される場合でも、非常に高い意匠性を発揮することが可能である。
 前記微細なクラックは、網目状に形成されてもよい。
 例えば2軸延伸により、第1の領域を基準として網目状の微細なクラックを容易に形成することが可能である。例えば低い延伸率により微細なクラックを形成することが可能となる。この結果、延伸による加飾フィルムの変形等を抑えることが可能となり、構造体の製造時における不具合の発生を十分に抑えることができる。
 前記加飾フィルムは、引張破断強度が前記金属層よりも小さく前記金属層を支持する基体部を有してもよい。
 金属層よりも引張破断強度が小さい基体部を用いることで、低い延伸率により微細クラックを形成することが可能となる。
 前記基体部は、ベースフィルムであってもよい。
 引張破断強度が小さいベースフィルムに金属層が形成されてもよい。
 前記基体部は、ベースフィルムに形成されたコーティング層であってもよい。
 これにより引張破断強度が大きいベースフィルムを使用しつつ、低い延伸率によるクラックの形成が実現する。
 前記金属層は、前記金属層の厚み方向において、前記金属層の表面に近い領域ほど前記添加濃度が全体的に低くてもよい。
 これにより金属層の表面における反射率を向上させることが可能となり、高い意匠性を発揮することが可能となる。
 前記金属層は、前記金属層の厚み方向において、前記金属層の表面とは反対側の面に近い領域ほど前記添加濃度が全体的に低くてもよい。
 これにより金属層の表面とは反対側の面における反射率を向上させることが可能となり、高い意匠性を発揮することが可能となる。
 本技術の一形態に係る電子機器は、前記加飾フィルムと、前記筐体部と、前記筐体部内に収容される電子部品とを具備する。
 本技術の一形態に係る加飾フィルムは、ベースフィルムと、金属層とを具備する。
 前記金属層は、前記ベースフィルムに形成され、所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する。
 本技術の一形態に係る構造体の製造方法は、ベースフィルムに蒸着により所定の元素が添加された金属層を形成することを含む。
 前記ベースフィルムを延伸することで前記金属層に微細なクラックが形成される。
 前記微細クラックが形成された金属層を含む加飾フィルムが形成される。
 前記加飾フィルムにキャリアフィルムを接着することで転写用フィルムが形成される。
 インモールド成形法、ホットスタンプ法、又は真空成形法により前記転写用フィルムから前記加飾フィルムが転写されるように成型部品が形成される。
 この製造方法では、所定の元素が添加された金属層が形成され、それが延伸されることで微細なクラックが形成される。これにより金属層として、例えば反射率が高いアルミニウム等を用いることが可能となる。この結果、金属的な外観を有しつつも電波を透過可能な意匠性の高い構造体を製造することができる。また所定の元素を添加させることで、低い延伸率により微細なクラックを形成することが可能となる。この結果、延伸によるベースフィルムの変形等を抑えることが可能となり、構造体の製造時における不具合の発生を十分に抑えることができる。
 本技術の他の形態に係る構造体の製造方法では、前記微細クラックが形成された金属層を含む転写用フィルムが形成される。またインモールド成形法、ホットスタンプ法、又は真空成形法により前記ベースフィルムから剥離した前記金属層が転写されるように成型部品が形成される。
 本技術の他の形態に係る構造体の製造方法では、インサート成形法により前記加飾フィルムと一体的に成形部品が形成される。
 前記金属層の形成ステップは、前記所定の元素を含む気体を供給しながら蒸着を行ってもよい。
 これにより所定の元素が添加された金属層を容易に形成することが可能となる。
 前記微細なクラックの形成ステップは、前記ベースフィルムを各々の軸方向の延伸率2%以下で2軸延伸してもよい。
 所定の元素が添加されるので、低い延伸率にて微細クラックを形成することができる。
 前記金属層の形成ステップは、巻出ロールから巻取ロールに向けて回転ドラムの周面に沿って搬送される前記ベースフィルムに対して真空蒸着を行ってもよい。
 ロールツーロール方式により低コストで簡単に加飾フィルムを量産することができる。
 以上のように、本技術によれば、金属的な外観を有しつつも電波を透過可能な意匠性の高い構造体を実現することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
一実施形態に係る電子機器としての携帯端末の構成例を示す概略図である。 図1に示す金属加飾部の構成例を示す模式的な断面図である。 金属層の表面状態を顕微鏡にて拡大して撮影した写真を含む表である。 金属層をSEM/EDXを用いて解析した結果を示す図である。 真空蒸着装置の構成例を示す模式図である。 2軸延伸装置の構成例を示す模式図である。 インモールド成形法を説明するための模式的な図である。 インサート成形法を説明するための模式的な図である。 ベースフィルムと金属層とを含む転写用フィルムの構成例を示す概略図である。 他の実施形態に係る光沢フィルムの構成例を示す断面図である。 基体部として形成されたコーティング層の厚みと微細クラックのピッチとの関係を示す図である。 加飾フィルムの表裏を反対にして接着する場合を示す概略図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 [電子機器の構成]
 図1は、本技術の一実施形態に係る電子機器としての携帯端末の構成例を示す概略図である。図1Aは、携帯端末100の正面側を示す正面図であり、図1Bは、携帯端末100の背面側を示す斜視図である。
 携帯端末100は、筐体部101と、筐体部101内に収容される図示しない電子部品とを有する。図1Aに示すように筐体部101の前面側である前面部102には、通話部103と、タッチパネル104と、対面カメラ105とが設けられる。通話部103は、電話の相手と通話するために設けられ、スピーカ部106及び音声入力部107を有する。スピーカ部106から相手の音声が出力され、音声入力部107を介してユーザの声が相手側に送信される。
 タッチパネル104には、種々の画像やGUI(Graphical User Interface)が表示される。ユーザは、タッチパネル104を介して静止画や動画を閲覧可能である。またユーザは、タッチパネル104を介して種々のタッチ操作を入力する。対面カメラ105は、ユーザの顔等を撮影するときに用いられる。各デバイスの具体的な構成は限定されない。
 図1Bに示すように、筐体部101の背面側である背面部108には、金属的な外観となるように加飾された金属加飾部10が設けられる。金属加飾部10は、金属的な外観を有しつつも電波を透過することが可能である。
 後に詳しく説明するが、背面部108の所定の領域に被加飾領域11が設定される。当該被加飾領域11に、加飾フィルム12が接着されることで、金属加飾部10が構成される。従って被加飾領域11は、金属加飾部10が形成される領域となる。被加飾領域11を有する筐体部101と、被加飾領域11に接着される加飾フィルム12とにより、本技術に係る構造体が筐体部品として構成される。なお筐体部品の一部に、本技術に係る構造体が用いられる場合もあり得る。
 図1Bに示す例では、背面部108の略中央に部分的に金属加飾部10が形成される。金属加飾部10が形成される位置は限定されず適宜設定されてよい。例えば背面部108全体に金属加飾部10が形成されてもよい。これにより背面部108の全体を一様に金属的な外観とすることが可能である。
 金属加飾部10の周囲の他の部分を金属加飾部10と略等しい外観とすることで、背面部108の全体を一様に金属的な外観とすることも可能である。その他、金属加飾部10以外の部分は木目調等の他の外観にすることで、意匠性を向上させることも可能である。ユーザが所望する意匠性が発揮されるように、金属加飾部10の位置や大きさ、その他の部分の外観等が適宜設定されればよい。
 筐体部101内に収容される電子部品として、本実施形態では、外部のリーダーライタ等と電波を介して通信することが可能なアンテナ部15(図2参照)が収容される。アンテナ部15は、例えばベース基板(図示なし)、ベース基板上に形成されたアンテナコイル16(図2参照)、及びアンテナコイル16に電気的に接続される信号処理回路部(図示なし)等を有する。アンテナ部15の具体的な構成は限定されない。なお筐体部101に収容される電子部品として、ICチップやコンデンサ等の種々の電子部品が収容されてよい。
 図2は、金属加飾部10の構成例を示す模式的な断面図である。上記したように金属加飾部10は、アンテナ部15等の位置に応じた領域に設定された被加飾領域11と、被加飾領域11に接着される加飾フィルム12とで構成される。
 加飾フィルム12は、粘着層18と、ベースフィルム19と、金属層20と、密封樹脂21とを有する。粘着層18は、加飾フィルム12を被加飾領域11に接着するための層である。粘着層18は、ベースフィルム19の金属層20が形成されている面の反対側の面に、粘着材料が塗布されることで形成される。粘着材料の種類や塗布方法等は限定されない。
 密封樹脂21は、透明な材料からなり、ベースフィルム19及び金属層20を保護する保護層(ハードコート層)として機能する。密封樹脂21は、例えばUV硬化樹脂、熱硬化樹脂又は2液硬化性樹脂等が塗布されることで形成される。密封樹脂21が形成されることで、例えば平滑化、防汚、剥離防止、傷防止等が実現される。なお保護層として、アクリル樹脂等がコーティングされてもよい。
 ベースフィルム19は、延伸性を有する材料からなり、典型的には樹脂フィルムが用いられる。ベースフィルム19の材料としては、例えばPET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、PMMA(ポリメタクリル酸メチル)、又はPP(ポリプロピレン)等が用いられる。その他の材料が用いられてもよい。
 金属層20は、被加飾領域11を金属的な外観とするために形成される。金属層20は、真空蒸着によりベースフィルム19に形成される層であり、多数の微細なクラック(以下、微細クラックと記載する)22が形成されている。
 この微細クラック22により、金属層20に複数の不連続面が形成され、面抵抗値がほぼ絶縁状態となる。従って電波が筐体部101に当たる際に渦電流が発生することを十分に抑制することが可能となる。この結果、渦電流損失による電磁波エネルギーの低減を十分に抑制することができ、高い電波透過性が実現される。
 金属層20の膜厚は、例えば50nm以上300nm以下の範囲に設定される。膜厚が小さすぎると光が透過するため可視光領域の反射率が低下し、膜厚が大きすぎると表面形状が荒れやすくなるので反射率が低下する。また膜厚が小さい程、高温高湿試験後(例えば75℃90%RH48H後)の反射率低下量が大きくなる。なおRHは、相対湿度(Relative Humidity)である。
 これらの点を考慮して上記の範囲で膜厚を設定することで、高い反射率を維持した電波透過面を実現することが可能であった。特に50nm以上150nm以下の範囲で膜厚を設定することで、高い反射率が十分に維持され、また高い電波透過性が発揮された。もちろんこれらの範囲に限定されず、所望の特性が発揮されるように、金属層20の膜厚は適宜設定されてよい。また例えば50nm以上300nm以下の範囲の中で、最適な数値範囲が改めて設定されてもよい。
 本実施形態では、加飾フィルム12が形成される際には、まずベースフィルム19及び金属層20からなる光沢フィルム23が形成される。その後光沢フィルム23に粘着層18及び密封樹脂21が形成される。なお各層が形成される順番がこれに限定される訳ではない。また筐体部101の成形条件等においては、粘着層18及び密封樹脂21が省略される場合もある。この場合、光沢フィルム23が本技術に係る加飾フィルムとして被加飾領域11に接着される。
 図3は、光沢フィルム23の金属層20の表面状態を顕微鏡にて拡大して撮影した写真を含む表である。図3では、5枚の写真M1~M5が図示されているが、本実施形態に係る光沢フィルム23の表面は、写真M3である。他の写真については、後に説明する。なお写真M1~M5について、カラーの写真を提出できる準備がある。
 本実施形態では、ベースフィルム19に、所定の元素として酸素が添加されたアルミニウム層が、金属層20として形成される(以下、同じ符号を用いてアルミニウム層20と記載する場合がある)。そして延伸率(元の大きさに対する延伸量)2%、基板加熱130℃の条件で、ベースフィルム19が2軸延伸されることで、微細クラック22が形成される。
 写真M3に示すように、金属層20に、2軸方向に沿って網目状に微細クラック22が形成される。すなわち互いに略直交する2方向に沿って、互いに交差するように、微細クラック22が形成される。各方向における微細クラック22のピッチ(クラック間隔)は、例えば1μm以上500μm以下の範囲に設定される。
 例えばピッチが小さすぎると、金属層20の表面にて反射される光が散乱したり、光透過性を有する空隙(隙間)の面積が相対的に増加するため反射率が低下する。一方、ピッチが大きすぎると電波透過性が低下する。ピッチを1μm以上500μm以下の範囲に設定することで、高い反射率を維持しつつ電波透過性を実現することが可能である。例えば、WiFiやBluetooth(登録商標)の2.45GHzでの電磁波(波長約12.2cm)を十分に透過させることが可能となる。
 もちろんこの範囲に限定されず、所望の特性が発揮されるように、微細クラック22のピッチは適宜設定されてよい。例えばピッチを50μm以上200μm以下の範囲に設定することで、高い反射率及び高い電波透過性が十分に発揮された。その他、例えば1μm以上500μm以下の範囲の中で、最適な数値範囲が改めて設定されてもよい。
 図3の表に示すように、写真M3の金属層20の面抵抗を4探針抵抗器で評価したところ絶縁性を示した。また分光光度計(U-4100「株式会社 日立製作所製」)を用いて、可視光領域(400nm~700nm)の表面反射率を測定したところ、81.3%となった。すなわち高い反射率を有する金属光沢の表面であり、十分な電波透過性を有する金属層20を実現することが可能となった。
 図4は、金属層20をSEM/EDX(走査型電子顕微鏡/エネルギー分散型X線分光法)を用いて解析した結果を示す図である。図4Aが、SEMにより取得された表面の画像である。図4Bは、図4Aに示すポイントP1及びP2における構成元素の組成比である。
 図4Bに示すように、微細クラック22が交差する部分のポイントP1は、添加される酸素の比率が相対的に高くなっている。相対的にというのは、微細クラック22が発生していない部分のポイントP2と比べてという意味である。なお「その他」の組成比は、主にベースフィルム19に含まれる構成元素の組成比である。ベースフィルム19に酸素が含まれることも考えられるが、その比率はポイントP1及びP2において互いに同等となる。従って金属層20において、ポイントP1の方が高い酸素比率となっている。
 このように発明者は、以下に説明する本技術に係る方法で製造された光沢フィルム23に関して、酸素の添加濃度が相対的に高い領域(第1の領域)と、酸素の添加濃度が相対的に低い領域(第2の領域)とが金属層20に含まれることを見出した。すなわち局所的に酸素密度が高い領域が発生することを見出した。図4に示す例では、ポイントP1を含む領域が第1の領域となり、ポイントP2を含む領域が第2の領域となる。また第1の領域を基準として、微細クラック22が形成されることも見出した。おそらく酸素の添加濃度が高くなると引張破断強度が低下するのではないかと考えられる。
 なお第1の領域のある点を起点として、微細クラック22が形成され、そのクラックが2軸方向に沿って伸びていく。その伸びていくクラック同士が交差することも、もちろん有り得る。すなわち微細クラック22の全ての交点が、第1の領域に含まれるわけではない。しかしながら少なくとも一部の交差点(1点の可能性も有り得る)は、酸素の添加濃度が高い第1の領域に含まれる。
 第1の領域を基準として微細クラック22が形成されるとは、例えば上記したような微細クラック22の交差点の少なくとも一部が第1の領域に含まれる、ということを含む。もちろんこれに限定されず、第1の領域の任意の点が、微細クラック22の形成の起点となっている他の状況も、第1の領域を基準とした微細クラック22の形成に含まれる。例えば第1の領域内の微細クラック22のクラック幅が、第2の領域内のクラックよりも相対的に大きい等である。
 なお、本技術に係る方法で製造された光沢フィルム23に特有の構造又は特性として、他の点を抽出することは困難であり、実際的ではないと思料する。また本技術に係る方法で製造された光沢フィルム23について、上記の特徴点が完全に常に発生するか否かについては、製造条件等によっては発生しない可能性も否定できない。
 図5は、真空蒸着装置の構成例を示す模式図である。真空蒸着装置500は、真空槽(図示なし)内に配置されたフィルム搬送機構501、隔壁502、坩堝503、加熱源(図示なし)、及び酸素導入機構520を有する。
 フィルム搬送機構501は、巻出ロール505と、回転ドラム506と、巻取ロール507とを有する。ベースフィルム19は、巻出ロール505から巻取ロール507に向けて回転ドラム506の周面に沿って搬送される。
 坩堝503は、回転ドラム506に対向する位置に配置される。坩堝503には、金属層20を構成する金属材料としてアルミニウム90が収容されている。回転ドラム506の坩堝503に対向する領域が成膜領域510となる。隔壁502は、成膜領域510以外の領域に向かう角度で進むアルミニウム90の微粒子91を規制する。酸素導入機構520は、成膜領域510の上流側(巻出ロール505側)に配置される。酸素導入機構520としては、任意の装置が用いられてよい。
 回転ドラム506が十分に冷却された状態でベースフィルム19が搬送される。酸素導入機構520により、ベースフィルム19に向けて酸素が吹き付けられる。酸素導入機構520により供給される酸素は、所定の元素を含む気体に相当する。酸素の供給に合わせて、例えばヒーター、レーザー又は電子銃等の図示しない加熱源により、坩堝503内のアルミニウム90が加熱される。これにより坩堝503から微粒子91を含む蒸気が発生する。
 蒸気に含まれるアルミニウム90の微粒子91が、成膜領域510を進むベースフィルム19に堆積することで、ベースフィルム19に、酸素が添加されたアルミニウム層20が成膜される。本実施形態ではロールツーロール方式による連続した真空蒸着が可能であるので、大幅なコスト低減、生産性の向上を図ることができる。もちろんバッチ方式の真空蒸着装置が用いられる場合にも、本技術は適用可能である。
 また酸素供給装置520が上流側に配置されるので、成膜領域510の上流側にてベースフィルム19に形成される金属層20への酸素の添加量が多くなる。一方、下流側にて形成される金属層20への酸素の添加量は少なくなる。従って金属層20の厚み方向において、表面に近い領域ほど酸素の添加濃度が全体的に低くなる。この結果、金属層20の表面における可視光領域の反射率を向上させることが可能となり、意匠性の高い金属光沢を実現することが可能となる。
 なお金属層20の厚み方向において、酸素の添加濃度を全体的に異ならせる場合でも、金属層20内に添加濃度が高い第1の領域と、添加濃度が低い第2の領域とが形成されることに影響はない。第1の領域を基準として微細クラック22が適正に形成される。
 図6は、2軸延伸装置の構成例を示す模式図である。2軸延伸装置550は、ベース部材551と、ベース部材551上に配置される、互いに略等しい構成を有する4つの延伸機構552を有する。4つの延伸機構552は、互いに直交する2軸(x軸及びy軸)の各々に2つずつ、各軸上で互いに対向するように配置される。以下、y軸方向の矢印の反対向きに光沢フィルム23'を延伸する延伸機構552aを参照しながら説明を行う。
 延伸機構552aは、固定ブロック553と、可動ブロック554と、複数のクリップ555とを有する。固定ブロック553は、ベース部材551に固定される。固定ブロック553には、延伸方向(y方向)に延在する延伸ネジ556が貫通されている。
 可動ブロック554は、ベース部材551に移動可能に配置される。可動ブロック554は、固定ブロック553を貫通する延伸ネジ556に接続される。従って延伸ネジ556が操作されることで、可動ブロック554がy方向に移動可能となる。
 複数のクリップ555は、延伸方向に直交する方向(x方向)に沿って並べられる。複数のクリップ555の各々には、x方向に延在するスライドシャフト557が貫通している。各クリップ555は、スライドシャフト557に沿ってx方向における位置を変更可能である。複数のクリップ555の各々と、可動ブロック554とは、連結リンク558及び連結ピン559により連結されている。
 延伸ネジ556の操作量によって、延伸率が制御される。また複数のクリップ555の数や位置、連結リンク558の長さ等を適宜設定することでも、延伸率の制御が可能である。なお2軸延伸装置550の構成は限定されない。本実施形態に係る2軸延伸装置550は、フィルムをフルカットされた枚葉で2軸延伸するものであるが、ロールで連続して2軸延伸することも可能である。例えばロール間の走行方向による張力と、ロール間に設けられた走行に同期して動くクリップ555により走行方向に直角な張力を与えることにより、連続した2軸延伸が可能となる。
 ベース部材501上に真空蒸着後の光沢フィルム23'が配置され、4つ辺の各々に延伸機構552の複数のクリップ555が取り付けられる。図示しない温調された加熱ランプ又は温調された熱風により光沢フィルム23'が加熱されている状態で、4つの延伸ネジ556が操作されて2軸延伸が行われる。本実施形態では、各軸方向における延伸率2%、基板加熱130℃の条件で、ベースフィルム19が2軸延伸される。これにより図3に示すように、延伸方向に直交する方向(2軸方向)に沿って、網目状となる微細クラック22が形成される。
 延伸率が低すぎると適正な微細クラック22が形成されず、金属層20が導電性を有してしまう。この場合、渦電流等の影響により、十分な電波透過性が発揮されない。一方で、延伸率が大きすぎると、延伸後のベースフィルム19へのダメージが大きくなる。その結果、加飾フィルム12を被加飾領域11に接着する際に、エアの噛み込みやしわの発生等により、歩留りが悪化してしまう可能性がある。またベースフィルム19や金属層20自体の変形により、金属加飾部10の意匠性が低下してしまうこともある。この問題は、金属層20がベースフィルム19から剥離されて転写される場合にも起こり得る。
 本実施形態に係る光沢フィルム23では、各軸の方向において2%以下のという低い延伸率にて、微細クラック22を適正に形成することができる。これによりベースフィルム19へのダメージを十分に防止することが可能となり、歩留を向上させることができる。また加飾フィルム12が接着された金属加飾部10の意匠性を高く維持することができる。もちろん延伸率は適宜設定可能であり、上記のような不具合が発生しないのであれば、2%以上の延伸率が設定されてもよい。
 図3に示す表には、金属層20の形成条件として酸素の導入量(流量:sccm)を異ならせた場合の写真が図示されている。写真M1に示すように、酸素の流量が0sccmの場合には、延伸率2%では微細クラック22がほとんど形成されず、表面に導電性を有する金属層20となった(面抵抗値:約2Ω/□)。一方、酸素が添加されないので、延伸工程前及び工程後の反射率はそれぞれ91.0%及び84.4%となり、高い数値となった。
 写真M2に示すように、酸素の流量が5sccmの場合には、延伸率2%での2軸延伸により微細クラック22が形成されたが、不連続面が形成されるまでの十分なクラックとはならなかった。そのため表面には導電性が示された。反射率は、延伸工程前及び工程後で、89.6%及び73.8%となる。
 写真M3に示すように、酸素の流量が10sccmの場合には、延伸率2%での2軸延伸により適正に微細クラック22が形成され、表面は絶縁状態となった。また反射率は、延伸工程前及び工程後で、86.6%及び81.3%となる。このように高い反射率及び十分の電波透過性を発揮することが可能となる。なお微細クラック22が形成されると、微細クラック22の隙間から光が透過するので、反射率が約5%低下している。
 写真M4に示すように、酸素の流量が25sccmの場合には、微細クラック22により、表面が絶縁状態となる。反射率は、延伸工程前及び工程後で、78.1%及び72.5%となる。酸素の流量が50sccmの場合にも表面が絶縁状態となり、反射率は、延伸工程前及び工程後で、73.7%及び68.5%となる。
 このように酸素の流量を増やし酸素の添加濃度を高く(添加量を多く)することで、延伸率2%での2軸延伸により、微細クラック22を適正に形成することが可能となる。一方、酸素の流量を増やすと、アルミニウムの比率が低くなるので、反射率は低下する。例えば酸素の供給量は、金属層20の表面が絶縁状態となる量から延伸工程後の反射率が70%未満となる量までの範囲で適宜設定される。もちろん70%未満の反射率でもよい場合や、敢えて反射率を抑えたい場合には、より多くの酸素が供給されてもよい。酸素により金属層20が酸化膜となるまでの範囲で、酸素の供給量は適宜設定されてよい。
 なお図3に示す例では、酸素の流量が5sccmの場合、延伸工程後の反射率が傾向よりも低い値となっている。これは低延伸でクラックが発生可能な第1の領域が十分に形成されておらず、引張破断強度が抑えられていない領域にて、無理にクラックが発生したからと考えられる。すなわち不完全な微細クラックにより表面平坦性が損なわれてしまい、乱反射等により分光光度計の測定値が低くなってしまったと考えられる。この点から見ても、酸素の供給量を適正な範囲に設定することが重要であることが分かる。
 密着樹脂やハードコート層等の保護層が形成されると、表面反射率は約5%程度低下する。このことを考慮しても、本技術に係る加飾フィルム12を用いることで、保護層が形成された状態で表面反射率を65%以上の高い値にすることが可能となる。
 図7は、インモールド成形法を説明するための模式的な図である。インモールド成形は、図7に示すようなキャビティ型601とコア型602とを有する成形装置600により行われる。図7Aに示すように、キャビティ型601には、筐体部101の形状に応じた凹部603が形成されている。この凹部603を覆うようにして転写用フィルム30が配置される。転写用フィルム30は、キャリアフィルム31に、図2に示す加飾フィルム12が接着されることで形成される。転写用フィルム30は、例えばロールツーロール方式によって、成形装置600の外部から供給される。
 図7Bに示すように、キャビティ型601とコア型602とがクランプされ、コア型602に形成されたゲート部606を介して、凹部603に成形樹脂35が射出される。キャビティ型601には、成形樹脂35が供給されるスプルー部608と、これに連結するランナー部609とが形成されている。キャビティ型601とコア型602とがクランプされると、ランナー部609とゲート部606とが連結される。これによりスプルー部608に供給された成形樹脂35が、凹部603に射出される。なお成形樹脂35を射出するための構成は限定されない。
 成形樹脂35としては、例えばABS(アクリロニトリル・ブタジエン・スチレン)樹脂等の汎用樹脂、PC樹脂、ABSとPCの混合樹脂等のエンジニアリングプラスチック等が用いられる。これらに限定されず、所望の筐体部(筐体部品)が得られるように、成形樹脂の材料や色(透明度)が適宜選択されてよい。
 成形樹脂35は、高温で溶かされた状態で凹部603に射出される。成形樹脂35は、凹部603の内面を押圧するように射出される。この際、凹部603に配置された転写用フィルム30は成形樹脂35により押圧されて変形する。成形樹脂35の熱により、転写用フィルム30に形成された粘着層18が溶かされ、成形樹脂35の表面に加飾フィルム12が接着される。
 成形樹脂35射出された後、キャビティ型601及びコア型602は冷却され、クランプが解除される。コア型602には、加飾フィルム12が転写された成形樹脂35が付着している。当該成形樹脂35が取り出されることで、所定の領域に金属加飾部10が形成された筐体部101が製造される。なおクランプが解除される際に、キャリアフィルム31は剥離される。
 インモールド成形法が用いられることで、加飾フィルム12の位置合わせが容易となり、簡単に金属加飾部10を形成することができる。また筐体部101の形状の設計自由度が高く、種々の形状を有する筐体部101を製造することができる。
 なお筐体部101の内側に収容されるアンテナ部15が、筐体部101の成形時にインモールド成形法により取り付けられてもよい。あるいは筐体部101の成形後に、筐体部101の内側にアンテナ部15が貼り付けられてもよい。また、筺体内部にアンテナ部15が内蔵される場合もあり得る。
 図8は、インサート成形法を説明するための模式的な図である。インサート成形では、成形装置650のキャビティ型651内に、加飾フィルム12がインサートフィルムとして配置される。そして図8Bに示すように、キャビティ型651とコア型652とがクランプされ、ゲート部656を介して、キャビティ型651内に成形樹脂35が射出される。これにより加飾フィルム12と一体的に筐体部101が形成される。インサート成形法が用いられることでも、簡単に金属加飾部10を形成することができる。また種々の形状を有する筐体部101を製造することができる。なおインモールド成形及びインサート成形を実行する成形装置の構成は限定されない。
 図9は、ベースフィルムと金属層とを含む転写用フィルムの構成例を示す概略図である。この転写用フィルム430は、ベースフィルム419と、剥離層481と、ハードコート層482と、金属層420と、密着樹脂421と、粘着層418とを有する。剥離層481及びハードコート層482は、この順でベースフィルム419上に形成される。
 従って金属層420は、剥離層481及びハードコート層482が形成されたベースフィルム419上に形成される。そしてベースフィルム419が延伸されることで、金属層420に微細クラック422が形成される。
 図9Bに示すように、インモールド成形法により筐体部101が形成される際には、ベースフィルム419及び剥離層481が剥離され、金属層420を含む加飾フィルム412が、被加飾領域411に接着される。このようにベースフィルム419がキャリアフィルムとして用いられてもよい。なお剥離層481が形成されたベースフィルム419を、本技術に係るベースフィルムとみなすこともできる。
 図7及び図9に示す転写用フィルム30及び430を用いて、ホットスタンプ法により、被加飾領域11に金属層20を含む加飾フィルム12が転写された筐体部101が形成されてもよい。その他、貼り付け等の任意の方法により、加飾フィルム12が筐体部101に接着されてもよい。また真空成形や圧空成形等が用いられてもよい。
 以上、本実施形態に係る構造体である筐体部101(筐体部品)では、金属層20に酸素が添加され、添加濃度が相対的に高い第1の領域を基準として微細クラック22が形成される。これにより例えば反射率が高いアルミニウム等により、金属層20を構成させることが可能となる。この結果、金属的な外観を有しつつも電波を透過可能な意匠性の高い筐体部101を実現することができる。
 アルミニウムに代えて銀(Ag)が用いられてもよい。この場合にも、酸素を添加することで、2%以下の延伸率にて微細クラック22を適正に形成することが可能となり、反射率が70%以上の金属層20を実現することが可能となる。
 添加される元素も酸素に限定されず、例えば窒素(N)が添加されてもよい。例えば図5に示す酸素導入機構520に代えて、窒素導入機構が配置され、導入ガスとして窒素が吹き付けられてもよい。例えば延伸工程後の金属膜の表面が絶縁状態となる添加量から、金属層が窒化するまでの範囲で、供給量が適宜設定されればよい。なお、その他の元素が添加されてもよい。
 電波を透過する金属膜としてInやSnの島状構造を有する薄膜を使用した場合、反射率は、50%~60%程度と低い値となる。これは材料の光学定数に起因しており、本実施啓太に係る光沢フィルム23のように、70%以上の反射率を実現することは非常に難しい。またInは希少金属であるため材料コストがかかってしまう。
 また無電解メッキを用いて、アフターベーキングを行うことでニッケルや銅等の金属皮膜にクラックを発生させる場合も、70%以上の反射率を実現することは難しい。またシリコンと金属を合金化させ、表面抵抗率を上げることで電波透過性を発生させることも考えられるが、この場合も、70%以上の反射率を実現することは難しい。
 また本実施形態では、真空蒸着により金属材料の膜が形成されるので、無電解メッキ等の湿式のメッキでは樹脂上に成膜することが難しいAlやTi等の材料を用いることができる。従って使用可能な金属材料の選択範囲が非常に広く、反射率が高い金属材料を用いることができる。また2軸延伸により微細クラック22を形成するので、真空蒸着においては、高い密着性にて金属層20を形成することが可能となる。その結果、インモールド成形時やインサート成形時において、金属層20が流れ落ちるといったことがなく適正に筐体部101を成形することが可能となる。また金属加飾部10自体の耐久性も向上させることができる。
 また本実施形態では、金属の単層膜のみで、光沢フィルム23を実現可能である。従って簡易な蒸着源の構成による簡易な蒸着プロセスを用いることが可能となるので、装置コスト等を抑制することができる。なお酸素や窒素が添加された金属層の形成方法は、フィルム搬送機構501に向けてガスを吹き付ける場合に限定されない。例えば坩堝内の金属材料に酸素等を含ませてもよい。
 本技術は内蔵アンテナ等が内部に収容されたほぼ全ての電子機器に適用可能である。例えばそのような電子機器として、携帯電話、スマートフォン、パソコン、ゲーム機、デジタルカメラ、オーディオ機器、TV、プロジェクタ、カーナビ、GPS端末、デジタルカメラ、ウエアラブル情報機器(眼鏡型、リストバンド型)等の電子機器、これらを無線通信等により操作するリモコン、マウス、タッチペンン等の操作機器、車載レーダーや車載アンテナ等の車両に備えられる電子機器等種々のものが挙げられる。またインターネット等に接続されたIoT機器にも適用可能である。
 また本技術は、電子機器等の筐体部品に限定されず、車両や建築物に対しても適用可能である。すなわち本技術に係る加飾部と、加飾部が接着される被加飾領域を有する部材とを具備する構造体が、車両や建築物の全部又は一部に用いられてもよい。これにより金属的な外観を有しつつも電波を透過可能な壁面等を有する車両や建築物を実現することが可能となり、非常に高い意匠性を発揮させることが可能となる。なお車両は、自動車、バス、電車等、任意の車両を含む。建築物は、一戸建、集合住宅、施設、橋等、任意の建築物を含む。
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 図10は、他の実施形態に係る光沢フィルムの構成例を示す断面図である。この光沢フィルム223では、引張破断強度が金属層220よりも小さい基体部250が、金属層220を支持する部材として設けられる。これにより微細クラック222を形成するために必要な延伸率を低下させることが可能となった。例えば金属層220自体を破断させるのに必要な延伸率よりも小さい延伸率にて、微細クラック222を形成することも可能である。これは図10A及びBに示すように、引張破断強度の小さい基体部250A及びBの表面の破断に追従して、金属層220が破断するからだと考えられる。
 図10Aに示すように、基体部250Aとして引張破断強度が小さいベースフィルムが用いられてもよい。例えば二軸延伸PETは引張破断強度が約200~約250MPaとなり、アルミニウム層220の引張破断強度よりも高くなる場合が多い。
 一方で無延伸PET、PC、PMMA、及びPPの引張破断強度は以下のようになる。
 無延伸PET:約70MPa
 PC:約69~約72MPa
 PMMA:約80MPa
 PP:約30~約72MPa
 従ってこれらの材料からなるベースフィルムを基体部250Aとして用いることで、低い延伸率にて微細クラック222を適正に形成することが可能となる。
 図10Bに示すように、基体部250Bとして、ベースフィルム219上にコーティング層が形成されてもよい。例えばアクリル樹脂等をコーティングしてハードコート層を形成することで、当該ハードコート層を基体部250Bとして簡単に形成することができる。
 引張破断強度が大きいベースフィルム219と金属層220との間に引張破断強度が小さいコーティング層を形成することで、光沢フィルム223Bの耐久性を高く維持しつつも、低い延伸率による微細クラック222の形成を実現することができる。また製造工程上PETを使用しなければならない場合等にも有効である。なお図10A及びBに示す基体部250A及びBとして機能するベースフィルムやハードコート層の表面の破断は、微細クラック222の幅程度の非常に小さいものである。従ってエアの噛み込み等や意匠性の低下等を引き起こすものではない。
 図11は、基体部250Bとして形成されたコーティング層の厚みと、金属層220に形成される微細クラック222のピッチ(クラック間隔)との関係を示す図である。図11は、コーティング層としてアクリル層が形成された場合の関係が示されている。
 図11に示すように、アクリル層の厚みが1μm以下の場合、微細クラック222のピッチは、50μm~100μmとなった。一方で、アクリル層の厚みを1μm~5μmの範囲に設定すると、微細クラック222のピッチは、100μm~200μmとなった。このように、アクリル層の厚みを大きくするほど、微細クラック222のピッチが大きくなることが分かった。従って、アクリル層の厚みを適宜制御することで、微細クラック222のピッチを調整することが可能となる。例えばアクリル層の厚みを0.1μm以上10μm以下とすることで、微細クラック222の厚みを所望の範囲で調整することが可能である。もちろんこの範囲に限定されるわけではなく、例えば0.1μm以上10μm以下の範囲の中で、最適な数値範囲が改めて設定されてもよい。
 図2に示すように本実施形態では、粘着層18を介してベースフィルム19と筐体部101とが接着された。これに限定されず、図12に示すように、密封樹脂21側が筐体部101に接着されてもよい。この場合、透明なベースフィルム19が用いられ、密封樹脂21は不透明であってもよい。すなわち密封樹脂21として任意に着色されたものが用いられてよく、これにより意匠性を向上させることができる。またベースフィルム19を保護層として機能させることも可能である。
 また図12に示す構成が採用される場合には、金属層20の厚み方向において、金属層20の表面とは反対側の面に近い領域ほど酸素の添加濃度が全体的に低くなるように、光沢フィルム23が形成されてもよい。金属層20の表面は蒸着終了面に相当し、その反対側の面とは蒸着開始面に相当する。本実施形態では、透明なベースフィルム19を介して視認される面が、金属層20の表面とは反対側の面に相当する。
 ベースフィルム19側の面に近い領域ほど酸素の添加濃度を全体的に低くすることで、当該面における可視光領域の反射率を向上させることが可能となり、意匠性の高い金属光沢を実現することが可能となる。なお図5に示す真空蒸着装置500において、酸素導入機構520を、成膜領域510の下流側(巻取ロール507側)に配置することで、容易にベースフィルム19側の面に近い領域の添加濃度を全体的に低くすることが可能である。
 微細クラック22を形成するための延伸は2軸延伸に限定されない。1軸延伸や3軸以上の延伸が実行されてもよい。また図5に示す巻取ロール507に巻き取られたベースフィルム19に対して、さらにロールツーロール方式で2軸延伸が実行されてもよい。さらに真空蒸着が行われた後、巻取ロール507に巻き取られる前に2軸延伸が実行されてもよい。
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。
 なお、本技術は以下のような構成も採ることができる。
(1)所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する金属層を含む加飾フィルムと、
 前記加飾フィルムが接着される被加飾領域を有する筐体部と
 を具備する構造体。
(2)(1)に記載の構造体であって、
 前記所定の元素は、酸素又は窒素である
 構造体。
(3)(1)又は(2)に記載の構造体であって、
 前記金属層は、アルミニウム又は銀である
 構造体。
(4)(1)から(3)のうちいずれか1つに記載の構造体であって、
 前記金属層は、50nm以上300nm以下の厚みを有する
 構造体。
(5)(1)から(4)のうちいずれか1つに記載の構造体であって、
 前記微細なクラックは、ピッチが1μm以上500μm以下の範囲に含まれる
 構造体。
(6)(1)から(5)のうちいずれか1つに記載の構造体であって、
 前記金属層は、可視光領域の表面反射率が70%以上である
 構造体。
(7)(1)から(6)のうちいずれか1つに記載の構造体であって、
 前記加飾フィルムは、前記金属層に積層された保護層を有し、当該保護層における可視光領域の表面反射率は、65%以上である
 構造体。
(8)(1)から(7)のうちいずれか1つに記載の構造体であって、
 前記微細なクラックは、網目状に形成される
 構造体。
(9)(8)に記載の構造体であって、
 前記微細なクラックの交点の少なくとも1つは、前記第1の領域に含まれる
 構造体。
(10)(1)から(9)のうちいずれか1つに記載の構造体であって、
 前記加飾フィルムは、引張破断強度が前記金属層よりも小さく前記金属層を支持する基体部を有する
 構造体。
(11)(10)に記載の構造体であって、
 前記基体部は、ベースフィルムである
 構造体。
(12)(10)に記載の構造体であって、
 前記基体部は、ベースフィルムに形成されたコーティング層である
 構造体。
(13)(1)から(12)のうちいずれか1つに記載の構造体であって、
 前記金属層は、前記金属層の厚み方向において、前記金属層の表面に近い領域ほど前記添加濃度が全体的に低い
 構造体。
(14)(1)から(12)のうちいずれか1つに記載の構造体であって、
 前記金属層は、前記金属層の厚み方向において、前記金属層の表面とは反対側の面に近い領域ほど前記添加濃度が全体的に低い
 構造体。
(15)所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する金属層を含む加飾フィルムと、
 前記加飾フィルムが接着される被加飾領域を有する筐体部と
 前記筐体部内に収容される電子部品と
 を具備する電子機器。
(16)ベースフィルムと、
 前記ベースフィルムに形成され、所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する金属層と
 を具備する加飾フィルム。
(17)ベースフィルムに蒸着により所定の元素が添加された金属層を形成し、
 前記ベースフィルムを延伸することで前記金属層に微細なクラックを形成し、
 前記微細クラックが形成された金属層を含む加飾フィルムを形成し、
 前記加飾フィルムにキャリアフィルムを接着することで転写用フィルムを形成し、
 インモールド成形法、ホットスタンプ法、又は真空成形法により前記転写用フィルムから前記加飾フィルムが転写されるように成型部品を形成する
 構造体の製造方法。
(18)ベースフィルムに蒸着により所定の元素が添加された金属層を形成し、
 前記ベースフィルムを延伸することで前記金属層に微細なクラックを形成し、
 前記微細クラックが形成された金属層を含む転写用フィルムを形成し、
 インモールド成形法、ホットスタンプ法、又は真空成形法により前記ベースフィルムから剥離した前記金属層が転写されるように成型部品を形成する
 構造体の製造方法。
(19)ベースフィルムに蒸着により所定の元素が添加された金属層を形成し、
 前記ベースフィルムを延伸することで前記金属層に微細なクラックを形成し、
 前記微細クラックが形成された金属層を含む加飾フィルムを形成し、
 インサート成形法により前記加飾フィルムと一体的に成形部品を形成する
 構造体の製造方法。
(20)(17)から(19)のうちいずれか1つに記載の製造方法であって、
 前記金属層の形成ステップは、前記所定の元素を含む気体を供給しながら蒸着を行う
 構造体の製造方法。
(21)(17)から(20)のうちいずれか1つに記載の製造方法であって、
 前記微細なクラックの形成ステップは、前記ベースフィルムを各々の軸方向の延伸率2%以下で2軸延伸する
 構造体。
(22)(17)から(21)のうちいずれか1つに記載の製造方法であって、
 前記金属層の形成ステップは、巻出ロールから巻取ロールに向けて回転ドラムの周面に沿って搬送される前記ベースフィルムに対して真空蒸着を行う
 構造体。
 P1…酸素の添加濃度が高いポイント
 P2…酸素の添加濃度が低いポイント
 10…金属加飾部
 11、411…被加飾領域
 12、412…加飾フィルム
 15…アンテナ部
 19、219、419…ベースフィルム
 20、220、420…金属層(アルミニウム層)
 22、222、422…微細クラック
 23、223…光沢フィルム
 30、430…転写用フィルム
 31…キャリアフィルム
 90…アルミニウム
 100…携帯端末
 101…筐体部
 250A及びB…基体部
 482…ハードコート層
 500…真空蒸着装置
 501…フィルム搬送機構
 510…成膜領域
 520…酸素導入機構
 550…2軸延伸装置
 600、650…成形装置

Claims (21)

  1.  所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する金属層を含む加飾フィルムと、
     前記加飾フィルムが接着される被加飾領域を有する筐体部と
     を具備する構造体。
  2.  請求項1に記載の構造体であって、
     前記所定の元素は、酸素又は窒素である
     構造体。
  3.  請求項1に記載の構造体であって、
     前記金属層は、アルミニウム又は銀である
     構造体。
  4.  請求項1に記載の構造体であって、
     前記金属層は、50nm以上300nm以下の厚みを有する
     構造体。
  5.  請求項1に記載の構造体であって、
     前記微細なクラックは、ピッチが1μm以上500μm以下の範囲に含まれる
     構造体。
  6.  請求項1に記載の構造体であって、
     前記金属層は、可視光領域の表面反射率が70%以上である
     構造体。
  7.  請求項1に記載の構造体であって、
     前記加飾フィルムは、前記金属層に積層された保護層を有し、当該保護層における可視光領域の表面反射率は、65%以上である
     構造体。
  8.  請求項1に記載の構造体であって、
     前記微細なクラックは、網目状に形成される
     構造体。
  9.  請求項1に記載の構造体であって、
     前記加飾フィルムは、引張破断強度が前記金属層よりも小さく前記金属層を支持する基体部を有する
     構造体。
  10.  請求項9に記載の構造体であって、
     前記基体部は、ベースフィルムである
     構造体。
  11.  請求項9に記載の構造体であって、
     前記基体部は、ベースフィルムに形成されたコーティング層である
     構造体。
  12.  請求項1に記載の構造体であって、
     前記金属層は、前記金属層の厚み方向において、前記金属層の表面に近い領域ほど前記添加濃度が全体的に低い
     構造体。
  13.  請求項1に記載の構造体であって、
     前記金属層は、前記金属層の厚み方向において、前記金属層の表面とは反対側の面に近い領域ほど前記添加濃度が全体的に低い
     構造体。
  14.  所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する金属層を含む加飾フィルムと、
     前記加飾フィルムが接着される被加飾領域を有する筐体部と
     前記筐体部内に収容される電子部品と
     を具備する電子機器。
  15.  ベースフィルムと、
     前記ベースフィルムに形成され、所定の元素の添加濃度が相対的に高い第1の領域と、前記第1の領域よりも前記添加濃度が相対的に低い第2の領域と、前記第1の領域を基準として形成された微細なクラックとを有する金属層と
     を具備する加飾フィルム。
  16.  ベースフィルムに蒸着により所定の元素が添加された金属層を形成し、
     前記ベースフィルムを延伸することで前記金属層に微細なクラックを形成し、
     前記微細クラックが形成された金属層を含む加飾フィルムを形成し、
     前記加飾フィルムにキャリアフィルムを接着することで転写用フィルムを形成し、
     インモールド成形法、ホットスタンプ法、又は真空成形法により前記転写用フィルムから前記加飾フィルムが転写されるように成型部品を形成する
     構造体の製造方法。
  17.  ベースフィルムに蒸着により所定の元素が添加された金属層を形成し、
     前記ベースフィルムを延伸することで前記金属層に微細なクラックを形成し、
     前記微細クラックが形成された金属層を含む転写用フィルムを形成し、
     インモールド成形法、ホットスタンプ法、又は真空成形法により前記ベースフィルムから剥離した前記金属層が転写されるように成型部品を形成する
     構造体の製造方法。
  18.  ベースフィルムに蒸着により所定の元素が添加された金属層を形成し、
     前記ベースフィルムを延伸することで前記金属層に微細なクラックを形成し、
     前記微細クラックが形成された金属層を含む加飾フィルムを形成し、
     インサート成形法により前記加飾フィルムと一体的に成形部品を形成する
     構造体の製造方法。
  19.  請求項16に記載の製造方法であって、
     前記金属層の形成ステップは、前記所定の元素を含む気体を供給しながら蒸着を行う
     構造体の製造方法。
  20.  請求項16に記載の製造方法であって、
     前記微細なクラックの形成ステップは、前記ベースフィルムを各々の軸方向の延伸率2%以下で2軸延伸する
     構造体の製造方法。
  21.  請求項16に記載の製造方法であって、
     前記金属層の形成ステップは、巻出ロールから巻取ロールに向けて回転ドラムの周面に沿って搬送される前記ベースフィルムに対して真空蒸着を行う
     構造体の製造方法。
PCT/JP2017/014167 2016-04-12 2017-04-05 構造体、電子機器、加飾フィルム、及び構造体の製造方法 WO2017179463A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780022029.1A CN108883607B (zh) 2016-04-12 2017-04-05 结构体、电子设备、装饰膜以及结构体的制造方法
JP2018511971A JPWO2017179463A1 (ja) 2016-04-12 2017-04-05 構造体、電子機器、加飾フィルム、及び構造体の製造方法
US16/091,239 US20190152186A1 (en) 2016-04-12 2017-04-05 Structure, electronic apparatus, decorative film, and structure production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016079263 2016-04-12
JP2016-079263 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017179463A1 true WO2017179463A1 (ja) 2017-10-19

Family

ID=60042193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014167 WO2017179463A1 (ja) 2016-04-12 2017-04-05 構造体、電子機器、加飾フィルム、及び構造体の製造方法

Country Status (4)

Country Link
US (1) US20190152186A1 (ja)
JP (1) JPWO2017179463A1 (ja)
CN (1) CN108883607B (ja)
WO (1) WO2017179463A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180476A1 (ja) * 2017-03-31 2018-10-04 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
WO2018221099A1 (ja) * 2017-05-30 2018-12-06 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
WO2019187929A1 (ja) * 2018-03-30 2019-10-03 ソニー株式会社 構造体、加飾フィルム及び加飾フィルムの製造方法
JP2020030094A (ja) * 2018-08-22 2020-02-27 豊田合成株式会社 車両用装飾部品
WO2021079853A1 (ja) * 2019-10-24 2021-04-29 日東電工株式会社 積層体の製造方法、塗装物の製造方法、接合構造体の製造方法、熱転写シート、及び積層体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108650818B (zh) * 2016-08-16 2020-08-18 Oppo广东移动通信有限公司 一种壳体的加工方法、壳体和移动终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268243A (ja) * 1990-03-16 1991-11-28 Sony Corp 光ディスク
JP2007162125A (ja) * 2005-11-21 2007-06-28 Toyoda Gosei Co Ltd 樹脂製品及びその製造方法並びに金属皮膜の成膜方法
JP2009299160A (ja) * 2008-06-16 2009-12-24 Kobe Steel Ltd 導電性アルミニウム薄膜
JP2010005999A (ja) * 2008-06-30 2010-01-14 Nissha Printing Co Ltd クラックを有する金属膜加飾シートの製造方法
JP2011027434A (ja) * 2009-07-21 2011-02-10 Toyota Motor Corp 樹脂基材表面への装飾皮膜の形成方法とその装飾皮膜を有する外装装飾部材
JP2011163903A (ja) * 2010-02-09 2011-08-25 Kanto Kasei Kogyo Kk 電磁波透過用金属被膜、電磁波透過用金属被膜の形成方法及び車載用レーダー装置
WO2016125212A1 (ja) * 2015-02-03 2016-08-11 ソニー株式会社 筐体部品、電子機器、筐体部品の製造方法
WO2016152252A1 (ja) * 2015-03-20 2016-09-29 日本写真印刷株式会社 艶消金属調加飾シートとその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407871A (en) * 1980-03-25 1983-10-04 Ex-Cell-O Corporation Vacuum metallized dielectric substrates and method of making same
US4364995A (en) * 1981-02-04 1982-12-21 Minnesota Mining And Manufacturing Company Metal/metal oxide coatings
US5118372A (en) * 1988-11-21 1992-06-02 Eastman Kodak Company Method of forming a protective and decorative sheet material on a substrate
US5698299A (en) * 1991-02-28 1997-12-16 Dyconex Patente Ag Thin laminated microstructure with precisely aligned openings
JP4439959B2 (ja) * 2004-03-19 2010-03-24 パナソニック株式会社 金属蒸着膜とこの金属蒸着膜を備えた金属蒸着体およびその製造方法
CN101445926A (zh) * 2007-11-26 2009-06-03 仕钦科技企业股份有限公司 塑料材料表面的电磁波隔离功能的处理方法
JP2009286082A (ja) * 2008-05-30 2009-12-10 Toyoda Gosei Co Ltd 電磁波透過性光輝樹脂製品及び製造方法
JP5163715B2 (ja) * 2010-08-27 2013-03-13 トヨタ自動車株式会社 光輝性を有する電磁波透過性塗膜、これを形成するための電磁波透過性塗料組成物、これを用いた電磁波透過性塗膜形成方法
JP5665234B2 (ja) * 2011-11-04 2015-02-04 三恵技研工業株式会社 電磁波透過用金属被膜及び車載用レーダ装置用のレドーム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268243A (ja) * 1990-03-16 1991-11-28 Sony Corp 光ディスク
JP2007162125A (ja) * 2005-11-21 2007-06-28 Toyoda Gosei Co Ltd 樹脂製品及びその製造方法並びに金属皮膜の成膜方法
JP2009299160A (ja) * 2008-06-16 2009-12-24 Kobe Steel Ltd 導電性アルミニウム薄膜
JP2010005999A (ja) * 2008-06-30 2010-01-14 Nissha Printing Co Ltd クラックを有する金属膜加飾シートの製造方法
JP2011027434A (ja) * 2009-07-21 2011-02-10 Toyota Motor Corp 樹脂基材表面への装飾皮膜の形成方法とその装飾皮膜を有する外装装飾部材
JP2011163903A (ja) * 2010-02-09 2011-08-25 Kanto Kasei Kogyo Kk 電磁波透過用金属被膜、電磁波透過用金属被膜の形成方法及び車載用レーダー装置
WO2016125212A1 (ja) * 2015-02-03 2016-08-11 ソニー株式会社 筐体部品、電子機器、筐体部品の製造方法
WO2016152252A1 (ja) * 2015-03-20 2016-09-29 日本写真印刷株式会社 艶消金属調加飾シートとその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180476A1 (ja) * 2017-03-31 2018-10-04 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
JPWO2018180476A1 (ja) * 2017-03-31 2020-02-06 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
JP7151700B2 (ja) 2017-03-31 2022-10-12 ソニーグループ株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
WO2018221099A1 (ja) * 2017-05-30 2018-12-06 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
CN110709238A (zh) * 2017-05-30 2020-01-17 索尼公司 结构体、装饰膜、制造结构体的方法、和制造装饰膜的方法
JPWO2018221099A1 (ja) * 2017-05-30 2020-04-02 ソニー株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
JP7211359B2 (ja) 2017-05-30 2023-01-24 ソニーグループ株式会社 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
WO2019187929A1 (ja) * 2018-03-30 2019-10-03 ソニー株式会社 構造体、加飾フィルム及び加飾フィルムの製造方法
JP2020030094A (ja) * 2018-08-22 2020-02-27 豊田合成株式会社 車両用装飾部品
JP7059867B2 (ja) 2018-08-22 2022-04-26 豊田合成株式会社 車両用装飾部品
WO2021079853A1 (ja) * 2019-10-24 2021-04-29 日東電工株式会社 積層体の製造方法、塗装物の製造方法、接合構造体の製造方法、熱転写シート、及び積層体

Also Published As

Publication number Publication date
JPWO2017179463A1 (ja) 2019-02-14
US20190152186A1 (en) 2019-05-23
CN108883607A (zh) 2018-11-23
CN108883607B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
JP6627781B2 (ja) 筐体部品、電子機器、筐体部品の製造方法
WO2017179463A1 (ja) 構造体、電子機器、加飾フィルム、及び構造体の製造方法
WO2020153137A1 (ja) 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
JP6665781B2 (ja) 筐体部品、電子機器、筐体部品の製造方法
US20200205306A1 (en) Flexible glass membrane,method for manufacturing the same,and electronic device comprising the same
TW201639631A (zh) 殼體、應用該殼體的電子裝置及其製作方法
WO2020134462A1 (zh) 玻璃软膜结构及其制作方法
JP7211359B2 (ja) 構造体、加飾フィルム、構造体の製造方法、及び加飾フィルムの製造方法
TWI780132B (zh) 結構體、裝飾性膜、結構體之製造方法、及裝飾性膜之製造方法
WO2019187929A1 (ja) 構造体、加飾フィルム及び加飾フィルムの製造方法
TW201417982A (zh) 電子裝置之殼體的組裝方法及電子裝置之殼體的組合
JP2022180188A (ja) 積層体及び加飾部材
TW200932526A (en) Decoration membrane applied to in-mold decoration and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018511971

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782280

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782280

Country of ref document: EP

Kind code of ref document: A1