WO2017179286A1 - ユーザ装置及び信号送信方法 - Google Patents

ユーザ装置及び信号送信方法 Download PDF

Info

Publication number
WO2017179286A1
WO2017179286A1 PCT/JP2017/005465 JP2017005465W WO2017179286A1 WO 2017179286 A1 WO2017179286 A1 WO 2017179286A1 JP 2017005465 W JP2017005465 W JP 2017005465W WO 2017179286 A1 WO2017179286 A1 WO 2017179286A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
signal
user apparatus
transmitting
sensing
Prior art date
Application number
PCT/JP2017/005465
Other languages
English (en)
French (fr)
Inventor
真平 安川
聡 永田
チュン ジョウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN202111170065.7A priority Critical patent/CN113891288B/zh
Priority to EP17782105.5A priority patent/EP3445107A4/en
Priority to JP2018511900A priority patent/JP6912457B2/ja
Priority to US16/092,604 priority patent/US11006451B2/en
Priority to KR1020187030160A priority patent/KR20180132712A/ko
Priority to CN201780032745.8A priority patent/CN109247073B/zh
Publication of WO2017179286A1 publication Critical patent/WO2017179286A1/ja
Priority to US17/227,968 priority patent/US11647542B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present invention relates to a user apparatus and a signal transmission method.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • 4G Long Term Evolution Advanced
  • FRA Full Radio Access
  • 5G 5th Generation
  • Non-Patent Document 1 D2D (Device-to-Device) technology for performing communication has been studied (for example, Non-Patent Document 1).
  • D2D reduces the traffic between the user apparatus and the base station, and enables communication between user apparatuses even when the base station becomes unable to communicate during a disaster or the like.
  • D2D includes D2D discovery (D2D discovery, also called D2D discovery) for finding other user devices that can communicate, and D2D communication (D2D direct communication, D2D communication, direct communication between terminals) for direct communication between user devices. And so on).
  • D2D discovery also called D2D discovery
  • D2D communication D2D direct communication, D2D communication, direct communication between terminals
  • D2D signal A signal transmitted and received in D2D is referred to as a D2D signal.
  • V2X is a part of ITS (Intelligent Transport Systems) and, as shown in FIG. 1, V2V (Vehicle Transport Vehicle) means a communication mode performed between automobiles, and is installed on the side of the road with the automobile.
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to
  • V2P Vehicle to Pedestrian
  • V2X technology is based on D2D technology defined by LTE.
  • D2D technology a method in which a user apparatus selects a resource for transmitting a D2D signal is roughly classified into a method in which resources are dynamically allocated from a base station and a method in which a user apparatus autonomously selects resources.
  • V2X especially V2V, user devices (eg, automobiles) exist at high density and move at high speed, so the dynamic allocation of resources is inefficient, so user devices autonomously select resources It is assumed that a method is used.
  • V2V when a user apparatus autonomously selects a resource, it is assumed that the resource once selected is used for semi-persistent instead of selecting a resource every time a packet is transmitted. For example, when a problem (eg, collision) occurs in the resource to be used, the resource is reselected.
  • a problem eg, collision
  • sensing-based resource selection method in which resources are sensed and resources that are not used (occupied) are selected.
  • a specific example is shown using FIG.
  • a time window (hereinafter referred to as “sensing window”) in which the user apparatus performs sensing is set in advance, and the size (period) of the sensing window is set so that the user apparatus transmits a packet to the semi-persistent. It is assumed that the same period is set.
  • the user apparatus detects resources (A1 to D1) that are not occupied by performing sensing in the sensing window 1.
  • the user apparatus uses the unoccupied resources (A1 to D1) in the next sensing window 2.
  • the corresponding resources (A2 to D2) are regarded as resources that can transmit the D2D signal, and a resource (for example, A2) is selected from these resources (A2 to D2) to start transmission of the D2D signal.
  • the user apparatus selects one of the resources that are not occupied in the sensing window. Therefore, depending on the resource to be selected, especially when trying to perform new communication, There is a problem that a delay may occur. For example, in FIG. 2, when the user apparatus starts transmission of the D2D signal with the resource D2, there is a delay before starting transmission of the D2D signal, compared to when transmission of the D2D signal is started with the resource A2. Become. On the other hand, if the user apparatus UE selects the resource A2 that can transmit the D2D signal at an earlier timing, it can be considered that the delay can be suppressed. However, if such an operation is allowed, when a plurality of user apparatuses try to newly communicate, there is a possibility that all the user apparatuses will select the resource A2, and there is a signal collision between the user apparatuses UE. Will occur.
  • V2X When V2X is considered to be a type of D2D, the above-described problems are not limited to V2X, but may occur in D2D in general.
  • the disclosed technology has been made in view of the above, and in a method of selecting a resource for transmitting a signal based on a sensing result, a technology that enables appropriate communication while reducing delay.
  • the purpose is to provide.
  • the user apparatus is a user apparatus that selects a resource for transmitting a signal based on a sensing result, and performs sensing in the sensing time window, so that the sensing apparatus can follow the sensing time window.
  • a detection unit that detects one or more resources capable of transmitting a signal within a time window for resource selection, a selection unit that selects a resource for transmitting a signal from the detected one or more resources, and a selection And a transmission unit that transmits a signal using a resource for transmitting the transmitted signal.
  • a technology that enables appropriate communication while reducing delay is provided.
  • V2X It is a figure for demonstrating V2X. It is a figure for demonstrating a subject. It is a figure for demonstrating D2D. It is a figure for demonstrating D2D. It is a figure for demonstrating MAC PDU used for D2D communication. It is a figure for demonstrating the format of SL-SCH subheader. It is a figure for demonstrating the example of the channel structure used by D2D. It is a figure which shows the structural example of PSDCH. It is a figure which shows the structural example of PSDCH. It is a figure which shows the structural example of PSCCH and PSSCH. It is a figure which shows the structural example of PSCCH and PSSCH. It is a figure which shows a resource pool configuration.
  • LTE corresponds to not only a communication method corresponding to Release 8 or 9 of 3GPP but also Release 10, 11, 12, 13, or Release 14 or later of 3GPP. It is used in a broad sense including the fifth generation communication system.
  • the present embodiment is mainly intended for V2X
  • the technology according to the present embodiment is not limited to V2X and can be widely applied to D2D in general.
  • D2D includes V2X as its meaning.
  • D2D is not only a process procedure for transmitting and receiving D2D signals between user apparatuses UE, but also a process procedure for receiving (monitoring) a D2D signal by a base station, and a connection with a base station eNB in the case of RRC idle.
  • the user apparatus UE is used in a broad sense including a processing procedure for transmitting an uplink signal to the base station eNB.
  • D2D is broadly divided into “D2D discovery” and “D2D communication”.
  • D2D discovery As shown in FIG. 3A, for each Discovery period, a resource pool for the Discovery message is secured, and the user apparatus UE transmits a Discovery message (discovery signal) in the resource pool. More specifically, there are Type 1 and Type 2b. In Type1, the user apparatus UE autonomously selects a transmission resource from the resource pool. In Type 2b, a quasi-static resource is allocated by higher layer signaling (for example, RRC signal).
  • D2D communication a resource pool for SCI / data transmission is periodically secured as shown in FIG. 3B.
  • the user apparatus UE on the transmission side notifies the reception side of a data transmission resource (PSSCH resource pool) or the like by SCI using a resource selected from the Control resource pool (PSCCH resource pool), and transmits data using the data transmission resource.
  • PSSCH resource pool a data transmission resource
  • PSCCH resource pool a resource selected from the Control resource pool
  • “D2D communication” includes Mode1 and Mode2.
  • resources are dynamically allocated by (E) PDCCH sent from the base station eNB to the user apparatus UE.
  • Mode 2 the user apparatus UE autonomously selects transmission resources from the resource pool.
  • the resource pool is notified by SIB or a predefined one is used.
  • PSDCH PhysicalPhysSidelink Discovery Channel
  • PSCCH Physical Sidelink Control Channel
  • PSSCH PhysicalPhysSidelink Shared Channel
  • a MAC (Medium Access Control) PDU (Protocol Data Unit) used for D2D communication includes at least a MAC header, a MAC control element, a MAC SDU (Service Data Unit), and padding.
  • the MAC PDU may contain other information.
  • the MAC header is composed of one SL-SCH (Sidelink Shared Channel) subheader and one or more MAC PDU subheaders.
  • the SL-SCH subheader is composed of MAC PDU format version (V), transmission source information (SRC), transmission destination information (DST), Reserved bit (R), and the like.
  • V indicates the MAC PDU format version that is assigned to the head of the SL-SCH subheader and is used by the user apparatus UE.
  • Information relating to the transmission source is set in the transmission source information.
  • An identifier related to the ProSe UE ID may be set in the transmission source information.
  • Information regarding the transmission destination is set in the transmission destination information. In the transmission destination information, information regarding the transmission destination ProSe Layer-2 Group ID may be set.
  • FIG. 6 An example of the D2D channel structure is shown in FIG. As shown in FIG. 6, a PSCCH resource pool and a PSSCH resource pool used for “D2D communication” are allocated. Also, a PSDCH resource pool used for “D2D discovery” is assigned with a period longer than the period of the channel of “D2D communication”.
  • PSSS Primary Sidelink Synchronization signal
  • SSSS Secondary Sidelink Synchronization signal
  • PSBCH Physical Sidelink Broadcast Channel
  • broadcast information broadcast information
  • FIG. 7A shows an example of a PSDCH resource pool used for “D2D discovery”. Since the resource pool is set by the bitmap of the subframe, it becomes an image resource pool as shown in FIG. 7A. The same applies to the resource pools of other channels.
  • the PSDCH is repeatedly transmitted while being frequency hopped. The number of repetitions can be set from 0 to 4, for example.
  • PSDCH has a PUSCH-based structure, and has a structure in which DM-RS (demodulation reference signal) is inserted.
  • DM-RS demodulation reference signal
  • FIG. 8A shows an example of a PSCCH and PSSCH resource pool used for “D2D communication”.
  • the PSCCH is repeatedly transmitted (repetition) twice including the first time while performing frequency hopping.
  • the PSSCH is repeatedly transmitted (repetition) four times including the first time while performing frequency hopping.
  • PSCCH and PSSCH have a PUSCH-based structure, and have a structure in which DM-RS is inserted.
  • FIG. 9A and 9B show examples of resource pool configuration in PSCCH, PSDCH, and PSSCH (Mode 2).
  • the resource pool is represented as a subframe bitmap.
  • the bitmap is num. Repeated for the number of repetitions. Also, an offset indicating the start position in each cycle is specified.
  • FIG. 9B shows an example of discontinuous allocation, and as shown, the start PRB, end PRB, and number of PRBs (numPRB) are designated.
  • FIG. 10 is a diagram illustrating a configuration example of a wireless communication system according to the embodiment.
  • the radio communication system according to the present embodiment includes a base station eNB, a user apparatus UE1, and a user apparatus UE2.
  • the user apparatus UE1 is intended for the transmission side and the user apparatus UE2 is intended for the reception side, but both the user apparatus UE1 and the user apparatus UE2 have both the transmission function and the reception function.
  • the user apparatus UE1 and the user apparatus UE2 are not particularly distinguished, they are simply described as “user apparatus UE”.
  • the user apparatus UE1 and the user apparatus UE2 illustrated in FIG. 10 each have a function of cellular communication as the user apparatus UE in LTE and a D2D function including signal transmission / reception on the above-described channel. Moreover, user apparatus UE1 and user apparatus UE2 have a function which performs the operation
  • Each user apparatus UE may be any apparatus having a D2D function.
  • each user apparatus UE may be a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having a UE function). Etc.
  • the base station eNB for the base station eNB, a cellular communication function as a base station eNB in LTE, and a function for enabling communication of the user apparatus UE in the present embodiment (resource allocation function, setting information notification function, etc. )have. Further, the base station eNB includes an RSU (eNB type RSU having an eNB function).
  • RSU eNB type RSU having an eNB function
  • the user apparatus UE basically selects a resource that is not occupied by performing sensing in the sensing window, and periodically uses the selected resource to perform semi-persistent D2D.
  • Send a signal is, for example, a method of measuring received power (which may be referred to as received energy or received intensity), SCI transmitted from another user apparatus UE, received, decoded, and allocated. This is performed by detecting the resource location of SCI and data or combining them.
  • Resource includes a time resource (eg, subframe) or a time and frequency resource (eg, subchannel) unless otherwise specified.
  • the “D2D signal” may be SCI, data, or a set of SCI and data.
  • the D2D signal may be a discovery signal.
  • a time window (hereinafter referred to as “selection window”) indicating a range in which a resource for transmitting a D2D signal is to be selected is provided in a time window corresponding to the next sensing window.
  • the user apparatus UE selects any resource in the selection window and starts transmitting the D2D signal.
  • FIG. 11 is a diagram for explaining an example of a transmission operation performed by the user apparatus.
  • the user apparatus UE detects resources (A1 to F1) that are not occupied by performing sensing in the sensing window.
  • the user apparatus UE starts transmission of the D2D signal using any one of the resources (A2 to F2) that can transmit the D2D signal.
  • the user apparatus UE starts transmission of the D2D signal using one of the resources (A2 to C2) corresponding to the selection window.
  • the delay required from when it is determined to transmit the D2D signal until the actual transmission of the D2D signal is started. Can be shortened.
  • the selection window is set after the sensing window.
  • the size of the selection window needs to be set to at least the size of the sensing window. In view of the effect of shortening the delay, the size of the selection window is preferably shorter than the size of the sensing window. Note that the selection window does not necessarily have to be set after the sensing window. For example, it is possible to set the start timing of the selected window after a predetermined offset from the end timing of the sensing window (after several subframes or the like).
  • the user apparatus UE selects a resource in the selection window and starts transmission of the D2D signal.
  • the user apparatus UE wants to start transmission of the D2D signal outside the range of the selection window.
  • a time window hereinafter referred to as a “reservation window” indicating a range in which a resource can be reserved is provided in the time window corresponding to the next sensing window.
  • the user apparatus UE may make it possible to reserve resources in the reservation window.
  • the user apparatus UE when the user apparatus UE wants to start transmission of a D2D signal using the resource E2, the user apparatus UE selects one of the resources A2 to C2 in the selection window, and indicates that the resource E2 is reserved with the selected resource.
  • a D2D signal including reservation information is transmitted. Accordingly, the other user apparatus UE that has received the reservation information can detect that the resource E2 is reserved.
  • the reservation information may include setting information indicating a cycle of transmitting the D2D signal to the semi-persistent.
  • the size of the reserved window must be set to at least the size of the sensing window.
  • the reservation window and the selection window may overlap each other, or may be set following the selection window.
  • the reservation window can be made smaller than the size of the sensing window by using a predetermined window or a window set from the base station eNB.
  • the user apparatus UE can select another user apparatus UE by reserving excessive resources.
  • Resources may be limited.
  • the reservation window is also effective in suppressing such excessive resource reservation.
  • the base station eNB may set the reservation window with higher layer signaling (RRC message or the like) or broadcast information (SIB), or user equipment.
  • the window size that can be reserved by the UE may be limited in advance.
  • the base station eNB transmits the number of resources that can be reserved, the number of reservation processes, the number of transmissions of the D2D signal, and / or the D2D signal instead of or in addition to the reservation window.
  • the time occupancy rate of the resource may be limited.
  • the user apparatus UE reserves only resources that can be scheduled by one MAC PDU or one SCI transmission. Further, the user apparatus UE may transmit signaling for notifying that the reservation resource is released. Thereby, the effect of releasing unnecessary resources to the user apparatus UE is also expected.
  • the user apparatus UE When charging for transmission of a D2D signal, there is a method of charging by reporting the number of transmission bits from the user apparatus UE to the network.
  • the user apparatus UE may be allowed to always transmit data unless a reserved resource release notification is performed, or it is assumed that data is always transmitted unless a reserved resource release notification is performed.
  • the user apparatus UE may be caused to perform an operation such as adding the number of transmission bits to the billing target. In the latter case, it is necessary to determine MCS (Modulation Coding ⁇ Scheme) in order to convert the number of transmission bits.
  • MCS Modulation Coding ⁇ Scheme
  • This uses the MCS scheduled for transmission of data corresponding to SCI including reservation information or the number of bits of the data. For example, calculation based on the most recently selected MCS may be performed. Further, instead of the most recently selected MCS, a predetermined MCS or an MCS set from the base station eNB may be used.
  • the size of the sensing window is defined as a period (SPS (Semi-Persistent scheduling) period) in which the user apparatus UE transmits a packet to the semi-persistent or a time interval in which resource reservation is possible (period in which resource reservation is possible). ), Or M times the period (M is an integer of 1 or more).
  • SPS Semi-Persistent scheduling
  • M M times the period (M is an integer of 1 or more).
  • the sensing window may be set to 100 ms, 200 ms, 300 ms,.
  • it is suitable to set to M times the longest period (M is an integer greater than or equal to 1).
  • the user apparatus UE randomly selects a resource from the plurality of resources. May be.
  • resources selected among the user apparatuses UE are randomized.
  • the user apparatus UE may select a resource from a plurality of resources based on a predetermined condition.
  • the predetermined condition may be any condition, but may be, for example, channel quality (for example, channel status of surrounding resources), and whether or not the D2D signal can be transmitted using the resource (
  • a UL signal may be transmitted to the base station eNB, a gap that allows transmission of a D2D signal from the base station eNB is set, and other D2D signals may be monitored with the resource. It may or may not be necessary, how much delay is allowed, and so on.
  • the user apparatus UE when the user apparatus UE is connected to a carrier other than a Sidelink carrier (a carrier capable of transmitting a D2D signal) and a gap capable of transmitting and receiving the D2D signal is set, the user apparatus UE transmits the D2D signal.
  • a resource may be selected only in a subframe within a possible gap, or sensing may be performed only in a subframe within a gap in which a D2D signal can be received.
  • the user apparatus UE determines whether the user apparatus UE selects a resource at random from a plurality of resources or selects a resource from a plurality of resources based on a predetermined condition, autonomously or a base station You may make it determine based on the instruction
  • the user apparatus UE may perform sensing when starting transmission of the D2D signal for the first time, and before transmitting the D2D signal periodically after the second time. It is not necessary to perform sensing again.
  • the user apparatus UE performs sensing in the background (that is, performs sensing at a timing (subframe) when the D2D signal is not transmitted), and signal collision (collision) with other user apparatuses UE is possible.
  • the resource may be reselected when the sex is detected.
  • (Setting method 1) In setting method 1, the start timing and end timing of the sensing window, the selection window, and the reservation window are dynamically determined based on the timing at which the user apparatus UE selects a resource for transmitting the D2D signal.
  • the timing at which the user apparatus UE selects a resource for transmitting a D2D signal is, for example, a layer in which a transmission packet is generated in an upper layer (for example, a V2X application) in the user apparatus UE and a resource is selected (for example, a MAC layer) , The physical layer) is notified that a transmission packet exists.
  • FIG. 12 is a diagram for explaining a setting method (part 1) of the start timing and end timing of each window.
  • the sensing window size is (X)
  • the selection window size is (Y)
  • the reservation window size is (Z).
  • the start timing and end timing of the sensing window are subframe (n ⁇ X ⁇ 1) and subframe ( n-1).
  • the start timing and end timing of the selection window are subframe (n) and subframe (n + Y ⁇ 1), respectively.
  • the start timing and end timing of the reservation window are subframe (n) and subframe (n + Z-1), respectively. That is, in setting method 1, the start timing and end timing of the sensing window, the selection window, and the reservation window slide with time.
  • the user apparatus UE can determine whether or not there is a packet (D2D signal) scheduled to be transmitted. It is necessary to perform sensing and understand the resources that can be transmitted.
  • the start timing of the selection window and the timing of starting the operation of selecting the resource for transmitting the D2D signal in the user apparatus UE coincide with each other. It is possible to start transmission of the D2D signal with a small delay.
  • FIG. 13 shows an example of setting the offset (O) between the end timing of the sensing window and the start timing of the selection window in the setting method # 1.
  • the size of the selection window may be limited to one subframe.
  • a case is assumed where another user apparatus UE selects the same resource.
  • the user apparatus UE1 performs an operation of selecting a resource for transmitting a D2D signal at the timing of the subframe (n) and selects the resource A of the subframe (n + 3).
  • the user apparatus UE2 further performs an operation of selecting a resource for transmitting the D2D signal at the timing of the subframe (n + 3) and selects the resource A.
  • a signal collision occurs since both the user apparatus UE1 and the user apparatus UE2 transmit the D2D signal using the resource A, a signal collision occurs.
  • the user apparatus UE has a D2D signal (for example, SCI) including reservation information indicating that the selected resource is reserved at the timing of selecting the resource for transmitting the D2D signal. May be transmitted.
  • the user apparatus UE1 may transmit a D2D signal including reservation information indicating that the resource A is reserved at the timing of the subframe (n) in FIG.
  • the user apparatus UE2 can recognize that the resource A is reserved by receiving the D2D signal, and can avoid selection of the resource A.
  • setting method 2 described later when D2D communication is performed in which the same SCI and data are repeatedly transmitted within the SC period, setting method 2 described later may be applied, or in setting method 1 A part of the start timing or end timing of each window may be matched with the timing of the boundary of the SC period.
  • the preset periodic period may be an “SC period”, and is not limited to this, and may be another periodic period.
  • SC period the periodic period
  • FIG. 15 is a diagram for explaining a setting method (part 2) of the start timing and end timing of each window.
  • the sensing window size is (X)
  • the selection window size is (Y)
  • the reservation window size is (Z).
  • the start timing of the selection window is the SC period including the subframe (n). Corresponds to the boundary between the next SC period. Therefore, depending on the timing of the subframe (n), the user apparatus UE needs to wait for a maximum of about 1 SC period before starting to transmit the D2D signal.
  • D2D communication is performed in which the same SCI and data are repeatedly transmitted within the SC period, such as the D2D technology of 3GPP Rel-12 (the technology described in ⁇ D2D overview> above)
  • the start timing and end timing of each window coincide with the boundary of the SC period. Therefore, the user apparatus UE can sense all D2D signals repeatedly transmitted by other user apparatuses UE, and can more appropriately detect the resource occupancy status.
  • FIG. 16 shows an example of setting the offset (O) between the end timing of the sensing window and the start timing of the selection window in setting method 2.
  • the start timing and end timing of each window may be set (notified) to the user apparatus using the following method.
  • the values of X, Y, Z, and O described above may be set in the user apparatus UE, or the start timing and end of each window
  • the SFN and subframe position corresponding to the timing may be set in the user apparatus UE. It is not restricted to these, You may set to the user apparatus UE by what kind of method.
  • the start timing and end timing of each window may be notified (broadcast) to each user apparatus UE using broadcast information (SIB) from the base station eNB. Moreover, you may make it set for each user apparatus UE using a RRC signal from the base station eNB, or pre-configure (Pre-configure) each user apparatus UE via SIM (Subscriber
  • SIB broadcast information
  • the base station eNB may set different start timing and end timing for each user apparatus UE. Further, the base station eNB may change the start timing and the end timing set for each user apparatus UE according to a predetermined priority.
  • the predetermined priority may be, for example, the priority of the user apparatus UE itself, the priority of the resource pool in which the user apparatus UE transmits the V2X packet, the priority of the bearer (assuming the bearer used in D2D) May be degrees.
  • the size of the selection window can be set smaller than that of the normal user apparatus UE.
  • the user apparatus UE may inquire the base station eNB about the start timing and the end timing of each window every time the V2X packet is transmitted. In this case, the user apparatus UE may notify the base station eNB of the traffic type of the V2X packet, the congestion state of the cell (carrier), and the like.
  • the offset size (value of O) may be set to be variable according to the characteristics of the traffic transmitted by the user apparatus UE (characteristics of the V2X packet).
  • a value larger than the variation in timing at which packets are periodically generated in an upper layer may be set. For example, if a packet is generated at a cycle of 100 ms but a shift of about ⁇ 2 ms actually occurs, the offset size may be set to 3 ms or more (3 subframes or more).
  • the user apparatus UE may autonomously select an arbitrary candidate from predetermined start timing and end timing candidates of each window.
  • the start timing and end timing of each window may be fixedly associated with the SC period.
  • the values of X, Y, and Z may be fixedly determined in advance according to standard specifications or the like.
  • the start timing and end timing of each window may be fixedly determined in advance.
  • the values of X, Y, Z, and O may be fixedly determined in advance according to standard specifications.
  • the base station eNB sets, in the user apparatus UE, which method to use among the above-described “setting method 1” or “setting method 2”. You may do it.
  • the user apparatus UE may support both “setting method 1” and “setting method 2”, or may support only one of them.
  • the user apparatus UE when the priority of the packet to be transmitted is high, or when the priority of the user apparatus UE itself is high, as shown in FIG. 17, the user apparatus UE, among a plurality of resources that can be selected in the selection window, A resource with the least delay may be selected.
  • the size of the selection window may be set to one subframe.
  • the user apparatus UE When the priority of the packet to be transmitted is high, or when the priority of the user apparatus UE itself is high, the user apparatus UE exceeds the range of the reservation window or within a wide reservation window set individually for the user apparatus UE. You may make it make a reservation. For example, as illustrated in FIG. 18, a reservation window corresponding to a case where the priority of a packet to be transmitted is high or a case where the priority of the user apparatus UE itself is high is defined, and the user apparatus UE uses a resource in the reservation window. May be reserved. Thereby, for example, even when all resources are reserved in the reservation window and the D2D signal cannot be transmitted, the user apparatus UE can transmit the D2D signal.
  • the user apparatus UE when there is no resource that can be transmitted in the selection window, the user apparatus UE temporarily expands the size of the selection window up to the size of the sensing window (for example, twice). You may do it. In this case, after selecting the resource, the user apparatus UE returns the size of the selection window to the original size. Thereby, since the resource which each user apparatus UE selects is randomized, it becomes possible to reduce possibility that a signal collision will generate
  • the change of the sensing window size may be performed autonomously by the user apparatus UE when there is no selectable resource, or the user apparatus UE reports the fact to the base station eNB, and the base station eNB reports higher layer signaling (RRC).
  • the size of the sensing window may be changed by a message or the like or broadcast information (SIB). In the latter case, since the sensing window can be extended including the nearby user apparatus UE, a high randomization effect is expected while the delay is large.
  • SIB broadcast information
  • the user apparatus UE may select the resource again after a predetermined back-off time has elapsed.
  • the predetermined back-off time is arbitrary, but may be the same as the size of the sensing window, for example.
  • the backoff time is set to one subframe, the collision probability increases, but the delay associated with resource reselection can be reduced.
  • the predetermined back-off time may be gradually extended.
  • the user apparatus UE when the predetermined back-off time is T time, the user apparatus UE performs the second resource selection after T time has elapsed and performs the third resource selection after T ⁇ 2 (or T ⁇ 4) time has elapsed.
  • the fourth resource selection may be performed after T ⁇ 3 (or T ⁇ 6) time has elapsed.
  • a back-off time specific to the user apparatus UE of T ⁇ N may be set in the user apparatus UE using a random value N within a certain range.
  • the user apparatus UE may notify its own upper layer (for example, an application for V2X) or the base station eNB that there is no resource that can be transmitted in the selection window. Good.
  • the upper layer of itself can determine that the radio resource is congested and take measures such as increasing the transmission cycle of the V2X packet.
  • re-selection of a resource by detecting a resource collision for example, can be regarded as a type when there is no resource that can transmit a D2D signal in the selection window.
  • the size and the back-off time for extending the selection window can be determined by the user equipment UE. You may set so that different size and time may be applied according to the priority of a packet. For example, a parameter related to each user apparatus UE may be set from the base station eNB, a parameter may be defined in advance for each priority level, or notified by broadcast information or prior setting.
  • the user apparatus UE may use resource selection using sensing only at the time of resource reselection, and may select resources at random within a selection window without performing sensing in resource selection at the time of initial transmission. For example, the user apparatus UE starts sensing when a counter based on the number of transmissions of the D2D signal or the elapsed time after the start of transmission reaches a certain value, and the counter is constant because the counter is reset by resource selection or the like. Sensing may be stopped when the value falls below the value. Accordingly, the sensing result cannot be used when a new packet is transmitted at an arbitrary timing, but it is not necessary to always perform sensing in the background, so that the battery consumption of the user apparatus UE can be reduced. Transmission resource pools used for random resource selection and sensing-based resource selection may be different. For example, a resource selection method applicable to each resource pool may be set (in advance) in the user apparatus UE in an upper layer.
  • the user apparatus UE may fall back from sensing-based resource selection to random resource selection. Good. Resource selection candidates increase, and interference randomization effects are expected.
  • the user apparatus UE may switch the execution / non-execution of such an operation according to the number of sensed resources, the number of subframes, the number of selected resource candidates, and / or the terminal capability.
  • the threshold of the interference level may be set (in advance) in the user apparatus UE in an upper layer.
  • the user apparatus UE when the user apparatus UE has a selectable resource of a certain number (ratio) or less as a result of sensing, the user apparatus UE does not adjust the predetermined threshold described above and falls back to the random resource selection. Good. This is particularly effective when sensing is performed only on partial subframes and the number of selection candidate resources is small.
  • the user apparatus UE uses the number of resources, the number of subframes, the number of selected resource candidates, and / or the terminal that sense this ratio You may change according to ability etc.
  • a randomization effect can be obtained by setting a larger value to X.
  • X may be determined according to the above conditions (the number of sensed resources, the number of subframes, the number of selected resource candidates, and / or the terminal capability), etc. It may be set. Further, the user apparatus UE may perform random resource selection when the measurement result of the upper X% resources is equal to or greater than a certain threshold.
  • the user apparatus UE may change the size of the selection window that can be taken depending on whether sensing-based resource selection or random resource selection is performed. For example, when performing random resource selection, the randomization effect may be increased by defining that a larger selection window size is selected.
  • the size of the selection window may be set for each packet priority or resource pool.
  • the user apparatus UE may relax the sensing procedure according to the terminal capability or the resource pool setting.
  • the sensing may be configured by a step based on decoding or measurement of control information and a step based on power detection (RSSI measurement or the like), but the user apparatus UE may perform only the step based on power detection. Good. In this case, the user apparatus UE does not need to perform blind detection of control information, and it is possible to reduce terminal cost and power consumption.
  • the user apparatus UE when transmitting the D2D signal to the semi-persistent, the user apparatus UE performs sensing before starting transmission of the D2D signal for the first time, and in the subsequent cycles, the selected resource is used. It was a premise that transmission of a D2D signal is allowed. Moreover, since the user apparatus UE transmits a D2D signal with a periodic resource after the selected resource, sensing is not performed (skipped) with the resource that transmits the D2D signal after the second time. If it operate
  • the user apparatus UE does not uniformly exclude resources that have not been sensed and periodic resources thereafter from the resource selection candidates in the selection window, but virtually removes these resources. Whether or not to exclude from the resource selection candidates may be determined based on the measurement result.
  • Virtually measuring a resource means that a measurement result (pre-) is regarded as a measurement result for the corresponding resource without actually performing the measurement.
  • a measurement result of a resource in a subframe different from the resource to be measured may be used.
  • a measurement result of a resource having a certain time relationship with the resource may be used in the same frequency region as the resource to be measured.
  • the user apparatus UE may perform prioritization among resource selection candidates based on the result of virtual resource measurement.
  • n is a subframe of a resource that has not been sensed
  • X is a resource period (which can also be expressed as a resource reservation unit)
  • the resource that has not been sensed and the periodic resource thereafter are expressed as subframe resources represented by n + X ⁇ k.
  • the user apparatus UE does not uniformly exclude the subframe resource represented by n + X ⁇ k from the resource selection candidates, but the resource is determined when the virtual resource measurement result is equal to or greater than (or exceeds) a predetermined threshold value. It may be excluded from the selection candidates and may be made a resource selection candidate when the virtual resource measurement result is less than (or below) a predetermined threshold.
  • the virtual resource measurement result may be, for example, S-RSSI (Sidelink-RSSI), PSCCH-RSRP, or PSSCH-RSRP. More specifically, the virtual resource measurement result may be the power detection result of the resource to be measured, the DM-RS received power transmitted on the PSCCH or PSSCH, and the like.
  • the virtual resource measurement result may be preset in the user apparatus UE, or may be set in the user apparatus UE using broadcast information (SIB) or RRC signaling. By setting “+ infinity” in the virtual resource measurement result, it is possible to substantially exclude it from the resource selection candidates. Conversely, in the virtual resource measurement result, “ ⁇ By setting “infinite”, it is possible to substantially become a target of a resource selection candidate.
  • the predetermined threshold value may be a predetermined value, may be preset in the user apparatus UE, or may be set in the user apparatus UE using broadcast information (SIB) or RRC signaling.
  • SIB broadcast information
  • RRC Radio Resource Control
  • the virtual resource measurement result and the predetermined threshold may be set for each packet priority information transmitted from the user apparatus UE, a resource pool, or a carrier that transmits a D2D signal. For example, for a packet having a high priority, transmission opportunities can be increased by setting a small value in the virtual resource measurement result. Further, the virtual resource measurement result may be variable depending on the size of the resource selection window.
  • the user apparatus UE can suppress unnecessary selection of resources that can be selected in the selection window. Further, even when the length of the selection window is short, it is possible to secure resource options.
  • FIG. 19 is a diagram illustrating an example of a functional configuration of the user apparatus according to the embodiment.
  • the user apparatus UE includes a signal transmission unit 101, a signal reception unit 102, a detection unit 103, and a selection unit 104.
  • FIG. 19 shows only functional units that are particularly related to the embodiment of the present invention in the user apparatus UE, and has at least a function (not shown) for performing an operation based on LTE.
  • the functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything. However, a part of the process of the user apparatus UE described so far (a part of setting method, selection method, etc.) may be executable.
  • the signal transmission unit 101 includes a function of generating and wirelessly transmitting various physical layer signals from higher layer signals to be transmitted from the user apparatus UE.
  • the signal transmission unit 101 has a D2D signal transmission function and a cellular communication transmission function.
  • the signal transmission unit 101 has a function of transmitting the D2D signal using the resource selected by the selection unit 104.
  • the signal transmission unit 101 uses a resource for transmitting a D2D signal, and indicates a reservation indicating that the signal transmission is planned using the “resource for reserving transmission of the D2D signal” selected by the selection unit 104. Information may be transmitted.
  • the signal receiving unit 102 includes a function of wirelessly receiving various signals from other user apparatuses UE or the base station eNB, and acquiring higher layer signals from the received physical layer signals.
  • the signal receiving unit 102 has a D2D signal reception function and a cellular communication reception function.
  • the detection unit 103 has a function of detecting one or more resources capable of transmitting the D2D signal in a selection window after the sensing window by performing sensing in the sensing window.
  • the detection unit 103 may detect one or more resources that can reserve transmission of the D2D signal in the reservation window after the sensing window by performing sensing in the sensing window.
  • the detection unit 103 virtually measures the reception quality of the periodic resource by sensing the periodic resource after the resource selected in the selection window in the sensing window, and the measured virtual One or more resources that can transmit the D2D signal may be detected in the selection window based on typical reception quality.
  • the detection unit 103 may determine that a resource whose measured virtual reception quality is equal to or less than a predetermined threshold is a resource that can transmit a D2D signal in the selection window. Further, the detection unit 103 may determine that a resource whose measured virtual reception quality is equal to or higher than a predetermined threshold is not a resource capable of transmitting the D2D signal in the selection window.
  • the selection unit 104 has a function of selecting a resource for transmitting a D2D signal from one or more resources detected by the detection unit 103.
  • the selection unit 104 randomly selects a resource for transmitting the D2D signal from the plurality of resources or selects based on a predetermined condition This may be determined autonomously or based on an instruction from the base station eNB.
  • the selection unit 104 may select a resource that reserves transmission of the D2D signal from one or more resources that can be reserved for transmission of the D2D signal detected by the detection unit 103.
  • FIG. 20 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • the base station eNB includes a signal transmission unit 201, a signal reception unit 202, and a notification unit 203.
  • FIG. 20 shows only functional units particularly related to the embodiment of the present invention in the base station eNB, and has at least a function (not shown) for performing an operation based on LTE.
  • the functional configuration illustrated in FIG. 20 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 201 includes a function of generating various physical layer signals from a higher layer signal to be transmitted from the base station eNB and wirelessly transmitting the signals.
  • the signal receiving unit 202 includes a function of wirelessly receiving various signals from the user apparatus UE and acquiring a higher layer signal from the received physical layer signal.
  • the notification unit 203 notifies the user apparatus UE of various information used for the user apparatus UE to perform the operation according to the present embodiment using broadcast information (SIB) or RRC signaling.
  • the various information includes, for example, information indicating the setting of the resource pool, information indicating the position of the SC period, information indicating the start timing and end timing of each window (sensing window, selection window, and reservation window), “setting” This is information indicating which one of “method 1” or “setting method 2” should be used.
  • the functional configurations of the user apparatus UE and the base station eNB described above may be realized entirely with hardware circuits (for example, one or a plurality of IC chips), or may be partially configured with hardware circuits. This part may be realized by a CPU and a program.
  • FIG. 21 is a diagram illustrating an example of a hardware configuration of the user apparatus according to the embodiment.
  • FIG. 21 shows a configuration closer to the mounting example than FIG.
  • the user apparatus UE performs processing such as an RF (Radio Frequency) module 301 that performs processing related to a radio signal, a BB (Base Band) processing module 302 that performs baseband signal processing, and a higher layer.
  • RF Radio Frequency
  • BB Base Band
  • the RF module 301 should transmit from the antenna by performing D / A (Digital-to-Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB processing module 302 Generate a radio signal.
  • a digital baseband signal is generated by performing frequency conversion, A / D (Analog-to-Digital) conversion, demodulation, and the like on the received radio signal, and passes it to the BB processing module 302.
  • the RF module 301 includes, for example, a part of the signal transmission unit 101 and a part of the signal reception unit 102 illustrated in FIG.
  • the BB processing module 302 performs processing for mutually converting an IP packet and a digital baseband signal.
  • a DSP (Digital Signal Processor) 312 is a processor that performs signal processing in the BB processing module 302.
  • the memory 322 is used as a work area for the DSP 312.
  • the BB processing module 302 includes, for example, a part of the signal transmission unit 101, a part of the signal reception unit 102, a detection unit 103, and a selection unit 104 shown in FIG.
  • the UE control module 303 performs IP layer protocol processing, various application processing, and the like.
  • the processor 313 is a processor that performs processing performed by the UE control module 303.
  • the memory 323 is used as a work area for the processor 313.
  • FIG. 22 is a diagram illustrating an example of a hardware configuration of the base station according to the embodiment.
  • FIG. 22 shows a configuration closer to the mounting example than FIG.
  • the base station eNB includes an RF module 401 that performs processing related to a radio signal, a BB processing module 402 that performs baseband signal processing, a device control module 403 that performs processing such as an upper layer, a network, And a communication IF 404 which is an interface for connection.
  • the RF module 401 generates a radio signal to be transmitted from the antenna by performing D / A conversion, modulation, frequency conversion, power amplification, and the like on the digital baseband signal received from the BB processing module 402.
  • a digital baseband signal is generated by performing frequency conversion, A / D conversion, demodulation, and the like on the received radio signal, and passed to the BB processing module 402.
  • the RF module 401 includes, for example, a part of the signal transmission unit 201 and a part of the signal reception unit 202 illustrated in FIG.
  • the BB processing module 402 performs processing for mutually converting an IP packet and a digital baseband signal.
  • the DSP 412 is a processor that performs signal processing in the BB processing module 402.
  • the memory 422 is used as a work area for the DSP 412.
  • the BB processing module 402 includes, for example, a part of the signal transmission unit 201 and a part of the signal reception unit 202 illustrated in FIG.
  • the device control module 403 performs IP layer protocol processing, OAM (Operation and Maintenance) processing, and the like.
  • the processor 413 is a processor that performs processing performed by the device control module 403.
  • the memory 423 is used as a work area for the processor 413.
  • the auxiliary storage device 433 is, for example, an HDD or the like, and stores various setting information for operating the base station eNB itself.
  • the device control module 403 includes, for example, a notification unit 203 illustrated in FIG.
  • a user apparatus that selects a resource for transmitting a signal based on a sensing result, and performing sensing in a sensing time window, the sensing time window
  • a detection unit for detecting one or more resources capable of transmitting a signal in a time window for later resource selection; a selection unit for selecting a resource for transmitting a signal from the detected one or more resources;
  • a user apparatus comprising: a transmission unit that transmits a signal using a resource for transmitting the selected signal.
  • the user apparatus UE provides a technique that enables appropriate communication while reducing a delay in a method of selecting a resource for transmitting a signal based on a sensing result.
  • the resource selection time window may be shorter than the sensing time window. Accordingly, since the user apparatus UE selects a resource in a selection window shorter than the sensing window, from when it is determined to transmit the D2D signal, until the transmission of the D2D signal is actually started. It is possible to reduce the delay required for the process.
  • the selection unit randomly selects a resource for transmitting the signal from the plurality of resources, or selects based on a predetermined condition This may be determined autonomously or based on an instruction from the base station.
  • the user apparatus UE can select a resource by various methods when a plurality of resources can be selected in the selection window.
  • the start timing and end timing of the sensing time window and the start timing and end timing of the resource selection time window are dynamically determined based on the timing at which the selection unit selects a resource for transmitting a signal. Alternatively, it may be determined at the boundary timing of a preset periodic period. When determined dynamically, the start timing of the selection window coincides with the timing of starting the operation of selecting a resource for transmitting the D2D signal in the user apparatus UE. It is possible to start transmission of the D2D signal with a small delay.
  • the start timing and end timing of each window correspond to the timing of the boundary of a preset periodic period
  • the user apparatus UE can sense all the repeatedly transmitted D2D signals, and can more appropriately detect the resource occupation state.
  • the detection unit detects one or more resources that can be reserved for signal transmission in a resource reservation time window after the sensing time window by performing sensing in the sensing time window. And the selection unit selects a resource that reserves transmission of the signal from one or more resources that can reserve transmission of the detected signal, and the transmission unit uses the resource for transmitting the signal.
  • the reservation information indicating that the signal transmission is scheduled may be transmitted using the resource for reserving the signal transmission.
  • the detection unit virtually senses the reception quality of the periodic resource by sensing the periodic resource after the resource for transmitting the selected signal in a time window for sensing. Based on the measured virtual reception quality, one or more resources capable of transmitting a signal may be detected within the resource selection time window. Thereby, it becomes possible for the user apparatus UE to suppress that the choice of the resource which can be selected in a selection window is limited to necessity.
  • a signal transmission method executed by a user apparatus that selects a resource for transmitting a signal based on a sensing result, and performing sensing in a sensing time window, A step of detecting one or more resources capable of transmitting a signal in a time window for resource selection after the time window for sensing, and a resource for transmitting a signal is selected from the detected one or more resources. And transmitting a signal using a resource for transmitting the selected signal is provided.
  • This signal transmission method provides a technique that enables appropriate communication while reducing delay in a method of selecting a resource for transmitting a signal based on a sensing result.
  • the SC period may be called an SA period (Scheduling Assignment Period) or may be called a PSCCH period.
  • each device user device UE / base station eNB
  • the configuration of each device is realized by executing the program by the CPU (processor) in the device including the CPU and the memory. It may be a configuration, may be a configuration realized by hardware such as a hardware circuit provided with processing logic described in the present embodiment, or may be a mixture of programs and hardware Good.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the order of the sequences and flowcharts described in the embodiments may be changed as long as there is no contradiction.
  • the user apparatus UE / base station eNB has been described using a functional block diagram, but such an apparatus may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor of the user apparatus UE according to the embodiment of the present invention and the software operated by the processor of the base station eNB according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only, respectively. It may be stored in any appropriate storage medium such as a memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or the like.
  • the sensing window is an example of a sensing time window.
  • the selection window is an example of a time window for resource selection.
  • the reservation window is an example of a time window for resource reservation.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC signaling, MAC signaling, broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC message may be referred to as RRC signaling.
  • the RRC message may be, for example, an RRC connection setup (RRCRRConnection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the determination or determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true value (Boolean: true or false), or may be performed by comparing numerical values (for example, (Comparison with a predetermined value).
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • UE is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal by those skilled in the art , Remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • determining may encompass a wide variety of actions.
  • “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “determining”.
  • “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the notification of the predetermined information is not limited to explicitly performed, and may be performed implicitly (for example, notification of the predetermined information is not performed). .
  • UE user apparatus eNB base station 101 signal transmission unit 102 signal reception unit 103 detection unit 104 selection unit 201 signal transmission unit 202 signal reception unit 203 notification unit 301 RF module 302 BB processing module 303 UE control module 304 communication IF 401 RF module 402 BB processing module 403 Device control module

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

センシング結果に基づいて、信号を送信するためのリソースを選択するユーザ装置であって、センシング用の時間ウインドウでセンシングを行うことで、該センシング用の時間ウインドウより後のリソース選択用の時間ウインドウの中で信号を送信可能な1以上のリソースを検出する検出部と、検出された1以上のリソースから、信号を送信するためのリソースを選択する選択部と、選択された前記信号を送信するためのリソースを用いて信号を送信する送信部と、を有するユーザ装置を提供する。

Description

ユーザ装置及び信号送信方法
 本発明は、ユーザ装置及び信号送信方法に関する。
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、4G、FRA(Future Radio Access)、5Gなどともいう)では、ユーザ装置同士が無線基地局を介さないで直接通信を行うD2D(Device to Device)技術が検討されている(例えば、非特許文献1)。
 D2Dは、ユーザ装置と基地局との間のトラヒックを軽減したり、災害時などに基地局が通信不能になった場合でもユーザ装置間の通信を可能とする。
 D2Dは、通信可能な他のユーザ装置を見つけ出すためのD2Dディスカバリ(D2D discovery、D2D発見ともいう)と、ユーザ装置間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信などともいう)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリなどを特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。
 また、3GPP(3rd Generation Partnership Project)では、D2D機能を拡張することでV2Xを実現することが検討されている。ここで、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、図1に示すように、自動車間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、自動車と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、自動車とドライバーのモバイル端末との間で行われる通信形態を意味するV2N(Vehicle to Nomadic device)、及び、自動車と歩行者のモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。
"Key drivers for LTE success:Services Evolution"、2011年9月、3GPP、インターネットURL:http://www.3gpp.org/ftp/Information/presentations/presentations_2011/2011_09_LTE_Asia/2011_LTE-Asia_3GPP_Service_evolution.pdf 3GPP TS36.300 V13.2.0(2015-12)
 V2Xの技術は、LTEで規定されているD2Dの技術をベースとしている。当該D2Dの技術において、ユーザ装置がD2D信号を送信するリソースを選択する方式として、大別して、基地局からダイナミックにリソースを割り当てる方式と、ユーザ装置が自律的にリソースを選択する方式がある。V2X、特に、V2Vでは、ユーザ装置(例:自動車)は高密度に存在し、高速に移動するので、ダイナミックにリソースを割り当てる方式では非効率であることから、ユーザ装置が自律的にリソースを選択する方式が用いられることが想定される。
 また、V2Vでは、ユーザ装置が自律的にリソースの選択をする際に、パケットの送信毎にリソースを選択するのではなく、一旦選択したリソースをセミパーシステントに使用することが想定される。そして、例えば、使用するリソースに問題(例:衝突)が生じた際に、リソースの再選択を行う。
 複数のユーザ装置が自律的に送信リソースを選択(再選択を含む)する際に、各ユーザ装置が自由にリソースを選択するとなると、リソースの衝突が生じ、受信側のユーザ装置は信号を適切に受信できなくなる。
 そこで、リソースのセンシングを行って、使用(占有:occupied)されていないリソースを選択するセンシングベースのリソース選択方式が提案されている。図2を用いて具体例を示す。図2の例では、ユーザ装置がセンシングを行う時間ウインドウ(以下、「センシングウインドウ」と呼ぶ)が予め設定されており、センシングウインドウのサイズ(期間)は、ユーザ装置がパケットをセミパーシステントに送信する周期と同一に設定されている前提とする。図2の例では、ユーザ装置は、センシングウインドウ1の中でセンシングを行うことで占有されていないリソース(A1~D1)を検出する。検出されたリソースは、次のセンシングウインドウ2の中でも占有されていないと判断することができるため、ユーザ装置は、次のセンシングウインドウ2の中で、当該占有されていないリソース(A1~D1)にそれぞれ対応するリソース(A2~D2)を、D2D信号を送信可能なリソースであるとみなし、これらのリソース(A2~D2)からリソース(例えばA2)を選択してD2D信号の送信を開始する。
 しかし、上記のリソース選択方式では、ユーザ装置は、センシングウインドウの中で占有されていないリソースのうちいずれかのリソースを選択するため、選択するリソースによっては、特に新たに通信を行おうとする際に遅延が生じる可能性があるという課題がある。例えば図2において、ユーザ装置がリソースD2でD2D信号の送信を開始する場合、リソースA2でD2D信号の送信を開始する場合よりも、D2D信号の送信を開始するまでに遅延が生じてしまうことになる。一方で、ユーザ装置UEは、より早いタイミングでD2D信号を送信可能なリソースA2を選択すれば、遅延を抑制できるとも考えられる。しかしながら、このような動作を許容すると、複数のユーザ装置が新たに通信を行おうとしている場合、全てのユーザ装置がリソースA2を選択してしまう可能性があり、ユーザ装置UE間で信号の衝突が生じてしまう。
 なお、V2XはD2Dの一種であると考えると、上記のような課題はV2Xに限らず、D2D全般に生じ得る課題である。
 開示の技術は上記に鑑みてなされたものであって、センシング結果に基づいて信号を送信するためのリソースを選択する方式において、遅延を低減しつつ適切に通信を行うことを可能とする技術を提供することを目的とする。
 開示の技術のユーザ装置は、センシング結果に基づいて、信号を送信するためのリソースを選択するユーザ装置であって、センシング用の時間ウインドウでセンシングを行うことで、該センシング用の時間ウインドウより後のリソース選択用の時間ウインドウの中で信号を送信可能な1以上のリソースを検出する検出部と、検出された1以上のリソースから、信号を送信するためのリソースを選択する選択部と、選択された前記信号を送信するためのリソースを用いて信号を送信する送信部と、を有する。
 開示の技術によれば、センシング結果に基づいて信号を送信するためのリソースを選択する方式において、遅延を低減しつつ適切に通信を行うことを可能とする技術が提供される。
V2Xを説明するための図である。 課題を説明するための図である。 D2Dを説明するための図である。 D2Dを説明するための図である。 D2D通信に用いられるMAC PDUを説明するための図である。 SL-SCH subheaderのフォーマットを説明するための図である。 D2Dで使用されるチャネル構造の例を説明するための図である。 PSDCHの構造例を示す図である。 PSDCHの構造例を示す図である。 PSCCHとPSSCHの構造例を示す図である。 PSCCHとPSSCHの構造例を示す図である。 リソースプールコンフィギュレーションを示す図である。 リソースプールコンフィギュレーションを示す図である。 実施の形態に係る無線通信システムの構成例を示す図である。 ユーザ装置が行う送信動作の一例を説明するための図である。 各ウインドウの開始タイミング及び終了タイミングの設定方法(その1)を説明するための図である。 設定方法(その1)においてオフセットを設けた場合を示す図である。 選択されるリソースが重複する場合を説明するための図である。 各ウインドウの開始タイミング及び終了タイミングの設定方法(その2)を説明するための図である。 設定方法(その2)においてオフセットを設けた場合を示す図である。 優先度が高い場合のリソース選択動作を説明するための図である。 優先度が高い場合のリソース予約動作を説明するための図である。 実施の形態に係るユーザ装置の機能構成の一例を示す図である。 実施の形態に係る基地局の機能構成の一例を示す図である。 実施の形態に係るユーザ装置のハードウェア構成の一例を示す図である。 実施の形態に係る基地局のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る無線通信システムはLTEに準拠した方式のシステムを想定しているが、本発明はLTEに限定されるわけではなく、他の方式にも適用可能である。なお、本明細書及び特許請求の範囲において、「LTE」は、3GPPのリリース8、又は9に対応する通信方式のみならず、3GPPのリリース10、11、12、13、又はリリース14以降に対応する第5世代の通信方式も含む広い意味で使用する。
 また、本実施の形態は、主にV2Xを対象としているが、本実施の形態に係る技術は、V2Xに限らず、広くD2D全般に適用可能である。また、「D2D」はその意味としてV2Xを含むものである。
 また、「D2D」は、ユーザ装置UE間でD2D信号を送受信する処理手順のみならず、D2D信号を基地局が受信(モニタ)する処理手順、及び、RRC idleの場合若しくは基地局eNBとコネクションを確立していない場合に、ユーザ装置UEが基地局eNBに上り信号を送信する処理手順を含む広い意味で使用する。
 <D2Dの概要>
 LTEで規定されているD2Dの概要について説明する。なお、V2Xにおいても、ここで説明するD2Dの技術を使用することは可能であり、本発明の実施の形態におけるUEは、当該技術によるD2D信号の送受信を行うことができる。
 既に説明したように、D2Dには、大きく分けて「D2Dディスカバリ」と「D2Dコミュニケーション」がある。「D2Dディスカバリ」については、図3Aに示すように、Discovery period毎に、Discoveryメッセージ用のリソースプールが確保され、ユーザ装置UEはそのリソースプール内でDiscoveryメッセージ(発見信号)を送信する。より詳細にはType1、Type2bがある。Type1では、ユーザ装置UEが自律的にリソースプールから送信リソースを選択する。Type2bでは、上位レイヤシグナリング(例えばRRC信号)により準静的なリソースが割り当てられる。
 「D2Dコミュニケーション」についても、図3Bに示すように、SCI/データ送信用のリソースプールが周期的に確保される。送信側のユーザ装置UEはControlリソースプール(PSCCHリソースプール)から選択されたリソースでSCIによりデータ送信用リソース(PSSCHリソースプール)等を受信側に通知し、当該データ送信用リソースでデータを送信する。「D2Dコミュニケーション」について、より詳細には、Mode1とMode2がある。Mode1では、基地局eNBからユーザ装置UEに送られる(E)PDCCHによりダイナミックにリソースが割り当てられる。Mode2では、ユーザ装置UEはリソースプールから自律的に送信リソースを選択する。リソースプールについては、SIBで通知されたり、予め定義されたものが使用される。
 LTEにおいて、「D2Dディスカバリ」に用いられるチャネルはPSDCH(Physical Sidelink Discovery Channel)と称され、「D2Dコミュニケーション」におけるSCI等の制御情報を送信するチャネルはPSCCH(Physical Sidelink Control Channel)と称され、データを送信するチャネルはPSSCH(Physical Sidelink Shared Channel)と称される(非特許文献2)。
 D2D通信に用いられるMAC(Medium Access Control)PDU(Protocol Data Unit)は、図4に示すように、少なくともMAC header、MAC Control element、MAC SDU(Service Data Unit)、Paddingで構成される。MAC PDUはその他の情報を含んでも良い。MAC headerは、1つのSL-SCH(Sidelink Shared Channel)subheaderと、1つ以上のMAC PDU subheaderで構成される。
 図5に示すように、SL-SCH subheaderは、MAC PDUフォーマットバージョン(V)、送信元情報(SRC)、送信先情報(DST)、Reserved bit(R)等で構成される。Vは、SL-SCH subheaderの先頭に割り当てられ、ユーザ装置UEが用いるMAC PDUフォーマットバージョンを示す。送信元情報には、送信元に関する情報が設定される。送信元情報には、ProSe UE IDに関する識別子が設定されてもよい。送信先情報には、送信先に関する情報が設定される。送信先情報には、送信先のProSe Layer-2 Group IDに関する情報が設定されてもよい。
 D2Dのチャネル構造の例を図6に示す。図6に示すように、「D2Dコミュニケーション」に使用されるPSCCHのリソースプール及びPSSCHのリソースプールが割り当てられている。また、「D2Dコミュニケーション」のチャネルの周期よりも長い周期で「D2Dディスカバリ」に使用されるPSDCHのリソースプールが割り当てられている。
 また、D2D用の同期信号としてPSSS(Primary Sidelink Synchronization signal)とSSSS(Secondary Sidelink Synchronization signal)が用いられる。また、例えばカバレッジ外動作のためにD2Dのシステム帯域、フレーム番号、リソース構成情報等の報知情報(broadcast information)を送信するPSBCH(Physical Sidelink Broadcast Channel)が用いられる。
 図7Aに、「D2Dディスカバリ」に使用されるPSDCHのリソースプールの例を示す。リソースプールは、サブフレームのビットマップで設定されるため、図7Aに示すようなイメージのリソースプールになる。他のチャネルのリソースプールも同様である。また、PSDCHは、周波数ホッピングしながら繰り返し送信(repetition)がなされる。繰り返し回数は例えば0~4で設定可能である。また、図7Bに示すように、PSDCHはPUSCHベースの構造を有し、DM-RS(demodulation reference signal)が挿入される構造になっている。
 図8Aに、「D2Dコミュニケーション」に使用されるPSCCHとPSSCHのリソースプールの例を示す。図8Aに示すとおり、PSCCHは、周波数ホッピングしながら、初回を含めて2回繰り返し送信(repetition)がなされる。PSSCHは、周波数ホッピングしながら、初回を含めて4回繰り返し送信(repetition)がなされる。また、図8Bに示すように、PSCCHとPSSCHはPUSCHベースの構造を有し、DM-RSが挿入される構造になっている。
 図9A、図9Bに、PSCCH、PSDCH、PSSCH(Mode2)におけるリソースプールコンフィギュレーションの例を示す。図9Aに示すように、時間方向では、リソースプールはサブフレームビットマップとして表される。また、ビットマップは、num.reprtitionの回数だけ繰り返される。また、各周期における開始位置を示すoffsetが指定される。
 周波数方向では、連続割り当て(contiguous)と不連続割り当て(non-contiguous)が可能である。図9Bは、不連続割り当ての例を示しており、図示のとおり、開始PRB、終了PRB、PRB数(numPRB)が指定される。
 <システム構成>
 図10は、実施の形態に係る無線通信システムの構成例を示す図である。図10に示すように、本実施の形態に係る無線通信システムは、基地局eNB、ユーザ装置UE1、ユーザ装置UE2を有する。図10において、ユーザ装置UE1は送信側、ユーザ装置UE2は受信側を意図しているが、ユーザ装置UE1とユーザ装置UE2はいずれも送信機能と受信機能の両方を備える。以下、ユーザ装置UE1とユーザ装置UE2を特に区別しない場合、単に「ユーザ装置UE」と記述する。
 図10に示すユーザ装置UE1、ユーザ装置UE2は、それぞれ、LTEにおけるユーザ装置UEとしてのセルラ通信の機能、及び、上述したチャネルでの信号送受信を含むD2D機能を有している。また、ユーザ装置UE1、ユーザ装置UE2は、本実施の形態で説明する動作を実行する機能を有している。なお、セルラ通信の機能及び既存のD2Dの機能については、一部の機能(本実施の形態で説明する動作を実行できる範囲)のみを有していてもよいし、全ての機能を有していてもよい。
 また、各ユーザ装置UEは、D2Dの機能を有するいかなる装置であってもよいが、例えば、各ユーザ装置UEは、車両、歩行者が保持する端末、RSU(UEの機能を有するUEタイプRSU)等である。
 また、基地局eNBについては、LTEにおける基地局eNBとしてのセルラ通信の機能、及び、本実施の形態におけるユーザ装置UEの通信を可能ならしめるための機能(リソース割当ての機能、設定情報通知機能等)を有している。また、基地局eNBはRSU(eNBの機能を有するeNBタイプRSU)を含む。
 本実施の形態では、基本的に、ユーザ装置UEは、センシングウインドウの中でセンシングを行うことで占有されていないリソースを選択し、選択したリソースを用いて、セミパーシステントに、周期的にD2D信号の送信を行う。「センシング」とは、例えば、受信電力(受信エネルギ、又は受信強度と称してもよい)を測定する方法、他のユーザ装置UEから送信されるSCIを受信し、デコードして、割り当てられているSCIおよびデータのリソース位置を検知すること、又はこれらを組み合わせることなどにより行われる。「リソース」とは、特に断りの無い限り、時間リソース(例:サブフレーム)、若しくは、時間及び周波数リソース(例:サブチャネル)を含む。「D2D信号」は、SCIであってもよいし、データであってもよいし、SCIとデータの組であってもよい。また、当該D2D信号は発見信号であってもよい。
 <リソース選択及び送信動作について>
 (選択ウインドウについて)
 続いて、本実施の形態に係るユーザ装置UEがD2D信号の送信を開始しようとする際に行うリソース選択方法及びD2D信号を送信する動作について説明する。図2を用いて説明したセンシングベースのリソース選択方式では、ユーザ装置UEは、センシングウインドウの中でセンシングを行うことで占有されていないリソースを検出し、次のセンシングウインドウにおいて信号を送信可能なリソースの中からリソースを選択してD2D信号の送信を開始するようにしていた。
 一方、本実施の形態では、次のセンシングウインドウに該当する時間ウインドウの中に、D2D信号を送信するリソースを選択すべき範囲を示す時間ウインドウ(以下、「選択ウインドウ」と呼ぶ)を設けておき、ユーザ装置UEは、選択ウインドウの中でいずれかのリソースを選択してD2D信号の送信を開始する。
 図11は、ユーザ装置が行う送信動作の一例を説明するための図である。例えば、ユーザ装置UEは、センシングウインドウの中でセンシングを行うことで占有されていないリソース(A1~F1)を検出したとする。この場合、前述のリソース選択方式では、ユーザ装置UEは、D2D信号を送信可能なリソース(A2~F2)のうちいずれかのリソースを用いてD2D信号の送信を開始することになる。一方、本実施の形態では、ユーザ装置UEは、選択ウインドウの中に該当するリソース(A2~C2)のうちいずれかのリソースを用いてD2D信号の送信を開始する。これにより、ユーザ装置UEは、選択ウインドウの中で限定してリソースを選択することになるため、D2D信号の送信を行おうと判断した時から、実際にD2D信号の送信を開始するまでに要する遅延を短縮することが可能になる。また、選択ウインドウを設けたことで、特に、セミパーシステントにD2D信号を送信する周期が長い場合(つまり、センシングウインドウのサイズが長い場合)に、より効果的に遅延を短縮することが可能になる。
 選択ウインドウは、センシングウインドウの後に設定される。選択ウインドウのサイズは、少なくともセンシングウインドウのサイズ以下に設定する必要がある。なお、遅延短縮の効果を鑑みると、選択ウインドウのサイズはセンシングウインドウのサイズよりも短いことが好適である。なお、選択ウインドウは、必ずしもセンシングウインドウに続けて設定されなくてもよい。例えば、センシングウインドウの終了タイミングから所定のオフセット後(数サブフレーム後など)に選択ウインドウの開始タイミングを設定することも可能である。
 (予約ウインドウについて)
 本実施の形態では、ユーザ装置UEは、選択ウインドウの中でリソースを選択してD2D信号の送信を開始するが、選択ウインドウの範囲外でD2D信号の送信を開始したい場合も想定される。例えば、図11において、リソースE2を用いてD2D信号の送信を開始したい場合も想定される。このような場合に対応するため、本実施の形態では、次のセンシングウインドウに該当する時間ウインドウの中にリソースの予約が可能な範囲を示す時間ウインドウ(以下、「予約ウインドウ」と呼ぶ)を設けておき、ユーザ装置UEは、予約ウインドウ内でリソースを予約することを可能にしてもよい。
 ユーザ装置UEは、例えば、リソースE2でD2D信号の送信を開始したい場合、選択ウインドウ内のリソースA2~C2のうちいずれかのリソースを選択し、選択したリソースで、リソースE2を予約することを示す予約情報を含むD2D信号を送信する。これにより、当該予約情報を受信した他のユーザ装置UEは、リソースE2が予約されていることを検出することが可能になる。なお、予約情報には、セミパーシステントにD2D信号を送信する周期を示す設定情報が含まれていてもよい。
 リソース衝突を回避するためには、予約ウインドウのサイズは、少なくともセンシングウインドウのサイズ以下に設定する必要がある。なお、予約ウインドウと選択ウインドウとは重なり合っていてもよいし、選択ウインドウに続いて設定されていてもよい。予約ウインドウは、予め定められたウインドウ、又は、基地局eNBから設定されたウインドウを用いることで、センシングウインドウのサイズ以下にすることができる。
 リソース予約を可能にすることでリソース衝突の確率を減らし、リソース衝突時の遅延を削減する効果がある一方で、ユーザ装置UEが過剰なリソースを予約することで他のユーザ装置UEが選択可能なリソースが制限される恐れがある。予約ウインドウはこのような過剰なリソース予約の抑止にも有効であり、例えば基地局eNBが予約ウインドウを上位レイヤシグナリング(RRCメッセージなど)又は報知情報(SIB)で設定してもよいし,ユーザ装置UEが予約可能なウィンドウサイズをあらかじめ制限してもよい。基地局eNBは、このような目的のためには予約ウインドウに代えて、または予約ウインドウに加えて予約可能なリソース数、予約プロセス数、D2D信号の送信回数、又は/及び、D2D信号を送信するリソースの時間占有率を制限してもよい。例えば予約プロセス数が1に制限された場合、ユーザ装置UEは1MAC PDUまたは1回のSCI送信でスケジュール可能なリソースのみを予約することになる。また、ユーザ装置UEは、予約リソースを開放することを通知するシグナリングを送信するようにしてもよい。これにより、ユーザ装置UEに不要なリソースを開放させる効果も見込まれる。
 D2D信号の送信に対して課金を行う場合、送信ビット数をユーザ装置UEからネットワークに報告させて課金する方法がある。この場合、ユーザ装置UEが予約したリソースの開放通知を行わない限り常にデータ送信を行わせるようにしてもよいし、あるいは予約したリソースの開放通知を行わない限り常にデータを送信したと仮定して送信ビット数を課金対象に加算させるなどの動作をユーザ装置UEに行なわせてもよい。後者の場合、送信ビット数換算のためMCS(Modulation Coding Scheme)を決定する必要があるが、これは予約情報を含むSCIに対応するデータの送信に用いる予定のMCS又は当該データのビット数を用いて計算するなど、直近で選択されたMCSに基づいた計算を行うようにしてもよい。また、直近で選択されたMCSに代えて、予め定められたMCS又は基地局eNBから設定されたMCSを用いることで実現してもよい。
 (センシングウインドウについて)
 本実施の形態では、センシングウインドウのサイズは、ユーザ装置UEがパケットをセミパーシステントに送信する周期(SPS(Semi-Persistent scheduling)周期)又はリソース予約が可能な時間間隔(リソース予約が可能な周期)と同一に設定されていてもよいし、当該周期のM倍(Mは1以上の整数)に設定されていてもよい。例えばSPS周期又はリソース予約が可能な時間間隔が100msである場合、センシングウインドウは、100ms、200ms、300ms・・に設定されていてもよい。なお、ユーザ装置UE間で、SPS周期又はリソース予約が可能な時間間隔が異なる場合、最も長い周期のM倍(Mは1以上の整数)に設定されるのが好適である。
 (選択ウインドウ内でのリソース選択方法について)
 図11に示すように、選択ウインドウの中でD2D信号を送信可能なリソース(選択可能なリソース)が複数存在する場合、ユーザ装置UEは、複数のリソースの中からランダムにリソースを選択するようにしてもよい。複数のユーザ装置UEが存在する場合に、ユーザ装置UE間で選択されるリソースがランダム化されることになる。
 また、他の方法として、ユーザ装置UEは、所定の条件に基づいて、複数のリソースの中からリソースを選択するようにしてもよい。所定の条件とは、どのような条件でもよいが、例えば、チャネルの品質(例えば、周辺リソースのチャネル状態など)であってもよいし、そのリソースでD2D信号を送信可能であるか否か(例えば、基地局eNB向けにUL信号を送信予定である、基地局eNBからD2D信号の送信が可能なギャップが設定されている等)であってもよいし、そのリソースでは他のD2D信号をモニタする必要があるか否かであってもよいし、どの程度遅延が許容されるのか等であってもよい。例えば、ユーザ装置UEがSidelinkキャリア(D2D信号を送信可能なキャリア)以外に接続している場合で、D2D信号の送受信が可能なギャップが設定されている場合、ユーザ装置UEはD2D信号の送信が可能なギャップ内のサブフレームでのみリソースを選択してもよいし、D2D信号の受信が可能なギャップ内のサブフレームでのみセンシングを行なってもよい。これらの動作がユーザ装置UEの送受信能力が不足する場合に適用されることで、効率的な送受信機のキャリア間切り替えが可能となる。
 また、ユーザ装置UEは、複数のリソースの中からランダムにリソースを選択するのか、又は、複数のリソースの中から所定の条件に基づいてリソースを選択するのかを、自律的に、又は、基地局eNBからの指示に基づいて決定するようにしてもよい。
 (リソース選択及び送信動作に関する補足事項)
 本実施の形態では、ユーザ装置UEは、選択ウインドウの中でD2D信号を送信するリソースを選択した後、実際にD2D信号を送信する前に改めてセンシングを行う必要はない。
 また、D2D信号をセミパーシステントに送信する場合において、ユーザ装置UEは、最初にD2D信号の送信を開始する際にセンシングを行えばよく、2回目以降に周期的にD2D信号を送信する前に、改めてセンシングを行う必要はない。なお、ユーザ装置UEは、バックグラウンドでセンシングを行っておき(つまり、D2D信号を送信しないタイミング(サブフレーム)ではセンシングを行っておき)、他のユーザ装置UEとの信号衝突(コリジョン)の可能性を検出した場合に、リソースの再選択を行うようにしてもよい。
 <各ウインドウの開始タイミング及び終了タイミングの設定方法について>
 続いて、センシングウインドウ、選択ウインドウ及び予約ウインドウの開始タイミング及び終了タイミングの設定方法ないし認識方法について説明する。
 (設定方法その1)
 設定方法その1は、センシングウインドウ、選択ウインドウ及び予約ウインドウの開始タイミング及び終了タイミングを、ユーザ装置UEがD2D信号を送信するためのリソースを選択するタイミングに基づいて、動的に決定する。ユーザ装置UEがD2D信号を送信するためのリソースを選択するタイミングとは、例えば、ユーザ装置UE内の上位レイヤ(例えばV2Xアプリケーション)で送信パケットが生成され、リソースの選択を行うレイヤ(例えばMACレイヤ、物理レイヤ)に対して送信パケットが存在することが通知されたタイミングである。
 図12は、各ウインドウの開始タイミング及び終了タイミングの設定方法(その1)を説明するための図である。図12において、センシングウインドウのサイズは(X)であり、選択ウインドウのサイズは(Y)であり、予約ウインドウのサイズは(Z)である前提とする。
 ユーザ装置UEがD2D信号を送信するためのリソースを選択するタイミングをサブフレーム(n)とした場合、センシングウインドウの開始タイミング及び終了タイミングは、それぞれサブフレーム(n-X-1)及びサブフレーム(n-1)になる。また、選択ウインドウの開始タイミング及び終了タイミングは、それぞれサブフレーム(n)及びサブフレーム(n+Y-1)になる。また、予約ウインドウの開始タイミング及び終了タイミングは、それぞれサブフレーム(n)及びサブフレーム(n+Z-1)になる。つまり、設定方法その1では、センシングウインドウ、選択ウインドウ及び予約ウインドウの開始タイミング及び終了タイミングが、時間の経過に合わせてスライドしていくことになる。なお、ユーザ装置UEがD2D信号を送信するためのリソースを選択するタイミングではセンシングウインドウが既に終了していることになるため、ユーザ装置UEは、送信予定のパケット(D2D信号)の有無に関わらずセンシングを行っておき、送信可能なリソースを把握しておく必要がある。
 設定方法その1によれば、選択ウインドウの開始タイミングと、ユーザ装置UEでD2D信号を送信するためのリソースを選択する動作を開始するタイミングとが一致することになるため、ユーザ装置UEは、極力少ない遅延でD2D信号の送信を開始することが可能である。
 [設定方法その1に関する補足事項]
 設定方法その1において、センシングウインドウの終了タイミングと選択ウインドウの開始タイミングの間にオフセット(O)を設定する場合の例を図13に示す。オフセットを設けることで、送信すべきD2D信号が発生してから、オフセット時間経過後に実際にD2D信号の送信が可能になるため、ユーザ装置UEの処理負担を軽減することができる。
 設定方法その1において、選択ウインドウのサイズを1サブフレームに限定するようにしてもよい。これにより、ユーザ装置UE間で信号の衝突が発生する可能性は高くなるものの、ユーザ装置UEは、最小限の遅延でD2D信号の送信を開始することができる。
 設定方法その1において、選択したリソースでD2D信号を送信しようとした場合に、同一リソースを他のユーザ装置UEも選択してしまうケースが想定される。図14を用いて具体的に説明する。例えば、ユーザ装置UE1が、サブフレーム(n)のタイミングでD2D信号を送信するためのリソースを選択する動作を行い、サブフレーム(n+3)のリソースAを選択したとする。この場合において、更に、ユーザ装置UE2が、サブフレーム(n+3)のタイミングでD2D信号を送信するためのリソースを選択する動作を行い、リソースAを選択したとする。この場合、ユーザ装置UE1とユーザ装置UE2は共にリソースAでD2D信号を送信してしまうことから、信号の衝突が発生してしまうことになる。そこで、このような状況を回避するために、ユーザ装置UEは、D2D信号を送信するためのリソースを選択するタイミングで、選択したリソースを予約したことを示す予約情報を含むD2D信号(例えばSCI)を送信するようにしてもよい。具体的には、ユーザ装置UE1は、図14のサブフレーム(n)のタイミングで、リソースAを予約したことを示す予約情報を含むD2D信号を送信するようにしてもよい。これにより、ユーザ装置UE2は、当該D2D信号を受信して、リソースAが予約されていることを認識することができ、リソースAの選択を回避することが可能になる。
 本実施の形態においてSC期間内で同一のSCI及びデータが繰り返し送信されるようなD2D通信が行われる場合、後述する設定方法その2を適用するようにしてもよいし、設定方法その1において、各ウインドウの開始タイミング又は終了タイミングの一部を、SC期間の境界のタイミングに合わせるようにしてもよい。
 (設定方法その2)
 設定方法その2では、センシングウインドウ、選択ウインドウ及び予約ウインドウの開始タイミング及び終了タイミングを、予め設定された周期的な期間の境界のタイミングに合わせるようにする。予め設定された周期的な期間は「SC期間」であってもよいし、これに限られず、他の周期的な期間であってもよい。以下、周期的な期間は「SC期間」である場合を例に説明を続ける。
 図15は、各ウインドウの開始タイミング及び終了タイミングの設定方法(その2)を説明するための図である。図15において、センシングウインドウのサイズは(X)であり、選択ウインドウのサイズは(Y)であり、予約ウインドウのサイズは(Z)である前提とする。
 設定方法その2では、ユーザ装置UEがD2D信号を送信するためのリソースを選択するタイミングをサブフレーム(n)とした場合、選択ウインドウの開始タイミングは、サブフレーム(n)が含まれるSC期間と次のSC期間との間の境界に該当する。従って、サブフレーム(n)のタイミング次第では、ユーザ装置UEは、D2D信号の送信を開始するまでに、最長で約1SC期間分の時間待機する必要がある。一方で、例えば3GPP Rel-12のD2D技術(前述の<D2Dの概要>で説明した技術)のようにSC期間内で同一のSCI及びデータが繰り返し送信されるようなD2D通信が行われる場合、設定方法その2では、各ウインドウの開始タイミング及び終了タイミングをSC期間の境界と一致することになる。そのため、ユーザ装置UEは、他のユーザ装置UEが繰り返し送信するD2D信号を全てセンシングすることができ、リソースの占有状況をより適切に検出することが可能になる。
 設定方法その2において、センシングウインドウの終了タイミングと選択ウインドウの開始タイミングの間にオフセット(O)を設定する場合の例を図16に示す。オフセットを設けることで、仮に、センシングウインドウの終了タイミング付近で送信すべきD2D信号が発生した場合であっても、オフセット時間経過後にD2D信号の送信が可能になるため、ユーザ装置UEの処理負担を軽減することができる。また、セミパーシステントにD2D信号を送信する周期と、SC期間の境界とがほぼ一致しているような場合において、送信すべきパケットが下位レイヤに到着するタイミングが遅れてSC期間を跨いでしまった場合であっても、次のSC期間を待たずにD2D信号の送信が可能になるため、遅延を最小限に抑えることができる。
 <各ウインドウの開始タイミング及び終了タイミングをユーザ装置に設定する方法>
 本実施の形態では、以下の方法を用いて、各ウインドウの開始タイミング及び終了タイミングをユーザ装置に設定する(通知する)ようにしてもよい。
 なお、各ウインドウの開始タイミング及び終了タイミングをユーザ装置UEに設定する場合、例えば前述のX、Y、Z、Oの値をユーザ装置UEに設定してもよいし、各ウインドウの開始タイミング及び終了タイミングに対応するSFN及びサブフレーム位置をユーザ装置UEに設定してもよい。これらに限られず、どのような方法でユーザ装置UEに設定してもよい。
 第一の方法として、基地局eNBから報知情報(SIB)を用いて各ウインドウの開始タイミング及び終了タイミングを各ユーザ装置UEに通知(ブロードキャスト)するようにしてもよい。また、基地局eNBからRRC信号を用いてユーザ装置UE個別に設定するようにしてもよいし、SIM(Subscriber Identity Module)又はコアネットワーク等を介して各ユーザ装置UE個別に事前設定(Pre-configure)するようにしてもよい。
 基地局eNBは、各ウインドウの開始タイミング及び終了タイミングをユーザ装置UE個別に設定する場合、ユーザ装置UE毎に異なる開始タイミング及び終了タイミングを設定するようにしてもよい。また、基地局eNBは、所定の優先度に応じて、ユーザ装置UE毎に設定する開始タイミング及び終了タイミングを変更するようにしてもよい。所定の優先度とは、例えば、ユーザ装置UE自体の優先度であってもよいし、ユーザ装置UEがV2Xパケットを送信するリソースプールの優先度、ベアラ(D2Dで用いられるベアラを想定)の優先度であってもよい。これにより、例えば、より低遅延なV2Xパケットを送信する必要があるユーザ装置UEに対しては、通常のユーザ装置UEよりも選択ウインドウのサイズを小さく設定しておくといったことが可能になる。
 また、ユーザ装置UE個別に設定する場合、V2Xパケットの送信が行われる度に、ユーザ装置UEから基地局eNBに各ウインドウの開始タイミング及び終了タイミングを問い合わせるようにしてもよい。この場合、ユーザ装置UEは、基地局eNBに、V2Xパケットのトラフィックタイプ、セル(キャリア)の輻輳状態などを通知するようにしてもよい。
 また、オフセットのサイズ(Oの値)については、ユーザ装置UEが送信するトラフィックの特徴(V2Xパケットの特徴)に応じて可変になるように設定されてもよい。また、上位レイヤ(V2Xアプリケーションなど)で周期的にパケットが生成されるタイミングのばらつきよりも大きい値が設定されるようにしてもよい。例えば、100ms周期でパケットが生成されるものの、実際には±2ms程度のずれか生じる場合、オフセットのサイズは3ms以上(3サブフレーム以上)に設定されるようにしてもよい。
 第二の方法として、ユーザ装置UEは、予め定められた各ウインドウの開始タイミング及び終了タイミングの候補の中から任意の候補を自律的に選択するようにしてもよい。
 第三の方法として、各ウインドウの開始タイミング及び終了タイミングを、SC期間に固定的に対応づけておくようにしてもよい。例えば、前述の設定方法その2において、X、Y、Zの値を、予め標準仕様などで固定的に定めておくようにしてもよい。
 第四の方法として、各ウインドウの開始タイミング及び終了タイミングを、予め固定的に定めておくようにしてもよい。例えば、前述の設定方法その1において、X、Y、Z、Oの値を、予め標準仕様などで固定的に定めておくようにしてもよい。
 なお、基地局eNBは、各ウインドウの開始タイミング及び終了タイミングに加えて、前述の「設定方法その1」又は「設定方法その2」のうち、どちらの方法を用いるのかをユーザ装置UEに設定するようにしてもよい。また、ユーザ装置UEは、「設定方法その1」及び「設定方法その2」の両方をサポートしていてもよいし、いずれか一方のみをサポートしていてもよい。
 <優先度に応じたリソース選択/リソース予約について>
 (優先度に応じたリソース選択)
 前述した「(選択ウインドウ内でのリソース選択方法について)」では、ユーザ装置UEは、複数のリソースの中からランダムにリソースを選択するか、又は、複数のリソースの中から所定の条件に基づいてリソースを選択するようにした。しかしながら、V2Xでは、ユーザ装置UEは、優先度の高いパケット送信(例えば、事故発生を知らせるパケット送信など)を行うことが想定される。また、通常のユーザ装置UE(例えば一般の自動車)とは別に、優先度の高いユーザ装置UE(例えば緊急車両など)が設定されることが想定される。
 そこで、ユーザ装置UEは、送信するパケットの優先度が高い場合、又はユーザ装置UE自身の優先度が高い場合、図17に示すように、選択ウインドウの中で選択可能な複数のリソースのうち、最も遅延の少ないリソースを選択するようにしてもよい。また、他の方法として、優先度の高いユーザ装置UEについては、前述の設定方法その1が適用される場合に、選択ウインドウのサイズを1サブフレームに設定しておくようにしてもよい。
 (優先度に応じたリソース予約)
 ユーザ装置UEは、送信するパケットの優先度が高い場合、又はユーザ装置UE自身の優先度が高い場合、予約ウインドウの範囲を超えて、又はユーザ装置UE個別に設定された広い予約ウインドウ内でリソースの予約を行うようにしてもよい。例えば、図18に示すように、送信するパケットの優先度が高い場合又はユーザ装置UE自身の優先度が高い場合に対応する予約ウインドウを定めておき、ユーザ装置UEは、当該予約ウインドウ内でリソースを予約するようにしてもよい。これにより、例えば、予約ウインドウ内では全てのリソースが予約されておりD2D信号の送信が出来ないというような場合であっても、ユーザ装置UEは、D2D信号の送信を行うことが可能になる。
 <選択ウインドウ内に信号送信可能なリソースが存在しない場合の動作について>
 多数のユーザ装置UEがD2D信号の送信を行っている状況では、選択ウインドウ内にD2D信号を送信可能なリソースが存在しないという場合が想定される。また、このような状況では、仮に送信可能なリソースが検出されたとしても、複数のユーザ装置UEが当該リソースを選択してしまい、信号の衝突が発生してしまう可能性が高い。
 そこで、本実施の形態では、ユーザ装置UEは、選択ウインドウの中に送信可能なリソースが存在しない場合、選択ウインドウのサイズをセンシングウインドウのサイズを上限に一時的に拡張(例えば2倍など)するようにしてもよい。この場合、ユーザ装置UEは、リソースを選択した後、選択ウインドウのサイズを元のサイズに戻すようにする。これにより、各ユーザ装置UEが選択するリソースがランダム化されるため、信号の衝突が発生する可能性を下げることが可能になる。センシングウインドウサイズの変更は選択可能リソースが存在しない場合にユーザ装置UEが自律的に行なってもよいし、ユーザ装置UEが基地局eNBにそのことを報告し基地局eNBが上位レイヤのシグナリング(RRCメッセージなど)又は報知情報(SIB)でセンシングウインドウのサイズを変更してもよい。後者の場合、近傍のユーザ装置UEも含めてセンシングウインドウを拡張することが可能になるため、遅延が大きい一方で高いランダマイズ効果が期待される。
 また、他の方法として、ユーザ装置UEは、選択ウインドウの中に送信可能なリソースが存在しない場合、所定のバックオフ時間が経過した後で、再度リソースの選択を行うようにしてもよい。所定のバックオフ時間は任意であるが、例えばセンシングウインドウのサイズと同一であってもよい。バックオフ時間を1サブフレームとした場合は衝突確率が増加するものの、リソース再選択に伴う遅延を削減することができる。また、連続して選択ウインドウの中に送信可能なリソースが存在しない場合、所定のバックオフ時間は徐々に延長されるようにしてもよい。例えば、所定のバックオフ時間をT時間とした場合、ユーザ装置UEは、2回目のリソース選択をT時間経過後に行い、3回目のリソース選択をT×2(又はT×4)時間経過後に行い、4回目のリソース選択をT×3(又はT×6)時間経過後に行うというように動作するようにしてもよい。これにより、複数のユーザ装置UEが高頻度に何度もリソース選択を行うことを回避することができる。また、バックオフ時間をユーザ装置UE間でランダム化させるため、一定範囲内のランダム値Nを用いてT×Nのユーザ装置UE固有のバックオフ時間をユーザ装置UEに設定してもよい。
 また、他の方法として、ユーザ装置UEは、選択ウインドウの中に送信可能なリソースが存在しないことを、自身の上位レイヤ(例えばV2X用のアプリケーションなど)又は基地局eNBに通知するようにしてもよい。これにより、自身の上位レイヤは、無線リソースが混雑していると判断して、V2Xパケットの送信周期を長くするなどの対応を行うことが可能になる。また、基地局eNBを介して、周辺の各ユーザ装置UEに無線リソースが混雑していることを通知することも可能になる。
 なお、広義には、リソース衝突を検出するなどしてリソースの再選択を行う場合も選択ウインドウ内にD2D信号を送信可能なリソースが存在しない場合の一種とみなすことができ、「<選択ウインドウ内に信号送信可能なリソースが存在しない場合の動作について>」で説明した動作を適用することで過剰なリソース再選択によるリソース衝突率の増加を低減させることができる。
 以上説明した選択ウインドウの拡張及びバックオフ時間の適用は、リソース衝突確率とリソース再選択に伴う遅延とのトレードオフであるため、選択ウインドウを拡張するサイズ・バックオフ時間については、ユーザ装置UE・パケットの優先度に応じて異なるサイズ・時間が適用されるように設定してもよい。例えば基地局eNBからユーザ装置UE個別に関連するパラメータを設定してもよいし、優先度レベルごとに予めパラメータが規定されていてもよいし、報知情報又は事前設定などで通知されてもよい。
 <ランダムリソース選択について>
 ユーザ装置UEは、センシングを用いたリソース選択をリソース再選択時のみに用い、初回送信時のリソース選択では、センシングを行わずに、選択ウインドウ内でランダムにリソースを選択するようにしてもよい。例えば、ユーザ装置UEは、D2D信号の送信回数又は送信開始後の経過時間に基づくカウンタが一定値に達した場合にセンシングを開始し、リソース選択などによりカウンタがリセットされるなどしてカウンタが一定値以下になるとセンシングを停止するとしてもよい。これにより、任意のタイミングでの新規パケットを送信する際にセンシング結果を用いることはできなくなるが、バックグラウンドで常にセンシングを行う必要がなくなるため、ユーザ装置UEのバッテリー消費を削減することができる。ランダムリソース選択とセンシングベースのリソース選択で利用する送信リソースプールは異なっていてもよい。例えばリソースプール毎に適用可能なリソース選択方法が上位レイヤでユーザ装置UEに(事前)設定されてもよい。
 また、ユーザ装置UEは、センシング(Measurement)を行った結果、干渉レベル(またはRSSI)が所定の閾値以上であることを検出した場合、センシングベースのリソース選択からランダムリソース選択にフォールバックしてもよい。リソース選択候補が増加し、干渉のランダム化効果が期待される。ユーザ装置UEは、センシングしたリソース数・サブフレーム数、選択リソースの候補数、及び/又は端末能力などに応じてこのような動作の実行有無を切り替えてもよい。干渉レベルの閾値は上位レイヤでユーザ装置UEに(事前)設定されてもよい。また、例えば、ユーザ装置UEは、センシングの結果、選択可能なリソースが一定数(割合)以下の場合には、前述の所定の閾値の調整などを行わず、ランダムリソース選択にフォールバックしてもよい。特に、部分的なサブフレームに対してのみセンシングを行っており、選択候補となるリソース数が少ない場合に有効である。また、センシングにおいて干渉が少ない上位X%のリソースからリソース選択するような方法を取る場合、ユーザ装置UEは、この割合をセンシングしたリソース数・サブフレーム数、選択リソースの候補数、及び/又は端末能力などに応じて変えてもよい。リソース候補の絶対数が少ない場合には、より大きい値をXに設定することでランダム化効果が得られる。Xは上記の条件(センシングしたリソース数・サブフレーム数、選択リソースの候補数、及び/又は端末能力)などに応じて定められていても良いし、上位レイヤシグナリングでユーザ装置UEに(事前)設定されてもよい。また、ユーザ装置UEは、上位X%のリソースの測定結果が一定の閾値以上の場合にランダムリソース選択を行うとしてもよい。
 ユーザ装置UEは、センシングベースのリソース選択を行う場合とランダムリソース選択を行う場合で、とり得る選択ウィンドウのサイズを変えてもよい。例えば、ランダムリソース選択を行う場合にはより大きな選択ウィンドウサイズが選ばれるように規定することで、ランダム化効果を大きくしてもよい。選択ウィンドウのサイズは、パケット優先度やリソースプール毎に設定してもよい。
 ユーザ装置UEは、端末能力又はリソースプール設定に応じて、センシングの手順を緩和してもよい。例えば、センシングは、制御情報のデコード又は測定に基づくステップと電力検出(RSSI測定など)に基づくステップとで構成され得るが、ユーザ装置UEは、このうち電力検出に基づくステップのみを実施するとしてもよい。この場合、ユーザ装置UEは制御情報のブラインド検出が不要になり端末コスト及び消費電力を削減することが可能になる。
 <リソース選択候補の除外について>
 これまでに説明した実施の形態において、D2D信号をセミパーシステントに送信する場合、ユーザ装置UEは、最初にD2D信号の送信を開始する前にセンシングを行い、以降の周期では、選択したリソースでD2D信号を送信することを許容する前提であった。また、ユーザ装置UEは、選択したリソース以降の周期的なリソースでD2D信号を送信するので、2回目以降にD2D信号を送信するリソースではセンシングを行わない(スキップする)ことになる。このように動作すると、同一のユーザ装置UEが、同一リソースを継続して使用し続けることが可能になってしまう。そこで、ユーザ装置UEは、自身がD2D信号を送信するリソースであるなどとしてセンシングを行わなかった(スキップした)リソース及びそれ以降の周期では、リソースが占有されているとみなし、リソース選択候補から一律除外するようにしてもよい。
 しかしながら、リソース選択候補から一律除外してしまうと、選択ウインドウの中で選択可能なリソースの選択肢が限られることになってしまう。そのため、他の方法として、ユーザ装置UEは、選択ウインドウの中で、センシングを行わなかったリソース及びそれ以降の周期的なリソースをリソース選択候補から一律除外するのではなく、これらのリソースを仮想的に測定(Measurement)した結果に基づいて、リソース選択候補から除外するか否かを判断するようにしてもよい。仮想的にリソースを測定するとは、実際には測定を行わず、(事前)設定された測定結果を該当リソースにおける測定結果とみなす事を指す。仮想的にリソースを測定した結果として、例えば、測定対象であるリソースとは異なるサブフレームのリソースの測定結果を用いるようにしてもよい。また、測定対象であるリソースと同一周波数領域で、当該リソースと一定の時間関係にあるリソースの測定結果を用いるようにしてもよい。また、ユーザ装置UEは、仮想的にリソースを測定した結果に基づいて、リソース選択候補の間での優先度付けを行うようにしてもよい。
 より具体的に説明すると、例えば、センシングを行わなかったリソースのサブフレームをnとし、リソース周期(リソース予約単位と表現することもできる)をXとし、kを正の整数(なお、k=1、2、3・・・10と限定してもよい)とした場合、センシングを行わなかったリソース及びそれ以降の周期的なリソースは、n+X×kで表されるサブフレームのリソースと表現することができる。つまり、ユーザ装置UEは、n+X×kで表されるサブフレームのリソースをリソース選択候補から一律除外するのではなく、仮想的なリソース測定結果が所定の閾値以上である(又は超える)場合にリソース選択候補から除外するようにして、仮想的なリソース測定結果が所定の閾値未満(又は以下)である場合にリソース選択候補とするようにしてもよい。
 仮想的なリソース測定結果とは、例えば、S-RSSI(Sidelink-RSSI)、PSCCH-RSRP、又は、PSSCH-RSRPであってもよい。より具体的には、仮想的なリソース測定結果は、測定対象のリソースの電力検出結果、PSCCH又はPSSCHで送信されるDM-RSの受信電力などであってもよい。仮想的なリソース測定結果は、ユーザ装置UEに事前設定されていてもよいし、報知情報(SIB)又はRRCシグナリングを用いてユーザ装置UEに設定されてもよい。仮想的なリソース測定結果に"+無限大"を設定することで、実質的にリソース選択候補から一律除外されるようにすることも可能であり、逆に、仮想的なリソース測定結果に"-無限大"を設定することで、実質的にリソース選択候補の対象になるようにすることも可能である。
 また、所定の閾値はあらかじめ規定された値でもよいし、ユーザ装置UEに事前設定されていてもよいし、報知情報(SIB)又はRRCシグナリングを用いてユーザ装置UEに設定されてもよい。
 また、仮想的なリソース測定結果および所定の閾値は、ユーザ装置UEが送信するパケットの優先度情報、リソースプール、又は、D2D信号を送信するキャリアごとに設定することが可能であってもよい。例えば、優先度が高いパケットについては、仮想的なリソース測定結果に小さい値を設定しておくことで、送信機会を多くすることができる。また、仮想的なリソース測定結果は、リソース選択ウインドウの大きさによって可変とするようにしてもよい。
 以上説明した動作により、ユーザ装置UEは、選択ウインドウの中で選択可能なリソースの選択肢を不要に限定してしまうことを抑制することが可能になる。また、選択ウインドウの長さが短い場合であっても、リソースの選択肢を確保することが可能になる。
 <機能構成>
 以上説明した複数の実施の形態の動作を実行するユーザ装置UE及び基地局eNBの機能構成例を説明する。
 (ユーザ装置)
 図19は、実施の形態に係るユーザ装置の機能構成の一例を示す図である。図19に示すように、ユーザ装置UEは、信号送信部101と、信号受信部102と、検出部103と、選択部104とを有する。なお、図19は、ユーザ装置UEにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。また、図19に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。ただし、これまでに説明したユーザ装置UEの処理の一部(一部の設定方法、又は、選択方法など)を実行可能としてもよい。
 信号送信部101は、ユーザ装置UEから送信されるべき上位のレイヤの信号から、物理レイヤの各種信号を生成し、無線送信する機能を含む。また、信号送信部101は、D2D信号の送信機能とセルラ通信の送信機能を有する。また、信号送信部101は、D2D信号を、選択部104で選択されたリソースを用いて送信する機能を有する。
 また、信号送信部101は、D2D信号を送信するためのリソースを用いて、選択部104で選択された"D2D信号の送信を予約するリソース"で信号の送信を予定していることを示す予約情報を送信するようにしてもよい。
 信号受信部102は、他のユーザ装置UE又は基地局eNBから各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する機能を含む。また、信号受信部102は、D2D信号の受信機能とセルラ通信の受信機能を有する。
 検出部103は、センシングウインドウでセンシングを行うことで、センシングウインドウより後の選択ウインドウの中でD2D信号を送信可能な1以上のリソースを検出する機能を有する。また、検出部103は、センシングウインドウでセンシングを行うことで、センシングウインドウより後の予約ウインドウの中でD2D信号の送信を予約可能な1以上のリソースを検出するようにしてもよい。また、検出部103は、選択ウインドウ内で選択されたリソース以降の周期的なリソースについて、センシングウインドウでセンシングを行うことで、周期的なリソースの受信品質を仮想的に測定し、測定された仮想的な受信品質に基づいて、選択ウインドウの中でD2D信号を送信可能な1以上のリソースを検出するようにしてもよい。また、検出部103は、測定された仮想的な受信品質が所定の閾値以下であるリソースについては、選択ウインドウの中でD2D信号を送信可能なリソースであると判定するようにしてもよい。また、検出部103は、測定された仮想的な受信品質が所定の閾値以上であるリソースについては、選択ウインドウの中でD2D信号を送信可能なリソースではないと判定するようにしてもよい。
 選択部104は、検出部103で検出された1以上のリソースから、D2D信号を送信するためのリソースを選択する機能を有する。また、選択部104は、検出部103で複数のリソースが検出された場合、D2D信号を送信するためのリソースを該複数のリソースからランダムに選択するのか、又は、所定の条件に基づいて選択するのかを、自律的に、又は、基地局eNBからの指示に基づいて決定するようにしてもよい。また、選択部104は、検出部103で検出されたD2D信号の送信を予約可能な1以上のリソースから、D2D信号の送信を予約するリソースを選択するようにしてもよい。
 (基地局)
 図20は、実施の形態に係る基地局の機能構成の一例を示す図である。図20に示すように、基地局eNBは、信号送信部201と、信号受信部202と、通知部203とを有する。なお、図20は、基地局eNBにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。また、図20に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 信号送信部201は、基地局eNBから送信されるべき上位のレイヤの信号から、物理レイヤの各種信号を生成し、無線送信する機能を含む。信号受信部202は、ユーザ装置UEから各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する機能を含む。
 通知部203は、ユーザ装置UEが本実施の形態に係る動作を行うために用いる各種情報を、報知情報(SIB)又はRRCシグナリングを用いてユーザ装置UEに通知する。なお、当該各種情報は、例えば、リソースプールの設定を示す情報、SC期間の位置を示す情報、各ウインドウ(センシングウインドウ、選択ウインドウ、及び予約ウインドウ)の開始タイミング及び終了タイミングを示す情報、「設定方法その1」又は「設定方法その2」のうち、どちらの方法を用いるべきなのかを示す情報などである。
 以上説明したユーザ装置UE及び基地局eNBの機能構成は、全体をハードウェア回路(例えば、1つ又は複数のICチップ)で実現してもよいし、一部をハードウェア回路で構成し、その他の部分をCPUとプログラムとで実現してもよい。
 (ユーザ装置)
 図21は、実施の形態に係るユーザ装置のハードウェア構成の一例を示す図である。図21は、図19よりも実装例に近い構成を示している。図21に示すように、ユーザ装置UEは、無線信号に関する処理を行うRF(Radio Frequency)モジュール301と、ベースバンド信号処理を行うBB(Base Band)処理モジュール302と、上位レイヤ等の処理を行うUE制御モジュール303とを有する。
 RFモジュール301は、BB処理モジュール302から受信したデジタルベースバンド信号に対して、D/A(Digital-to-Analog)変換、変調、周波数変換、及び電力増幅等を行うことでアンテナから送信すべき無線信号を生成する。また、受信した無線信号に対して、周波数変換、A/D(Analog to Digital)変換、復調等を行うことでデジタルベースバンド信号を生成し、BB処理モジュール302に渡す。RFモジュール301は、例えば、図19に示す信号送信部101の一部、信号受信部102の一部を含む。
 BB処理モジュール302は、IPパケットとデジタルベースバンド信号とを相互に変換する処理を行う。DSP(Digital Signal Processor)312は、BB処理モジュール302における信号処理を行うプロセッサである。メモリ322は、DSP312のワークエリアとして使用される。BB処理モジュール302は、例えば、図19に示す信号送信部101の一部、信号受信部102の一部、検出部103、及び選択部104を含む。
 UE制御モジュール303は、IPレイヤのプロトコル処理、各種アプリケーションの処理等を行う。プロセッサ313は、UE制御モジュール303が行う処理を行うプロセッサである。メモリ323は、プロセッサ313のワークエリアとして使用される。
 (基地局)
 図22は、実施の形態に係る基地局のハードウェア構成の一例を示す図である。図22は、図20よりも実装例に近い構成を示している。図20に示すように、基地局eNBは、無線信号に関する処理を行うRFモジュール401と、ベースバンド信号処理を行うBB処理モジュール402と、上位レイヤ等の処理を行う装置制御モジュール403と、ネットワークと接続するためのインターフェースである通信IF404とを有する。
 RFモジュール401は、BB処理モジュール402から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、及び電力増幅等を行うことでアンテナから送信すべき無線信号を生成する。また、受信した無線信号に対して、周波数変換、A/D変換、復調等を行うことでデジタルベースバンド信号を生成し、BB処理モジュール402に渡す。RFモジュール401は、例えば、図20に示す信号送信部201の一部、信号受信部202の一部を含む。
 BB処理モジュール402は、IPパケットとデジタルベースバンド信号とを相互に変換する処理を行う。DSP412は、BB処理モジュール402における信号処理を行うプロセッサである。メモリ422は、DSP412のワークエリアとして使用される。BB処理モジュール402は、例えば、図20に示す信号送信部201の一部、信号受信部202の一部を含む。
 装置制御モジュール403は、IPレイヤのプロトコル処理、OAM(Operation and Maintenance)処理等を行う。プロセッサ413は、装置制御モジュール403が行う処理を行うプロセッサである。メモリ423は、プロセッサ413のワークエリアとして使用される。補助記憶装置433は、例えばHDD等であり、基地局eNB自身が動作するための各種設定情報等が格納される。装置制御モジュール403は、例えば、図20に示す通知部203を含む。
 <まとめ>
 以上、実施の形態によれば、センシング結果に基づいて、信号を送信するためのリソースを選択するユーザ装置であって、センシング用の時間ウインドウでセンシングを行うことで、該センシング用の時間ウインドウより後のリソース選択用の時間ウインドウの中で信号を送信可能な1以上のリソースを検出する検出部と、検出された1以上のリソースから、信号を送信するためのリソースを選択する選択部と、選択された前記信号を送信するためのリソースを用いて信号を送信する送信部と、を有するユーザ装置が提供される。このユーザ装置UEにより、センシング結果に基づいて信号を送信するためのリソースを選択する方式において、遅延を低減しつつ適切に通信を行うことを可能とする技術が提供される。
 また、前記リソース選択用の時間ウインドウは、前記センシング用の時間ウインドウよりも短いようにしてもよい。これにより、ユーザ装置UEは、センシングウインドウよりも短い選択ウインドウの中でリソースの選択を行うことになるため、D2D信号の送信を行おうと判断した時から、実際にD2D信号の送信を開始するまでに要する遅延を短縮することが可能になる。
 また、前記選択部は、前記検出部で複数のリソースが検出された場合、前記信号を送信するためのリソースを該複数のリソースからランダムに選択するのか、又は、所定の条件に基づいて選択するのかを、自律的に、又は、基地局からの指示に基づいて決定するようにしてもよい。これにより、ユーザ装置UEは、選択ウインドウの中で複数のリソースを選択可能である場合に、様々な方法でリソースを選択することが可能になる。また、ランダムに選択する場合、複数のユーザ装置UE間でD2D信号が衝突してしまう可能性をランダム化することが可能になる。
 また、前記センシング用の時間ウインドウの開始タイミング及び終了タイミング、前記リソース選択用の時間ウインドウの開始タイミング及び終了タイミングは、前記選択部が信号を送信するためのリソースを選択するタイミングに基づいて動的に決定されるか、又は、予め設定された周期的な期間の境界のタイミングに該当するようにしてもよい。動的に決定される場合、選択ウインドウの開始タイミングと、ユーザ装置UEでD2D信号を送信するためのリソースを選択する動作を開始するタイミングとが一致することになるため、ユーザ装置UEは、極力少ない遅延でD2D信号の送信を開始することが可能である。また、各ウインドウの開始タイミング及び終了タイミングが予め設定された周期的な期間の境界のタイミングに該当する場合、当該周期的な期間において他のユーザ装置UEが繰り返しD2D信号の送信を行う場合に、ユーザ装置UEは、繰り返し送信されるD2D信号を全てセンシングすることができ、リソースの占有状況をより適切に検出することが可能になる。
 また、前記検出部は、センシング用の時間ウインドウでセンシングを行うことで、該センシング用の時間ウインドウより後のリソース予約用の時間ウインドウの中で信号の送信を予約可能な1以上のリソースを検出し、前記選択部は、検出された信号の送信を予約可能な1以上のリソースから、信号の送信を予約するリソースを選択し、前記送信部は、前記信号を送信するためのリソースを用いて、前記信号の送信を予約するリソースで信号の送信を予定していることを示す予約情報を送信するようにしてもよい。これにより、ユーザ装置UEはリソースの予約を行うことが可能になり、他のユーザ装置UEが送信するD2D信号と自身が送信するD2D信号とが干渉してしまう可能性を減らすことが可能になる。
 また、前記検出部は、選択された前記信号を送信するためのリソース以後の周期的なリソースについて、センシング用の時間ウインドウでセンシングを行うことで、該周期的なリソースの受信品質を仮想的に測定し、測定された前記仮想的な受信品質に基づいて、前記リソース選択用の時間ウインドウの中で信号を送信可能な1以上のリソースを検出するようにしてもよい。これにより、ユーザ装置UEは、選択ウインドウの中で選択可能なリソースの選択肢を不要に限定してしまうことを抑制することが可能になる。
 また、実施の形態によれば、センシング結果に基づいて、信号を送信するためのリソースを選択するユーザ装置が実行する信号送信方法であって、センシング用の時間ウインドウでセンシングを行うことで、該センシング用の時間ウインドウより後のリソース選択用の時間ウインドウの中で信号を送信可能な1以上のリソースを検出するステップと、検出された1以上のリソースから、信号を送信するためのリソースを選択するステップと、選択された前記信号を送信するためのリソースを用いて信号を送信するステップと、を有する信号送信方法が提供される。この信号送信方法により、センシング結果に基づいて信号を送信するためのリソースを選択する方式において、遅延を低減しつつ適切に通信を行うことを可能とする技術が提供される。
 <実施形態の補足>
 SC期間は、SA期間(Scheduling Assignment Period)と呼ばれてもよいし、又は、PSCCH期間と呼ばれてもよい。
 以上、本発明の実施の形態で説明する各装置(ユーザ装置UE/基地局eNB)の構成は、CPUとメモリを備える当該装置において、プログラムがCPU(プロセッサ)により実行されることで実現される構成であってもよいし、本実施の形態で説明する処理のロジックを備えたハードウェア回路等のハードウェアで実現される構成であってもよいし、プログラムとハードウェアが混在していてもよい。
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べたシーケンス及びフローチャートは、矛盾の無い限り順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置UE/基地局eNBは機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置UEが有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局eNBが有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 センシングウインドウは、センシング用の時間ウインドウの一例である。選択ウインドウは、リソース選択用の時間ウインドウの一例である。予約ウインドウは、リソース予約用の時間ウインドウの一例である。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCメッセージは、RRCシグナリングと呼ばれてもよい。また、RRCメッセージは、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 判定又は判断は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。
 UEは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 また、本明細書で説明した各態様/実施形態の処理手順、シーケンスなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本発明は上記実施形態に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が本発明に包含される。
 本特許出願は2016年4月11日に出願した日本国特許出願第2016-079185号および2016年9月29日に出願した日本国特許出願第2016-192350号に基づきその優先権を主張するものであり、日本国特許出願第2016-079185号および日本国特許出願第2016-192350号の全内容を本願に援用する。
UE ユーザ装置
eNB 基地局
101 信号送信部
102 信号受信部
103 検出部
104 選択部
201 信号送信部
202 信号受信部
203 通知部
301 RFモジュール
302 BB処理モジュール
303 UE制御モジュール
304 通信IF
401 RFモジュール
402 BB処理モジュール
403 装置制御モジュール

Claims (7)

  1.  センシング結果に基づいて、信号を送信するためのリソースを選択するユーザ装置であって、
     センシング用の時間ウインドウでセンシングを行うことで、該センシング用の時間ウインドウより後のリソース選択用の時間ウインドウの中で信号を送信可能な1以上のリソースを検出する検出部と、
     検出された1以上のリソースから、信号を送信するためのリソースを選択する選択部と、
     選択された前記信号を送信するためのリソースを用いて信号を送信する送信部と、
     を有するユーザ装置。
  2.  前記リソース選択用の時間ウインドウは、前記センシング用の時間ウインドウよりも短い、
     請求項1に記載のユーザ装置。
  3.  前記選択部は、前記検出部で複数のリソースが検出された場合、前記信号を送信するためのリソースを該複数のリソースからランダムに選択するのか、又は、所定の条件に基づいて選択するのかを、自律的に、又は、基地局からの指示に基づいて決定する、
     請求項1又は2に記載のユーザ装置。
  4.  前記センシング用の時間ウインドウの開始タイミング及び終了タイミング、前記リソース選択用の時間ウインドウの開始タイミング及び終了タイミングは、前記選択部が信号を送信するためのリソースを選択するタイミングに基づいて動的に決定されるか、又は、予め設定された周期的な期間の境界のタイミングに該当する、
     請求項1乃至3のいずれか一項に記載のユーザ装置。
  5.  前記検出部は、センシング用の時間ウインドウでセンシングを行うことで、該センシング用の時間ウインドウより後のリソース予約用の時間ウインドウの中で信号の送信を予約可能な1以上のリソースを検出し、
     前記選択部は、検出された信号の送信を予約可能な1以上のリソースから、信号の送信を予約するリソースを選択し、
     前記送信部は、前記信号を送信するためのリソースを用いて、前記信号の送信を予約するリソースで信号の送信を予定していることを示す予約情報を送信する、
     請求項1乃至4のいずれか一項に記載のユーザ装置。
  6.  前記検出部は、選択された前記信号を送信するためのリソース以後の周期的なリソースについて、センシング用の時間ウインドウでセンシングを行うことで、該周期的なリソースの受信品質を仮想的に測定し、測定された前記仮想的な受信品質に基づいて、前記リソース選択用の時間ウインドウの中で信号を送信可能な1以上のリソースを検出する、
     請求項1乃至5のいずれか一項に記載のユーザ装置。
  7.  センシング結果に基づいて、信号を送信するためのリソースを選択するユーザ装置が実行する信号送信方法であって、
     センシング用の時間ウインドウでセンシングを行うことで、該センシング用の時間ウインドウより後のリソース選択用の時間ウインドウの中で信号を送信可能な1以上のリソースを検出するステップと、
     検出された1以上のリソースから、信号を送信するためのリソースを選択するステップと、
     選択された前記信号を送信するためのリソースを用いて信号を送信するステップと、
     を有する信号送信方法。
PCT/JP2017/005465 2016-04-11 2017-02-15 ユーザ装置及び信号送信方法 WO2017179286A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202111170065.7A CN113891288B (zh) 2016-04-11 2017-02-15 终端以及终端的通信方法
EP17782105.5A EP3445107A4 (en) 2016-04-11 2017-02-15 USER DEVICE AND SIGNAL TRANSMISSION METHOD
JP2018511900A JP6912457B2 (ja) 2016-04-11 2017-02-15 ユーザ装置及び信号送信方法
US16/092,604 US11006451B2 (en) 2016-04-11 2017-02-15 User equipment and signal transmission method
KR1020187030160A KR20180132712A (ko) 2016-04-11 2017-02-15 유저장치 및 신호 송신 방법
CN201780032745.8A CN109247073B (zh) 2016-04-11 2017-02-15 终端以及终端的通信方法
US17/227,968 US11647542B2 (en) 2016-04-11 2021-04-12 User equipment and signal transmission method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016079185 2016-04-11
JP2016-079185 2016-04-11
JP2016-192350 2016-09-29
JP2016192350 2016-09-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/092,604 A-371-Of-International US11006451B2 (en) 2016-04-11 2017-02-15 User equipment and signal transmission method
US17/227,968 Continuation US11647542B2 (en) 2016-04-11 2021-04-12 User equipment and signal transmission method

Publications (1)

Publication Number Publication Date
WO2017179286A1 true WO2017179286A1 (ja) 2017-10-19

Family

ID=60042477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005465 WO2017179286A1 (ja) 2016-04-11 2017-02-15 ユーザ装置及び信号送信方法

Country Status (6)

Country Link
US (2) US11006451B2 (ja)
EP (1) EP3445107A4 (ja)
JP (1) JP6912457B2 (ja)
KR (1) KR20180132712A (ja)
CN (2) CN109247073B (ja)
WO (1) WO2017179286A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208796A (ja) * 2016-05-12 2017-11-24 ソニー株式会社 通信装置、通信方法及びコンピュータプログラム
CN110710304A (zh) * 2018-02-14 2020-01-17 Oppo广东移动通信有限公司 一种配置传输参数的方法、设备及系统
WO2020024175A1 (en) * 2018-08-01 2020-02-06 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
WO2020033088A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Resource management for 5g ev2x
WO2020054812A1 (en) * 2018-09-13 2020-03-19 Sharp Kabushiki Kaisha Selection of radio access technologies for v2x messages
JP2020517162A (ja) * 2017-04-10 2020-06-11 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末間直接通信のための送信リソース割当て方法及びそのための装置
WO2020166088A1 (ja) * 2019-02-15 2020-08-20 株式会社Nttドコモ ユーザ装置及び通信方法
WO2020233189A1 (en) * 2019-05-20 2020-11-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method for resource selection of same
KR20210021030A (ko) * 2018-07-17 2021-02-24 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 사이드링크 중 데이터 전송 방법과 단말 장치
EP3860279A4 (en) * 2018-09-27 2022-01-19 Sony Group Corporation COMMUNICATION DEVICE, CONTROL DEVICE AND COMMUNICATION SYSTEM
WO2022018813A1 (ja) * 2020-07-20 2022-01-27 株式会社Nttドコモ 端末及び通信方法
WO2022024330A1 (ja) * 2020-07-30 2022-02-03 株式会社Nttドコモ 端末及び通信方法
US20220045934A1 (en) * 2019-04-17 2022-02-10 Cloudflare, Inc. Method and apparatus of automatic route optimization in a private virtual network for client devices of a local network
WO2022085054A1 (ja) * 2020-10-19 2022-04-28 株式会社Nttドコモ 端末及び通信方法
JP2023522873A (ja) * 2020-04-17 2023-06-01 北京小米移動軟件有限公司 サイドリンク通信におけるリソース選択方法、装置、電子機器及び記憶媒体
US12022494B2 (en) 2016-05-12 2024-06-25 Sony Group Corporation Communication device, communication method, and computer program for sensing of resources used in inter-device communications

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118510034A (zh) * 2016-04-01 2024-08-16 北京三星通信技术研究有限公司 一种v2x通信中控制信道和数据信道发送方法和设备
WO2018004296A2 (ko) * 2016-06-30 2018-01-04 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 ack/nack 전송 방법 및 이를 위한 장치
JP6592608B2 (ja) 2016-08-12 2019-10-16 華為技術有限公司Huawei Technologies Co.,Ltd. リソース選択の方法、装置及びデバイス
KR102209706B1 (ko) * 2016-09-10 2021-01-29 엘지전자 주식회사 무선 통신 시스템에서 특정 서브프레임을 제외한 나머지 서브프레임에 대해 v2x 자원 풀을 할당하는 방법 및 상기 방법을 이용하는 단말
KR102103725B1 (ko) * 2016-09-28 2020-04-23 엘지전자 주식회사 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
CN109716837B (zh) * 2016-09-30 2021-05-11 华为技术有限公司 选择资源的方法和终端设备
KR20180036476A (ko) * 2016-09-30 2018-04-09 주식회사 아이티엘 V2x를 위한 자원 풀 결정 방법 및 장치
WO2018062967A2 (en) 2016-09-30 2018-04-05 Innovative Technology Lab Co., Ltd. Method and apparatus for determining resource pool
US10999843B2 (en) * 2017-02-10 2021-05-04 Lg Electronics Inc. Method and apparatus for calculating channel occupancy ratio in wireless communication system
WO2018175528A1 (en) * 2017-03-23 2018-09-27 Intel Corporation User equipment (ue) and methods for vehicle-to-vehicle (v2v) sidelink communication in accordance with a short transmission time interval (tti)
WO2019219926A1 (en) * 2018-05-18 2019-11-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Duration of shortened semi-persistent scheduled intervals
CN111148223B (zh) * 2018-11-02 2022-11-18 华为技术有限公司 通信方法和通信装置
EP3881636B1 (en) * 2018-11-14 2023-09-06 Telefonaktiebolaget LM Ericsson (publ) Methods and wireless devices for device to device communication
WO2021040437A1 (ko) 2019-08-29 2021-03-04 엘지전자 주식회사 Nr v2x에서 사이드링크와 관련된 자원을 선택하는 방법 및 장치
KR20220053648A (ko) * 2019-09-29 2022-04-29 애플 인크. 듀얼-모드 사이드링크 동작
CN114930932A (zh) * 2019-11-08 2022-08-19 Lg电子株式会社 用于在nr v2x中重传副链路的方法和装置
US11601916B2 (en) * 2019-11-08 2023-03-07 Qualcomm Incorporated Sidelink candidate resource selection
US11924808B2 (en) * 2019-11-08 2024-03-05 Intel Coporation NR V2X sidelink resource reselection and reevaluation procedure
CA3155006A1 (en) * 2019-11-08 2021-05-14 Lei Dong Resource selection method and apparatus
CA3166472A1 (en) * 2020-02-07 2021-08-12 Yi Ding Resource selection method and device, terminal, and medium
KR20220160678A (ko) * 2020-04-01 2022-12-06 비보 모바일 커뮤니케이션 컴퍼니 리미티드 리소스 선택 방법, 단말 및 네트워크측 장비
CN113518323B (zh) * 2020-04-10 2024-01-05 中信科智联科技有限公司 一种资源选择方法及终端
CN113518381B (zh) * 2020-04-10 2023-11-14 华为技术有限公司 一种资源确定的方法、装置及终端设备
US11678362B2 (en) * 2020-05-06 2023-06-13 Samsung Electronics Co., Ltd. Method to dynamically change the minimum candidate resources ratio in mode 2 resource selection procedure of NR V2X
KR20210145562A (ko) * 2020-05-25 2021-12-02 삼성전자주식회사 V2x 시스템에서 단말 간 협력을 통한 자원 할당 방법 및 장치
CN113810873A (zh) 2020-06-17 2021-12-17 北京三星通信技术研究有限公司 用于旁路资源确定的方法和终端
CN112929917B (zh) * 2021-02-03 2022-12-13 上海瓶钵信息科技有限公司 监听用户终端的方法、辅助基站和计算机可读存储介质
CN115002716A (zh) * 2021-03-01 2022-09-02 华为技术有限公司 一种确定传输资源的方法、装置及设备
CN115707111A (zh) * 2021-08-05 2023-02-17 华为技术有限公司 通信方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047614A1 (ja) * 2014-09-25 2016-03-31 株式会社Nttドコモ ユーザ装置、及びリソース選択方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
CN104113851B (zh) * 2013-04-16 2019-04-16 中兴通讯股份有限公司 一种d2d发现方法及基站、用户设备
KR102154605B1 (ko) * 2013-05-01 2020-09-11 삼성전자주식회사 기기 간 직접 통신 시스템을 위한 방법 및 장치
JP2015095669A (ja) * 2013-11-08 2015-05-18 シャープ株式会社 端末装置
CN104754627A (zh) * 2013-12-30 2015-07-01 电信科学技术研究院 资源监听方法、用户设备以及网络设备
CN104754740B (zh) * 2013-12-31 2018-12-14 电信科学技术研究院 资源分配方法和装置
CN104796986B (zh) * 2014-01-16 2019-02-19 电信科学技术研究院 一种d2d通信方法及设备
US10225810B2 (en) * 2014-08-06 2019-03-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving synchronization signal in device-to-device communication system
MX366501B (es) * 2014-08-06 2019-07-11 Interdigital Patent Holdings Inc Prioridad de dispositivo a dispositivo (d2d) y control de acceso.
US10805891B2 (en) * 2014-09-25 2020-10-13 Samsung Electronics Co., Ltd. Synchronization procedure and resource control method and apparatus for communication in D2D system
CN104507108B (zh) * 2014-12-19 2019-03-08 宇龙计算机通信科技(深圳)有限公司 信道空闲状态的指示或资源预留方法、系统、终端和基站
US10383147B2 (en) * 2015-12-28 2019-08-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
US10244538B2 (en) * 2016-02-12 2019-03-26 Futurewei Technologies, Inc. System and method for determining a resource selection technique
US11240783B2 (en) * 2016-03-04 2022-02-01 Lg Electronics Inc. V2X transmission resource selecting method implemented by terminal in wireless communication system and terminal using same
GB2552319B (en) * 2016-07-18 2020-09-02 Samsung Electronics Co Ltd Resource arrangement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047614A1 (ja) * 2014-09-25 2016-03-31 株式会社Nttドコモ ユーザ装置、及びリソース選択方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Details of sensing based collision avoidance", 3GPP TSG-RAN WG1#84B R1- 162641, 2 April 2016 (2016-04-02), XP051080317 *
LG ELECTRONICS: "System level evaluation results of PC5 based V2V resource allocation options", 3GPP TSG-RAN WG1#84B R1-162480, 6 April 2016 (2016-04-06), XP051080713 *
NTT DOCOMO: "Discussion on details of sensing with semi-persistent transmission", 3GPP TSG-RAN WG1#84B R1-163176, 2 April 2016 (2016-04-02), XP051080574 *
See also references of EP3445107A4 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11457447B2 (en) 2016-05-12 2022-09-27 Sony Corporation Communication device, communication method, and computer program for sensing of resources used in inter-device communications
US10757709B2 (en) 2016-05-12 2020-08-25 Sony Corporation Communication device, communication method, and computer program for sensing of resources used in inter-device communications
JP2017208796A (ja) * 2016-05-12 2017-11-24 ソニー株式会社 通信装置、通信方法及びコンピュータプログラム
US12022494B2 (en) 2016-05-12 2024-06-25 Sony Group Corporation Communication device, communication method, and computer program for sensing of resources used in inter-device communications
JP2020517162A (ja) * 2017-04-10 2020-06-11 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末間直接通信のための送信リソース割当て方法及びそのための装置
US11395298B2 (en) 2017-04-10 2022-07-19 Lg Electronics Inc. Method for allocating transmission resource for device to device direct communication in wireless communication system and apparatus therefor
CN110710304A (zh) * 2018-02-14 2020-01-17 Oppo广东移动通信有限公司 一种配置传输参数的方法、设备及系统
EP3806558A4 (en) * 2018-07-17 2021-08-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD OF DATA TRANSFER AND DEVICE DEVICE
KR102536316B1 (ko) * 2018-07-17 2023-05-26 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 사이드링크 중 데이터 전송 방법과 단말 장치
US11582729B2 (en) 2018-07-17 2023-02-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for data transmission in sidelink and terminal device
JP7357667B2 (ja) 2018-07-17 2023-10-06 オッポ広東移動通信有限公司 サイドリンクにおけるデータ伝送方法及び端末装置
KR20210021030A (ko) * 2018-07-17 2021-02-24 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 사이드링크 중 데이터 전송 방법과 단말 장치
US11419128B2 (en) 2018-08-01 2022-08-16 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
JP2021532647A (ja) * 2018-08-01 2021-11-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ユーザ機器及び通信方法
CN112425233A (zh) * 2018-08-01 2021-02-26 松下电器(美国)知识产权公司 用户设备和通信方法
WO2020024175A1 (en) * 2018-08-01 2020-02-06 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
JP7127205B2 (ja) 2018-08-01 2022-08-29 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ ユーザ機器及び通信方法
JP2021534629A (ja) * 2018-08-09 2021-12-09 コンヴィーダ ワイヤレス, エルエルシー 5G eV2Xのためのリソース管理
CN112567837A (zh) * 2018-08-09 2021-03-26 康维达无线有限责任公司 5G eV2X的资源管理
WO2020033088A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Resource management for 5g ev2x
US12063624B2 (en) 2018-09-13 2024-08-13 Sharp Kabushiki Kaisha Selection of radio access technologies for V2X messages
WO2020054812A1 (en) * 2018-09-13 2020-03-19 Sharp Kabushiki Kaisha Selection of radio access technologies for v2x messages
US11956675B2 (en) 2018-09-27 2024-04-09 Sony Corporation Communication apparatus, control apparatus, and communication system
EP3860279A4 (en) * 2018-09-27 2022-01-19 Sony Group Corporation COMMUNICATION DEVICE, CONTROL DEVICE AND COMMUNICATION SYSTEM
TWI825174B (zh) * 2018-09-27 2023-12-11 日商索尼股份有限公司 通訊裝置、控制裝置及通訊系統
JP7522666B2 (ja) 2019-02-15 2024-07-25 株式会社Nttドコモ 端末、通信システム、及び通信方法
WO2020166088A1 (ja) * 2019-02-15 2020-08-20 株式会社Nttドコモ ユーザ装置及び通信方法
US12010656B2 (en) 2019-02-15 2024-06-11 Ntt Docomo, Inc. User equipment and communication method
US20220045934A1 (en) * 2019-04-17 2022-02-10 Cloudflare, Inc. Method and apparatus of automatic route optimization in a private virtual network for client devices of a local network
WO2020233189A1 (en) * 2019-05-20 2020-11-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method for resource selection of same
JP2023522873A (ja) * 2020-04-17 2023-06-01 北京小米移動軟件有限公司 サイドリンク通信におけるリソース選択方法、装置、電子機器及び記憶媒体
JP7397219B2 (ja) 2020-04-17 2023-12-12 北京小米移動軟件有限公司 サイドリンク通信におけるリソース選択方法、装置、電子機器及び記憶媒体
WO2022018813A1 (ja) * 2020-07-20 2022-01-27 株式会社Nttドコモ 端末及び通信方法
WO2022024330A1 (ja) * 2020-07-30 2022-02-03 株式会社Nttドコモ 端末及び通信方法
JP7568373B2 (ja) 2020-07-30 2024-10-16 株式会社Nttドコモ 端末及び通信方法
CN116158181A (zh) * 2020-10-19 2023-05-23 株式会社Ntt都科摩 终端以及通信方法
WO2022085054A1 (ja) * 2020-10-19 2022-04-28 株式会社Nttドコモ 端末及び通信方法

Also Published As

Publication number Publication date
CN113891288A (zh) 2022-01-04
EP3445107A1 (en) 2019-02-20
US11006451B2 (en) 2021-05-11
US20210235499A1 (en) 2021-07-29
CN109247073B (zh) 2021-10-26
CN113891288B (zh) 2023-07-21
US11647542B2 (en) 2023-05-09
JPWO2017179286A1 (ja) 2019-02-14
JP6912457B2 (ja) 2021-08-04
CN109247073A (zh) 2019-01-18
EP3445107A4 (en) 2019-11-13
KR20180132712A (ko) 2018-12-12
US20190132818A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
US11647542B2 (en) User equipment and signal transmission method
US10638284B2 (en) User apparatus, base station and notification method
WO2017170775A1 (ja) ユーザ装置、及びセンシング制御方法
JP6357509B2 (ja) ユーザ装置及び信号送信方法
US20180234888A1 (en) User equipment and data transmission method
US20210127361A1 (en) User equipment and transmission method
WO2017169835A1 (ja) ユーザ装置及び送信方法
US10728881B2 (en) User equipment and signal transmission method
US20190037534A1 (en) User equipment and reception method
WO2017195538A1 (ja) ユーザ装置及び信号送信方法
WO2018084094A1 (ja) ユーザ装置及び信号送信方法
WO2019064465A1 (ja) ユーザ装置、及びリソース選択方法
WO2017126497A1 (ja) ユーザ装置及び通信方法
WO2018203415A1 (ja) ユーザ装置
WO2018203414A1 (ja) ユーザ装置
WO2019097657A1 (ja) ユーザ装置、及び送信方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030160

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017782105

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017782105

Country of ref document: EP

Effective date: 20181112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782105

Country of ref document: EP

Kind code of ref document: A1