WO2020233189A1 - User equipment and method for resource selection of same - Google Patents

User equipment and method for resource selection of same Download PDF

Info

Publication number
WO2020233189A1
WO2020233189A1 PCT/CN2020/077662 CN2020077662W WO2020233189A1 WO 2020233189 A1 WO2020233189 A1 WO 2020233189A1 CN 2020077662 W CN2020077662 W CN 2020077662W WO 2020233189 A1 WO2020233189 A1 WO 2020233189A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
transmission
transmission resource
user equipment
processor
Prior art date
Application number
PCT/CN2020/077662
Other languages
French (fr)
Inventor
Zhenshan Zhao
Qianxi Lu
Huei-Ming Lin
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN202080005427.4A priority Critical patent/CN112771951A/en
Publication of WO2020233189A1 publication Critical patent/WO2020233189A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a user equipment and a method for resource selection of the same.
  • New radio vehicle-to-everything is a technique based on device-to-device (D2D) .
  • D2D device-to-device
  • An example is illustrated in FIG. 1, in the mode 1, a sidelink (SL) transmission resource is allocated by a network. Both dynamic scheduling, such as based on downlink control information (DCI) , and/or semi-static scheduling, such as based on a configured grant, are supported in the mode 1.
  • the mode 1 can only be applied to in coverage (IC) user equipment (UE) .
  • An example is illustrated in FIG. 2, in the mode 2, a SL transmission resource is selected by a transmitter UE.
  • a resource pool can be pre-configured or configured by a network.
  • the transmitter UE can autonomously select a transmission resource for a SL transmission.
  • the mode 2 can be applied to both in coverage UE and out of coverage (OOC) UE.
  • a UE can perform a resource selection, such as a random operation and a sensing operation.
  • the UE randomly selects a transmission resource. For example, the UE can select a resource with equal probability within the RP.
  • the UE selects a transmission resource for a SL transmission within a resource selection window based on a sensing result. If a packet is available, or a resource (re-) selection procedure is triggered at a slot n, the UE will select a transmission resource from a resource selection window [n+T1, n+T2] , where T1 is determined by a UE capability, such as a processing delay. T2 is determined by a packet delay budget.
  • the UE will assume all of transmission resources within the resource selection window as candidate transmission resources. Then the UE will exclude some transmission resources within the resource selection window if the transmission resources will collide with other UEs, or if it does not have sensing results on the transmission resources.
  • a RP configuration In long term evolution V2X (LTE-V2X) , a RP configuration only includes continuous physical resource blocks (PRBs) in a frequency domain. In that case, a physical sidelink shared channel (PSSCH) can only be mapped onto continuous PRBs if continuous sub-channels are used.
  • FIG. 3 illustrates a RP configuration. While in NR-V2X, a RP configuration can include non-continuous PRBs in a frequency domain. In one example, in FIG. 3, there is a PSSCH RP, which includes 4 sub-channels, such as a sub-channel 0, a sub-channel 1, a sub-channel 2, and a sub-channel 3. Each sub-channel includes 4 PRBs.
  • a PSSCH can be mapped to either continuous PRBs or non-continuous PRBs. For example, if the PSSCH is only mapped to the sub-channel 0 and the sub-channel 1, which are continuous in a frequency domain. If the PSSCH is mapped to the sub-channel 2 and the sub-channel 3, because the PSSCH cannot occupy a resource which is used for other purpose, then the PSSCH can only be mapped to 3 PRBs in the sub-channel 2 and 4 PRBs in the sub-channel 3. That will cause non-continuous PRB mapping of PSSCH.
  • a PSSCH mapped to non-continuous PRBs will cause large peak to average power ratio (PAPR) , cubic metric (CM) , and/or maximal power reduction (MPR) .
  • PAPR peak to average power ratio
  • CM cubic metric
  • MPR maximal power reduction
  • PAPR large peak to average power ratio
  • CM cubic metric
  • MPR maximal power reduction
  • An object of the present disclosure is to propose a user equipment and a method for resource selection of the same capable of solving issues of the prior art, for example, improving large peak to average power ratio (PAPR) , cubic metric (CM) , and/or maximal power reduction (MPR) , reducing power consumption, and/or improving reliability.
  • PAPR large peak to average power ratio
  • CM cubic metric
  • MPR maximal power reduction
  • a user equipment for resource selection includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to determine a transmission resource including a transmission resource used for other purpose and exclude the transmission resource including the transmission resource used for the other purpose from a candidate resource set.
  • a method for resource selection of a user equipment includes determining a transmission resource comprising a transmission resource used for other purpose and excluding the transmission resource comprising the transmission resource used for the other purpose from a candidate resource set.
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a terminal device includes a processor and a memory configured to store a computer program.
  • the processor is configured to execute the computer program stored in the memory to perform the above method.
  • FIG. 1 is a schematic diagram of an exemplary illustration of a mode 1 in a new radio vehicle-to-everything (NR-V2X) transmission.
  • NR-V2X new radio vehicle-to-everything
  • FIG. 2 is a schematic diagram of an exemplary illustration of a mode 2 in a NR-V2X transmission.
  • FIG. 3 is a schematic diagram of an exemplary illustration of a resource pool (RP) configuration.
  • FIG. 4 is a schematic diagram of an exemplary illustration of a sensing window and a resource selection window.
  • FIG. 5 is a block diagram of a user equipment and a network node for sensing operation and resource selection according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart illustrating a method for sensing operation and resource selection of a user equipment according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an exemplary illustration of a resource selection window according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an exemplary illustration of a sensing window and a resource selection window according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • FIG. 4 is an exemplary illustration of a sensing window and a resource selection window.
  • FIG. 4 illustrates that, in some embodiments, before a resource selection, a user equipment (UE) needs to perform a sensing operation within a sensing window.
  • the UE will detect a physical sidelink control channel (PSCCH) from other UEs. If the PSCCH is detected by the UE, the UE will measure a PSSCH reference signal receive power (PSSCH-RSRP) based on a demodulation reference signal (DMRS) of the PSSCH which is scheduled by the PSCCH.
  • PSSCH-RSRP PSSCH reference signal receive power
  • DMRS demodulation reference signal
  • the UE will exclude the reserved transmission resource from candidate resources. This can avoid a transmission collision with other UEs.
  • the threshold RSRP-thd is determined by a priority which is included in the detected PSCCH and/or a priority of a packet to be transmitted.
  • the UE After a resource exclusion procedure, if a number of candidate transmission resources within the resource selection window is less than 20%of a total number of transmission resources of the resource selection window, the UE will increase the threshold RSRP-thd by 3dB and repeat the above exclusion procedure until the number of candidate transmission resources within the resource selection window is greater than or equal to 20%of the total number of transmission resources of the resource selection window.
  • the UE will measure an energy, such as a received signal strength indication (RSSI) , of each sub-channel.
  • RSSI received signal strength indication
  • a sub-channel is a minimal granularity of a resource pool (RP) in a frequency domain.
  • the sub-channel includes N continuous physical resource blocks (PRBs) , such as N is 4, 5, 6, 8, 10, 20, or other. Then, the UE will select one resource with equal probability within 20%resources which have a minimal energy within the remaining candidate resources.
  • RSSI received signal strength indication
  • FIG. 5 illustrates that, in some embodiments, a user equipment (UE) 10 and a network node 20 such as a base station for sensing operation and resource selection according to an embodiment of the present disclosure are provided.
  • the UE 10 may include a processor 11, a memory 12, and a transceiver 13.
  • the network node 20 may include a processor 21, a memory 22, and a transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include an application-specific integrated circuit (ASIC) , other chipsets, logic circuit and/or data processing devices.
  • the memory 12 or 22 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21, in which those can be communicatively coupled to the processor 11 or 21 via various means are known in the art.
  • the communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under 3rd generation partnership project (3GPP) release 14, 15, 16, and beyond.
  • UEs communicate with each other directly via a sidelink interface such as a PC5 interface.
  • the processor 11 is configured to determine a transmission resource including a transmission resource used for other purpose and exclude the transmission resource including the transmission resource used for the other purpose from a candidate resource set.
  • the transmission resource used for the other purpose includes a plurality of resources used for one of a physical sidelink broadcast channel (PSBCH) transmission, sidelink primary synchronization signal (S-PSS) transmission, and sidelink secondary synchronization signal (S-SSS) transmission.
  • the transmission resource used for the other purpose includes a plurality of resources used for an uplink (UL) transmission.
  • the transmission resource is within a resource selection window.
  • a period transmission a first transmission resource is within a resource selection window
  • the processor 11 is configured to reuse the same first transmission resource in following transmission periods, and if the first transmission resource in one of the transmission periods comprises the transmission resource used for the other purpose, the first transmission resource in the resource selection window is excluded from the candidate resource set.
  • the processor 11 is configured to generate a number indicating a number of periodicities for using the first transmission resource by the processor 11.
  • the processor 11 after each periodicity, the number indicating the number of the periodicities for using the first transmission resource by the processor 11 is decreased by 1. In some embodiments, if the number indicating the number of the periodicities for using the first transmission resource by the processor 11 is equal to 0, the processor 11 performs a resource re-selection. According to a current LTE sensing mechanism, when the number is equal to 1, a UE will randomly generate a number within [0, 1] and compared to a threshold, if larger than the threshold, the UE will do resource re-selection when the number is 0, otherwise the UE will continue to use the same resource.
  • the processor 11 calculates the energy of each transmission resource. In some embodiments, the energy is calculated by monitoring a corresponding transmission resource in the sensing window. In some embodiments, even if the corresponding transmission resource in the sensing window comprises the transmission resource used for the other purpose, the processor 11 measures the energy.
  • the processor 11 measures energy of the third transmission resource to determine whether the second transmission resource to be used.
  • the processor 11 excludes the fourth transmission resource from the candidate resource set.
  • the processor 11 selects a proportional of transmission resources which have a minimal energy, among which one of the transmission resources is selected with equal probability.
  • FIG. 6 illustrates a method 200 for sensing operation and resource selection of a user equipment according to an embodiment of the present disclosure.
  • the method 200 includes: a block 202, determining a transmission resource including a transmission resource used for other purpose, and a block 204, excluding the transmission resource comprising the transmission resource used for the other purpose from a candidate resource set.
  • the transmission resource used for the other purpose includes a plurality of resources used for one of a physical sidelink broadcast channel (PSBCH) transmission, sidelink primary synchronization signal (S-PSS) transmission, and sidelink secondary synchronization signal (S-SSS) transmission.
  • the transmission resource used for the other purpose includes a plurality of resources used for an uplink (UL) transmission.
  • the transmission resource is within a resource selection window.
  • a period transmission a first transmission resource is within a resource selection window
  • the user equipment is configured to reuse the same first transmission resource in following transmission periods, and if the first transmission resource in one of the transmission periods comprises the transmission resource used for the other purpose, the first transmission resource in the resource selection window is excluded from the candidate resource set.
  • the user equipment is configured to generate a number indicating a number of periodicities for using the first transmission resource by the user equipment.
  • the number indicating the number of the periodicities for using the first transmission resource by the user equipment is decreased by 1. In some embodiments, if the number indicating the number of the periodicities for using the first transmission resource by the user equipment is equal to 0, the user equipment performs a resource re-selection. According to a current LTE sensing mechanism, when the number is equal to 1, a UE will generate a number within [0, 1] and compared to a threshold, if larger than the threshold, the UE will do resource re-selection when the number is 0, otherwise the UE will continue to use the same resource.
  • the user equipment calculates the energy of each transmission resource.
  • the energy is calculated by monitoring a corresponding transmission resource in the sensing window.
  • the user equipment measures the energy.
  • the transmission resource can be used to carry sidelink (SL) data to be transmitted.
  • a second transmission resource in a resource selection window corresponds to a third transmission resource in a sensing window
  • the third transmission resource comprises the transmission resource used for the other purpose
  • the user equipment measures energy of the third transmission resource to determine whether the second transmission resource to be used.
  • a fourth transmission resource in a resource selection window corresponds to a fifth transmission resource in a sensing window
  • the fifth transmission resource comprises the transmission resource used for the other purpose
  • the user equipment excludes the fourth transmission resource from the candidate resource set.
  • the user equipment after calculating the energy of each transmission resource, the user equipment selects a proportional of transmission resources which have a minimal energy, among which one of the transmission resources is selected with equal probability.
  • FIG. 7 is an exemplary illustration of a resource selection window according to an embodiment of the present disclosure.
  • FIG. 7 illustrates that, in some embodiments, a transmission resource which includes a reserved transmission resource for other purpose is excluded from a candidate resource set.
  • the reserved resource can be used for other purpose.
  • a resource or some resources will be used for a PSBCH transmission. If NR-V2X deployed in a shared carrier, sidelink (SL) and uplink (UL) will both use a UL transmission resource. Some of the UL transmission resources can be reserved for a resource of a PRACH.
  • a PSSCH RP covers reserved transmission resources, it cannot map a PSSCH on these resources to avoid a non-continuous PSSCH resource mapping in a frequency domain.
  • FIG. 7 illustrates that, in some embodiments, the resource selection window includes two slots, such as a slot n+1 and a slot n+2. Within each slot, there are 4 sub-channels, such as a sub-channel 0, a sub-channel 1, a sub-channel 2, and a sub-channel 3, and each sub-channel includes 4 PRBs. The 3rd PRB in the sub-channel 2 in the slot n+2 is used for a PSBCH transmission.
  • a number of sub-channels used for the PSSCH depends on a packet size to be transmitted. If only one sub-channel is used for each PSSCH, there are totally 8 transmission resources for the PSSCH within the resource selection window.
  • a transmission resource is used to map the PSSCH.
  • the resource set will include 8 transmission resources.
  • the sub-channel 2 in the slot n+2 will be excluded from the resource set because the sub-channel 2 in the slot n+2 includes non-continuous PRBs.
  • the other 7 sub-channel can be used as candidate transmission resources. Furthermore, whether the remaining 7 transmission resources can be used depends on a sensing result. For example, if some of the transmission resources in the resource set are reserved by other UEs, then these resources are also excluded from the resource set.
  • the 4th PRB in the sub-channel 3 in the slot n+2 is also reserved for other purpose. Then the transmission resource which includes the sub-channel 3 in the slot n+2 will also be excluded from the resource set. Although the remaining 3 PRBs in the sub-channel 3 is still continuous, while a number of the PRB used for the PSSCH is less compared to other transmission resources, that will cause higher coding rate of PSSCH. Then the remaining 3 PRBs in the sub-channel 3 will also be excluded.
  • one PSSCH is mapped to 2 continuous sub-channels.
  • a PSSCH can be mapped to sub-channels 0 and 1, or sub-channels 1 and 2, or sub-channels 2 and 3, in the slot n+1 and n+2.
  • the transmission resource which includes the reserved resource for other purpose will be excluded from the resource set.
  • the transmission resource which includes the sub-channels 1 and 2 in the slot n+2 and the transmission resource which includes the sub-channels 2 and 3 in the slot n+2 will be excluded from the resource set.
  • whether the remaining 4 transmission resources can be used can depend on the sensing result.
  • the transmission resources in the resource set are reserved by other UEs, then these resources are also excluded from the resource set. For example, if the sub-channel 1 in the slot n+1 is reserved by other UEs, then the transmission resource which includes the sub-channel 1 in the slot n+1 is also excluded in the resource set. For example, the transmission resource which includes the sub-channels 0 and 1 in the slot n+1, and the transmission resource which includes the sub-channels 1 and 2 in the slot n+1 will be excluded from the resource set.
  • FIG. 8 is an exemplary illustration of a sensing window and a resource selection window according to an embodiment of the present disclosure.
  • FIG. 8 illustrates that, in some embodiments, for a period transmission, if a transmission resource K which will be used in one of the following M transmission periodicities, and the transmission resource K includes a reserved transmission resource for other purpose, then a transmission resource k in the resource selection window which corresponds to the transmission resource K in later transmission periods is excluded from a candidate resource set.
  • the UE For a periodic service or transmission, when a transmission resource is selected, the UE will reserve the same transmission resource in later periodicities, so that the UE doesn’t need to perform a resource selection for each packet. Other UEs can know that the resource is reserved by the UE by sensing, so that other UEs will try to avoid using the same transmission resource to avoid transmission collision.
  • a periodicity is 100ms. If the UE selects a transmission resource k in the resource selection window, the UE can reserve the transmission resource k in the following periodicities. For example, the UE can reuse the same transmission resource within the following two transmission periods. If the transmission resource K in the third transmission period includes the reserved transmission resource for other purpose, or the transmission resource K will collide with the transmission resource for other purpose, such as PSBCH or PRACH, then the transmission resource k within the selection window will be excluded from the resource set.
  • the resource set includes all of the transmission resources within the resource selection window during initialization.
  • the UE will generate a number C, which indicates the number of periodicities that the UE will reserve the resource. After each periodicity, the number will be decreased by 1. If the number is equal to 0, the UE will perform a resource re-selection. According to a current LTE sensing mechanism, when the number is equal to 1, a UE will randomly generate a number within [0, 1] and compared to a threshold, if larger than the threshold, the UE will do resource re-selection when the number is 0, otherwise the UE will continue to use the same resource.
  • UE can determine whether the reserved resource within the following C periodicities includes the reserved resource or collides with the transmission resource for other purpose, such as PSBCH or PRACH. If yes, the resource is excluded from the resource set. If no, the UE can use the selected and reserved transmission resource for the packet transmission.
  • the UE will measure an energy, such as RSSI, of the transmission resource Q to determine whether the transmission resource q can be used, or the UE will exclude the transmission resource q from the resource set.
  • the UE after resource exclusion, if the number of transmission resource within the transmission resource set is larger than a proportional, such as 20%, of the total number of transmission resources within the resource selection window, the UE will calculate the energy, such as RSSI, of each transmission resource. The energy is calculated by monitoring the corresponding transmission resource within the sensing window. In some embodiments, even if the corresponding transmission resource within the sensing window includes the reserved transmission resource for other purpose, the UE will measure the energy, such as RSSI.
  • the UE will select 20%transmission resources which have a minimal/smallest energy, among which one of transmission resources is selected with equal probability.
  • the above embodiments take the reserved transmission resource as an example to explain how to perform sensing and resource selection, it can also be applied to any other cases that can cause a non-continuous PSSCH resource mapping. It is understood that, the reserved transmission resource for other purpose means that the transmission resource is not used for PSSCH or PSCCH. It is understood that, the embodiments given in the present disclosure are only partial sensing procedure or resource selection procedure, there could be additional procedures for sensing or resource selection.
  • the resource selection procedure can be as follows.
  • the transmission resource which includes the reserved transmission resource for other purpose is excluded from the candidate resource set.
  • the transmission resource k in the resource selection window which corresponds to the transmission resource K in later transmission periods is excluded from the candidate resource set.
  • the UE will measure energy, such as RSSI, of the transmission resource Q to determine whether the transmission resource q can be used
  • FIG. 9 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 9 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • flash memory non-volatile memory
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • Some embodiments of the present disclosure provide a user equipment and a method for sensing operation and resource selection of the same capable of solving issues of the prior art, for example, improving large peak to average power ratio (PAPR) , cubic metric (CM) , and/or maximal power reduction (MPR) , reducing power consumption, and/or improving reliability.
  • PAPR large peak to average power ratio
  • CM cubic metric
  • MPR maximal power reduction
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Abstract

A user equipment and a method for sensing operation and resource selection of the same are provided. The method includes determining a transmission resource comprising a transmission resource used for other purpose and excluding the transmission resource comprising the transmission resource used for the other purpose from a candidate resource set.

Description

USER EQUIPMENT AND METHOD FOR RESOURCE SELECTION OF SAME
BACKGROUND OF DISCLOSURE
1. Field of Disclosure
The present disclosure relates to the field of communication systems, and more particularly, to a user equipment and a method for resource selection of the same.
2. Description of Related Art
New radio vehicle-to-everything (NR-V2X) is a technique based on device-to-device (D2D) . There are two transmission modes introduced in NR-V2X, such as a mode 1 and a mode 2. An example is illustrated in FIG. 1, in the mode 1, a sidelink (SL) transmission resource is allocated by a network. Both dynamic scheduling, such as based on downlink control information (DCI) , and/or semi-static scheduling, such as based on a configured grant, are supported in the mode 1. The mode 1 can only be applied to in coverage (IC) user equipment (UE) . An example is illustrated in FIG. 2, in the mode 2, a SL transmission resource is selected by a transmitter UE. A resource pool (RP) can be pre-configured or configured by a network. Within the resource pool, the transmitter UE can autonomously select a transmission resource for a SL transmission. The mode 2 can be applied to both in coverage UE and out of coverage (OOC) UE.
There are two ways for a UE to perform a resource selection, such as a random operation and a sensing operation. At the random operation, within a RP, the UE randomly selects a transmission resource. For example, the UE can select a resource with equal probability within the RP. At the sensing operation, the UE selects a transmission resource for a SL transmission within a resource selection window based on a sensing result. If a packet is available, or a resource (re-) selection procedure is triggered at a slot n, the UE will select a transmission resource from a resource selection window [n+T1, n+T2] , where T1 is determined by a UE capability, such as a processing delay. T2 is determined by a packet delay budget. Firstly, the UE will assume all of transmission resources within the resource selection window as candidate transmission resources. Then the UE will exclude some transmission resources within the resource selection window if the transmission resources will collide with other UEs, or if it does not have sensing results on the transmission resources.
In long term evolution V2X (LTE-V2X) , a RP configuration only includes continuous physical resource blocks (PRBs) in a frequency domain. In that case, a physical sidelink shared channel (PSSCH) can only be mapped onto continuous PRBs if continuous sub-channels are used. FIG. 3 illustrates a RP configuration. While in NR-V2X, a RP configuration can include  non-continuous PRBs in a frequency domain. In one example, in FIG. 3, there is a PSSCH RP, which includes 4 sub-channels, such as a sub-channel 0, a sub-channel 1, a sub-channel 2, and a sub-channel 3. Each sub-channel includes 4 PRBs. One of the PRBs in the sub-channel 2 is reserved or used for other purpose. In this case, a PSSCH can be mapped to either continuous PRBs or non-continuous PRBs. For example, if the PSSCH is only mapped to the sub-channel 0 and the sub-channel 1, which are continuous in a frequency domain. If the PSSCH is mapped to the sub-channel 2 and the sub-channel 3, because the PSSCH cannot occupy a resource which is used for other purpose, then the PSSCH can only be mapped to 3 PRBs in the sub-channel 2 and 4 PRBs in the sub-channel 3. That will cause non-continuous PRB mapping of PSSCH. A PSSCH mapped to non-continuous PRBs will cause large peak to average power ratio (PAPR) , cubic metric (CM) , and/or maximal power reduction (MPR) .
Therefore, there is a need to propose a user equipment and a method for resource selection of the same capable of solving issues of the prior art, for example, improving large peak to average power ratio (PAPR) , cubic metric (CM) , and/or maximal power reduction (MPR) , reducing power consumption, and/or improving reliability.
SUMMARY
An object of the present disclosure is to propose a user equipment and a method for resource selection of the same capable of solving issues of the prior art, for example, improving large peak to average power ratio (PAPR) , cubic metric (CM) , and/or maximal power reduction (MPR) , reducing power consumption, and/or improving reliability.
In a first aspect of the present disclosure, a user equipment for resource selection includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to determine a transmission resource including a transmission resource used for other purpose and exclude the transmission resource including the transmission resource used for the other purpose from a candidate resource set.
In a second aspect of the present disclosure, a method for resource selection of a user equipment includes determining a transmission resource comprising a transmission resource used for other purpose and excluding the transmission resource comprising the transmission resource used for the other purpose from a candidate resource set.
In a third aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a fourth aspect of the present disclosure, a terminal device includes a processor and a memory configured to store a computer program. The processor is configured to execute the computer program stored in the memory to perform the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a schematic diagram of an exemplary illustration of a mode 1 in a new radio vehicle-to-everything (NR-V2X) transmission.
FIG. 2 is a schematic diagram of an exemplary illustration of a mode 2 in a NR-V2X transmission.
FIG. 3 is a schematic diagram of an exemplary illustration of a resource pool (RP) configuration.
FIG. 4 is a schematic diagram of an exemplary illustration of a sensing window and a resource selection window.
FIG. 5 is a block diagram of a user equipment and a network node for sensing operation and resource selection according to an embodiment of the present disclosure.
FIG. 6 is a flowchart illustrating a method for sensing operation and resource selection of a user equipment according to an embodiment of the present disclosure.
FIG. 7 is a schematic diagram of an exemplary illustration of a resource selection window according to an embodiment of the present disclosure.
FIG. 8 is a schematic diagram of an exemplary illustration of a sensing window and a resource selection window according to an embodiment of the present disclosure.
FIG. 9 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
FIG. 4 is an exemplary illustration of a sensing window and a resource selection window. FIG. 4 illustrates that, in some embodiments, before a resource selection, a user  equipment (UE) needs to perform a sensing operation within a sensing window. The UE will detect a physical sidelink control channel (PSCCH) from other UEs. If the PSCCH is detected by the UE, the UE will measure a PSSCH reference signal receive power (PSSCH-RSRP) based on a demodulation reference signal (DMRS) of the PSSCH which is scheduled by the PSCCH. If the PSSCH-RSRP is higher than a threshold RSRP-thd, and a resource reservation indicator in the detected PSCCH shows that it will reserve a transmission resource within a resource selection window, the UE will exclude the reserved transmission resource from candidate resources. This can avoid a transmission collision with other UEs. The threshold RSRP-thd is determined by a priority which is included in the detected PSCCH and/or a priority of a packet to be transmitted.
After a resource exclusion procedure, if a number of candidate transmission resources within the resource selection window is less than 20%of a total number of transmission resources of the resource selection window, the UE will increase the threshold RSRP-thd by 3dB and repeat the above exclusion procedure until the number of candidate transmission resources within the resource selection window is greater than or equal to 20%of the total number of transmission resources of the resource selection window.
Within remaining candidate resources, the UE will measure an energy, such as a received signal strength indication (RSSI) , of each sub-channel. A sub-channel is a minimal granularity of a resource pool (RP) in a frequency domain. The sub-channel includes N continuous physical resource blocks (PRBs) , such as N is 4, 5, 6, 8, 10, 20, or other. Then, the UE will select one resource with equal probability within 20%resources which have a minimal energy within the remaining candidate resources.
FIG. 5 illustrates that, in some embodiments, a user equipment (UE) 10 and a network node 20 such as a base station for sensing operation and resource selection according to an embodiment of the present disclosure are provided. The UE 10 may include a processor 11, a memory 12, and a transceiver 13. The network node 20 may include a processor 21, a memory 22, and a transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include an application-specific integrated circuit (ASIC) , other chipsets, logic circuit and/or data processing devices. The  memory  12 or 22 may include a  read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21, in which those can be communicatively coupled to the  processor  11 or 21 via various means are known in the art.
The communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under 3rd generation partnership project (3GPP) release 14, 15, 16, and beyond. UEs communicate with each other directly via a sidelink interface such as a PC5 interface.
In some embodiments, the processor 11 is configured to determine a transmission resource including a transmission resource used for other purpose and exclude the transmission resource including the transmission resource used for the other purpose from a candidate resource set.
In some embodiments, the transmission resource used for the other purpose includes a plurality of resources used for one of a physical sidelink broadcast channel (PSBCH) transmission, sidelink primary synchronization signal (S-PSS) transmission, and sidelink secondary synchronization signal (S-SSS) transmission. In some embodiments, the transmission resource used for the other purpose includes a plurality of resources used for an uplink (UL) transmission. In some embodiments, the transmission resource is within a resource selection window.
In some embodiments, a period transmission, a first transmission resource is within a resource selection window, the processor 11 is configured to reuse the same first transmission resource in following transmission periods, and if the first transmission resource in one of the transmission periods comprises the transmission resource used for the other purpose, the first transmission resource in the resource selection window is excluded from the candidate resource set. In some embodiments, the processor 11 is configured to generate a number indicating a number of periodicities for using the first transmission resource by the processor 11.
In some embodiments, after each periodicity, the number indicating the number of the periodicities for using the first transmission resource by the processor 11 is decreased by 1. In some embodiments, if the number indicating the number of the periodicities for using the first  transmission resource by the processor 11 is equal to 0, the processor 11 performs a resource re-selection. According to a current LTE sensing mechanism, when the number is equal to 1, a UE will randomly generate a number within [0, 1] and compared to a threshold, if larger than the threshold, the UE will do resource re-selection when the number is 0, otherwise the UE will continue to use the same resource.
In some embodiments, after a resource exclusion, if a number of transmission resources in the candidate resource set is greater than or equal to a proportional of a total number of the transmission resources in the resource selection window, the processor 11 calculates the energy of each transmission resource. In some embodiments, the energy is calculated by monitoring a corresponding transmission resource in the sensing window. In some embodiments, even if the corresponding transmission resource in the sensing window comprises the transmission resource used for the other purpose, the processor 11 measures the energy.
In some embodiments, if a second transmission resource in a resource selection window corresponds to a third transmission resource in a sensing window, and the third transmission resource comprises the transmission resource used for the other purpose, the processor 11 measures energy of the third transmission resource to determine whether the second transmission resource to be used.
In some embodiments, if a fourth transmission resource in a resource selection window corresponds to a fifth transmission resource in a sensing window, and the fifth transmission resource comprises the transmission resource used for the other purpose, the processor 11 excludes the fourth transmission resource from the candidate resource set.
In some embodiments, after calculating the energy of each transmission resource, the processor 11 selects a proportional of transmission resources which have a minimal energy, among which one of the transmission resources is selected with equal probability.
FIG. 6 illustrates a method 200 for sensing operation and resource selection of a user equipment according to an embodiment of the present disclosure. In some embodiments, the method 200 includes: a block 202, determining a transmission resource including a transmission resource used for other purpose, and a block 204, excluding the transmission resource comprising the transmission resource used for the other purpose from a candidate resource set.
In some embodiments, the transmission resource used for the other purpose includes a plurality of resources used for one of a physical sidelink broadcast channel (PSBCH) transmission, sidelink primary synchronization signal (S-PSS) transmission, and sidelink secondary synchronization signal (S-SSS) transmission. In some embodiments, the transmission resource used for the other purpose includes a plurality of resources used for an uplink (UL)  transmission. In some embodiments, the transmission resource is within a resource selection window.
In some embodiments, a period transmission, a first transmission resource is within a resource selection window, the user equipment is configured to reuse the same first transmission resource in following transmission periods, and if the first transmission resource in one of the transmission periods comprises the transmission resource used for the other purpose, the first transmission resource in the resource selection window is excluded from the candidate resource set. In some embodiments, the user equipment is configured to generate a number indicating a number of periodicities for using the first transmission resource by the user equipment.
In some embodiments, after each periodicity, the number indicating the number of the periodicities for using the first transmission resource by the user equipment is decreased by 1. In some embodiments, if the number indicating the number of the periodicities for using the first transmission resource by the user equipment is equal to 0, the user equipment performs a resource re-selection. According to a current LTE sensing mechanism, when the number is equal to 1, a UE will generate a number within [0, 1] and compared to a threshold, if larger than the threshold, the UE will do resource re-selection when the number is 0, otherwise the UE will continue to use the same resource.
In some embodiments, after a resource exclusion, if a number of transmission resources in the candidate resource set is greater than or equal to a proportional of a total number of the transmission resources in the resource selection window, the user equipment calculates the energy of each transmission resource. In some embodiments, the energy is calculated by monitoring a corresponding transmission resource in the sensing window. In some embodiments, even if the corresponding transmission resource in the sensing window comprises the transmission resource used for the other purpose, the user equipment measures the energy. The transmission resource can be used to carry sidelink (SL) data to be transmitted.
In some embodiments, if a second transmission resource in a resource selection window corresponds to a third transmission resource in a sensing window, and the third transmission resource comprises the transmission resource used for the other purpose, the user equipment measures energy of the third transmission resource to determine whether the second transmission resource to be used.
In some embodiments, if a fourth transmission resource in a resource selection window corresponds to a fifth transmission resource in a sensing window, and the fifth transmission resource comprises the transmission resource used for the other purpose, the user equipment excludes the fourth transmission resource from the candidate resource set.
In some embodiments, after calculating the energy of each transmission resource, the user equipment selects a proportional of transmission resources which have a minimal energy, among which one of the transmission resources is selected with equal probability.
FIG. 7 is an exemplary illustration of a resource selection window according to an embodiment of the present disclosure. FIG. 7 illustrates that, in some embodiments, a transmission resource which includes a reserved transmission resource for other purpose is excluded from a candidate resource set. The reserved resource can be used for other purpose. For example, a resource or some resources will be used for a PSBCH transmission. If NR-V2X deployed in a shared carrier, sidelink (SL) and uplink (UL) will both use a UL transmission resource. Some of the UL transmission resources can be reserved for a resource of a PRACH. Although a PSSCH RP covers reserved transmission resources, it cannot map a PSSCH on these resources to avoid a non-continuous PSSCH resource mapping in a frequency domain.
If all of transmission resources within a resource selection window is put into a resource set, which can be seen as a candidate resource set, then the transmission resource which includes the reserved transmission resource will be excluded from the resource set. Some examples are illustrated in FIG. 7. FIG. 7 illustrates that, in some embodiments, the resource selection window includes two slots, such as a slot n+1 and a slot n+2. Within each slot, there are 4 sub-channels, such as a sub-channel 0, a sub-channel 1, a sub-channel 2, and a sub-channel 3, and each sub-channel includes 4 PRBs. The 3rd PRB in the sub-channel 2 in the slot n+2 is used for a PSBCH transmission.
In some embodiments, a number of sub-channels used for the PSSCH depends on a packet size to be transmitted. If only one sub-channel is used for each PSSCH, there are totally 8 transmission resources for the PSSCH within the resource selection window. A transmission resource is used to map the PSSCH. The resource set will include 8 transmission resources. The sub-channel 2 in the slot n+2 will be excluded from the resource set because the sub-channel 2 in the slot n+2 includes non-continuous PRBs. The other 7 sub-channel can be used as candidate transmission resources. Furthermore, whether the remaining 7 transmission resources can be used depends on a sensing result. For example, if some of the transmission resources in the resource set are reserved by other UEs, then these resources are also excluded from the resource set.
In another example, if the 4th PRB in the sub-channel 3 in the slot n+2 is also reserved for other purpose. Then the transmission resource which includes the sub-channel 3 in the slot n+2 will also be excluded from the resource set. Although the remaining 3 PRBs in the sub-channel 3 is still continuous, while a number of the PRB used for the PSSCH is less  compared to other transmission resources, that will cause higher coding rate of PSSCH. Then the remaining 3 PRBs in the sub-channel 3 will also be excluded.
In another illustration, one PSSCH is mapped to 2 continuous sub-channels. For example, a PSSCH can be mapped to sub-channels 0 and 1, or sub-channels 1 and 2, or sub-channels 2 and 3, in the slot n+1 and n+2. Then there are totally 6 transmission resources in the resource set. The transmission resource which includes the reserved resource for other purpose will be excluded from the resource set. For example, in FIG. 7, the transmission resource which includes the sub-channels 1 and 2 in the slot n+2, and the transmission resource which includes the sub-channels 2 and 3 in the slot n+2 will be excluded from the resource set. Furthermore, whether the remaining 4 transmission resources can be used can depend on the sensing result. For example, if some of the transmission resources in the resource set are reserved by other UEs, then these resources are also excluded from the resource set. For example, if the sub-channel 1 in the slot n+1 is reserved by other UEs, then the transmission resource which includes the sub-channel 1 in the slot n+1 is also excluded in the resource set. For example, the transmission resource which includes the sub-channels 0 and 1 in the slot n+1, and the transmission resource which includes the sub-channels 1 and 2 in the slot n+1 will be excluded from the resource set.
FIG. 8 is an exemplary illustration of a sensing window and a resource selection window according to an embodiment of the present disclosure. FIG. 8 illustrates that, in some embodiments, for a period transmission, if a transmission resource K which will be used in one of the following M transmission periodicities, and the transmission resource K includes a reserved transmission resource for other purpose, then a transmission resource k in the resource selection window which corresponds to the transmission resource K in later transmission periods is excluded from a candidate resource set.
For a periodic service or transmission, when a transmission resource is selected, the UE will reserve the same transmission resource in later periodicities, so that the UE doesn’t need to perform a resource selection for each packet. Other UEs can know that the resource is reserved by the UE by sensing, so that other UEs will try to avoid using the same transmission resource to avoid transmission collision.
For example, in FIG. 8, a periodicity is 100ms. If the UE selects a transmission resource k in the resource selection window, the UE can reserve the transmission resource k in the following periodicities. For example, the UE can reuse the same transmission resource within the following two transmission periods. If the transmission resource K in the third transmission period includes the reserved transmission resource for other purpose, or the transmission  resource K will collide with the transmission resource for other purpose, such as PSBCH or PRACH, then the transmission resource k within the selection window will be excluded from the resource set. The resource set includes all of the transmission resources within the resource selection window during initialization.
Alternatively, the UE will generate a number C, which indicates the number of periodicities that the UE will reserve the resource. After each periodicity, the number will be decreased by 1. If the number is equal to 0, the UE will perform a resource re-selection. According to a current LTE sensing mechanism, when the number is equal to 1, a UE will randomly generate a number within [0, 1] and compared to a threshold, if larger than the threshold, the UE will do resource re-selection when the number is 0, otherwise the UE will continue to use the same resource. UE can determine whether the reserved resource within the following C periodicities includes the reserved resource or collides with the transmission resource for other purpose, such as PSBCH or PRACH. If yes, the resource is excluded from the resource set. If no, the UE can use the selected and reserved transmission resource for the packet transmission.
In some embodiments, if a transmission resource q within the resource selection window, corresponds to a transmission resource Q within the sensing window, and the transmission resource Q includes the reserved transmission resource for other purpose, the UE will measure an energy, such as RSSI, of the transmission resource Q to determine whether the transmission resource q can be used, or the UE will exclude the transmission resource q from the resource set.
In some embodiments, after resource exclusion, if the number of transmission resource within the transmission resource set is larger than a proportional, such as 20%, of the total number of transmission resources within the resource selection window, the UE will calculate the energy, such as RSSI, of each transmission resource. The energy is calculated by monitoring the corresponding transmission resource within the sensing window. In some embodiments, even if the corresponding transmission resource within the sensing window includes the reserved transmission resource for other purpose, the UE will measure the energy, such as RSSI.
In some embodiments, after that, the UE will select 20%transmission resources which have a minimal/smallest energy, among which one of transmission resources is selected with equal probability.
It is understood that, the above embodiments take the reserved transmission resource as an example to explain how to perform sensing and resource selection, it can also be applied to any other cases that can cause a non-continuous PSSCH resource mapping. It is understood that, the reserved transmission resource for other purpose means that the transmission resource is not  used for PSSCH or PSCCH. It is understood that, the embodiments given in the present disclosure are only partial sensing procedure or resource selection procedure, there could be additional procedures for sensing or resource selection.
In summary, some embodiments target for the problem descripted in previous descriptions. The resource selection procedure can be as follows.
1. The transmission resource which includes the reserved transmission resource for other purpose is excluded from the candidate resource set.
2. For the period transmission, if a transmission resource K which will be used in one of the following M transmission periodicities, and the transmission resource includes the reserved transmission resource for other purpose, then the transmission resource k in the resource selection window which corresponds to the transmission resource K in later transmission periods is excluded from the candidate resource set.
3. If the transmission resource q within the resource selection window, corresponds to the transmission resource Q within the sensing window, and the transmission resource Q includes reserved transmission resource for other purpose, the UE will measure energy, such as RSSI, of the transmission resource Q to determine whether the transmission resource q can be used
FIG. 9 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 9 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In  some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of  suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
Some embodiments of the present disclosure provide a user equipment and a method for sensing operation and resource selection of the same capable of solving issues of the prior art, for example, improving large peak to average power ratio (PAPR) , cubic metric (CM) , and/or maximal power reduction (MPR) , reducing power consumption, and/or improving reliability. The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should  not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (30)

  1. A user equipment for sensing operation and resource selection, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to:
    determine a transmission resource comprising a transmission resource used for other purpose; and
    exclude the transmission resource comprising the transmission resource used for the other purpose from a candidate resource set.
  2. The user equipment of claim 1, wherein the transmission resource used for the other purpose comprises a plurality of resources used for one of a physical sidelink broadcast channel (PSBCH) transmission, sidelink primary synchronization signal (S-PSS) transmission, and sidelink secondary synchronization signal (S-SSS) transmission.
  3. The user equipment of claim 1, wherein the transmission resource used for the other purpose comprises a plurality of resources used for an uplink (UL) transmission.
  4. The user equipment of any one of claims 1 to 3, wherein the transmission resource is within a resource selection window.
  5. The user equipment of any one of claims 1 to 3, wherein for a period transmission, a first transmission resource is within a resource selection window, the processor is configured to reuse the same first transmission resource in following transmission periods, and if the first transmission resource in one of the transmission periods comprises the transmission resource used for the other purpose, the first transmission resource in the resource selection window is excluded from the candidate resource set.
  6. The user equipment of claim 5, wherein the processor is configured to generate a number indicating a number of periodicities for using the first transmission resource by the processor.
  7. The user equipment of claim 6, wherein after each periodicity, the number indicating the number of the periodicities for using the first transmission resource by the processor is decreased by 1.
  8. The user equipment of claim 7, wherein if the number indicating the number of the periodicities for using the first transmission resource by the processor is equal to 0, the processor performs a resource re-selection.
  9. The user equipment of any one of claims 1 to 8, wherein after a resource exclusion, if a number of transmission resources in the candidate resource set is greater than or equal to a  proportional of a total number of the transmission resources in the resource selection window, the processor calculates the energy of each transmission resource.
  10. The user equipment of claim 9, wherein the energy is calculated by monitoring a corresponding transmission resource in the sensing window.
  11. The user equipment of claim 10, wherein even if the corresponding transmission resource in the sensing window comprises the transmission resource used for the other purpose, the processor measures the energy.
  12. The user equipment of any one of claims 9 to 11, wherein if a second transmission resource in a resource selection window corresponds to a third transmission resource in a sensing window, and the third transmission resource comprises the transmission resource used for the other purpose, the processor measures energy of the third transmission resource to determine whether the second transmission resource to be used.
  13. The user equipment of any one of claims 9 to 12, after calculating the energy of each transmission resource, the processor selects a proportional of transmission resources which have a minimal energy, among which one of the transmission resources is selected with equal probability.
  14. The user equipment of any one of claims 1 to 8, wherein if a fourth transmission resource in a resource selection window corresponds to a fifth transmission resource in a sensing window, and the fifth transmission resource comprises the transmission resource used for the other purpose, the processor excludes the fourth transmission resource from the candidate resource set.
  15. A method for resource selection of a user equipment, comprising:
    determining a transmission resource comprising a transmission resource used for other purpose; and
    excluding the transmission resource comprising the transmission resource used for the other purpose from a candidate resource set.
  16. The method of claim 15, wherein the transmission resource used for the other purpose comprises a plurality of resources used for one of a physical sidelink broadcast channel (PSBCH) transmission, sidelink primary synchronization signal (S-PSS) transmission, and sidelink secondary synchronization signal (S-SSS) transmission.
  17. The method of claim 15, wherein the transmission resource used for the other purpose comprises a plurality of resources used for an uplink (UL) transmission.
  18. The method of any one of claims 15 to 17, wherein the transmission resource is within a resource selection window.
  19. The method of any one of claims 15 to 17, wherein for a period transmission, a first  transmission resource is within a resource selection window, the user equipment is configured to reuse the same first transmission resource in following transmission periods, and if the first transmission resource in one of the transmission periods comprises the transmission resource used for the other purpose, the first transmission resource in the resource selection window is excluded from the candidate resource set.
  20. The method of claim 19, wherein the user equipment is configured to generate a number indicating a number of periodicities for using the first transmission resource by the user equipment.
  21. The method of claim 20, wherein after each periodicity, the number indicating the number of the periodicities for using the first transmission resource by the user equipment is decreased by 1.
  22. The method of claim 21, wherein if the number indicating the number of the periodicities for using the first transmission resource by the user equipment is equal to 0, the user equipment performs a resource re-selection.
  23. The method of any one of claims 15 to 22, wherein after a resource exclusion, if a number of transmission resources in the candidate resource set is greater than or equal to a proportional of a total number of the transmission resources in the resource selection window, the user equipment calculates the energy of each transmission resource.
  24. The method of claim 23, wherein the energy is calculated by monitoring a corresponding transmission resource in the sensing window.
  25. The method of claim 24, wherein even if the corresponding transmission resource in the sensing window comprises the transmission resource used for the other purpose, the user equipment measures the energy.
  26. The method of any one of claims 23 to 25, wherein if a second transmission resource in a resource selection window corresponds to a third transmission resource in a sensing window, and the third transmission resource comprises the transmission resource used for the other purpose, the user equipment measures energy of the third transmission resource to determine whether the second transmission resource to be used.
  27. The method of any one of claims 23 to 26, after calculating the energy of each transmission resource, the user equipment selects a proportional of transmission resources which have a minimal energy, among which one of the transmission resources is selected with equal probability.
  28. The method of any one of claims 15 to 22, wherein if a fourth transmission resource in a resource selection window corresponds to a fifth transmission resource in a sensing window, and  the fifth transmission resource comprises the transmission resource used for the other purpose, the user equipment excludes the fourth transmission resource from the candidate resource set.
  29. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 15 to 28.
  30. A terminal device, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 15 to 28.
PCT/CN2020/077662 2019-05-20 2020-03-03 User equipment and method for resource selection of same WO2020233189A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005427.4A CN112771951A (en) 2019-05-20 2020-03-03 User equipment and method for resource selection of user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962850018P 2019-05-20 2019-05-20
US62/850,018 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020233189A1 true WO2020233189A1 (en) 2020-11-26

Family

ID=73458347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077662 WO2020233189A1 (en) 2019-05-20 2020-03-03 User equipment and method for resource selection of same

Country Status (2)

Country Link
CN (1) CN112771951A (en)
WO (1) WO2020233189A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022152208A1 (en) * 2021-01-15 2022-07-21 华为技术有限公司 Communication method and apparatus
WO2022227993A1 (en) * 2021-04-30 2022-11-03 华为技术有限公司 Method for detecting pscch, and communication apparatus
WO2024031638A1 (en) * 2022-08-12 2024-02-15 Apple Inc. Procedures of sensing results sharing from lte sidelink to nr sidelink

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691957B (en) * 2021-08-18 2023-09-08 西安电子科技大学 Internet of vehicles resource selection method based on optimized resource preemption
CN116094631A (en) * 2021-11-05 2023-05-09 维沃移动通信有限公司 Side link resource selection processing method, side link resource selection processing device, terminal and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179286A1 (en) * 2016-04-11 2017-10-19 株式会社Nttドコモ User device and signal transmission method
CN107484254A (en) * 2017-09-15 2017-12-15 中国联合网络通信集团有限公司 Available resources determine methods, devices and systems
CN108632781A (en) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 Vehicle is to the resource selection or reselecting method and user equipment in extraneous communicate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209706B1 (en) * 2016-09-10 2021-01-29 엘지전자 주식회사 Method for allocating a V2X resource pool for the remaining subframes except for a specific subframe in a wireless communication system, and a terminal using the method
CN108024266A (en) * 2016-11-04 2018-05-11 北京信威通信技术股份有限公司 Resource method for removing based on monitoring in a kind of V2X communications
CN108633098B (en) * 2017-03-24 2023-12-26 北京三星通信技术研究有限公司 Method for transmitting multi-carrier data and user equipment
CN109391976A (en) * 2017-08-10 2019-02-26 北京三星通信技术研究有限公司 The method and user equipment of resource allocation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179286A1 (en) * 2016-04-11 2017-10-19 株式会社Nttドコモ User device and signal transmission method
CN108632781A (en) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 Vehicle is to the resource selection or reselecting method and user equipment in extraneous communicate
CN107484254A (en) * 2017-09-15 2017-12-15 中国联合网络通信集团有限公司 Available resources determine methods, devices and systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022152208A1 (en) * 2021-01-15 2022-07-21 华为技术有限公司 Communication method and apparatus
WO2022227993A1 (en) * 2021-04-30 2022-11-03 华为技术有限公司 Method for detecting pscch, and communication apparatus
WO2024031638A1 (en) * 2022-08-12 2024-02-15 Apple Inc. Procedures of sensing results sharing from lte sidelink to nr sidelink

Also Published As

Publication number Publication date
CN112771951A (en) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2020233189A1 (en) User equipment and method for resource selection of same
US11147084B2 (en) Apparatus and method of wireless communication of same
US11166260B2 (en) Method and apparatus for performing radio resource selection and contention indication in wireless communication system
US20220110096A1 (en) User equipment and method for resource exclusion and selection in new radio sidelink communication of same
US20210160844A1 (en) User Equipment and Method of New Radio Vehicle-to-Everything Communication of Same
WO2021037247A1 (en) Apparatus and method of processing collision between ssb transmission and periodic transmission
US20210212081A1 (en) Apparatus and method for scheduling resource allocation of same
WO2020056680A1 (en) User equipment, base station, and method of vehicle-to-everything communication of same
CN115399010A (en) User equipment and side chain resource excluding method
US20230125590A1 (en) User equipment and method for sharing periodic channel occupancy
JP2023029999A (en) Apparatus and method for transmission power control of the same
EP3977795B1 (en) Apparatus and method of wireless communication
EP4107901A1 (en) Apparatus and method of wireless communication
WO2020087438A1 (en) User equipment and method of wireless communication of same
WO2021098783A1 (en) Apparatus and method of wireless communication
WO2019114800A1 (en) Method and apparatus for a beam failure recovery in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809052

Country of ref document: EP

Kind code of ref document: A1