WO2020087438A1 - User equipment and method of wireless communication of same - Google Patents

User equipment and method of wireless communication of same Download PDF

Info

Publication number
WO2020087438A1
WO2020087438A1 PCT/CN2018/113406 CN2018113406W WO2020087438A1 WO 2020087438 A1 WO2020087438 A1 WO 2020087438A1 CN 2018113406 W CN2018113406 W CN 2018113406W WO 2020087438 A1 WO2020087438 A1 WO 2020087438A1
Authority
WO
WIPO (PCT)
Prior art keywords
rat
user equipment
maximum output
output power
power
Prior art date
Application number
PCT/CN2018/113406
Other languages
French (fr)
Inventor
Huei-Ming Lin
Zhenshan Zhao
Qianxi Lu
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp.,Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp.,Ltd.
Priority to PCT/CN2018/113406 priority Critical patent/WO2020087438A1/en
Priority to CN201880097888.1A priority patent/CN112771938B/en
Publication of WO2020087438A1 publication Critical patent/WO2020087438A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a user equipment and a method of wireless communication of same.
  • V2X direct vehicle-to-everything
  • 3GPP 3rd generation partnership project
  • a next generation of V2X technology based on a recently developed 5th generation –new radio (5G-NR) system, namely NR-V2X needs to support additional advanced intelligent transportation system (ITS) applications and services compared to existing long term evolution V2X (LTE-V2X) based technologies.
  • ITS advanced intelligent transportation system
  • LTE-V2X long term evolution V2X
  • Tx total available transmission
  • P CMAX UE configured maximum output power level
  • Tx timing, resource selection /reservation and Tx power usage of one RAT is not known by the other RAT, there is a significant risk that the combined Tx power will exceed the above allowable maximum output power requirement (P CMAX ) if SL channels and/or signals transmitted using both RATs are overlapping in time. As such, this will force UE radio frequency (RF) components to adjust /reduce the total output power before a final transmission. This will unfortunately cause degradation to the performance of V2X operation when an expected reliability, communication range, and data rate are not met. This is particularly severe due to the operations of LTE-V2X and NR-V2X mainly target road-safety related transmissions.
  • RF radio frequency
  • An object of the present disclosure is to propose a user equipment and a method of wireless communication of same capable of providing a simple and clean inter-radio access technology (RAT) user equipment (UE) transmission (Tx) power splitting and management mechanism for long term evolution vehicle-to-everything (LTE-V2X) and new radio V2X (NR-V2X) operations, and/or no inter-RAT Tx power coordination is needed.
  • RAT inter-radio access technology
  • UE user equipment
  • Tx transmission
  • LTE-V2X long term evolution vehicle-to-everything
  • NR-V2X new radio V2X
  • a user equipment for wireless communication includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to control the transceiver to receive a ratio split of a total configured maximum output power of the user equipment for each one of a first radio access technology (RAT) and a second RAT, and allocate a power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT.
  • RAT radio access technology
  • the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is pre-defined, pre-configured, or configured by a network base station.
  • a sum of power ratios of the total configured maximum output power of the user equipment between the first RAT and the second RAT is equal to 100%of the total configured maximum output power of the user equipment.
  • the power ratio of the total configured maximum output power of the user equipment for the first RAT is shared by all sidelink channels and/or signals transmissions within the first RAT.
  • the power ratio of the total configured maximum output power of the user equipment for the second RAT is shared by all sidelink channels and/or signals transmissions within the second RAT.
  • the first RAT and the second RAT are different.
  • one of the first RAT and the second RAT is long term evolution V2X (LTE-V2X)
  • the other of the first RAT and the second RAT is new radio V2X (NR-V2X) .
  • the power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is a fixed power ratio.
  • the total configured maximum output power of the user equipment is statically or quasi-statically shared between the first RAT and the second RAT.
  • a method of wireless communication of a user equipment includes receiving a ratio split of a total configured maximum output power of the user equipment for each one of a first radio access technology (RAT) and a second RAT, and allocating a power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT.
  • RAT radio access technology
  • the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is pre-defined, pre-configured, or configured by a network base station.
  • a sum of power ratios of the total configured maximum output power of the user equipment between the first RAT and the second RAT is equal to 100%of the total configured maximum output power of the user equipment.
  • the power ratio of the total configured maximum output power of the user equipment for the first RAT is shared by all sidelink channels and/or signals transmissions within the first RAT.
  • the power ratio of the total configured maximum output power of the user equipment for the second RAT is shared by all sidelink channels and/or signals transmissions within the second RAT.
  • the first RAT and the second RAT are different.
  • one of the first RAT and the second RAT is long term evolution V2X (LTE-V2X)
  • the other of the first RAT and the second RAT is new radio V2X (NR-V2X) .
  • the power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is a fixed power ratio.
  • the total configured maximum output power of the user equipment is statically or quasi-statically shared between the first RAT and the second RAT.
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a terminal device includes a processor and a memory configured to store a computer program.
  • the processor is configured to execute the computer program stored in the memory to perform the above method.
  • the user equipment and the method of wireless communication of same aim to ensure a fixed and clear separation of UE total available power for each RAT, so that a combined output power for any overlapping portion of sidelink (SL) transmissions over the two RATs never exceed the UE configured upper bound of output power (P CMAX ) and a final Tx power per RAT can be properly managed by the Tx-UE within the same RAT to avoid any unwanted power reduction that impacts the overall V2X performance.
  • P CMAX UE configured upper bound of output power
  • the embodiment of the present disclosure has at least one of following benefits.
  • FIG. 1 is a block diagram of a user equipment for wireless communication according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating a method of wireless communication of a user equipment according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of exemplary illustration of a fixed user equipment (UE) power ratio split between long term evolution vehicle-to-everything (LTE-V2X) and new radio V2X (NR-V2X) carriers according to an embodiment of the present disclosure.
  • UE fixed user equipment
  • FIG. 4 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • FIG. 1 illustrates that, in some embodiments, a user equipment (UE) 10 for wireless communication may include a processor 11, a memory 12 and a transceiver 13.
  • the processor 11 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11.
  • the memory 12 is operatively coupled with the processor 11 and stores a variety of information to operate the processor 11.
  • the transceiver 13 is operatively coupled with the processor 11, and transmits and/or receives a radio signal.
  • the processor 11 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 and executed by the processor 11.
  • the memory 12 can be implemented within the processor 11 or external to the processor 11 in which case those can be communicatively coupled to the processor 11 via various means as is known in the art.
  • the communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under 3rd generation partnership project (3GPP) new radio (NR) Release 16 and beyond.
  • UEs are communicated with each other directly via a sidelink interface such as a PC5 interface.
  • the processor 11 is configured to control the transceiver 13 to receive a ratio split of a total configured maximum output power of the user equipment 10 for each one of a first radio access technology (RAT) and a second RAT, and allocate a power ratio of the total configured maximum output power of the user equipment 10 for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment 10 for each one of the first RAT and the second RAT.
  • RAT radio access technology
  • FIG. 2 illustrates a method 400 of wireless communication of the UE 10 according to an embodiment of the present disclosure.
  • the method 400 includes: at block 402, receiving a ratio split of a total configured maximum output power of the user equipment 10 for each one of a first radio access technology (RAT) and a second RAT, and at block 404, allocating a power ratio of the total configured maximum output power of the user equipment 10 for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment 10 for each one of the first RAT and the second RAT.
  • RAT radio access technology
  • the UE 10 and the method 400 of vehicle-to-everything (V2X) communication of same provide a simple and clean inter-radio access technology (RAT) user equipment (UE) transmission (Tx) power splitting and management mechanism for long term evolution vehicle-to-everything (LTE-V2X) and new radio V2X (NR-V2X) operations, and/or no inter-RAT Tx power coordination is needed.
  • RAT inter-radio access technology
  • UE user equipment
  • Tx transmission
  • LTE-V2X long term evolution vehicle-to-everything
  • NR-V2X new radio V2X
  • a proposed transmission (Tx) power splitting scheme for a UE performing V2X operation simultaneously on two different radio access technologies (RATs) namely, LTE-V2X and NR-V2X, transmitting sidelink (SL) channels and/or signals over plurality of carriers to one or more receiving UEs (Rx-UEs) configured to receive signals
  • Tx-UE’s total configured maximum output power (P CMAX ) is statically or quasi-statically shared between the LTE-V2X and NR-V2X operations based on a fixed power splitting ratio to both RATs (e.g. 50/50, 60/40, 70/30, 80/20 and etc. ) .
  • the fixed power ratio split is a maximum UE Tx power allocation for all SL transmissions at any point in time and for a given RAT, regardless of time overlapping or non-overlapping SL transmission with the other RAT.
  • a sum of UE power split ratio between two RATs should always add up to 100%of P CMAX , but not more or less than 100%of P CMAX .
  • the allocated power ratio of P CMAX for a RAT (such as LTE-V2X or NR-V2X) is shared by all SL channels and/or signals transmissions within the RAT.
  • a fixed power ratio split ratio of 60/40 between RAT_1 and RAT_2 (i.e., 60%of P CMAX for RAT_1 105 and 40%of P CMAX for RAT_2 106) is exemplary illustrated in a UE power sharing scheme 100 between LTE-V2X and NR-V2X operations.
  • RAT_1 two separate SL channels and/or signals are transmitted over carrier 1 101 and carrier 2 102 simultaneously, that is an inter-RAT_1 overlapping period of SL transmissions 107, and the carrier 1 101 and carrier 2 102 are allocated with 30%of P CMAX each so that the combined Tx power does not exceed the fixed power split ratio for RAT_1 (60%of P CMAX ) .
  • two separate SL channels and/or signals are also transmitted over carrier 3 103 and carrier 4 104 simultaneously, that is an inter-RAT_2 overlapping period of SL transmissions 108, but at a later timing than RAT_1’s transmissions, and the carrier 3 103 and carrier 4 104 are allocated with 20%of P CMAX each so that the combined Tx power does not exceed the fixed power split ratio for RAT_2 (40%of P CMAX ) . Since these transmitting power allocations are strictly within the fixed power split ratio within each RAT, the total combined UE Tx power 110 during an inter-RAT overlapping period of SL transmissions 109 also does not exceed the total UE configured maximum output power (100%of P CMAX ) .
  • FIG. 4 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 4 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • flash memory non-volatile memory
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the user equipment and the method of wireless communication of same aim to ensure a fixed and clear separation of UE total available power for each RAT, so that a combined output power for any overlapping portion of sidelink (SL) transmissions over the two RATs never exceed the UE configured upper bound of output power (P CMAX ) and a final Tx power per RAT can be properly managed by the Tx-UE within the same RAT to avoid any unwanted power reduction that impacts the overall V2X performance.
  • P CMAX UE configured upper bound of output power
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the embodiment of the present disclosure has at least one of following benefits.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment and a method of wireless communication of same are provided. The method includes receiving a ratio split of a total configured maximum output power of the user equipment for each one of a first radio access technology (RAT) and a second RAT, and allocating a power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT.

Description

USER EQUIPMENT AND METHOD OF WIRELESS COMMUNICATION OF SAME
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of communication systems, and more particularly, to a user equipment and a method of wireless communication of same.
2. Description of the Related Art
As part of evaluation of direct vehicle-to-everything (V2X) communication being developed by the 3rd generation partnership project (3GPP) , a next generation of V2X technology based on a recently developed 5th generation –new radio (5G-NR) system, namely NR-V2X, needs to support additional advanced intelligent transportation system (ITS) applications and services compared to existing long term evolution V2X (LTE-V2X) based technologies. As such, it is, therefore, required for a new V2X user equipment (UE) to be able to simultaneously operate on both radio access technologies (RATs) of LTE-V2X and NR-V2X.
Because there exists a requirement that UE’s total available transmission (Tx) power is limited by a UE configured maximum output power level (P CMAX) , for which at any given point in time the UE shall not transmit with a combined power level that exceeds this limit regardless of number of sidelink (SL) channels, signals, frequency carriers, and RATs that the UE is transmitting, a new power management scheme that allows sharing of UE available power across two different RATs for the new V2X UE would be needed.
When V2X operation on LTE and NR sidelinks are unable to coordinate with each other and/or information on Tx scheduling, Tx timing, resource selection /reservation and Tx power usage of one RAT is not known by the other RAT, there is a significant risk that the combined Tx power will exceed the above allowable maximum output power requirement (P CMAX) if SL channels and/or signals transmitted using both RATs are overlapping in time. As such, this will force UE radio frequency (RF) components to adjust /reduce the total output power before a final transmission. This will unfortunately cause degradation to the performance of V2X operation when an expected reliability, communication range, and data rate are not met. This is particularly severe due to the operations of LTE-V2X and NR-V2X mainly target road-safety related transmissions.
SUMMARY
An object of the present disclosure is to propose a user equipment and a method of wireless communication of same capable of providing a simple and clean inter-radio access technology (RAT) user equipment (UE) transmission (Tx) power splitting and management  mechanism for long term evolution vehicle-to-everything (LTE-V2X) and new radio V2X (NR-V2X) operations, and/or no inter-RAT Tx power coordination is needed.
In a first aspect of the present disclosure, a user equipment for wireless communication includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to control the transceiver to receive a ratio split of a total configured maximum output power of the user equipment for each one of a first radio access technology (RAT) and a second RAT, and allocate a power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT.
According to an embodiment in conjunction to the first aspect of the present disclosure, the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is pre-defined, pre-configured, or configured by a network base station.
According to an embodiment in conjunction to the first aspect of the present disclosure, a sum of power ratios of the total configured maximum output power of the user equipment between the first RAT and the second RAT is equal to 100%of the total configured maximum output power of the user equipment.
According to an embodiment in conjunction to the first aspect of the present disclosure, the power ratio of the total configured maximum output power of the user equipment for the first RAT is shared by all sidelink channels and/or signals transmissions within the first RAT.
According to an embodiment in conjunction to the first aspect of the present disclosure, the power ratio of the total configured maximum output power of the user equipment for the second RAT is shared by all sidelink channels and/or signals transmissions within the second RAT.
According to an embodiment in conjunction to the first aspect of the present disclosure, the first RAT and the second RAT are different.
According to an embodiment in conjunction to the first aspect of the present disclosure, one of the first RAT and the second RAT is long term evolution V2X (LTE-V2X) , and the other of the first RAT and the second RAT is new radio V2X (NR-V2X) .
According to an embodiment in conjunction to the first aspect of the present disclosure, the power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is a fixed power ratio.
According to an embodiment in conjunction to the first aspect of the present disclosure, the total configured maximum output power of the user equipment is statically or quasi-statically shared between the first RAT and the second RAT.
In a second aspect of the present disclosure, a method of wireless communication of a user equipment includes receiving a ratio split of a total configured maximum output power of the user equipment for each one of a first radio access technology (RAT) and a second RAT, and allocating a power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT.
According to an embodiment in conjunction to the second aspect of the present disclosure, the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is pre-defined, pre-configured, or configured by a network base station.
According to an embodiment in conjunction to the second aspect of the present disclosure, a sum of power ratios of the total configured maximum output power of the user equipment between the first RAT and the second RAT is equal to 100%of the total configured maximum output power of the user equipment.
According to an embodiment in conjunction to the second aspect of the present disclosure, the power ratio of the total configured maximum output power of the user equipment for the first RAT is shared by all sidelink channels and/or signals transmissions within the first RAT.
According to an embodiment in conjunction to the second aspect of the present disclosure, the power ratio of the total configured maximum output power of the user equipment for the second RAT is shared by all sidelink channels and/or signals transmissions within the second RAT.
According to an embodiment in conjunction to the second aspect of the present disclosure, the first RAT and the second RAT are different.
According to an embodiment in conjunction to the second aspect of the present disclosure, one of the first RAT and the second RAT is long term evolution V2X (LTE-V2X) , and the other of the first RAT and the second RAT is new radio V2X (NR-V2X) .
According to an embodiment in conjunction to the second aspect of the present disclosure, the power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is a fixed power ratio.
According to an embodiment in conjunction to the second aspect of the present disclosure, the total configured maximum output power of the user equipment is statically or quasi-statically shared between the first RAT and the second RAT.
In a third aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a forth aspect of the present disclosure, a terminal device includes a processor and a memory configured to store a computer program. The processor is configured to execute the computer program stored in the memory to perform the above method.
In the embodiment of the present disclosure, the user equipment and the method of wireless communication of same aim to ensure a fixed and clear separation of UE total available power for each RAT, so that a combined output power for any overlapping portion of sidelink (SL) transmissions over the two RATs never exceed the UE configured upper bound of output power (P CMAX) and a final Tx power per RAT can be properly managed by the Tx-UE within the same RAT to avoid any unwanted power reduction that impacts the overall V2X performance. To achieve this, it is proposed to statically or quasi-statically split and apply a limitation on the amount of Tx power can be used per RAT as a percentage of P CMAX. The embodiment of the present disclosure has at least one of following benefits.
1. For enabling a simple and clean mechanism of sharing UE total available Tx power between two V2X operating RATs (such as LTE-V2X and NR-V2X) , when inter-RAT Tx-time and power coordination is not possible among the two RATs.
2. To avoid a situation where both RATs within a Tx-UE over allocating amount of Tx power for SL transmissions in each RAT and that the combined output power exceeds the upper bound limitation of Tx power that the Tx-UE is allowed to transmit.
3. For better intra-RAT power management, to avoid transmitting SL channels and/or signals simultaneously on different carriers or frequency resources within the same RAT when total available power is not sufficient for frequency division multiplexing (FDM) type of transmission.
BRIEF DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a block diagram of a user equipment for wireless communication according to an embodiment of the present disclosure.
FIG. 2 is a flowchart illustrating a method of wireless communication of a user equipment according to an embodiment of the present disclosure.
FIG. 3 is a schematic diagram of exemplary illustration of a fixed user equipment (UE) power ratio split between long term evolution vehicle-to-everything (LTE-V2X) and new radio V2X (NR-V2X) carriers according to an embodiment of the present disclosure.
FIG. 4 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
FIG. 1 illustrates that, in some embodiments, a user equipment (UE) 10 for wireless communication may include a processor 11, a memory 12 and a transceiver 13. The processor 11 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11. The memory 12 is operatively coupled with the processor 11 and stores a variety of information to operate the processor 11. The transceiver 13 is operatively coupled with the processor 11, and transmits and/or receives a radio signal.
The processor 11 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The memory 12 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The transceiver 13 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the memory 12 and executed by the processor 11. The memory 12 can be implemented within the processor 11 or external to the processor 11 in which case those can be communicatively coupled to the processor 11 via various means as is known in the art.
The communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under  3rd generation partnership project (3GPP) new radio (NR) Release 16 and beyond. UEs are communicated with each other directly via a sidelink interface such as a PC5 interface.
In some embodiments, the processor 11 is configured to control the transceiver 13 to receive a ratio split of a total configured maximum output power of the user equipment 10 for each one of a first radio access technology (RAT) and a second RAT, and allocate a power ratio of the total configured maximum output power of the user equipment 10 for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment 10 for each one of the first RAT and the second RAT.
FIG. 2 illustrates a method 400 of wireless communication of the UE 10 according to an embodiment of the present disclosure.
The method 400 includes: at block 402, receiving a ratio split of a total configured maximum output power of the user equipment 10 for each one of a first radio access technology (RAT) and a second RAT, and at block 404, allocating a power ratio of the total configured maximum output power of the user equipment 10 for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment 10 for each one of the first RAT and the second RAT.
In the embodiment of the present disclosure, the UE 10 and the method 400 of vehicle-to-everything (V2X) communication of same provide a simple and clean inter-radio access technology (RAT) user equipment (UE) transmission (Tx) power splitting and management mechanism for long term evolution vehicle-to-everything (LTE-V2X) and new radio V2X (NR-V2X) operations, and/or no inter-RAT Tx power coordination is needed.
In some embodiments, a proposed transmission (Tx) power splitting scheme for a UE performing V2X operation simultaneously on two different radio access technologies (RATs) , namely, LTE-V2X and NR-V2X, transmitting sidelink (SL) channels and/or signals over plurality of carriers to one or more receiving UEs (Rx-UEs) configured to receive signals, Tx-UE’s total configured maximum output power (P CMAX) is statically or quasi-statically shared between the LTE-V2X and NR-V2X operations based on a fixed power splitting ratio to both RATs (e.g. 50/50, 60/40, 70/30, 80/20 and etc. ) . When the user equipment 10, such as a Tx-UE configured to transmit signals, is network-configured, pre-configured, or programmed with a pre-defined ratio split of the UE configured maximum output power (P CMAX) for each RAT (e.g. 60%of P CMAX for RAT_1 and 40%of P CMAX for RAT_2 as illustrated in FIG. 3) , the fixed power ratio split is a maximum UE Tx power allocation for all SL transmissions at any point in time and for a given RAT, regardless of time overlapping or non-overlapping SL transmission with the other RAT. Furthermore, in some embodiments, a sum of UE power split ratio between  two RATs should always add up to 100%of P CMAX, but not more or less than 100%of P CMAX. And the allocated power ratio of P CMAX for a RAT (such as LTE-V2X or NR-V2X) is shared by all SL channels and/or signals transmissions within the RAT.
In reference to FIG. 3, a fixed power ratio split ratio of 60/40 between RAT_1 and RAT_2 (i.e., 60%of P CMAX for  RAT_1  105 and 40%of P CMAX for RAT_2 106) is exemplary illustrated in a UE power sharing scheme 100 between LTE-V2X and NR-V2X operations. For RAT_1, two separate SL channels and/or signals are transmitted over carrier 1 101 and carrier 2 102 simultaneously, that is an inter-RAT_1 overlapping period of SL transmissions 107, and the carrier 1 101 and carrier 2 102 are allocated with 30%of P CMAX each so that the combined Tx power does not exceed the fixed power split ratio for RAT_1 (60%of P CMAX) . Similarly, within RAT_2, two separate SL channels and/or signals are also transmitted over carrier 3 103 and carrier 4 104 simultaneously, that is an inter-RAT_2 overlapping period of SL transmissions 108, but at a later timing than RAT_1’s transmissions, and the carrier 3 103 and carrier 4 104 are allocated with 20%of P CMAX each so that the combined Tx power does not exceed the fixed power split ratio for RAT_2 (40%of P CMAX) . Since these transmitting power allocations are strictly within the fixed power split ratio within each RAT, the total combined UE Tx power 110 during an inter-RAT overlapping period of SL transmissions 109 also does not exceed the total UE configured maximum output power (100%of P CMAX) .
FIG. 4 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 4 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry. The radio control functions may include,  but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
In the embodiment of the present disclosure, the user equipment and the method of wireless communication of same aim to ensure a fixed and clear separation of UE total available power for each RAT, so that a combined output power for any overlapping portion of sidelink (SL) transmissions over the two RATs never exceed the UE configured upper bound of output power (P CMAX) and a final Tx power per RAT can be properly managed by the Tx-UE within the same RAT to avoid any unwanted power reduction that impacts the overall V2X performance. To achieve this, it is proposed to statically or quasi-statically split and apply a limitation on the amount of Tx power can be used per RAT as a percentage of P CMAX. The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP  specification to create an end product. The embodiment of the present disclosure has at least one of following benefits.
1. For enabling a simple and clean mechanism of sharing UE total available Tx power between two V2X operating RATs (such as LTE-V2X and NR-V2X) , when inter-RAT Tx-time and power coordination is not possible among the two RATs.
2. To avoid a situation where both RATs within a Tx-UE over allocating amount of Tx power for SL transmissions in each RAT and that the combined output power exceeds the upper bound limitation of Tx power that the Tx-UE is allowed to transmit.
3. For better intra-RAT power management, to avoid transmitting SL channels and/or signals simultaneously on different carriers or frequency resources within the same RAT when total available power is not sufficient for frequency division multiplexing (FDM) type of transmission.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan.
A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a  plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (20)

  1. A user equipment for wireless communication, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver,
    wherein the processor is configured to:
    control the transceiver to receive a ratio split of a total configured maximum output power of the user equipment for each one of a first radio access technology (RAT) and a second RAT; and
    allocate a power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT.
  2. The user equipment of claim 1, wherein the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is pre-defined, pre-configured, or configured by a network base station.
  3. The user equipment of claim 1 or 2, wherein a sum of power ratios of the total configured maximum output power of the user equipment between the first RAT and the second RAT is equal to 100%of the total configured maximum output power of the user equipment.
  4. The user equipment of any one of claims 1 to 3, wherein the power ratio of the total configured maximum output power of the user equipment for the first RAT is shared by all sidelink channels and/or signals transmissions within the first RAT.
  5. The user equipment of any one of claims 1 to 4, wherein the power ratio of the total configured maximum output power of the user equipment for the second RAT is shared by all sidelink channels and/or signals transmissions within the second RAT.
  6. The user equipment of any one of claims 1 to 5, wherein the first RAT and the second RAT are different.
  7. The user equipment of any one of claims 1 to 6, wherein one of the first RAT and the second RAT is long term evolution V2X (LTE-V2X) , and the other of the first RAT and the second RAT is new radio V2X (NR-V2X) .
  8. The user equipment of any one of claims 1 to 7, wherein the power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is a fixed power ratio.
  9. The user equipment of any one of claims 1 to 8, wherein the total configured maximum output power of the user equipment is statically or quasi-statically shared between the first RAT and the second RAT.
  10. A method of wireless communication of a user equipment, comprising:
    receiving a ratio split of a total configured maximum output power of the user equipment for each one of a first radio access technology (RAT) and a second RAT; and
    allocating a power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT according to the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT.
  11. The method of claim 10, wherein the ratio split of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is pre-defined, pre-configured, or configured by a network base station.
  12. The method of claim 10 or 11, wherein a sum of power ratios of the total configured maximum output power of the user equipment between the first RAT and the second RAT is equal to 100%of the total configured maximum output power of the user equipment.
  13. The method of any one of claims 10 to 12, wherein the power ratio of the total configured maximum output power of the user equipment for the first RAT is shared by all sidelink channels and/or signals transmissions within the first RAT.
  14. The method of any one of claims 10 to 13, wherein the power ratio of the total configured maximum output power of the user equipment for the second RAT is shared by all sidelink channels and/or signals transmissions within the second RAT.
  15. The method of any one of claims 10 to 14, wherein the first RAT and the second RAT are different.
  16. The method of any one of claims 10 to 15, wherein one of the first RAT and the second RAT is long term evolution V2X (LTE-V2X) , and the other of the first RAT and the second RAT is new radio V2X (NR-V2X) .
  17. The method of any one of claims 10 to 16, wherein the power ratio of the total configured maximum output power of the user equipment for each one of the first RAT and the second RAT is a fixed power ratio.
  18. The method of any one of claims 10 to 17, wherein the total configured maximum output power of the user equipment is statically or quasi-statically shared between the first RAT and the second RAT.
  19. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 10 to 18.
  20. A terminal device, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to  perform the method of any one of claims 10 to 18.
PCT/CN2018/113406 2018-11-01 2018-11-01 User equipment and method of wireless communication of same WO2020087438A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/113406 WO2020087438A1 (en) 2018-11-01 2018-11-01 User equipment and method of wireless communication of same
CN201880097888.1A CN112771938B (en) 2018-11-01 2018-11-01 User equipment and wireless communication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113406 WO2020087438A1 (en) 2018-11-01 2018-11-01 User equipment and method of wireless communication of same

Publications (1)

Publication Number Publication Date
WO2020087438A1 true WO2020087438A1 (en) 2020-05-07

Family

ID=70462505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113406 WO2020087438A1 (en) 2018-11-01 2018-11-01 User equipment and method of wireless communication of same

Country Status (2)

Country Link
CN (1) CN112771938B (en)
WO (1) WO2020087438A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116471655A (en) * 2022-01-11 2023-07-21 展讯通信(上海)有限公司 Method and device for transmitting side link, storage medium and terminal equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002424A1 (en) * 2016-07-01 2018-01-04 Nokia Technologies Oy Methods and apparatuses relating to uplink transmissions
CN108370546A (en) * 2016-02-02 2018-08-03 夏普株式会社 Terminal installation and communication system
CN108476481A (en) * 2016-02-02 2018-08-31 夏普株式会社 Terminal installation and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106375930A (en) * 2015-07-22 2017-02-01 中兴通讯股份有限公司 Device-to-device (D2D) communication method and apparatus
CN108632966B (en) * 2017-03-23 2022-05-06 华为技术有限公司 Transmission power control method, device, equipment and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370546A (en) * 2016-02-02 2018-08-03 夏普株式会社 Terminal installation and communication system
CN108476481A (en) * 2016-02-02 2018-08-31 夏普株式会社 Terminal installation and method
WO2018002424A1 (en) * 2016-07-01 2018-01-04 Nokia Technologies Oy Methods and apparatuses relating to uplink transmissions

Also Published As

Publication number Publication date
CN112771938A (en) 2021-05-07
CN112771938B (en) 2022-12-02

Similar Documents

Publication Publication Date Title
US11956767B2 (en) Apparatus and method for scheduling resource allocation of same
US11343821B2 (en) Method and apparatus for performing resource scheduling and delivering control information in vehicle-to-everything communication system
WO2020233189A1 (en) User equipment and method for resource selection of same
WO2020087437A1 (en) User equipment and method of wireless communication of same
US20220022190A1 (en) Apparatus and method of wireless communication of same
WO2021098076A1 (en) Apparatus and method for transmitting or receiving physical sidelink broadcast channel
CN112740787B (en) User equipment and wireless communication method thereof
WO2021140351A1 (en) Apparatus and method for control information multiplexing of same
EP3977795B1 (en) Apparatus and method of wireless communication
US11310867B2 (en) Method and apparatus of controlling secondary cell
WO2020233187A1 (en) Apparatus and method of wireless communication of same
WO2022029462A1 (en) User equipment and method for sharing a periodic channel occupancy
WO2020087438A1 (en) User equipment and method of wireless communication of same
WO2019128975A1 (en) Method and apparatus for a beam failure recovery in a wireless communication system
WO2019114800A1 (en) Method and apparatus for a beam failure recovery in a wireless communication system
US20200359399A1 (en) Method and Apparatus for Identifying Interference in a Wireless Communication System
US20230112090A1 (en) User equipment and method of transmission of same
WO2021208081A1 (en) Method for handling inter-ue collision and intra-ue collision
WO2021098783A1 (en) Apparatus and method of wireless communication
WO2023052806A1 (en) Apparatus and method of wireless communication of multiple physical downlink shared channels, pdschs
EP4268403A1 (en) Apparatus and method of wireless communication
EP4315698A1 (en) Apparatus and method of wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938811

Country of ref document: EP

Kind code of ref document: A1