WO2021208081A1 - Method for handling inter-ue collision and intra-ue collision - Google Patents

Method for handling inter-ue collision and intra-ue collision Download PDF

Info

Publication number
WO2021208081A1
WO2021208081A1 PCT/CN2020/085391 CN2020085391W WO2021208081A1 WO 2021208081 A1 WO2021208081 A1 WO 2021208081A1 CN 2020085391 W CN2020085391 W CN 2020085391W WO 2021208081 A1 WO2021208081 A1 WO 2021208081A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
collision
cancellation
area
intra
Prior art date
Application number
PCT/CN2020/085391
Other languages
French (fr)
Inventor
Xiaoxue YIN
Jia SHENG
Original Assignee
JRD Communication (Shenzhen) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JRD Communication (Shenzhen) Ltd. filed Critical JRD Communication (Shenzhen) Ltd.
Priority to PCT/CN2020/085391 priority Critical patent/WO2021208081A1/en
Priority to CN202080098807.7A priority patent/CN115316010A/en
Publication of WO2021208081A1 publication Critical patent/WO2021208081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a method for handling an inter-UE collision and an intra-UE collision.
  • Ultra-reliable low-latency communication is one of several different types of use cases supported by the 5th generation wireless systems (5G) New Radio (NR) standard, as stipulated by 3rd Generation Partnership Project (3GPP) Release 15.
  • URLLC is a communication service for successfully delivering packets with stringent requirements, particularly in terms of availability, latency, and reliability. URLLC will enable supporting emerging applications and services. Examples of the services include wireless control and automation in industrial factory environments, inter-vehicular communications for improved safety and efficiency, and the tactile internet. It is of importance for 5G especially considering the effective support of verticals which brings new business to the whole telecommunication industry.
  • URLLC Ultra-Reliable and Low Latency
  • the low latency is important for gadgets that drive themselves or perform prostate surgeries.
  • the low latency allows a network to be optimized for processing incredibly large amounts of data with minimal delay (or latency) .
  • the network needs to adapt to a broad amount of changing data in real time.
  • 5G will enable this service to function.
  • URLLC is the most promising addition to upcoming 5G capabilities, but it will also be the hardest to secure.
  • URLLC requires a quality of service (QoS) totally different from mobile broadband services. It will provide networks with instantaneous and intelligent systems, though it will require transitioning out of a core network.
  • QoS quality of service
  • This new URLLC wireless connectivity will guarantee latency to be 1 millisecond (ms) or less. In order for this interface to achieve low latency, all the devices have to synchronize to the same time-base. Time-sensitive networking is another component of the 5G URLLC capabilities. This will allow the shapers used for managing traffic to be time aware.
  • Uplink grant-free structures guarantee a reduction in a user equipment (UE) latency transmission through avoiding the middle-man process of acquiring a dedicated scheduling grant.
  • UE user equipment
  • An object of the present disclosure is to provide a method for handling an inter-UE collision and an intra-UE collision.
  • An uplink (UL) transmission of a first user equipment (UE) overlaps with a first UL transmission of a second UE.
  • the first UL transmission of the second UE overlaps with a second UL transmission of the second UE.
  • the method includes: defining a reference cancellation area, wherein in the reference cancellation area, the UL transmission of the first UE overlaps with the first UL transmission of the second UE, and the first UL transmission of the second UE overlaps with the second UL transmission of the second UE; and determining whether one of the UL transmission of the first UE, the first UL transmission of the second UE, and the second UL transmission of the second UE is cancelled according to cancellation indication and the reference cancellation area.
  • Another object of the present disclosure is to provide a method for handling an inter-UE collision and an intra-UE collision.
  • An uplink (UL) transmission of a first user equipment (UE) overlaps with a first UL transmission of a second UE.
  • the first UL transmission of the second UE overlaps with a second UL transmission of the second UE.
  • the method includes: defining a limitation line, wherein the limitation line is positioned before at least one symbol before an overlapping area, and the first UL transmission of the second UE and the second UL transmission of the second UE overlap with each other in the overlapping area; and determining whether one of the UL transmission of the first UE, the first UL transmission of the second UE, and the second UL transmission of the second UE is cancelled according to a cancellation area and the limitation line, wherein the cancellation area is indicated by cancellation indication.
  • the present disclosure provides a method for handling an inter-UE collision and an intra-UE collision for solving the problem that an inter-UE UL cancellation happens simultaneously with an intra-UE uplink collision.
  • FIG. 1 illustrates an inter-UE collision and an intra-UE collision with a low-priority UL transmission.
  • FIG. 2 illustrates a flowchart of a method for handling an inter-UE collision and an intra-UE collision according to one embodiment of the present disclosure.
  • FIG. 3 illustrates an inter-UE collision and an intra-UE collision.
  • FIG. 4 illustrates a flowchart of a method for handling an inter-UE collision and an intra-UE collision according to another embodiment of the present disclosure.
  • FIG. 5 illustrates an inter-UE collision and an intra-UE collision.
  • FIG. 6 illustrates a block diagram of an example system for wireless communication according to an embodiment of the present disclosure.
  • Fifth-generation (5G) wireless systems are generally a cellular communication system in a frequency range 2 (FR2) ranging from 24.25 GHz to 52.6 GHz, where multiplex transmit (Tx) and receive (Rx) beams are employed by a base station (BS) and/or a user equipment (UE) to combat a large path loss in a high frequency band. Due to hardware limitations and costs, the BS and the UE might only be equipped with a limited number of transmission and reception units (TXRUs) .
  • Tx transmit
  • Rx receive
  • TXRUs transmission and reception units
  • FIG. 1 illustrates an inter-UE collision and an intra-UE collision with a low-priority UL transmission.
  • the inter-UE collision refers to that an uplink (UL) transmission of one UE overlaps with at least one UL transmission of another UE.
  • the intra-UE collision refers to that a UL transmission overlaps with another UL transmission within the same one UE.
  • a UL transmission of a first UE overlaps with at least one UL transmission of a second UE (hereinafter referred to as “UE2” ) .
  • a priority of the UE1 is higher than a priority of the UE2.
  • a base station determines to cancel the at least one UL transmission of the UE2. That is, the BS determines to cancel a UL transmission 1 of the UE2 and a UL transmission 2 of the UE2.
  • both the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are configured with a low-priority index.
  • the UE2 cancels the low priority channels. In other words, the UE1 and the UE2 first solve the overlapping between the inter-UE collision, and then the UE2 solves the overlapping between the intra-UE collision.
  • FIG. 2 illustrates a flowchart of a method for handling an inter-UE collision and an intra-UE collision according to one embodiment of the present disclosure.
  • FIG. 3 illustrates an inter-UE collision and an intra-UE collision.
  • a decision on whether the intra-UE collision is handled first or not can be based on a result of cancellation indication.
  • the solutions above always have a trade-off between the latency of the protected UE and the transmission reliability of both UEs. To this end, a decision on whether the intra-UE collision is handled first after a cancellation area is detected. The indication of the cancellation area can achieve the best performance for different situations.
  • FIG. 3 A relationship between overlapping scenarios and the cancellation area can be summarized as shown in FIG. 3.
  • a UL transmission of a first UE (hereinafter referred to as “UE1” ) overlaps with a UL transmission 1 of a second UE (hereinafter referred to as “UE2” ) .
  • the UL transmission 1 of the UE2 overlaps with a UL transmission 2 of the UE2.
  • Potential cancellation areas are marked in FIG. 3. For different cancellation areas, the solutions are different.
  • step S30 a reference cancellation area is defined.
  • the UL transmission of the UE1 overlaps with the UL transmission 1 of the UE2, and the UL transmission 1 of the UE2 overlaps with the UL transmission 2 of the UE2.
  • the reference cancellation area is positioned between at least one symbol T1 before an overlapping area and at least one symbol T2 after the overlapping area.
  • the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 overlap with each other in the overlapping area.
  • T1 and T2 can be configured by the higher layers or calculated based on the UE processing time. T1 and T2 are integers and not less than zero.
  • step S32 it is determined whether one of the UL transmission of the UE1, the UL transmission 1 of the UE2, and the UL transmission 2 of the UE2 is cancelled according to cancellation indication and the reference cancellation area.
  • DCI downlink control information
  • the cancellation indication when configured to cancel the UL transmission in a cancellation area 1, the UL transmission 1 of the UE2 should be dropped.
  • the cancellation area 1 is positioned before a starting position of the reference cancellation area.
  • a multiplexing procedure can be performed at the position of the UL transmission 2 of the UE2 to check whether the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 can be multiplexed.
  • the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are multiplexed, both the UL transmission of the UE1 and a multiplexed of the UL transmission of the UE2 and the UL transmission of the UE2 can be transmitted.
  • the cancellation procedure is ignored. That is, none of the UL transmission of the UE1, the UL transmission 1 of the UE2, and the UL transmission 1 of the UE2 is cancelled.
  • a prioritization mechanism should be used to drop one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2.
  • prior information about the position of the cancellation area is provided.
  • the UL transmission in the cancellation area 1 should be dropped with no doubt (except the UL transmission which cannot be cancelled by UL CI) .
  • the UL transmission 1 of the UE2 should be cancelled with no doubt.
  • the UL transmission 2 of the UE2 is determined to be dropped according to prioritization rules of the intra-UE collision, this result can be changed. That is, the UL transmission in the cancellation area 1 is always cancelled instead of performing the prioritization rules of the intra-UE collision.
  • the cancellation indication is configured to cancel the UL transmission in the reference cancellation area
  • the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are cancelled.
  • the cancellation indication is configured to cancel the UL transmission in the reference cancellation area
  • the multiplexing can be performed or not
  • the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are cancelled.
  • the prioritization mechanism of the intra-UE collision is also useless, regardless of which one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 could be reserved.
  • the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 will be cancelled by the cancellation indication.
  • the inter UE collision should be handled first.
  • the cancellation indication when configured to cancel the UL transmission in a cancellation area 2, the UL transmission 2 of the UE2 should be dropped.
  • the cancellation area 2 is positioned after an ending position of the reference cancellation area.
  • the prior information about the position of cancellation area (the cancellation area 2) is provided.
  • the UL transmission in the cancellation area 2 should be dropped with no doubt (except the UL transmission which cannot be cancelled by UL CI) .
  • the UL transmission 2 of the UE2 should be cancelled with no doubt.
  • this result can be changed. That is, the UL transmission in cancellation area 2 is always cancelled instead of performing the prioritization rules of the intra-UE collision.
  • the method of how to handle the inter-UE collision and the intra-UE collision can be determined by the position of the cancellation area.
  • the prioritization mechanism of the intra-UE collision can take consideration of the position of the cancellation area of the inter-UE collision.
  • the inter-UE collision and the intra-UE collision overlap in the same area (the reference cancellation area in FIG. 3)
  • the inter-UE collision should be handled first to improve the system efficiency. That is, the UL transmission in the cancellation area should be dropped.
  • the intra-UE collision should be handled first.
  • the multiplexing and prioritization mechanism should take consideration of the position of the cancellation area which is configured by higher layers.
  • the cancellation area indicated by the cancellation indication lies at the beginning of the UL transmission which is configured to be cancelled, it is necessary to check whether the UL transmission which is configured to be cancelled is satisfied with the multiplexing timeline condition.
  • the prioritization mechanism can take the position of the cancellation area as the prior information.
  • the dropping decision can be switched. That is, the UL transmission which is the cancellation area is cancelled, and the UL transmission which is not in the cancellation area is not cancelled.
  • the inter-UE collision is handled first. Otherwise, the intra-UE collision is handled first based on the position of the cancellation area.
  • FIG. 4 illustrates a flowchart of a method for handling an inter-UE collision and an intra-UE collision according to another embodiment of the present disclosure.
  • FIG. 5 illustrates an inter-UE collision and an intra-UE collision.
  • a UL transmission of a first UE overlaps with a UL transmission 1 of a second UE (hereinafter referred to as “UE2” ) .
  • the UL transmission 1 of the UE2 overlaps with a UL transmission 2 of the UE2.
  • step S50 a limitation line is defined.
  • the limitation line is positioned before at least one symbol T3 before an overlapping area.
  • T3 is an integer and not less than zero.
  • step S52 it is determined whether one of the UL transmission of the UE1, the UL transmission 1 of the UE2, and the UL transmission 2 of the UE2 is cancelled according to a cancellation area and the limitation line.
  • DCI downlink control information
  • the intra-UE collision is handled first.
  • the cancellation area is before the limitation line, the UL transmission 1 of the UE2 should be dropped.
  • a multiplexing procedure can be performed at the position of the UL transmission 2 of the UE2 to check whether the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 can be multiplexed.
  • the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are multiplexed, both the UL transmission of the UE1 and a multiplexed of the UL transmission of the UE2 and the UL transmission of the UE2 can be transmitted.
  • the cancellation procedure is ignored. That is, none of the UL transmission of the UE1, the UL transmission 1 of the UE2, and the UL transmission 1 of the UE2 is cancelled.
  • a prioritization mechanism should be used to drop one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2.
  • prior information about the position of the cancellation area before the limitation line is provided. The UL transmission before the limitation line should be dropped with no doubt (except the UL transmission which cannot be cancelled by UL CI) .
  • the UL transmission 1 of the UE2 should be cancelled with no doubt.
  • the UL transmission 2 of the UE2 is determined to be dropped according to prioritization rules of the intra-UE collision, this result can be changed. That is, the UL transmission in the cancellation area 1 is always cancelled instead of performing the prioritization rules of the intra-UE collision.
  • the cancellation area is after the limitation line, this means that the inter-UE collision and the intra-UE collision happen simultaneously.
  • the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are cancelled.
  • the prioritization mechanism of the intra-UE collision is also useless, regardless of which one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 could be reserved.
  • the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 will be cancelled by the cancellation indication.
  • the inter UE collision should be handled first.
  • FIG. 6 illustrates a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 6 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
  • RF radio frequency
  • the processing unit 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the UE, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the processing unit.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the processing unit, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
  • the disclosed method provides flexible QoS management based on sidelink traffic types.
  • Sidelink transmission of each traffic type may have configurable priority to meet different communication cases and QoS requirements according to the disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for handling an inter-UE collision and an intra-UE collision is provided. An uplink (UL) transmission of a first user equipment (UE) overlaps with a first UL transmission of a second UE. The first UL transmission of the second UE overlaps with a second UL transmission of the second UE. The method includes: defining a reference cancellation area, wherein in the reference cancellation area, the UL transmission of the first UE overlaps with the first UL transmission of the second UE, and the first UL transmission of the second UE overlaps with the second UL transmission of the second UE; and determining whether one of the UL transmission of the first UE, the first UL transmission of the second UE, and the second UL transmission of the second UE is cancelled according to cancellation indication and the reference cancellation area.

Description

METHOD FOR HANDLING INTER-UE COLLISION AND INTRA-UE COLLISION Technical Field
The present disclosure relates to the field of communication systems, and more particularly, to a method for handling an inter-UE collision and an intra-UE collision.
Background Art
Ultra-reliable low-latency communication (URLLC) is one of several different types of use cases supported by the 5th generation wireless systems (5G) New Radio (NR) standard, as stipulated by 3rd Generation Partnership Project (3GPP) Release 15. URLLC is a communication service for successfully delivering packets with stringent requirements, particularly in terms of availability, latency, and reliability. URLLC will enable supporting emerging applications and services. Examples of the services include wireless control and automation in industrial factory environments, inter-vehicular communications for improved safety and efficiency, and the tactile internet. It is of importance for 5G especially considering the effective support of verticals which brings new business to the whole telecommunication industry.
One of the key features of URLLC is low latency. The low latency is important for gadgets that drive themselves or perform prostate surgeries. The low latency allows a network to be optimized for processing incredibly large amounts of data with minimal delay (or latency) . The network needs to adapt to a broad amount of changing data in real time. 5G will enable this service to function. URLLC is the most promising addition to upcoming 5G capabilities, but it will also be the hardest to secure. URLLC requires a quality of service (QoS) totally different from mobile broadband services. It will provide networks with instantaneous and intelligent systems, though it will require transitioning out of a core network.
This new URLLC wireless connectivity will guarantee latency to be 1 millisecond (ms) or less. In order for this interface to achieve low latency, all the devices have to synchronize to the same time-base. Time-sensitive networking is another component of the 5G URLLC capabilities. This will allow the shapers used for managing traffic to be time aware.
The design of a low-latency and high-reliability service involves several components: integrated frame structure, incredibly fast turnaround, efficient control and data resource sharing, grant-free based uplink transmission, and advanced channel coding schemes. Uplink grant-free structures guarantee a reduction in a user equipment (UE) latency transmission through avoiding the middle-man process of acquiring a dedicated scheduling grant.
A mechanism for handling collisions among more than two channels is not fully discussed and solved. In addition, when an inter-UE uplink (UL) cancellation happens simultaneously with an intra-UE uplink collision, the existing solutions cannot solve this issue.
Technical Problem
A solution for handling a problem that an inter-UE UL cancellation happens simultaneously with an intra-UE uplink collision has not concluded.
Technical Solution
An object of the present disclosure is to provide a method for handling an inter-UE collision and an intra-UE collision. An uplink (UL) transmission of a first user equipment (UE) overlaps with a first UL transmission of a second UE. The first UL transmission of the second UE overlaps with a second UL transmission of the second UE.The method includes: defining a reference cancellation area, wherein in the reference cancellation area, the UL  transmission of the first UE overlaps with the first UL transmission of the second UE, and the first UL transmission of the second UE overlaps with the second UL transmission of the second UE; and determining whether one of the UL transmission of the first UE, the first UL transmission of the second UE, and the second UL transmission of the second UE is cancelled according to cancellation indication and the reference cancellation area.
Another object of the present disclosure is to provide a method for handling an inter-UE collision and an intra-UE collision. An uplink (UL) transmission of a first user equipment (UE) overlaps with a first UL transmission of a second UE. The first UL transmission of the second UE overlaps with a second UL transmission of the second UE. The method includes: defining a limitation line, wherein the limitation line is positioned before at least one symbol before an overlapping area, and the first UL transmission of the second UE and the second UL transmission of the second UE overlap with each other in the overlapping area; and determining whether one of the UL transmission of the first UE, the first UL transmission of the second UE, and the second UL transmission of the second UE is cancelled according to a cancellation area and the limitation line, wherein the cancellation area is indicated by cancellation indication.
Advantageous Effects
The present disclosure provides a method for handling an inter-UE collision and an intra-UE collision for solving the problem that an inter-UE UL cancellation happens simultaneously with an intra-UE uplink collision.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 illustrates an inter-UE collision and an intra-UE collision with a low-priority UL transmission.
FIG. 2 illustrates a flowchart of a method for handling an inter-UE collision and an intra-UE collision according to one embodiment of the present disclosure.
FIG. 3 illustrates an inter-UE collision and an intra-UE collision.
FIG. 4 illustrates a flowchart of a method for handling an inter-UE collision and an intra-UE collision according to another embodiment of the present disclosure.
FIG. 5 illustrates an inter-UE collision and an intra-UE collision.
FIG. 6 illustrates a block diagram of an example system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
Fifth-generation (5G) wireless systems are generally a cellular communication system in a frequency range 2 (FR2) ranging from 24.25 GHz to 52.6 GHz, where multiplex transmit (Tx) and receive (Rx) beams are employed by a base station (BS) and/or a user equipment (UE) to combat a large path loss in a high frequency band. Due to hardware limitations and costs, the BS and the UE might only be equipped with a limited number of transmission and reception units (TXRUs) .
Please refer to FIG. 1. FIG. 1 illustrates an inter-UE collision and an intra-UE collision with a low-priority UL transmission. The inter-UE collision refers to that an uplink (UL) transmission of one UE overlaps with at least one UL transmission of another UE. The intra-UE collision refers to that a UL transmission overlaps with another UL transmission within the same one UE.
In FIG. 1, a UL transmission of a first UE (hereinafter referred to as “UE1” ) overlaps with at least one UL transmission of a second UE (hereinafter referred to as “UE2” ) . A priority of the UE1 is higher than a priority of the UE2. Accordingly, a base station (BS) determines to cancel the at least one UL transmission of the UE2. That is, the BS determines to cancel a UL transmission 1 of the UE2 and a UL transmission 2 of the UE2.
Regarding the collision between the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2, it is assumed that both the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are configured with a low-priority index. To solve the problem shown in Figure 1, the UE2 cancels the low priority channels. In other words, the UE1 and the UE2 first solve the overlapping between the inter-UE collision, and then the UE2 solves the overlapping between the intra-UE collision.
Please refer to FIG. 2 and FIG. 3. FIG. 2 illustrates a flowchart of a method for handling an inter-UE collision and an intra-UE collision according to one embodiment of the present disclosure. FIG. 3 illustrates an inter-UE collision and an intra-UE collision.
To accommodate various situations, in the method for handling the inter-UE collision and the intra-UE collision, a decision on whether the intra-UE collision is handled first or not can be based on a result of cancellation indication. The solutions above always have a trade-off between the latency of the protected UE and the transmission reliability of both UEs. To this end, a decision on whether the intra-UE collision is handled first after a cancellation area is detected. The indication of the cancellation area can achieve the best performance for different situations.
A relationship between overlapping scenarios and the cancellation area can be summarized as shown in FIG. 3. A UL transmission of a first UE (hereinafter referred to as “UE1” ) overlaps with a UL transmission 1 of a second UE (hereinafter referred to as “UE2” ) . The UL transmission 1 of the UE2 overlaps with a UL transmission 2 of the UE2. Potential cancellation areas are marked in FIG. 3. For different cancellation areas, the solutions are different.
In step S30, a reference cancellation area is defined.
In the reference cancellation area, the UL transmission of the UE1 overlaps with the UL transmission 1 of the UE2, and the UL transmission 1 of the UE2 overlaps with the UL transmission 2 of the UE2. In one embodiment, the reference cancellation area is positioned between at least one symbol T1 before an overlapping area and at least one symbol T2 after the overlapping area. The UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 overlap with each other in the overlapping area.
When the reference cancellation area is the same as the overlapping area of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2, there’s no sufficient time for the UE2 to make decision on whether the multiplexing operation is performed or not. Accordingly, a buffer time is necessary. The values of T1 and T2 can be configured by the higher layers or calculated based on the UE processing time. T1 and T2 are integers and not less than zero.
In step S32, it is determined whether one of the UL transmission of the UE1, the UL transmission 1 of the UE2, and the UL transmission 2 of the UE2 is cancelled according to cancellation indication and the reference cancellation area.
It is noted that at least group common downlink control information (DCI) is supported for the cancellation indication, and the cancellation indication is configured by higher layers.
As shown in FIG. 3, when the cancellation indication is configured to cancel the UL transmission in a cancellation area 1, the UL transmission 1 of the UE2 should be dropped. The cancellation area 1 is positioned before a starting position of the reference cancellation area.
However, several scenarios should be considered. When the cancellation indication is configured to cancel the UL transmission in the cancellation area 1 and both the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are satisfied with a multiplexing timeline condition, a multiplexing procedure can be performed at the position of the UL transmission 2 of the UE2 to check whether the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 can be multiplexed. When the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are multiplexed, both the UL transmission of the UE1 and a multiplexed of the UL transmission of the UE2 and the UL transmission of the UE2 can be transmitted. As such, the cancellation procedure is ignored. That is, none of the UL transmission of the UE1, the UL transmission 1 of the UE2, and the UL transmission 1 of the UE2 is cancelled.
On the other hand, when at least one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are not satisfied with the multiplexing timeline condition (i.e., the multiplexing is not available) , a prioritization mechanism should be used to drop one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2. However, prior information about the position of the cancellation area (the cancellation area 1) is provided. The UL transmission in the cancellation area 1 should be dropped with no doubt (except the UL transmission which cannot be cancelled by UL CI) . As stated above, when the at least one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are not satisfied with the multiplexing timeline condition, the UL transmission 1 of the UE2 should be cancelled with no doubt. In a situation that the UL transmission 2 of the UE2 is determined to be dropped according to prioritization rules of the intra-UE collision, this result can be changed. That is, the UL transmission in the cancellation area 1 is always cancelled instead of performing the prioritization rules of the intra-UE collision.
As shown in FIG. 3, when the cancellation indication is configured to cancel the UL transmission in the reference cancellation area, the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are cancelled.
When the cancellation indication is configured to cancel the UL transmission in the reference cancellation area, this means that the inter-UE collision and the intra-UE collision happen simultaneously. In this case, it is not necessary to check whether the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are not satisfied with the multiplexing timeline condition or not. In detail, no matter the multiplexing can be performed or not, the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are cancelled. Furthermore, the prioritization mechanism of the intra-UE collision is also useless, regardless of which one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 could be reserved. The UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 will be cancelled by the cancellation indication. To improve the system efficiency, the inter UE collision should be handled first.
As shown in FIG. 3, when the cancellation indication is configured to cancel the UL transmission in a cancellation area 2, the UL transmission 2 of the UE2 should be dropped. The cancellation area 2 is positioned after an ending position of the reference cancellation area.
However, several scenarios should be considered. First, it is not necessary to perform a multiplexing judgement since the multiplexing operation should be performed at the position of the UL transmission2 of the UE2 when the cancellation indication is configured to cancel the UL transmission in the cancellation area 2 and both the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are satisfied with multiplexing timeline condition, which is right in the cancellation area 2. Regarding the prioritization procedure, the prior information about the position of cancellation area (the cancellation area 2) is provided. The UL transmission in the cancellation area 2 should be dropped with no doubt (except the UL transmission which cannot be cancelled by UL CI) . In FIG. 3, the UL transmission 2 of the UE2 should be cancelled with no doubt. In a situation that the UL transmission 1 is determined to be dropped with the prioritization rules of the intra-UE collision, this result can be changed. That is, the UL transmission in cancellation area 2 is always cancelled instead of performing the prioritization rules of the intra-UE collision.
It can be appreciated from the above that the method of how to handle the inter-UE collision and the intra-UE collision can be determined by the position of the cancellation area. The prioritization mechanism of the intra-UE collision can take consideration of the position of the cancellation area of the inter-UE collision. When the inter-UE collision and the intra-UE collision overlap in the same area (the reference cancellation area in FIG. 3) , the inter-UE collision should be handled first to improve the system efficiency. That is, the UL transmission in the cancellation area should be dropped. When the inter-UE collision and the intra-UE collision do not overlap in the same area (the cancellation area 1 or the cancellation area 3 in FIG. 3) , the intra-UE collision should be handled first. However, the multiplexing and prioritization mechanism should take consideration of the position of the cancellation area which is configured by higher layers. When the cancellation area indicated by the cancellation indication lies at the beginning of the UL transmission which is configured to be cancelled, it is necessary to check whether the UL transmission which is configured to be cancelled is satisfied with the multiplexing timeline condition. For the rest situations, the prioritization mechanism can take the position of the cancellation area as the prior information. When the UL transmission which is not in the cancellation area is determined to be dropped, the dropping decision can be switched. That is, the UL transmission which is the cancellation area is cancelled, and the UL transmission which is not in the cancellation area is not cancelled. In conclusion, as the example illustrated in FIG. 3, when the cancellation area configured by the higher layers is in the reference cancellation area, the inter-UE collision is handled first. Otherwise, the intra-UE collision is handled first based on the position of the cancellation area.
Please refer to FIG. 4 and FIG. 5. FIG. 4 illustrates a flowchart of a method for handling an inter-UE collision and an intra-UE collision according to another embodiment of the present disclosure. FIG. 5 illustrates an inter-UE collision and an intra-UE collision.
As shown in FIG. 5, a UL transmission of a first UE (hereinafter referred to as “UE1” ) overlaps with a UL transmission 1 of a second UE (hereinafter referred to as “UE2” ) . The UL transmission 1 of the UE2 overlaps with a UL transmission 2 of the UE2.
In step S50, a limitation line is defined.
In one embodiment, the limitation line is positioned before at least one symbol T3 before an overlapping area. The UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 overlap with each other in the overlapping area. T3 is an integer and not less than zero.
In step S52, it is determined whether one of the UL transmission of the UE1, the UL transmission 1 of the UE2, and the UL transmission 2 of the UE2 is cancelled according to a cancellation area and the limitation line.
It is noted that at least group common downlink control information (DCI) is supported for the cancellation indication, and the cancellation indication is configured by higher layers. The cancellation area is indicated by the cancellation indication.
When the cancellation area is before the limitation line, the intra-UE collision is handled first.
In detail, when the cancellation area is before the limitation line, the UL transmission 1 of the UE2 should be dropped.
However, several scenarios should be considered. When the cancellation area is before the limitation line and both the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are satisfied with a multiplexing timeline condition, a multiplexing procedure can be performed at the position of the UL transmission 2 of the UE2 to check whether the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 can be multiplexed. When the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are multiplexed, both the UL transmission of the UE1 and a multiplexed of the UL transmission of the UE2 and the UL transmission of the UE2 can be transmitted. As such, the cancellation procedure is ignored. That is, none of the UL transmission of the UE1, the UL transmission 1 of the UE2, and the UL transmission 1 of the UE2 is cancelled.
On the other hand, when at least one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are not satisfied with the multiplexing timeline condition (i.e., the multiplexing is not available) , a prioritization mechanism should be used to drop one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2. However, prior information about the position of the cancellation area before the limitation line is provided. The UL transmission before the limitation line should be dropped with no doubt (except the UL transmission which cannot be cancelled by UL CI) . As stated above, when the at least one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are not satisfied with the multiplexing timeline condition, the UL transmission 1 of the UE2 should be cancelled with no doubt. In a situation that the UL transmission 2 of the UE2 is determined to be dropped according to prioritization rules of the intra-UE collision, this result can be changed. That is, the UL transmission in the cancellation area 1 is always cancelled instead of performing the prioritization rules of the intra-UE collision.
When the cancellation area is after the limitation line, the inter-UE collision is handled first.
In detail, when the cancellation area is after the limitation line, this means that the inter-UE collision and the intra-UE collision happen simultaneously. In this case, it is not necessary to check whether the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are not satisfied with the multiplexing timeline condition or not. In detail, no matter the multiplexing can be performed or not, the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 are cancelled. Furthermore, the prioritization mechanism of the intra-UE collision is also useless, regardless of which one of the UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 could be reserved. The UL transmission 1 of the UE2 and the UL transmission 2 of the UE2 will be cancelled by the cancellation indication. To improve the system efficiency, the inter UE collision should be handled first.
Please refer to FIG. 6. FIG. 6 illustrates a block diagram of an example system 700 for wireless  communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 6 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
The processing unit 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry. In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the UE, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the processing unit. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the processing unit, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system.  The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory. In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite. In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one  processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
The disclosed method provides flexible QoS management based on sidelink traffic types. Sidelink transmission of each traffic type may have configurable priority to meet different communication cases and QoS requirements according to the disclosure.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (22)

  1. A method for handling an inter-UE collision and an intra-UE collision, an uplink (UL) transmission of a first user equipment (UE) overlapping with a first UL transmission of a second UE, the first UL transmission of the second UE overlapping with a second UL transmission of the second UE, the method comprising:
    defining a reference cancellation area, wherein in the reference cancellation area, the UL transmission of the first UE overlaps with the first UL transmission of the second UE, and the first UL transmission of the second UE overlaps with the second UL transmission of the second UE; and
    determining whether one of the UL transmission of the first UE, the first UL transmission of the second UE, and the second UL transmission of the second UE is cancelled according to cancellation indication and the reference cancellation area.
  2. The method of claim 1, wherein the reference cancellation area is positioned between at least one symbol before an overlapping area and at least one symbol after the overlapping area, and the first UL transmission of the second UE and the second UL transmission of the second UE overlap with each other in the overlapping area.
  3. The method of claim 1, wherein at least group common downlink control information (DCI) is supported for the cancellation indication.
  4. The method of claim 3, wherein the cancellation indication is configured by higher layers.
  5. The method of claim 1, wherein when the cancellation indication is configured to cancel a UL transmission in a first cancellation area, the intra-collision is handled first;
    wherein the first cancellation area is positioned before a starting position of the reference cancellation area.
  6. The method of claim 5, wherein the first UL transmission of the second UE is dropped.
  7. The method of claim 5, wherein when both the first UL transmission of the second UE and the second UL transmission of the second UE are satisfied with a multiplexing timeline condition, a multiplexing procedure is performed to check whether the first UL transmission of the second UE and the second UL transmission of the second UE can be multiplexed.
  8. The method of claim 7, wherein the multiplexing procedure is performed at a position of the second UL transmission of the second UE.
  9. The method of claim 1, wherein when the cancellation indication is configured to cancel a UL transmission in the reference cancellation area, the inter-UE collision is handled first.
  10. The method of claim 9, wherein the first UL transmission of the second UE2 and the second UL transmission of the second UE are cancelled.
  11. The method of claim 1, wherein when the cancellation indication is configured to cancel a UL transmission in a second cancellation area, the intra-collision is handled first;
    wherein the second cancellation area is positioned after an ending position of the reference cancellation area.
  12. The method of claim 11, wherein the second UL transmission of the second UE is dropped.
  13. The method of claim 1, wherein when the UL transmission of the first overlaps with the second UL transmission of the second UE and the second UE is configured with a low-priority index, at least one of the first UL transmission of the second UE and the second UL transmission of the second UE which is indicated to be cancelled by the cancelation indication is cancelled.
  14. A method for handling an inter-UE collision and an intra-UE collision, an uplink (UL) transmission of a first user equipment (UE) overlapping with a first UL transmission of a second UE, the first UL transmission of the second UE overlapping with a second UL transmission of the second UE, the method comprising:
    defining a limitation line, wherein the limitation line is positioned before at least one symbol before an overlapping area, and the first UL transmission of the second UE and the second UL transmission of the second UE overlap with each other in the overlapping area; and
    determining whether one of the UL transmission of the first UE, the first UL transmission of the second UE, and the second UL transmission of the second UE is cancelled according to a cancellation area and the limitation line, wherein the cancellation area is indicated by cancellation indication.
  15. The method of claim 14, wherein at least group common downlink control information (DCI) is supported for the cancellation indication.
  16. The method of claim 15, wherein the cancellation indication is configured by higher layers.
  17. The method of claim 14, wherein when the cancellation area is before the limitation line, the intra-collision is handled first.
  18. The method of claim 17, wherein the first UL transmission of the second UE is dropped.
  19. The method of claim 17, wherein when both the first UL transmission of the second UE and the second UL transmission of the second UE are satisfied with a multiplexing timeline condition, a multiplexing procedure is performed to check whether the first UL transmission of the second UE and the second UL transmission of the second UE can be multiplexed.
  20. The method of claim 17, wherein the multiplexing procedure is performed at a position of the second UL transmission of the second UE.
  21. The method of claim 14, wherein when the cancellation area is after the limitation line, the inter-UE collision is handled first.
  22. The method of claim 21, wherein the first UL transmission of the second UE2 and the second UL transmission of the second UE are cancelled.
PCT/CN2020/085391 2020-04-17 2020-04-17 Method for handling inter-ue collision and intra-ue collision WO2021208081A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/085391 WO2021208081A1 (en) 2020-04-17 2020-04-17 Method for handling inter-ue collision and intra-ue collision
CN202080098807.7A CN115316010A (en) 2020-04-17 2020-04-17 Method for processing conflict between UE and conflict in UE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085391 WO2021208081A1 (en) 2020-04-17 2020-04-17 Method for handling inter-ue collision and intra-ue collision

Publications (1)

Publication Number Publication Date
WO2021208081A1 true WO2021208081A1 (en) 2021-10-21

Family

ID=78083589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085391 WO2021208081A1 (en) 2020-04-17 2020-04-17 Method for handling inter-ue collision and intra-ue collision

Country Status (2)

Country Link
CN (1) CN115316010A (en)
WO (1) WO2021208081A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845383A (en) * 2019-01-18 2019-06-04 北京小米移动软件有限公司 Sending method, device, equipment and the storage medium of uplink
CN110536463A (en) * 2019-03-19 2019-12-03 中兴通讯股份有限公司 A kind of method for transmission processing, device and computer readable storage medium
CN110769503A (en) * 2018-07-26 2020-02-07 中国电信股份有限公司 Uplink data multiplexing transmission method, device, terminal and storage medium
CN110999510A (en) * 2019-11-06 2020-04-10 北京小米移动软件有限公司 Method, device, terminal and storage medium for solving transmission conflict

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769503A (en) * 2018-07-26 2020-02-07 中国电信股份有限公司 Uplink data multiplexing transmission method, device, terminal and storage medium
CN109845383A (en) * 2019-01-18 2019-06-04 北京小米移动软件有限公司 Sending method, device, equipment and the storage medium of uplink
CN110536463A (en) * 2019-03-19 2019-12-03 中兴通讯股份有限公司 A kind of method for transmission processing, device and computer readable storage medium
CN110999510A (en) * 2019-11-06 2020-04-10 北京小米移动软件有限公司 Method, device, terminal and storage medium for solving transmission conflict

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Handling UL transmissions with different reliability requirements", 3GPP DRAFT; R1-1802424 , 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 17 February 2018 (2018-02-17), Athens, Greece; 20180226 - 20180302, XP051397949 *

Also Published As

Publication number Publication date
CN115316010A (en) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2021037247A1 (en) Apparatus and method of processing collision between ssb transmission and periodic transmission
WO2021098860A1 (en) Apparatus and method of wireless communication
WO2021098740A1 (en) Apparatus and method of wireless communication
WO2020087437A1 (en) User equipment and method of wireless communication of same
US20220109486A1 (en) Apparatus and method of wireless communication
US20230125590A1 (en) User equipment and method for sharing periodic channel occupancy
WO2021140351A1 (en) Apparatus and method for control information multiplexing of same
EP3977795B1 (en) Apparatus and method of wireless communication
US20230140467A1 (en) Apparatus and method of wireless communication
US20230023518A1 (en) Apparatus and method of communication of same
WO2021208081A1 (en) Method for handling inter-ue collision and intra-ue collision
US20230337224A1 (en) Method for handling high-priority uplink transmissions and user equipment
WO2023279339A1 (en) Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment
CN112771938B (en) User equipment and wireless communication method thereof
WO2021171054A1 (en) User equipment and method of communication of the same
WO2022205339A1 (en) User equipment, base station, and wireless communication method
WO2022205057A1 (en) User equipment, base station, and wireless communication method
US20220385417A1 (en) Apparatus and method of communication of same
US20240014989A1 (en) Wireless communication methods, user equipment and base station
WO2024061322A1 (en) Wireless communication method and relevant apparatus
US20230135241A1 (en) Ue initiated channel access in unlicensed spectrum
WO2022198581A1 (en) Wireless communication method, user equipment, and base station
US20230087543A1 (en) Methods for wireless communication, ue, and base station
US20220408463A1 (en) User equipment and method of communication of same
WO2023052806A1 (en) Apparatus and method of wireless communication of multiple physical downlink shared channels, pdschs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931631

Country of ref document: EP

Kind code of ref document: A1