WO2023279339A1 - Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment - Google Patents

Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment Download PDF

Info

Publication number
WO2023279339A1
WO2023279339A1 PCT/CN2021/105317 CN2021105317W WO2023279339A1 WO 2023279339 A1 WO2023279339 A1 WO 2023279339A1 CN 2021105317 W CN2021105317 W CN 2021105317W WO 2023279339 A1 WO2023279339 A1 WO 2023279339A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
slot
harq
ack codebook
uplink
Prior art date
Application number
PCT/CN2021/105317
Other languages
French (fr)
Inventor
Xiaoxue YIN
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd
Priority to PCT/CN2021/105317 priority Critical patent/WO2023279339A1/en
Priority to CN202180100343.3A priority patent/CN117693915A/en
Publication of WO2023279339A1 publication Critical patent/WO2023279339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a method of improving HARQ-ACK Feedback by determining a sub-slot based Type-1 HARQ-ACK codebook, a base station and a user equipment.
  • Wireless communication systems and networks have developed towards being a broadband and mobile system.
  • user equipment UE is connected by a wireless link to a radio access network (RAN) .
  • the RAN comprises a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control.
  • BSs base stations
  • CN core network
  • the RAN and CN each conduct respective functions in relation to the overall network.
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR New Radio
  • Ultra-reliable low-latency communication is one of several different types of use cases supported by the 5G NR standard, as stipulated by 3GPP Release 15.
  • URLLC is a communication service for successfully delivering packets with stringent requirements, particularly in terms of availability, latency, and reliability.
  • URLLC is developed to support the emerging applications and services, such as wireless control and automation in industrial factory environments, inter-vehicular communications for improved safety and efficiency, and the tactile internet.
  • URLLC is important for 5G as it supports verticals bringing new business to the whole telecommunication industry.
  • URLLC Ultra Low latency is important for gadgets that, say, drive themselves, or perform prostate surgeries. Low latency allows a network to be optimized for processing incredibly large amounts of data with minimal delay (or, latency) .
  • the networks need to adapt to a broad amount of changing data in real time. 5G will enable this service to function.
  • URLLC is, ideally, the most promising addition to upcoming 5G capabilities, but it will also be the hardest to secure; URLLC requires a quality of service (QoS) totally different from mobile broadband services. It will provide networks with instantaneous and intelligent systems, though it will require transitioning out of the core network.
  • QoS quality of service
  • This new URLLC wireless connectivity will guarantee latency to be 1ms or less. In order for this interface to achieve low latency, all the devices have to synchronize to the same time-base. Time-sensitive networking is another component of the 5G URLLC capabilities. This will allow the shapers used for managing traffic to be time aware.
  • the design of a low-latency and high-reliability service involves several components: Integrated frame structure, incredibly fast turnaround, efficient control and data resource sharing, grant-free based uplink transmission, and advanced channel coding schemes.
  • Uplink grant-free structures guarantee a reduction in user equipment (UE) latency transmission through avoiding the middle-man process of acquiring a dedicated scheduling grant.
  • UE user equipment
  • Type-1 HARQ-ACK codebook and Type-2 HARQ-ACK codebook are supported in previous releases, and sub-slot based HARQ-ACK feedback is supported to reduce the latency.
  • the sub-slot based HARQ-ACK codebook is only introduced for the Type-2 HARQ-ACK codebook in Rel-16.
  • Type-1 HARQ-ACK codebook Type-1 HARQ-ACK codebook for sub-slot based PUCCH configuration is supported.
  • Type-1 HARQ-ACK codebook can provide robustness against missed DCI transmissions, which is beneficial for high reliable URLLC services.
  • Slot-based TDRA grouping mechanism is also proposed for calculation of PDSCH candidate occasions. Nevertheless, modification only for this point is not enough for the sub-slot based Type-1 HARQ-ACK codebook.
  • a complete mechanism for the determination of sub-slot based Type-1 HARQ-ACK codebook is required.
  • An objective of the present disclosure is to propose a method, a user equipment (UE) and a base station (BS) of improving HARQ-ACK Feedback by determining a sub-slot based Type-1 HARQ-ACK codebook.
  • a first aspect of the disclosure provides a method of improving HARQ-ACK feedback operable in a user equipment includes: triggering a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from a base station; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  • UL active uplink
  • BWP bandwidth part
  • PUCCH physical uplink control channel
  • a second aspect of the disclosure provides a base station.
  • the user equipment includes a transceiver and a processor connected with the transceiver.
  • the transceiver is used to receive a triggering parameter.
  • the processor is configured to execute the following operations comprising: triggering a sub-slot based Type-1 HARQ-ACK codebook based on the triggering parameter, and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  • UL active uplink
  • a third aspect of the disclosure provides a method of improving HARQ-ACK feedback operable in a base station.
  • the base station transmits, to a user equipment, a triggering parameter to trigger a sub-slot based Type-1 HARQ-ACK codebook, wherein the user equipment performs operations comprising: upon receiving the triggering parameter, triggering the sub-slot based Type-1 HARQ-ACK codebook; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  • a fourth aspect of the disclosure provides a base station.
  • the base station is configured to transmit, to a user equipment, a triggering parameter to trigger a sub-slot based Type-1 HARQ-ACK codebook.
  • the user equipment performs operations comprising: upon receiving the triggering parameter, triggering the sub-slot based Type-1 HARQ-ACK codebook; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  • UL active uplink
  • BWP bandwidth
  • the disclosed method may be implemented in a chip.
  • the chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium.
  • the non-transitory computer readable medium when loaded to a computer, directs a processor of the computer to execute the disclosed method.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the disclosed method may be programmed as computer program product, that causes a computer to execute the disclosed method.
  • the disclosed method may be programmed as computer program, that causes a computer to execute the disclosed method.
  • a method of improving HARQ-ACK feedback operable in a user equipment includes: triggering a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from a base station; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  • UL active uplink
  • BWP bandwidth part
  • PUCCH physical uplink control channel
  • the present disclosure proposes the determination of sub-slot based Type-1 HARQ-ACK codebook for several factors, such as the conditions for determine the candidate PDSCH occasions, the value range of the HARQ-ACK feedback timing, the HARQ-ACK codebook for SPS PDSCH, improving the HARQ-ACK feedback efficiency and latency.
  • Fig. 1 is a schematic diagram showing a system according to an embodiment of the present disclosure.
  • Fig. 2 illustrates a flowchart of a method of improving HARQ-ACK feedback operable in the UE 10 according to an embodiment of the present disclosure.
  • Fig. 3 illustrates a flowchart of the block 202 depicted in Fig. 2 according to an embodiment of the present disclosure.
  • Fig. 4 illustrates an example of eight TDRA indexed rows within one slot, and this slot is configured with 2 sub-slots.
  • Fig. 5 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • K1 is the number of sub-slots from the sub-slot containing the end of PDSCH to the sub-slot containing the start of PUCCH.
  • FFS The configurable value range of K1 needs to be extended, and impact to related DCI field bitwidth.
  • the starting symbol of a PUCCH resource is defined with respect to the first symbol of sub-slot.
  • a UE can be configured with PUCCH resource set (s)
  • FFS same or different PUCCH resource sets can be configured for different sub-slots within a slot. Agreements (RAN1#104b) :
  • the properties of the Type-1 HARQ-ACK codebook for sub-slot PUCCH at least includes that a PDSCH TDRA is associated with a UL /PUCCH sub-slot if the end of the PDSCH overlaps with the associated sub-slot determined by a k1 in the set of sub-slot timing values K1.
  • a telecommunication system including a UE 10, a base station 200, and a network entity device 30. Connections between devices and device components are shown as lines and arrows in the Figs.
  • the UE 10 may include a processor 11, a memory 12, and a transceiver 13.
  • the base station 200 may include a processor 201, a memory 202, and a transceiver 203.
  • the network entity device 300 may include a processor 301, a memory 302, and a transceiver 303.
  • Each of the processors 11, 201, and 301 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the processors 11a, 201, and 301.
  • Each of the memory 12, 202, and 302 operatively stores a variety of program and information to operate a connected processor.
  • Each of the transceiver 13, 203, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals.
  • Each of the base station 200 may be an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10.
  • Each of the processor 11, 201, and 301 may include an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices.
  • ASICs application-specific integrated circuits
  • Each of the memory 12a, 202, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • Each of the transceiver 13a, 203, and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals.
  • RF radio frequency
  • the network entity device 300 may be a node in a CN.
  • CN may include LTE CN or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
  • UPF user plane function
  • SMF session management function
  • AMF mobility management function
  • UDM unified data management
  • PCF policy control function
  • PCF control plane
  • CP control plane
  • UP user plane
  • CUPS authentication server
  • NSSF network slice selection function
  • NEF network exposure function
  • 3GPP specification has defined Hybrid automatic repeat request (HARQ) codebook to provide the feedback to the base station 200 for downlink data transmission i.e., physical downlink shared channel (PDSCH) Data.
  • the UE 10 sends the ACK/NACK for corresponding PDSCH in physical uplink shared channel (PUSCH) /physical uplink control channel (PUCCH) .
  • a codebook is a sequence of bits, which is constructed using ACK/NACK feedback of multiple PDSCH reception for configured time window.
  • 3GPP has defined two types of HARQ codebooks. Type 1 codebook is a fixed size codebook provided by the base station 200 via RRC Signaling.
  • Type 2 codebook has dynamic size and changes according to resource allocation.
  • sub-slot is a scheduling unit with time duration less than one slot.
  • At least two sub-slot configurations for PUCCH: “2-symbol*7” and “7-symbol*2” are supported. That is, one slot is divided into seven sub-slots each of which has two symbols, or one is divided into two sub-slots each of which has seven symbols.
  • a sub-slot based Type-1 HARQ-ACK codebook, supported in Release 17, is provided for reliability, especially for URLLC, because the Type-1 HARQ-ACK codebook is more robust compared to the Type-2 HARQ-ACK codebook.
  • alternative embodiments are proposed for sub-slot based Type-1 HARQ-ACK codebook in three directions.
  • Fig. 2 illustrates a flowchart of a method of improving HARQ-ACK feedback operable in the UE 10 according to an embodiment of the present disclosure.
  • the method includes:
  • Block 201 Trigger a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from the base station;
  • Block 202 Determine a construction of the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot PUCCH in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  • UL active uplink
  • BWP bandwidth part
  • the UE 10 triggers a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from the base station 200.
  • the sub-slot based Type-1 HARQ-ACK codebook shall be configurable. In the present disclosure, several options for enabling/disabling a sub-slot based Type-1 HARQ-ACK codebook are provided as follows.
  • the first alternative solution is that the base station 200 sets the RRC parameter subslotLengthForPUCCH for sub-slot length indication which could save more signaling overhead.
  • the Information Element (IE) of PUCCH-Config is used to configure UE specific PUCCH parameters.
  • the RRC parameter subslotLengthForPUCCH configured in the IE of PUCCH-Config indicates the sub-slot length for sub-slot based PUCCH feedback in number of symbols, e.g. each sub slot has two symbols.
  • the triggering parameter configured e.g.
  • the UE 10 enables the sub-slot based Type-1 HARQ-ACK codebook. If the RRC parameter subslotLengthForPUCCH is not provided to the UE 10, it means sub-slot based Type-1 HARQ-ACK codebook is disabled.
  • the second alternative solution is that the base station 200 sets a new triggering parameter SubSlotHARQCodebook, which may provide more flexibility for the configuration.
  • the triggering parameter SubSlotHARQCodebook could be configured in the IE of PUCCH-Config or other IE.
  • the UE 10 Upon receiving and detecting the triggering parameter SubSlotHARQCodebook, the UE 10 enables the sub-slot based Type-1 HARQ-ACK codebook in response to a present of the triggering parameter SubSlotHARQCodebook. In response to an absence of the triggering parameter SubSlotHARQCodebook, the UE 10 disables the sub-slot based Type-1 HARQ-ACK codebook or the sub-slot based Type-1 HARQ-ACK codebook is not supported.
  • the enabling/disabling indication for sub-slot based Type-1 HARQ-ACK codebook could be indicated by DCI format. This may lead to less information transmission delay and is more targeted.
  • a 1-bit triggering parameter SubSlotHARQCodebook could be introduced and indicated by DCI format.
  • configuration format There is no restriction on configuration format in this disclosure. For example, when the triggering parameter SubSlotHARQCodebook is configured with 0, the sub-slot based Type-1 HARQ-ACK codebook is enabled. when the triggering parameter SubSlotHARQCodebook is configured with 1, then the UE 10 disables the sub-slot based Type-1 HARQ-ACK codebook or the sub-slot based Type-1 HARQ-ACK codebook is not supported.
  • the fourth alternative solution combines the two options above. This may lead to more reliability and be more flexible to accommodate different scenarios. Different UEs 10 may have different capability or do not require low latency performance. Therefore, sub-slot based Type-1 HARQ-ACK codebook is not necessary for these cases. Enabling the sub-slot based Type-1 HARQ-ACK codebook could be configured by RRC parameter, and triggered by DCI format. For example, when the triggering parameter subslotLengthForPUCCH is indicated by RRC parameter, the sub-slot length for sub-slot based PUCCH feedback in number of symbols is indicated.
  • the sub-slot based Type-1 HARQ-ACK codebook is triggered by DCI format, which means if the RRC parameter is configured and the sub-slot based Type-1 HARQ-ACK codebook is not triggered by DCI format, the sub-slot based Type-1 HARQ-ACK codebook should not be performed.
  • the UE 10 determines a construction of the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  • UL active uplink
  • BWP bandwidth part
  • the first step is the determination of a set of candidate PDSCH occasions, which is represented by M A, c .
  • the determination of set M A, c is based on five factors: 1) A set of slot timing values K1 associated with the active UL BWP; 2) The ratio between the downlink SCS configuration ⁇ DL and the uplink SCS configuration ⁇ UL ; 3) A set of row indexes R of a table that is associated with the active DL BWP; 4) The TDD configuration which may be indicated by tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated; and 5) The configuration of ca-SlotOffset.
  • Fig. 3 illustrates a flowchart of the block 202 according to an embodiment of the present disclosure.
  • the UE 10 selects several factors to determine the sub-slot based Type-1 HARQ-ACK codebook. Accordingly, the block 202 includes:
  • Block 2021 Determine K1 set
  • Block 2022 Determine the ratio between the downlink Sub Carrier Spacing (SCS) configuration and the uplink SCS configuration;
  • Block 2023 Determine candidate PDSCH TDRA.
  • the UE 10 if the UE 10 is configured with PDSCH, and the PDSCH is received in slot n, then the UE transmits PUCCH with HARQ-ACK for this PDSCH in slot n+k1, where k1 is a number of slots indicated by the PDSCH-to-HARQ_feedback timing indicator field in a corresponding DCI format or provided by dl-DataToUL-ACK or dl-DataToUL-ACKForDCIFormat1_2 for DCI format 1_2 if the PDSCH-to-HARQ_feedback timing indicator field is not present in the DCI format.
  • k1 is a number of slots indicated by the PDSCH-to-HARQ_feedback timing indicator field in a corresponding DCI format or provided by dl-DataToUL-ACK or dl-DataToUL-ACKForDCIFormat1_2 for DCI format 1_2 if the PDSCH-to-HARQ_feedback timing indicator field is not present in the DCI format.
  • the parameter dl-DataToUL-ACK and dl-DataToUL-ACKForDCIFormat1_2 indicate the list of timing for given PDSCH to the HARQ-ACK.
  • k1 is a number of sub-slots.
  • K1 set is determined.
  • the K1 set of slot timing values k1 are the number of sub-slots from the sub-slot containing the end of PDSCH to the sub-slot containing the start of PUCCH.
  • the maximum value in K1 set needs to be updated. If the sub-slot based K1 set is applied, the HARQ-ACK feedback timing is difficult to satisfy the PDSCH processing time. That is, the maximum value as specified in the current protocol is not sufficient for the sub-slot based K1 set. Therefore, the maximum value in K1 set should take the sub-slot number of one slot into account.
  • the maximum value of HARQ-ACK feedback timing in K1 set should be 2 M -1.
  • the maximum value of HARQ-ACK feedback timing in K1 set could be 2 M ⁇ N-1 where N is a configurable scale factor.
  • the maximum value of K1 could be:
  • the indication for sub-slot based K1 set could reuse the existing parameter, for example, dl-DataToUL-ACK, or introduce another new parameter for sub-slot indication only. There is no restriction in this disclosure, however, the maximum value in K1 set should follow the description above.
  • the ratio between the downlink Sub Carrier Spacing (SCS) configuration and the uplink SCS configuration is determined.
  • SCS Downlink Sub Carrier Spacing
  • the second factor of Type-1 HARQ-ACK codebook in order to support sub-slot based Type-1 HARQ-ACK codebook properly, it is necessary to take into account that the timing for sub-slot HARQ-ACK is based on sub-slot instead of slot.
  • the number of sub-slots in an UL slot should be taken into account for calculating the ratio between the downlink (SCS) configuration ⁇ DL and the uplink SCS configuration ⁇ UL provided by the parameter subcarrierSpacing in BWP-Downlink and BWP-Uplink for the active DL BWP and the active UL BWP, respectively.
  • the scheme for determining the set of candidate PDSCH receptions is as follows:
  • the main purpose of the formula is to ensure that there is no duplicated calculation of the DL slot if one DL slot overlaps with multiple UL sub-slots.
  • the definition of uplink sub-slot n U is in the unit of sub-slot instead of slot since the K1 set is in unit of sub-slot as well. Accordingly, the ratio between the downlink SCS configuration and the uplink SCS configuration is determined by where and represents the symbol number of each uplink slot.
  • the ratio represents the number of DL slots in an UL slot.
  • the ratio should be scaled by the number of sub-slots, i.e. the scale factor N, in an UL slot. Therefore, in order to guarantee the mapping relationship between UL sub-slot and DL slot properly, the ratio shall be
  • candidate PDSCH TDRA is determined.
  • the union set of row indexed of PDSCH TDRAs (Time Domain Resource Allocation) which are configured by DCI formats is determined.
  • the indexed row defines the slot offset K 0 , the start and length indicator SLIV (Start and length indicator value) , or directly the start symbol S and the allocation length L, and the PDSCH mapping type to be assumed in the PDSCH reception.
  • the present disclosure focuses on the TDRA grouping and the related pseudo-code which is specified in the 3GPP protocol TS 38.213 is as follows:
  • the TDRA grouping is slot-based. For the determined DL slot, each TDRA group generates a corresponding HARQ-ACK bit, in order to construct a Type-1 HARQ-ACK codebook. For sub-slot based Type-1 HARQ-ACK codebook, this mechanism is not applicable, since the configured TDRA indexed row may overlap with two sub-slots or more.
  • TDRA grouping is performed based on slot level, i.e. the existing TDRA grouping method, the groups will be group ⁇ #1, #5, #6 ⁇ , group ⁇ #2, #7 ⁇ , group ⁇ #3 ⁇ and group ⁇ #4, #8 ⁇ , which generates 4 bits for feedback. If TDRA grouping is performed based on sub-slot level, i.e.
  • the groups will be group ⁇ #1, #5, #6 ⁇ , group ⁇ #2 ⁇ in the sub-slot1, group ⁇ #3, #7 ⁇ , group ⁇ #4, #8 ⁇ in the sub-slot2, which will also generate 4 bits for feedback. It seems the signaling overhead of both methods are almost the same. However, no matter which method is used for the HARQ-ACK codebook, this may lead to a significant signaling overhead and the situation may become more serious when 2 symbols are used as sub-slot length.
  • the present disclosure proposes to modify the existing TDRA grouping method.
  • the TDRA grouping should follow the ending symbol of each sub-slot instead of the existing method.
  • the TDRA indexed row if the first symbol does not exceed the ending symbol of the corresponding sub-slot, the TDRA indexed row which meet this condition belongs to one TDRA group.
  • the number of TDRA groups is determined by the sub-slot number of each slot, which could reduce the signaling overhead significantly. For example, in Fig. 2, if TDRA grouping method illustrated above is performed, i.e. the existing TDRA grouping method, the groups will be group ⁇ #1, #5, #6, #7 ⁇ in sub-slot1, group ⁇ #3, #4, #8 ⁇ in sub-slot 2, which generates 2 bits for feedback.
  • the base station 200 also sets a sub-slot number threshold SubSlotNumTh which could be indicated by RRC parameter or DCI format.
  • the sub-slot number threshold SubSlotNumTh is configurable. According to the embodiment of the present disclosure, in response to the number of sub-slot in one uplink slot larger than the sub-slot number threshold SubSlotNumTh, the UE 10 enables the TDRA grouping which is determined by the number of sub-slot saving more signalling overhead. In response to the number of sub-slot in one uplink slot less than the sub-slot number threshold SubSlotNumTh, the slot based or sub-slot based TDRA grouping could be performed by the UE 10.
  • the UE 10 in response to the number of sub-slot in one uplink slot larger than the sub-slot number threshold SubSlotNumTh, the UE 10 enables the slot based TDRA grouping method.
  • the sub-slot based TDRA grouping method could be performed by the UE 10.
  • the HARQ-ACK codebook is generated for PDSCH (not including SPS PDSCH) .
  • SPS semi persistent scheduling
  • the sub-slot based Type-1 HARQ-ACK codebook is repeatedly determined in response to each one of sub-slots of each uplink slot.
  • the procedures in the above pseudo-code should be repeated for each sub-slot, and each sub-slot, if any, relates to one HARQ-ACK codebook.
  • the sub-slot number of each uplink slot should be considered in the pseudo-code for SPS HARQ-ACK codebook.
  • An example is shown in the following pseudo-code:
  • the current sub-slot m is configured to transmit PUCCH with the corresponding HARQ-ACK feedback
  • the solutions above could be specifically used for URLLC and/or eMBB and/or any other traffic type, and any combinations of the solutions above could be possible.
  • Fig. 5 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • Fig. 10 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
  • RF radio frequency
  • the processing unit 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the UE, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the processing unit.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the processing unit, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
  • Embodiments of the disclosure are provided to a method of improving HARQ-ACK feedback operable in a user equipment includes: triggering a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from a base station; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  • UL active uplink
  • BWP bandwidth part
  • PUCCH physical uplink control channel
  • the present disclosure proposes the determination of sub-slot based Type-1 HARQ-ACK codebook for several factors, such as the conditions for determine the candidate PDSCH occasions, the value range of the HARQ-ACK feedback timing, the HARQ-ACK codebook for SPS PDSCH, improving the HARQ-ACK feedback efficiency and latency.

Abstract

A method, a base station and a user equipment of improving HARQ-ACK feedback are provided. The method of improving HARQ-ACK feedback operable in a user equipment includes: triggering a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from a base station; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP), a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP. The present disclosure improves the HARQ-ACK feedback efficiency and latency.

Description

Method of Improving HARQ-ACK Feedback by Determining Sub-slot Based Type-1 HARQ-ACK Codebook, Base Station and User Equipment Technical Field
The present disclosure relates to the field of communication systems, and more particularly, to a method of improving HARQ-ACK Feedback by determining a sub-slot based Type-1 HARQ-ACK codebook, a base station and a user equipment.
Background Art
Wireless communication systems and networks have developed towards being a broadband and mobile system. In cellular wireless communication systems, user equipment (UE) is connected by a wireless link to a radio access network (RAN) . The RAN comprises a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control. As will be appreciated the RAN and CN each conduct respective functions in relation to the overall network. The 3rd Generation Partnership Project (3GPP) has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or more macro-cells are supported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (New Radio) systems where one or more cells are supported by a base station known as a gNB.
Ultra-reliable low-latency communication (URLLC) , is one of several different types of use cases supported by the 5G NR standard, as stipulated by 3GPP Release 15. URLLC is a communication service for successfully delivering packets with stringent requirements, particularly in terms of availability, latency, and reliability. URLLC is developed to support the emerging applications and services, such as wireless control and automation in industrial factory environments, inter-vehicular communications for improved safety and efficiency, and the tactile internet. Thus, URLLC is important for 5G as it supports verticals bringing new business to the whole telecommunication industry.
One of the key features of URLLC is the low latency. Low latency is important for gadgets that, say, drive themselves, or perform prostate surgeries. Low latency allows a network to be optimized for processing incredibly large amounts of data with minimal delay (or, latency) . The networks need to adapt to a broad amount of changing data in real time. 5G will enable this service to function. URLLC is, arguably, the most promising addition to upcoming 5G capabilities, but it will also be the hardest to secure; URLLC requires a quality of service (QoS) totally different from mobile broadband services. It will provide networks with instantaneous and intelligent systems, though it will require transitioning out of the core network.
This new URLLC wireless connectivity will guarantee latency to be 1ms or less. In order for this interface to achieve low latency, all the devices have to synchronize to the same time-base. Time-sensitive  networking is another component of the 5G URLLC capabilities. This will allow the shapers used for managing traffic to be time aware.
The design of a low-latency and high-reliability service involves several components: Integrated frame structure, incredibly fast turnaround, efficient control and data resource sharing, grant-free based uplink transmission, and advanced channel coding schemes. Uplink grant-free structures guarantee a reduction in user equipment (UE) latency transmission through avoiding the middle-man process of acquiring a dedicated scheduling grant.
Technical Problem
Both Type-1 HARQ-ACK codebook and Type-2 HARQ-ACK codebook are supported in previous releases, and sub-slot based HARQ-ACK feedback is supported to reduce the latency. However, the sub-slot based HARQ-ACK codebook is only introduced for the Type-2 HARQ-ACK codebook in Rel-16. For Type-1 HARQ-ACK codebook, Type-1 HARQ-ACK codebook for sub-slot based PUCCH configuration is supported. Compared with Type-2 HARQ-ACK codebook, Type-1 HARQ-ACK codebook can provide robustness against missed DCI transmissions, which is beneficial for high reliable URLLC services. Slot-based TDRA grouping mechanism is also proposed for calculation of PDSCH candidate occasions. Nevertheless, modification only for this point is not enough for the sub-slot based Type-1 HARQ-ACK codebook. A complete mechanism for the determination of sub-slot based Type-1 HARQ-ACK codebook is required.
Technical Solution
An objective of the present disclosure is to propose a method, a user equipment (UE) and a base station (BS) of improving HARQ-ACK Feedback by determining a sub-slot based Type-1 HARQ-ACK codebook.
A first aspect of the disclosure provides a method of improving HARQ-ACK feedback operable in a user equipment includes: triggering a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from a base station; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
A second aspect of the disclosure provides a base station. The user equipment includes a transceiver and a processor connected with the transceiver. The transceiver is used to receive a triggering parameter. The processor is configured to execute the following operations comprising: triggering a sub-slot based Type-1 HARQ-ACK codebook based on the triggering parameter, and determining the sub-slot  based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
A third aspect of the disclosure provides a method of improving HARQ-ACK feedback operable in a base station. The base station transmits, to a user equipment, a triggering parameter to trigger a sub-slot based Type-1 HARQ-ACK codebook, wherein the user equipment performs operations comprising: upon receiving the triggering parameter, triggering the sub-slot based Type-1 HARQ-ACK codebook; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
A fourth aspect of the disclosure provides a base station. The base station is configured to transmit, to a user equipment, a triggering parameter to trigger a sub-slot based Type-1 HARQ-ACK codebook. The user equipment performs operations comprising: upon receiving the triggering parameter, triggering the sub-slot based Type-1 HARQ-ACK codebook; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
The disclosed method may be implemented in a chip. The chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be programmed as computer executable instructions stored in non-transitory computer readable medium. The non-transitory computer readable medium, when loaded to a computer, directs a processor of the computer to execute the disclosed method.
The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
The disclosed method may be programmed as computer program product, that causes a computer to execute the disclosed method.
The disclosed method may be programmed as computer program, that causes a computer to execute the disclosed method.
Advantageous Effects
According to embodiments of the present disclosure, a method of improving HARQ-ACK feedback operable in a user equipment includes: triggering a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from a base station; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP. The present disclosure proposes the determination of sub-slot based Type-1 HARQ-ACK codebook for several factors, such as the conditions for determine the candidate PDSCH occasions, the value range of the HARQ-ACK feedback timing, the HARQ-ACK codebook for SPS PDSCH, improving the HARQ-ACK feedback efficiency and latency.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
Fig. 1 is a schematic diagram showing a system according to an embodiment of the present disclosure.
Fig. 2 illustrates a flowchart of a method of improving HARQ-ACK feedback operable in the UE 10 according to an embodiment of the present disclosure.
Fig. 3 illustrates a flowchart of the block 202 depicted in Fig. 2 according to an embodiment of the present disclosure.
Fig. 4 illustrates an example of eight TDRA indexed rows within one slot, and this slot is configured with 2 sub-slots.
Fig. 5 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
HARQ feedback enhancements-Relevant 3GPP Agreements
According to the topic about HARQ-ACK feedback enhancements for URLLC/IIOT, several related agreements are introduced as follows:
Agreements (RAN1#96b) :
For sub-slot based HARQ-ACK feedback procedure, K1 is the number of sub-slots from the sub-slot containing the end of PDSCH to the sub-slot containing the start of PUCCH.
Use UL numerology to define the sub-slot grid for PDSCH-to-sub-slot association.
FFS: The configurable value range of K1 needs to be extended, and impact to related DCI field bitwidth.
Agreements (RAN1#96b) :
For sub-slot based HARQ-ACK feedback procedure, the starting symbol of a PUCCH resource is defined with respect to the first symbol of sub-slot.
For a given sub-slot configuration, a UE can be configured with PUCCH resource set (s) 
FFS same or different PUCCH resource sets can be configured for different sub-slots within a slot. Agreements (RAN1#104b) :
Support Type-1 HARQ-ACK codebook for sub-slot based PUCCH configuration in Rel-17.
The properties of the Type-1 HARQ-ACK codebook for sub-slot PUCCH at least includes that a PDSCH TDRA is associated with a UL /PUCCH sub-slot if the end of the PDSCH overlaps with the associated sub-slot determined by a k1 in the set of sub-slot timing values K1.
Decide between PDSCH TDRA grouping per DL slot and sub-slot during RAN1#105-e
With reference to Fig. 1, a telecommunication system including a UE 10, a base station 200, and a network entity device 30. Connections between devices and device components are shown as lines and arrows in the Figs. The UE 10 may include a processor 11, a memory 12, and a transceiver 13. The base station 200 may include a processor 201, a memory 202, and a transceiver 203. The network entity device 300 may include a processor 301, a memory 302, and a transceiver 303. Each of the  processors  11, 201, and 301 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the  processors  11a, 201, and 301. Each of the  memory  12, 202, and 302 operatively stores a variety of program and information to operate a connected processor. Each of the  transceiver  13, 203, and 303 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals. Each of the base station 200 may be an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10.
Each of the  processor  11, 201, and 301 may include an application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices. Each of the  memory  12a, 202, and 302 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. Each of the  transceiver  13a, 203, and 303 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules, procedures, functions, entities and so on, that perform the functions described herein. The modules  can be stored in a memory and executed by the processors. The memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
The network entity device 300 may be a node in a CN. CN may include LTE CN or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
In 5G NR, 3GPP specification has defined Hybrid automatic repeat request (HARQ) codebook to provide the feedback to the base station 200 for downlink data transmission i.e., physical downlink shared channel (PDSCH) Data. The UE 10 sends the ACK/NACK for corresponding PDSCH in physical uplink shared channel (PUSCH) /physical uplink control channel (PUCCH) . A codebook is a sequence of bits, which is constructed using ACK/NACK feedback of multiple PDSCH reception for configured time window. 3GPP has defined two types of HARQ codebooks. Type 1 codebook is a fixed size codebook provided by the base station 200 via RRC Signaling. Type 2 codebook has dynamic size and changes according to resource allocation. Furthermore, to reduce the feedback latency, the concept of sub-slot is introduced, which is a scheduling unit with time duration less than one slot. At least two sub-slot configurations for PUCCH: “2-symbol*7” and “7-symbol*2” are supported. That is, one slot is divided into seven sub-slots each of which has two symbols, or one is divided into two sub-slots each of which has seven symbols.
A sub-slot based Type-1 HARQ-ACK codebook, supported in Release 17, is provided for reliability, especially for URLLC, because the Type-1 HARQ-ACK codebook is more robust compared to the Type-2 HARQ-ACK codebook. In this disclosure, alternative embodiments are proposed for sub-slot based Type-1 HARQ-ACK codebook in three directions.
Please refers to Fig. 1 and Fig. 2. Fig. 2 illustrates a flowchart of a method of improving HARQ-ACK feedback operable in the UE 10 according to an embodiment of the present disclosure. The method includes:
Block 201: Trigger a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from the base station;
Block 202: Determine a construction of the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot PUCCH in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
At block 201, the UE 10 triggers a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from the base station 200. To make sure the compatibility with existing releases and adapt to the UE 10 with different capabilities, the sub-slot based Type-1 HARQ-ACK codebook shall be configurable. In the present disclosure, several options for enabling/disabling a sub-slot based Type-1 HARQ-ACK codebook are provided as follows.
Option 1: RRC configuration
Regarding the RRC configuration for enabling or disabling sub-slot based Type-1 HARQ-ACK codebook, there is no information misalignment between the base station 200 and the UE 10, since there is no missed downlink control information (DCI) .
The first alternative solution is that the base station 200 sets the RRC parameter subslotLengthForPUCCH for sub-slot length indication which could save more signaling overhead. The Information Element (IE) of PUCCH-Config is used to configure UE specific PUCCH parameters. According to the present embodiment, the RRC parameter subslotLengthForPUCCH configured in the IE of PUCCH-Config indicates the sub-slot length for sub-slot based PUCCH feedback in number of symbols, e.g. each sub slot has two symbols. At the same time, in response to receiving and detecting the triggering parameter configured, e.g. the RRC parameter subslotLengthForPUCCH , the UE 10 enables the sub-slot based Type-1 HARQ-ACK codebook. If the RRC parameter subslotLengthForPUCCH is not provided to the UE 10, it means sub-slot based Type-1 HARQ-ACK codebook is disabled.
The second alternative solution is that the base station 200 sets a new triggering parameter SubSlotHARQCodebook, which may provide more flexibility for the configuration. The triggering parameter SubSlotHARQCodebook could be configured in the IE of PUCCH-Config or other IE. Upon receiving and detecting the triggering parameter SubSlotHARQCodebook, the UE 10 enables the sub-slot based Type-1 HARQ-ACK codebook in response to a present of the triggering parameter SubSlotHARQCodebook. In response to an absence of the triggering parameter SubSlotHARQCodebook, the UE 10 disables the sub-slot based Type-1 HARQ-ACK codebook or the sub-slot based Type-1 HARQ-ACK codebook is not supported.
Option2: DCI indication
For third alternative solution, the enabling/disabling indication for sub-slot based Type-1 HARQ-ACK codebook could be indicated by DCI format. This may lead to less information transmission delay and is more targeted. In this embodiment, a 1-bit triggering parameter SubSlotHARQCodebook could be introduced and indicated by DCI format. There is no restriction on configuration format in this disclosure. For example, when the triggering parameter SubSlotHARQCodebook is configured with 0, the sub-slot based Type-1 HARQ-ACK codebook is enabled. when the triggering parameter SubSlotHARQCodebook is  configured with 1, then the UE 10 disables the sub-slot based Type-1 HARQ-ACK codebook or the sub-slot based Type-1 HARQ-ACK codebook is not supported.
Option3: Combination of option1 and 2
The fourth alternative solution combines the two options above. This may lead to more reliability and be more flexible to accommodate different scenarios. Different UEs 10 may have different capability or do not require low latency performance. Therefore, sub-slot based Type-1 HARQ-ACK codebook is not necessary for these cases. Enabling the sub-slot based Type-1 HARQ-ACK codebook could be configured by RRC parameter, and triggered by DCI format. For example, when the triggering parameter subslotLengthForPUCCH is indicated by RRC parameter, the sub-slot length for sub-slot based PUCCH feedback in number of symbols is indicated. And the sub-slot based Type-1 HARQ-ACK codebook is triggered by DCI format, which means if the RRC parameter is configured and the sub-slot based Type-1 HARQ-ACK codebook is not triggered by DCI format, the sub-slot based Type-1 HARQ-ACK codebook should not be performed.
At block 202, the UE 10 determines a construction of the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
Regarding the construction of Type-1 HARQ-ACK codebook, the first step is the determination of a set of candidate PDSCH occasions, which is represented by M A, c. And the determination of set M A, c is based on five factors: 1) A set of slot timing values K1 associated with the active UL BWP; 2) The ratio 
Figure PCTCN2021105317-appb-000001
between the downlink SCS configuration μ DL and the uplink SCS configuration μ UL; 3) A set of row indexes R of a table that is associated with the active DL BWP; 4) The TDD configuration which may be indicated by tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated; and 5) The configuration of ca-SlotOffset.
Fig. 3 illustrates a flowchart of the block 202 according to an embodiment of the present disclosure. In this disclosure, the UE 10 selects several factors to determine the sub-slot based Type-1 HARQ-ACK codebook. Accordingly, the block 202 includes:
Block 2021: Determine K1 set;
Block 2022: Determine the ratio between the downlink Sub Carrier Spacing (SCS) configuration and the uplink SCS configuration; and
Block 2023: Determine candidate PDSCH TDRA.
In 3GPP previous releases, if the UE 10 is configured with PDSCH, and the PDSCH is received in slot n, then the UE transmits PUCCH with HARQ-ACK for this PDSCH in slot n+k1, where k1 is a number of slots indicated by the PDSCH-to-HARQ_feedback timing indicator field in a corresponding DCI format or provided by dl-DataToUL-ACK or dl-DataToUL-ACKForDCIFormat1_2 for DCI format 1_2 if the PDSCH-to-HARQ_feedback timing indicator field is not present in the DCI format. The parameter dl-DataToUL-ACK and dl-DataToUL-ACKForDCIFormat1_2 indicate the list of timing for given PDSCH to the HARQ-ACK. In this disclosure, k1 is a number of sub-slots.
At block 2021, K1 set is determined. Regarding the first factor of Type-1 HARQ-ACK codebook, the K1 set of slot timing values k1 are the number of sub-slots from the sub-slot containing the end of PDSCH to the sub-slot containing the start of PUCCH. In this embodiment, the maximum value in K1 set needs to be updated. If the sub-slot based K1 set is applied, the HARQ-ACK feedback timing is difficult to satisfy the PDSCH processing time. That is, the maximum value as specified in the current protocol is not sufficient for the sub-slot based K1 set. Therefore, the maximum value in K1 set should take the sub-slot number of one slot into account.
On the basis of the existing protocol, assuming that the value of HARQ-ACK feedback timing in K1 set is a M-bit number, then the maximum value of HARQ-ACK feedback timing in K1 set should be 2 M-1. In contrast, according to the embodiment of the present disclosure, for the sub-slot based K1 set, the maximum value of HARQ-ACK feedback timing in K1 set could be 2 M×N-1 where N is a configurable scale factor. The scale factor N could be configured by RRC parameter or DCI format, or calculated other parameters. For example, the scale factor
Figure PCTCN2021105317-appb-000002
and
Figure PCTCN2021105317-appb-000003
represents the symbol number of each slot. Therefore, the maximum value defied in dl-DataToUL-ACK of 3GPP TS 38.331 protocol is not exceed 15 (= 2 4-1) . In this case, for sub-slot based K1 set, the maximum value of K1 could be:
dl-DataToUL-ACK SEQUENCE (SIZE (1.. 8) ) OF INTEGER (0 .. 2 4×N-1)
For instance, if each slot is configured with 2 sub-slots, then the maximum value of k1 could be 31 (= 2 4×2-1) . The indication for sub-slot based K1 set could reuse the existing parameter, for example, dl-DataToUL-ACK, or introduce another new parameter for sub-slot indication only. There is no restriction in this disclosure, however, the maximum value in K1 set should follow the description above.
At block 2022, the ratio between the downlink Sub Carrier Spacing (SCS) configuration and the uplink SCS configuration is determined. Regarding the second factor of Type-1 HARQ-ACK codebook, in order to  support sub-slot based Type-1 HARQ-ACK codebook properly, it is necessary to take into account that the timing for sub-slot HARQ-ACK is based on sub-slot instead of slot. The number of sub-slots in an UL slot should be taken into account for calculating the ratio between the downlink (SCS) configuration μ DL and the uplink SCS configuration μ UL provided by the parameter subcarrierSpacing in BWP-Downlink and BWP-Uplink for the active DL BWP and the active UL BWP, respectively.
According to the present disclosure, the scheme for determining the set of candidate PDSCH receptions is as follows:
Figure PCTCN2021105317-appb-000004
The main purpose of the formula
Figure PCTCN2021105317-appb-000005
is to ensure that there is no duplicated calculation of the DL slot if one DL slot overlaps with multiple UL sub-slots. The definition of uplink sub-slot n U is in the unit of sub-slot instead of slot since the K1 set is in unit of sub-slot as well. Accordingly, the ratio between the downlink SCS configuration and the uplink SCS configuration is determined by
Figure PCTCN2021105317-appb-000006
where
Figure PCTCN2021105317-appb-000007
and
Figure PCTCN2021105317-appb-000008
represents the symbol number of each uplink slot.
In addition, the ratio
Figure PCTCN2021105317-appb-000009
represents the number of DL slots in an UL slot. In this disclosure, the ratio
Figure PCTCN2021105317-appb-000010
should be scaled by the number of sub-slots, i.e. the scale factor N, in an UL slot. Therefore, in order to guarantee the mapping relationship between UL sub-slot and DL slot properly, the ratio shall be
Figure PCTCN2021105317-appb-000011
At block 2023, candidate PDSCH TDRA is determined. For the third factor of Type-1 HARQ-ACK codebook construction, the union set of row indexed of PDSCH TDRAs (Time Domain Resource Allocation) which are configured by DCI formats is determined. The indexed row defines the slot offset K 0, the start and length indicator SLIV (Start and length indicator value) , or directly the start symbol S and the allocation length L, and the PDSCH mapping type to be assumed in the PDSCH reception. The present disclosure focuses on the TDRA grouping and the related pseudo-code which is specified in the 3GPP protocol TS 38.213 is as follows:
……
Figure PCTCN2021105317-appb-000012
Figure PCTCN2021105317-appb-000013
In recent 3GPP protocol, the TDRA grouping is slot-based. For the determined DL slot, each TDRA group generates a corresponding HARQ-ACK bit, in order to construct a Type-1 HARQ-ACK codebook. For sub-slot based Type-1 HARQ-ACK codebook, this mechanism is not applicable, since the configured TDRA indexed row may overlap with two sub-slots or more.
With reference to Fig. 4, in an example of eight TDRA indexed rows within one slot, and this slot is configured with 2 sub-slots. The Row#7 overlaps with both sub-slot 1 and sub-slot 2. If TDRA grouping is performed based on slot level, i.e. the existing TDRA grouping method, the groups will be group {#1, #5, #6} , group {#2, #7} , group {#3} and group {#4, #8} , which generates 4 bits for feedback. If TDRA grouping is performed based on sub-slot level, i.e. TDRA grouping per sub-slot, assuming that there are 7 symbols per sub-slot, the groups will be group {#1, #5, #6} , group {#2} in the sub-slot1, group {#3, #7} , group {#4, #8} in the sub-slot2, which will also generate 4 bits for feedback. It seems the signaling overhead of both methods are almost the same. However, no matter which method is used for the HARQ-ACK codebook, this may lead to a significant signaling overhead and the situation may become more serious when 2 symbols are used as sub-slot length.
Therefore, the present disclosure proposes to modify the existing TDRA grouping method. When sub-slot based HARQ-ACK codebook is configured, the TDRA grouping should follow the ending symbol of each sub-slot instead of the existing method. For each configured TDRA indexed row, if the first symbol does not exceed the ending symbol of the corresponding sub-slot, the TDRA indexed row which meet this condition belongs to one TDRA group. In this case, the number of TDRA groups is determined by the sub-slot number of each slot, which could reduce the signaling overhead significantly. For example, in Fig. 2,  if TDRA grouping method illustrated above is performed, i.e. the existing TDRA grouping method, the groups will be group {#1, #5, #6, #7} in sub-slot1, group {#3, #4, #8} in sub-slot 2, which generates 2 bits for feedback.
To accommodate different situations, the base station 200 also sets a sub-slot number threshold SubSlotNumTh which could be indicated by RRC parameter or DCI format. The sub-slot number threshold SubSlotNumTh is configurable. According to the embodiment of the present disclosure, in response to the number of sub-slot in one uplink slot larger than the sub-slot number threshold SubSlotNumTh, the UE 10 enables the TDRA grouping which is determined by the number of sub-slot saving more signalling overhead. In response to the number of sub-slot in one uplink slot less than the sub-slot number threshold SubSlotNumTh, the slot based or sub-slot based TDRA grouping could be performed by the UE 10.
According to another embodiment of the present disclosure, in response to the number of sub-slot in one uplink slot larger than the sub-slot number threshold SubSlotNumTh, the UE 10 enables the slot based TDRA grouping method. In response to the number of sub-slot in one uplink slot less than the sub-slot number threshold SubSlotNumTh, the sub-slot based TDRA grouping method could be performed by the UE 10.
Based on the existing protocol, the HARQ-ACK codebook is generated for PDSCH (not including SPS PDSCH) . In order to update the granularity of calculation from slot to sub-slot, most of the steps that need to be modified focus on the procedures for candidate PDSCH determination. The Type-1 HARQ-ACK codebook determination should follow the pseudo-code with the result of the candidate PDSCH determination. However, the HARQ-ACK codebook corresponding to semi persistent scheduling (SPS) PDSCH, the construction is different. SPS is the mechanism in which the PDSCH transmission is scheduled by RRC message. The purpose for introducing sub-slot based HARQ-ACK codebook is to reduce the feedback latency. According to the embodiment of the present disclosure, in order to apply the sub-slot based HARQ-ACK codebook for SPS PDSCH, the sub-slot based Type-1 HARQ-ACK codebook is repeatedly determined in response to each one of sub-slots of each uplink slot. In other word, the procedures in the above pseudo-code should be repeated for each sub-slot, and each sub-slot, if any, relates to one HARQ-ACK codebook.
For another alternative solution, on the basis of the determination mechanism for candidate PDSCH occasions, the sub-slot number of each uplink slot should be considered in the pseudo-code for SPS HARQ-ACK codebook. An example is shown in the following pseudo-code:
Set
Figure PCTCN2021105317-appb-000014
to the number of serving cells configured to the UE
Set
Figure PCTCN2021105317-appb-000015
to the number of SPS PDSCH configuration configured to the UE for serving cell c
Set
Figure PCTCN2021105317-appb-000016
to the number of DL slots for SPS PDSCH reception on serving cell c with HARQ-ACK information multiplexed on the PUCCH
Set
Figure PCTCN2021105317-appb-000017
to the number of sub-slots of each uplink slot
Set j=0 –HARQ-ACK information bit index
Set c=0 –serving cell index: lower indexes correspond to lower RRC indexes of corresponding cell
Set m=0 –sub-slot index: lower indexes correspond to lower sub-slot indexes of corresponding uplink slot in time domain
while
Figure PCTCN2021105317-appb-000018
if the current sub-slot m is configured to transmit PUCCH with the corresponding HARQ-ACK feedback
Figure PCTCN2021105317-appb-000019
Figure PCTCN2021105317-appb-000020
The solutions above could be specifically used for URLLC and/or eMBB and/or any other traffic type, and any combinations of the solutions above could be possible.
Fig. 5 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. Fig. 10 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
The processing unit 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry. In various embodiments, the baseband circuitry 720  may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the UE, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitries, the baseband circuitry, and/or the processing unit. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the processing unit, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory. In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite. In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile  computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other  kinds of media capable of storing program codes.
Embodiments of the disclosure are provided to a method of improving HARQ-ACK feedback operable in a user equipment includes: triggering a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from a base station; and determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP. The present disclosure proposes the determination of sub-slot based Type-1 HARQ-ACK codebook for several factors, such as the conditions for determine the candidate PDSCH occasions, the value range of the HARQ-ACK feedback timing, the HARQ-ACK codebook for SPS PDSCH, improving the HARQ-ACK feedback efficiency and latency.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (56)

  1. A method of improving HARQ-ACK feedback operable in a user equipment (UE) , comprising:
    triggering a sub-slot based Type-1 HARQ-ACK codebook based on a triggering parameter transmitted from a base station; and
    determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  2. The method of claim 1, wherein the triggering parameter is a radio resource control (RRC) parameter subslotLengthForPUCCH, and the triggering the sub-slot based Type-1 HARQ-ACK codebook based on the triggering parameter further comprises:
    enabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthForPUCCH is configured in an RRC configuration transmitted from the base station, wherein the RRC parameter subslotLengthForPUCCH indicates the sub-slot length for sub-slot based PUCCH feedback in number of symbols; and
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthForPUCCH is not configured in the RRC configuration.
  3. The method of claim 2, wherein the RRC parameter subslotLengthForPUCCH is configured in an Information Element (IE) of PUCCH-Config.
  4. The method of claim 1, wherein the triggering parameter SubSlotHARQCodebook indicates an enablement or disablement of the sub-slot based Type-1 HARQ-ACK codebook, and the triggering the sub-slot based Type-1 HARQ-ACK codebook based on the triggering parameter further comprises:
    enabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the triggering parameter SubSlotHARQCodebook is present; and
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the triggering parameter SubSlotHARQCodebook is absent.
  5. The method of claim 4, wherein the triggering parameter is configured in an Information Element (IE) of PUCCH-Config.
  6. The method of claim 4, wherein the triggering parameter is configured in a downlink control information (DCI) .
  7. The method of claim 2, further comprising:
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthforPUCCH is configured in the RRC configuration and a parameter SubSlotHARQCodebook configured in an Information Element of PUCCH-Config is absent.
  8. The method of claim 1, wherein the slot timing value is a M-bit number, and a maximum value of the slot timing values is 2 M*N-1, and the scale factor N is determined by
    Figure PCTCN2021105317-appb-100001
    where
    Figure PCTCN2021105317-appb-100002
    represents the symbol number of each uplink slot and subslotLengthforPUCCH represents the sub-slot length for sub-slot based PUCCH in number of symbols.
  9. The method of claim 8, wherein setting the set of rows upon a condition that a following formula is satisfied:
    Figure PCTCN2021105317-appb-100003
    where μ DL represents the downlink SCS configuration, μ UL represents the uplink SCS configuration, n U represent uplink sub-slot and K 1, k represents index of the slot timing values.
  10. The method of claim 1, wherein the sub-slot based Type-1 HARQ-ACK codebook is repeatedly determined in response to each one of sub-slots of each uplink slot.
  11. The method of claim 1, wherein the determining a construction of the sub-slot based Type-1 HARQ-ACK codebook comprises:
    if the number of sub-slots in one uplink slot is larger than a sub-slot number threshold, enabling a time domain resource allocation (TDRA) grouping based on the number of sub-slot; and
    if the number of sub-slot in one uplink slot is less than the sub-slot number threshold, performing the slot based or sub-slot based TDRA grouping.
  12. The method of claim 1, wherein the determining a construction of the sub-slot based Type-1 HARQ- ACK codebook comprises:
    if the number of sub-slot in one uplink slot is larger than a sub-slot number threshold, enabling the slot based TDRA grouping; and
    if the number of sub-slot in one uplink slot is less than the sub-slot number threshold, performing the sub-slot based TDRA grouping.
  13. A user equipment, comprising:
    a transceiver, configured to receive a triggering parameter transmitted from a base station; and
    a processor, connected with the transceiver and configured to execute the following operations comprising:
    triggering a sub-slot based Type-1 HARQ-ACK codebook based on the triggering parameter; and
    determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  14. The user equipment claim 13, wherein the triggering parameter is a radio resource control (RRC) parameter subslotLengthForPUCCH, and the triggering the sub-slot based Type-1 HARQ-ACK codebook based on the triggering parameter further comprises:
    enabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthForPUCCH is configured in an RRC configuration transmitted from the base station, wherein the RRC parameter subslotLengthForPUCCH indicates the sub-slot length for sub-slot based PUCCH feedback in number of symbols; and
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthForPUCCH is not configured in the RRC configuration.
  15. The user equipment claim 14, wherein the RRC parameter subslotLengthForPUCCH is configured in an Information Element (IE) of PUCCH-Config.
  16. The user equipment claim 13, wherein the triggering parameter SubSlotHARQCodebook indicates an enablement or disablement of the sub-slot based Type-1 HARQ-ACK codebook, and the triggering the sub-slot based Type-1 HARQ-ACK codebook based on the triggering parameter further comprises:
    enabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the triggering parameter SubSlotHARQCodebook is present; and
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the triggering parameter SubSlotHARQCodebook is absent.
  17. The user equipment claim 16, wherein the triggering parameter is configured in an Information Element (IE) of PUCCH-Config.
  18. The user equipment claim 16, wherein the triggering parameter is configured in a downlink control information (DCI) .
  19. The user equipment claim 14, further comprising:
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthforPUCCH is configured in the RRC configuration and a parameter SubSlotHARQCodebook configured in an Information Element of PUCCH-Config is absent.
  20. The user equipment claim 13, wherein the slot timing value is a M-bit number, and a maximum value of the slot timing values is 2 M*N-1, and the scale factor N is determined by
    Figure PCTCN2021105317-appb-100004
    where
    Figure PCTCN2021105317-appb-100005
    represents the symbol number of each uplink slot and subslotLengthforPUCCH represents the sub-slot length for sub-slot based PUCCH in number of symbols.
  21. The user equipment claim 20, wherein setting the set of rows upon a condition that a following formula is satisfied:
    Figure PCTCN2021105317-appb-100006
    where μ DL represents the downlink SCS configuration, μ UL represents the uplink SCS configuration, n U represent uplink sub-slot and K 1, k represents index of the slot timing values.
  22. The user equipment claim 13, wherein the sub-slot based Type-1 HARQ-ACK codebook is repeatedly determined in response to each one of sub-slots of each uplink slot.
  23. The user equipment claim 13, wherein the determining a construction of the sub-slot based Type-1 HARQ-ACK codebook comprises:
    if the number of sub-slots in one uplink slot is larger than a sub-slot number threshold, enabling a time domain resource allocation (TDRA) grouping based on the number of sub-slot; and
    if the number of sub-slot in one uplink slot is less than the sub-slot number threshold, performing the slot based or sub-slot based TDRA grouping.
  24. The user equipment claim 13, wherein the determining a construction of the sub-slot based Type-1 HARQ-ACK codebook comprises:
    if the number of sub-slot in one uplink slot is larger than a sub-slot number threshold, enabling the slot based TDRA grouping; and
    if the number of sub-slot in one uplink slot is less than the sub-slot number threshold, performing the sub-slot based TDRA grouping.
  25. A method of improving HARQ-ACK feedback operable in a base station, comprising:
    transmitting, to a user equipment, a triggering parameter to trigger a sub-slot based Type-1 HARQ-ACK codebook, wherein the user equipment performs operations comprising:
    upon receiving the triggering parameter, triggering the sub-slot based Type-1 HARQ-ACK codebook; and
    determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  26. The method of claim 25, wherein the triggering parameter is a radio resource control (RRC) parameter subslotLengthForPUCCH, and the triggering the sub-slot based Type-1 HARQ-ACK codebook further comprises:
    enabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthForPUCCH is configured in an RRC configuration, wherein the RRC parameter subslotLengthForPUCCH indicates the sub-slot length for sub-slot based PUCCH feedback in number of symbols; and
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthForPUCCH is not configured in the RRC configuration.
  27. The method of claim 26, wherein the RRC parameter subslotLengthForPUCCH is configured in an Information Element (IE) of PUCCH-Config.
  28. The method of claim 25, wherein the triggering parameter SubSlotHARQCodebook indicates an enablement or disablement of the sub-slot based Type-1 HARQ-ACK codebook, and the triggering the sub-slot based Type-1 HARQ-ACK codebook further comprises:
    enabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the triggering parameter SubSlotHARQCodebook is present; and
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the triggering parameter SubSlotHARQCodebook is absent.
  29. The method of claim 28, wherein the triggering parameter is configured in an Information Element (IE) of PUCCH-Config.
  30. The method of claim 28, wherein the triggering parameter is configured in a downlink control information (DCI) .
  31. The method of claim 26, further comprising:
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthforPUCCH is configured in the RRC configuration and a parameter SubSlotHARQCodebook configured in an Information Element of PUCCH-Config is absent.
  32. The method of claim 25, wherein the slot timing value is a M-bit number, and a maximum value of the slot timing values is 2 M*N-1, and the scale factor N is determined by
    Figure PCTCN2021105317-appb-100007
    where
    Figure PCTCN2021105317-appb-100008
    represents the symbol number of each uplink slot and subslotLengthforPUCCH represents the sub-slot length for sub-slot based PUCCH in number of symbols.
  33. The method of claim 32, wherein setting the set of rows upon a condition that a following formula is satisfied:
    Figure PCTCN2021105317-appb-100009
    where μ DL represents the downlink SCS configuration, μ UL represents the uplink SCS configuration, n U represent uplink sub-slot and K 1, k represents index of the slot timing values.
  34. The method of claim 25, wherein the sub-slot based Type-1 HARQ-ACK codebook is repeatedly determined in response to each one of sub-slots of each uplink slot.
  35. The method of claim 25, wherein the determining a construction of the sub-slot based Type-1 HARQ-ACK codebook comprises:
    if the number of sub-slots in one uplink slot is larger than a sub-slot number threshold, enabling a time domain resource allocation (TDRA) grouping based on the number of sub-slot; and
    if the number of sub-slot in one uplink slot is less than the sub-slot number threshold, performing the slot based or sub-slot based TDRA grouping.
  36. The method of claim 25, wherein the determining a construction of the sub-slot based Type-1 HARQ-ACK codebook comprises:
    if the number of sub-slot in one uplink slot is larger than a sub-slot number threshold, enabling the slot based TDRA grouping; and
    if the number of sub-slot in one uplink slot is less than the sub-slot number threshold, performing the sub-slot based TDRA grouping.
  37. A base station comprising:
    a transceiver, configured to transmit, to a user equipment, a triggering parameter to trigger a sub-slot based Type-1 HARQ-ACK codebook, wherein the user equipment performs operations comprising:
    upon receiving the triggering parameter, triggering the sub-slot based Type-1 HARQ-ACK codebook; and
    determining the sub-slot based Type-1 HARQ-ACK codebook based on a set of sub-slot timing values associated with an active uplink (UL) bandwidth part (BWP) , a scale factor associated with a symbol number of each uplink slot and a sub-slot length for sub-slot based physical uplink control channel (PUCCH) in number of symbols, a ratio between a downlink Sub Carrier Spacing (SCS) configuration and a uplink SCS configuration, and a set of row indexes of a table that is associated with an active downlink (DL) BWP.
  38. The base station of claim 37, wherein the triggering parameter is a radio resource control (RRC) parameter subslotLengthForPUCCH, and the triggering the sub-slot based Type-1 HARQ-ACK codebook further comprises:
    enabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthForPUCCH is configured in an RRC configuration, wherein the RRC parameter subslotLengthForPUCCH indicates the sub-slot length for sub-slot based PUCCH feedback in number of symbols; and
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter  subslotLengthForPUCCH is not configured in the RRC configuration.
  39. The base station of claim 38, wherein the RRC parameter subslotLengthForPUCCH is configured in an Information Element (IE) of PUCCH-Config.
  40. The base station of claim 37, wherein the triggering parameter SubSlotHARQCodebook indicates an enablement or disablement of the sub-slot based Type-1 HARQ-ACK codebook, and the triggering the sub-slot based Type-1 HARQ-ACK codebook further comprises:
    enabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the triggering parameter SubSlotHARQCodebook is present; and
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the triggering parameter SubSlotHARQCodebook is absent.
  41. The base station of claim 40, wherein the triggering parameter is configured in an Information Element (IE) of PUCCH-Config.
  42. The base station of claim 40, wherein the triggering parameter is configured in a downlink control information (DCI) .
  43. The base station of claim 38, further comprising:
    disabling the sub-slot based Type-1 HARQ-ACK codebook upon a condition that the RRC parameter subslotLengthforPUCCH is configured in the RRC configuration and a parameter SubSlotHARQCodebook configured in an Information Element of PUCCH-Config is absent.
  44. The base station of claim 37, wherein the slot timing value is a M-bit number, and a maximum value of the slot timing values is 2 M*N-1, and the scale factor N is determined by
    Figure PCTCN2021105317-appb-100010
    where
    Figure PCTCN2021105317-appb-100011
    represents the symbol number of each uplink slot and subslotLengthforPUCCH represents the sub-slot length for sub-slot based PUCCH in number of symbols.
  45. The base station of claim 44, wherein setting the set of rows upon a condition that a following formula is satisfied:
    Figure PCTCN2021105317-appb-100012
    where μ DL represents the downlink SCS configuration, μ UL represents the uplink SCS configuration, n U represent uplink sub-slot and K 1, k represents index of the slot timing values.
  46. The base station of claim 37, wherein the sub-slot based Type-1 HARQ-ACK codebook is repeatedly determined in response to each one of sub-slots of each uplink slot.
  47. The base station of claim 37, wherein the determining a construction of the sub-slot based Type-1 HARQ-ACK codebook comprises:
    if the number of sub-slots in one uplink slot is larger than a sub-slot number threshold, enabling a time domain resource allocation (TDRA) grouping based on the number of sub-slot; and
    if the number of sub-slot in one uplink slot is less than the sub-slot number threshold, performing the slot based or sub-slot based TDRA grouping.
  48. The base station of claim 37, wherein the determining a construction of the sub-slot based Type-1 HARQ-ACK codebook comprises:
    if the number of sub-slot in one uplink slot is larger than a sub-slot number threshold, enabling the slot based TDRA grouping; and
    if the number of sub-slot in one uplink slot is less than the sub-slot number threshold, performing the sub-slot based TDRA grouping.
  49. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any of the methods of claims 1 to 12.
  50. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any of the methods of claims 25 to 36.
  51. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute any of the methods of claims 1 to 12.
  52. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute any of the methods of claims 25 to 36.
  53. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any of the methods of claims 1 to 12.
  54. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any of the methods of claims 25 to 36.
  55. A computer program, wherein the computer program causes a computer to execute any of the methods of claims 1 to 12.
  56. A computer program, wherein the computer program causes a computer to execute any of the methods of claims 25 to 36.
PCT/CN2021/105317 2021-07-08 2021-07-08 Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment WO2023279339A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/105317 WO2023279339A1 (en) 2021-07-08 2021-07-08 Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment
CN202180100343.3A CN117693915A (en) 2021-07-08 2021-07-08 Method, base station and user equipment for improving HARQ-ACK feedback based on sub-slot 1 type codebook

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105317 WO2023279339A1 (en) 2021-07-08 2021-07-08 Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment

Publications (1)

Publication Number Publication Date
WO2023279339A1 true WO2023279339A1 (en) 2023-01-12

Family

ID=84801152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105317 WO2023279339A1 (en) 2021-07-08 2021-07-08 Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment

Country Status (2)

Country Link
CN (1) CN117693915A (en)
WO (1) WO2023279339A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11962421B2 (en) 2020-09-25 2024-04-16 Wilus Institute Of Standards And Technology Inc. Method, apparatus, and system for generating HARQ-ACK codebook in wireless communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096438A1 (en) * 2018-11-11 2020-05-14 주식회사 윌러스표준기술연구소 Method for generating harq-ack codebook in wireless communication system and device using same
WO2020167914A1 (en) * 2019-02-13 2020-08-20 Idac Holdings, Inc. Harq-ack codebook adaptation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096438A1 (en) * 2018-11-11 2020-05-14 주식회사 윌러스표준기술연구소 Method for generating harq-ack codebook in wireless communication system and device using same
WO2020167914A1 (en) * 2019-02-13 2020-08-20 Idac Holdings, Inc. Harq-ack codebook adaptation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining issues on UCI enhancements", 3GPP DRAFT; R1-2000528, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 15 February 2020 (2020-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051853352 *
CATT: "Remaining issues on UCI enhancements", 3GPP DRAFT; R1-2002083, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875440 *
CATT: "UE feedback enhancements for HARQ-ACK", 3GPP DRAFT; R1-2007849, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946528 *
SAMSUNG: "Remaining issues for UCI enhancements", 3GPP DRAFT; R1-2002132, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875457 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11962421B2 (en) 2020-09-25 2024-04-16 Wilus Institute Of Standards And Technology Inc. Method, apparatus, and system for generating HARQ-ACK codebook in wireless communication system

Also Published As

Publication number Publication date
CN117693915A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
US20210250159A1 (en) Resource configuration method and apparatus
WO2022073486A1 (en) Harq processing method, user equipment, and base station
US20220174720A1 (en) Sidelink Feedback Information Transmission Method and Communications Apparatus
US10117232B2 (en) Method and apparatus for signaling reference signals to a UE in an LTE system
WO2022000318A1 (en) Harq feedback transmission method, base station and user equipment
JP7189207B2 (en) SIGNAL TRANSMISSION METHOD, RELATED APPARATUS AND SYSTEM
WO2023279339A1 (en) Method of improving harq-ack feedback by determining sub-slot based type-1 harq-ack codebook, base station and user equipment
WO2022206932A1 (en) Wireless communication method, user equipment, and base station
WO2022027250A1 (en) Harq feedback processing method, base station and user equipment
US20230261723A1 (en) Apparatus, Method, and Computer Program
US20230337224A1 (en) Method for handling high-priority uplink transmissions and user equipment
WO2022027640A1 (en) Transmitter, receiver and communication method for improving uplink transmission with configured grant
WO2022205286A1 (en) Transmitter for improving pusch repetition transmission
WO2023206416A1 (en) Methods and apparatuses for scheduling multiple physical downlink shared channel (pdsch) transmissions
US20230354313A1 (en) Intra-user equipment multiplexing method, user equipment, and radio node for enabling the method
WO2023050416A1 (en) Method for retransmission of cancelled harq-ack feedback, method for pucch carrier switching for harq-ack feedback, and related devices
WO2022198581A1 (en) Wireless communication method, user equipment, and base station
WO2023078418A1 (en) Wireless communication method, user equipment, and base station
WO2024032293A1 (en) Wireless communication method, user equipment, and base station background of disclosure
US20240022384A1 (en) Data transmission method and apparatus
WO2023060565A1 (en) Methods and apparatuses for sidelink transmission
WO2022205057A1 (en) User equipment, base station, and wireless communication method
WO2022077288A1 (en) Method, user equipment, and base station for aperiodic channel state information feedback
WO2022028606A1 (en) Information determination method, information indication method, terminal, and network-side device
WO2022205339A1 (en) User equipment, base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE