WO2017179264A1 - 半導体装置の放熱構造 - Google Patents

半導体装置の放熱構造 Download PDF

Info

Publication number
WO2017179264A1
WO2017179264A1 PCT/JP2017/002440 JP2017002440W WO2017179264A1 WO 2017179264 A1 WO2017179264 A1 WO 2017179264A1 JP 2017002440 W JP2017002440 W JP 2017002440W WO 2017179264 A1 WO2017179264 A1 WO 2017179264A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
heat
heat dissipation
dissipation structure
conductive
Prior art date
Application number
PCT/JP2017/002440
Other languages
English (en)
French (fr)
Inventor
西川 武男
隆圭 俵木
英一 大村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US15/756,047 priority Critical patent/US10304754B2/en
Priority to KR1020187001995A priority patent/KR20180019221A/ko
Priority to EP17782083.4A priority patent/EP3327768B1/en
Publication of WO2017179264A1 publication Critical patent/WO2017179264A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L23/4012Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws for stacked arrangements of a plurality of semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4018Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by the type of device to be heated or cooled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/4068Heatconductors between device and heatsink, e.g. compliant heat-spreaders, heat-conducting bands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4075Mechanical elements
    • H01L2023/4087Mounting accessories, interposers, clamping or screwing parts

Definitions

  • the present invention relates to a heat dissipation structure (also referred to as a cooling structure) of a surface-mount type semiconductor device (semiconductor device), and more particularly to a heat dissipation structure having heat dissipation and insulation reliability applicable to a thin package semiconductor device.
  • FIG. 7A is a schematic perspective view illustrating a conventional lead type discrete component 1
  • FIG. 7B is a schematic perspective view illustrating a surface mount semiconductor device 10 that has been developed in recent years.
  • the semiconductor switching device speeds up, it is necessary to reduce the parasitic inductance of the device itself.
  • the conventional discrete component 1 for example, a lead type IGBT
  • the switching speed is very high. For this reason, device packages are being made thinner in order to achieve the smallest possible parasitic inductance.
  • Such a semiconductor device 10 is housed in an ultra-thin package 11 as shown in FIG. 7B.
  • one or more electrodes (terminals) 12 electrically connected to the substrate are arranged.
  • a heat radiating surface 11b on which a wide electrode 13 that also serves as heat radiating is arranged on the opposite side.
  • FIG. 8A is a cross-sectional view illustrating the outline of a conventional heat dissipation structure 202
  • FIG. 8B is a cross-sectional view illustrating the outline of a heat dissipation structure 202A which is a modified example thereof.
  • a semiconductor is connected via a conductive TIM 33 (for example, 50 W / deg ⁇ m), which is an example of a conductive thermal conductive material (TIM: Thermal Interface Material).
  • Device 10 may be connected to heat sink 30.
  • the thinning of the package 11 of the semiconductor device 10 reduces the distance between the electrodes 12 having different voltages. Therefore, depending on the state of the conductive material such as solder, the insulation distance cannot be maintained, and dielectric breakdown occurs. Damage to the device 10 may occur.
  • an insulating TIM 43 (for example, ⁇ 10 W / deg ⁇ m) is used between the semiconductor device 10 and the heat sink 30 instead of the conductive TIM 33 as in the heat dissipation structure 202A shown in FIG. If it is interposed, the occurrence of dielectric breakdown is avoided, but it cannot bear a large capacity because of its low thermal conductivity. Therefore, it is necessary to increase the size and capacity of the semiconductor device 10 and to use a plurality of parallel devices, thereby increasing the overall cost.
  • an object of the present invention is to provide a heat dissipation structure for a semiconductor device that has both excellent heat dissipation and excellent insulation reliability that can be applied to a thin semiconductor device for surface mounting.
  • a heat dissipation structure for a semiconductor device is a heat dissipation structure for a semiconductor device having an electrical joint surface electrically connected to a substrate and a heat dissipation surface on the opposite side.
  • the heat radiating surface is in contact with the conductive high heat conductive member through the non-insulating member, and the conductive high heat conductive member is in contact with the heat radiating component through the insulating member, and the conductive high heat conductive member is on the semiconductor device side.
  • the surface has a recess in at least part of the vicinity of the outer periphery of the semiconductor device.
  • the heat generated in the semiconductor device is transferred from the heat dissipation surface to the conductive high heat conductive member through the non-insulating member and diffused, and further, the heat is dissipated through the insulating member. Since it is transmitted to the components, not only has excellent heat dissipation, but also the occurrence of dielectric breakdown can be avoided by the recess near the outer periphery of the semiconductor device on the surface of the conductive high heat conducting member on the semiconductor device side.
  • a conductive fixture such as a screw so that the substrate is connected to the conductive high heat conductive member and at least a part of the pattern of the substrate is connected to the conductive high heat conductive member. It may be fixed by. Moreover, the said board
  • substrate may be fixed to the said electroconductive highly heat-conductive member further with an insulating fixing tool (screw etc.).
  • the heat dissipation structure of the semiconductor device having such a configuration it is possible to more reliably avoid the occurrence of dielectric breakdown and to perform accurate alignment.
  • accurate positioning and fixing can be more reliably performed.
  • the heat generated in the semiconductor device is transferred from the heat dissipation surface to the conductive high heat conductive member via the non-insulating member and diffused, and further to the heat dissipation component via the insulating member. Therefore, not only excellent heat dissipation is provided, but also the occurrence of dielectric breakdown can be avoided by the concave portion in the vicinity of the outer periphery of the semiconductor device on the surface of the conductive high heat conducting member on the semiconductor device side.
  • FIG. 6 is a table showing detailed conditions of a thermal simulation performed by the heat dissipation structure 103B shown in FIGS. 5 (a) to 5 (c).
  • (A) is a schematic perspective view illustrating a conventional lead type discrete component 1
  • (b) is a schematic perspective view illustrating a surface mount type semiconductor device 10 that has been developed in recent years.
  • (A) is sectional drawing which illustrates the outline of the other conventional heat dissipation structure 202
  • (b) is sectional drawing which illustrates the outline of 202 A of thermal radiation structures which are the modifications.
  • FIG. 1 is a cross-sectional view schematically showing the heat dissipation structure 103 according to the first embodiment of the present invention.
  • a heat spreader 31 which is an example of a non-insulating thermal diffusion element, is mounted on a heat sink 30 via an insulating TIM 43.
  • the semiconductor device 10 is mounted with the heat radiating surface 11b facing down through a conductive TIM 33.
  • the electrode 12 on the electrical joint surface 11a is electrically connected to the lower surface pattern 22 of the substrate 20 by soldering or the like.
  • a recess is formed in the vicinity of the electrode 12 (particularly, a potential different from the heat radiation surface 11 b) that is electrically connected to the substrate 20 by soldering or the like in the vicinity of the outer periphery of the semiconductor device 10. 31a is formed.
  • the recess 31a may be, for example, a groove shape along the outer periphery of the semiconductor device 10, but the inner surface thereof is preferably shaped so as to be approximately equidistant from a location such as soldering.
  • thermo conductivity can be realized by using the conductive TIM 33 between the semiconductor device 10 and the heat spreader 31.
  • high heat dissipation and insulation reliability can be compatible with a low-cost structure, and the overall cost of the power converter and the like can be reduced.
  • the resistance value of the conductive TIM 33 is not 0, but also changes depending on the temperature and the contact state. Therefore, a change during driving of the semiconductor device 10 is assumed. As a result, the potential of the heat spreader 31 becomes unstable and noise There is a possibility that the semiconductor device 10 malfunctions or is damaged due to generation of a surge voltage.
  • a screw hole 31b may be provided on the heat spreader 31, and the substrate 20 and the heat spreader 31 may be fixed by the conductive screw 51 from the substrate 20 side.
  • the heat spreader 31 and the pattern (for example, the lower surface pattern 22) on the substrate 20 to be at the same potential can be electrically connected to increase the electrical stability, and the dielectric breakdown of the semiconductor device 10 can be avoided more reliably. can do.
  • accurate alignment between the semiconductor device 10 soldered to the substrate 20 and the recess 31a on the heat spreader 31, which is important in securing a sufficient insulation distance, is also possible.
  • FIG. 2 is a cross-sectional view showing an outline of the heat dissipation structure 103A of the semiconductor device 10 according to a modification of the first embodiment of the present invention.
  • the same constituent members as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described below.
  • the heat spreader 31 is electrically connected on the substrate 20. It may also be necessary to screw the part where it should not be (for example, the upper surface pattern 21 that is electrically connected to the electrode 12 of the semiconductor device 10 through the via 23).
  • another screw hole 31 c may be provided on the heat spreader 31, and the substrate 20 and the heat spreader 31 may be fixed with an insulating screw 52.
  • FIG. 3A is a perspective view showing an outline of a heat dissipation structure 202B in which the conventional heat dissipation structure 202A is further mounted on the heat sink 30 via the conductive TIM 33
  • FIG. 3B is a cross-sectional view thereof.
  • FIG. 4 is a table showing detailed conditions of the thermal simulation performed by the heat dissipation structure 202B shown in FIGS. 3 (a) and 3 (b).
  • a thermal simulation with the heat dissipation structure 202B was performed under the conditions shown in FIG.
  • the insulating TIM 43 (0.3 mmt) is used between the semiconductor device 10 and the heat spreader 31
  • the conductive TIM 33 (0.3mmt) is used between the heat spreader 31 and the heat sink 30.
  • FIG. 5A is a cross-sectional view showing an outline of a heat dissipation structure 103B substantially the same as the heat dissipation structure 103 according to the first embodiment of the present invention, and FIG. 5B is a partially enlarged perspective view thereof. (C) is a sectional view thereof.
  • FIG. 6 is a table showing detailed conditions of the thermal simulation performed by the heat dissipation structure 103B shown in FIGS. 5 (a) to 5 (c).
  • a thermal simulation in the heat dissipation structure 103B was performed under the conditions shown in FIG.
  • a recess 31 a is formed on the heat spreader 31 close to one side of the semiconductor device 10.
  • the semiconductor device 10 is connected to the heat spreader 31 via the conductive TIM 33, and the heat spreader 31 and the heat sink 30 are connected via the insulating TIM 43.
  • the temperature rise due to heat generation from the semiconductor device 10 is 46 ° C. at the maximum, and a significant temperature drop (temperature rise is about 36 ° C.). % Reduction) was confirmed.
  • the recess 31a provided on the heat spreader 31 has no significant adverse effect on heat diffusion.
  • the heat spreader 31 with the recess 31a to ensure insulation reliability and interposing the conductive TIM 33 therebetween, it is possible to realize both heat dissipation and insulation reliability at a low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

基板(20)と電気的に接続される電気的接合面(11a)と、その反対側の放熱面(11b)とを有する半導体デバイス(10)の放熱構造(103)であって、放熱面(11b)が導電性TIM(33)を介してヒートスプレッダ(31)に接触するとともに、このヒートスプレッダ(31)が絶縁性TIM(43)を介してヒートシンク(30)に接触しており、ヒートスプレッダ(31)の半導体デバイス(10)側の面が、半導体デバイス(10)の外周の近傍の少なくとも一部に凹部(31a)を有している。

Description

半導体装置の放熱構造
 本発明は、表面実装型の半導体装置(半導体デバイス)の放熱構造(冷却構造ともいう)に関し、特に、薄型パッケージの半導体装置に適用できる放熱性や絶縁信頼性を備える放熱構造に関する。
 図7(a)は従来のリードタイプのディスクリート部品1を例示する概略斜視図であり、図7(b)は近年開発されている表面実装型の半導体デバイス10を例示する概略斜視図である。
 半導体スイッチングデバイスの高速化に伴って、デバイス自体の寄生インダクタンスを小さくすることが必要となる。図7(a)に示すような従来のディスクリート部品1(例えば、リードタイプのIGBT)とは異なり、例えば、図7(b)に示すような半導体デバイス10では、スイッチング速度が非常に高速であるため、可能な限り小さい寄生インダクタンスを実現するためにデバイスパッケージの薄型化が進んでいる。
 このような半導体デバイス10は、図7(b)に示すように、超薄型のパッケージ11に収められており、例えば、基板と電気的に接続される1以上の電極(端子)12が配置された電気的接合面11aと、その反対側に放熱を兼ねる広い電極13が配置された放熱面11bとを有している。この半導体デバイス10の実装時には、優れた放熱性や絶縁信頼性を備える必要があり、例えば、特許文献1~3などの技術が提案されている。
特開2006-147862号公報 特開2014-241340号公報 特開2000-311971号公報
 図8(a)は従来の放熱構造202の概略を例示する断面図であり、図8(b)はその変形例である放熱構造202Aの概略を例示する断面図である。
 デバイスコストを低減するためには、1つあたりのデバイスでできるだけ大容量を担う必要があるため、効率的に発熱を拡散させる構造が求められる。その一例としては、半導体デバイス10にヒートシンク30を直接接続することが考えられる。
 または、図8(a)に示す放熱構造202のように、導電性の熱伝導性材料(TIM:Thermal Interface Material)の一例である導電性TIM33(例えば50W/deg・m)を介して、半導体デバイス10をヒートシンク30に接続してもよい。
 しかし、半導体デバイス10のパッケージ11の薄型化によって、電圧の異なる電極12間の距離が近くなるため、はんだ等の導電材料の状況次第では絶縁距離が保てずに、絶縁破壊が発生して半導体デバイス10の破損が起こることがある。
 これを回避するために、例えば、図8(b)に示す放熱構造202Aのように、導電性TIM33に代えて絶縁性TIM43(例えば-10W/deg・m)を半導体デバイス10とヒートシンク30との間に入れると、絶縁破壊の発生は回避されるものの、熱伝導率が低いために大容量を担うことができない。そのため、半導体デバイス10の大型化・大容量化や複数個の並列使用などが必要となって、全体のコストが上がってしまうという課題があった。
 従来技術のこのような課題に鑑み、本発明の目的は、表面実装用の薄型半導体装置に適用できる優れた放熱性および優れた絶縁信頼性を兼ね備える半導体装置の放熱構造を提供することである。
 上記目的を達成するため、本発明の半導体装置の放熱構造は、基板と電気的に接続される電気的接合面と、その反対側の放熱面とを有する半導体装置の放熱構造であって、前記放熱面が非絶縁部材を介して導電性高熱伝導部材に接触するとともに、この導電性高熱伝導部材が絶縁部材を介して放熱部品に接触しており、前記導電性高熱伝導部材の前記半導体装置側の面が、前記半導体装置の外周の近傍の少なくとも一部に凹部を有していることを特徴とする。
 このような構成の半導体装置の放熱構造によれば、半導体装置で発生した熱は、その放熱面から非絶縁部材を介して導電性高熱伝導部材に伝わって拡散され、さらに絶縁部材を介して放熱部品に伝わるので、優れた放熱性を備えるだけでなく、導電性高熱伝導部材の半導体装置側の面が有する半導体装置の外周の近傍の凹部によって絶縁破壊の発生も回避することができる。
 本発明の半導体装置の放熱構造において、前記基板が前記導電性高熱伝導部材に、前記基板のパターンの少なくとも一部が前記導電性高熱伝導部材と導通するように、導電性固定具(ネジなど)によって固定されてもよい。また、前記基板が前記導電性高熱伝導部材にさらに絶縁性固定具(ネジなど)によって固定されてもよい。
 このような構成の半導体装置の放熱構造によれば、絶縁破壊の発生をより確実に回避することができ、正確な位置合わせも可能となる。絶縁性固定具による固定も行った場合は、正確な位置合わせや固定をより確実に行うことが可能となる。
 本発明の半導体装置の放熱構造によれば、半導体装置で発生した熱は、その放熱面から非絶縁部材を介して導電性高熱伝導部材に伝わって拡散され、さらに絶縁部材を介して放熱部品に伝わるので、優れた放熱性を備えるだけでなく、導電性高熱伝導部材の半導体装置側の面が有する半導体装置の外周の近傍の凹部によって絶縁破壊の発生も回避することができる。
本発明の第1実施形態に係る放熱構造103の概略を示す断面図である。 本発明の第1実施形態の変形例に係る放熱構造103Aの概略を示す断面図である。 (a)は従来の放熱構造202Aをさらに導電性TIM33を介してヒートシンク30上に搭載した放熱構造202Bの概略を示す斜視図であり、(b)はその断面図である。 図3(a)および図3(b)に示した放熱構造202Bで行った熱シミュレーションの詳細条件を示す表である。 (a)は本発明の第1実施形態に係る放熱構造103とほぼ同様の放熱構造103Bの概略を示す断面図であり、(b)はその部分拡大斜視図であり、(c)はその断面図である。 図5(a)~図5(c)に示した放熱構造103Bで行った熱シミュレーションの詳細条件を示す表である。 (a)は従来のリードタイプのディスクリート部品1を例示する概略斜視図であり、(b)は近年開発されている表面実装型の半導体デバイス10を例示する概略斜視図である。 (a)は従来の他の放熱構造202の概略を例示する断面図であり、(b)はその変形例である放熱構造202Aの概略を例示する断面図である。
 以下、本発明のいくつかの実施形態を、図面を参照して説明する。
 <第1実施形態>
 図1は本発明の第1実施形態に係る放熱構造103の概略を示す断面図である。
 図1に示すように、この放熱構造103では、ヒートシンク30上に、絶縁性TIM43を介して非絶縁の熱拡散素子の一例であるヒートスプレッダ31が搭載されている。このヒートスプレッダ31上には、導電性TIM33を介して半導体デバイス10がその放熱面11bを下にして搭載されている。その電気的接合面11aの電極12は、基板20の下面パターン22にはんだ付けなどによって電気的に接続されている。
 さらに、ヒートスプレッダ31上面において、半導体デバイス10の外周の近傍で、基板20にはんだ付けなどによって電気的に接続されている電極12(特に放熱面11bとは異なる電位がかかるもの)などの近傍に凹部31aが形成されている。この凹部31aは、例えば半導体デバイス10の外周に沿った溝形状のものが挙げられるが、その内面は、はんだ付けなどの箇所から概ね等距離になるような形状とすることが好ましい。
 このような放熱構造103によれば、導電性TIM33を半導体デバイス10とヒートスプレッダ31との間に用いることで、高い熱伝導性を実現できる。また、半導体デバイス10の電極12などのはんだ付けなどの箇所と、高電圧差になり得るヒートスプレッダ31上面との絶縁距離を十分確保できる。これにより、低コストな構造で高い放熱性および絶縁信頼性を両立することができて、電力変換器などの全体のコストダウンが可能となる。
 なお、導電性TIM33の抵抗値は0ではなく、温度や密着状態によっても変化するため、半導体デバイス10の駆動中の変化が想定され、その結果、ヒートスプレッダ31の電位が不安定になって、ノイズやサージ電圧発生による半導体デバイス10の誤動作や損傷などの可能性がある。
 そこで、ヒートスプレッダ31上にネジ穴31bを設けて、基板20とヒートスプレッダ31とを基板20側から導電性ネジ51で固定してもよい。
 これにより、ヒートスプレッダ31と、同電位となるべき基板20上のパターン(例えば下面パターン22)とを電気的に接続して電気的安定度を高められ、半導体デバイス10の絶縁破壊をより確実に回避することができる。また、絶縁距離を十分確保する上で重要な、基板20にはんだ付けなどがされた半導体デバイス10とヒートスプレッダ31上の凹部31aとの正確な位置合わせも可能となる。
 <第1実施形態の変形例>
 図2は本発明の第1実施形態の変形例に係る半導体デバイス10の放熱構造103Aの概略を示す断面図である。なお、第1実施形態と同じ構成部材には同じ参照符号を付し、以下では主として相違点について説明する。
 基板20にはんだ付けなどがされた半導体デバイス10とヒートスプレッダ31上の凹部31aとの正確な位置合わせや、基板20とヒートスプレッダ31との固定のためには、基板20上でヒートスプレッダ31とは導通すべきでない箇所(例えば、ビア23を介して半導体デバイス10の電極12と導通している上面パターン21)でネジ止めする必要も生じ得る。
 そこで、図2に示すように、ヒートスプレッダ31上に別のネジ穴31cを設けて、基板20とヒートスプレッダ31とを絶縁性ネジ52で固定してもよい。
 このような放熱構造103Aによれば、半導体デバイス10と凹部31aとの正確な位置合わせや基板20とヒートスプレッダ31との固定をより確実に行うことが可能となる。
 図3(a)は従来の放熱構造202Aをさらに導電性TIM33を介してヒートシンク30上に搭載した放熱構造202Bの概略を示す斜視図であり、図3(b)はその断面図である。図4は図3(a)および図3(b)に示した放熱構造202Bで行った熱シミュレーションの詳細条件を示す表である。
 まず、比較対象として、放熱構造202Bでの熱シミュレーションを図4に示す条件下で行った。絶縁破壊を回避するため、半導体デバイス10とヒートスプレッダ31との間は絶縁性TIM43(0.3mmt)として、ヒートスプレッダ31とヒートシンク30との間は導電性TIM33(0.3mmt)とした。
 熱シミュレーションで得られた定常状態の断面温度分布によれば、この放熱構造202Bでは、半導体デバイス10からの発熱によって最大58℃まで温度上昇していることが確認された。
 図5(a)は本発明の第1実施形態に係る放熱構造103とほぼ同様の放熱構造103Bの概略を示す断面図であり、図5(b)はその部分拡大斜視図であり、図5(c)はその断面図である。図6は図5(a)~図5(c)に示した放熱構造103Bで行った熱シミュレーションの詳細条件を示す表である。
 次に、本発明の実施例として、放熱構造103Bでの熱シミュレーションを図6に示す条件下で行った。この放熱構造103Bでは、半導体デバイス10の一辺に近接するヒートスプレッダ31上に凹部31aが形成されている。半導体デバイス10が導電性TIM33を介してヒートスプレッダ31に接続されるとともに、このヒートスプレッダ31とヒートシンク30とが絶縁性TIM43を介して接続されている。
 熱シミュレーションで得られた定常状態の断面温度分布によれば、この放熱構造103Bでは、半導体デバイス10からの発熱による温度上昇は最大点でも46℃であり、大幅な温度低下(温度上昇が約36%低減)が確認された。
 また、ヒートスプレッダ31上に設けられた凹部31aでも熱拡散に対しては大きな悪影響が無いことがわかった。このように、ヒートスプレッダ31に凹部31aを設けて絶縁信頼性を確保するとともに、導電性TIM33を間に介することで、放熱性および絶縁信頼性の両立を低コストで実現することが可能となる。
 以上で説明した各実施形態およびその変形例などの各構成は、阻害要因などが特に無い限り、相互に組み合わせてもよい。
 なお、本発明は、その主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の各実施形態や各実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 この出願は、日本で2016年4月15日に出願された特願2016-081963号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。
10   半導体デバイス
11   パッケージ
12   電極
13   電極
20   基板
30   ヒートシンク
31   ヒートスプレッダ
33   導電性TIM
43   絶縁性TIM
51   導電性ネジ
52   絶縁性ネジ

Claims (3)

  1.  基板と電気的に接続される電気的接合面と、その反対側の放熱面とを有する半導体装置の放熱構造であって、
     前記放熱面が非絶縁部材を介して導電性高熱伝導部材に接触するとともに、
     この導電性高熱伝導部材が絶縁部材を介して放熱部品に接触しており、
     前記導電性高熱伝導部材の前記半導体装置側の面が、前記半導体装置の外周の近傍の少なくとも一部に凹部を有していることを特徴とする、半導体装置の放熱構造。
  2.  請求項1に記載の半導体装置の放熱構造において、
     前記基板が前記導電性高熱伝導部材に、前記基板のパターンの少なくとも一部が前記導電性高熱伝導部材と導通するように、導電性固定具によって固定されていることを特徴とする、半導体装置の放熱構造。
  3.  請求項1または2に記載の半導体装置の放熱構造において、
     前記基板が前記導電性高熱伝導部材にさらに絶縁性固定具によって固定されていることを特徴とする、半導体装置の放熱構造。
PCT/JP2017/002440 2016-04-15 2017-01-25 半導体装置の放熱構造 WO2017179264A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/756,047 US10304754B2 (en) 2016-04-15 2017-01-25 Heat dissipation structure of semiconductor device
KR1020187001995A KR20180019221A (ko) 2016-04-15 2017-01-25 반도체 장치의 방열 구조
EP17782083.4A EP3327768B1 (en) 2016-04-15 2017-01-25 Heat dissipation structure of semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016081963A JP6790432B2 (ja) 2016-04-15 2016-04-15 半導体装置の放熱構造
JP2016-081963 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017179264A1 true WO2017179264A1 (ja) 2017-10-19

Family

ID=60041590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002440 WO2017179264A1 (ja) 2016-04-15 2017-01-25 半導体装置の放熱構造

Country Status (5)

Country Link
US (1) US10304754B2 (ja)
EP (1) EP3327768B1 (ja)
JP (1) JP6790432B2 (ja)
KR (1) KR20180019221A (ja)
WO (1) WO2017179264A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637988A (zh) * 2019-01-29 2019-04-16 西安微电子技术研究所 一种低热阻压力可控式散热盒体结构
EP3951863A1 (de) * 2020-08-07 2022-02-09 Siemens Aktiengesellschaft Kontaktsystem mit zuverlässiger isolierung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258448A (ja) * 2006-03-23 2007-10-04 Fujitsu Ltd 半導体装置
JP2008300476A (ja) * 2007-05-30 2008-12-11 Sumitomo Electric Ind Ltd パワーモジュール
JP2009283768A (ja) * 2008-05-23 2009-12-03 Yokogawa Electric Corp 冷却シールド装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183076A (ja) * 1992-01-07 1993-07-23 Fujitsu Ltd 半導体パッケージ
JP3451979B2 (ja) 1999-04-28 2003-09-29 株式会社日立製作所 半導体装置
JP4555057B2 (ja) 2004-11-19 2010-09-29 ホシザキ電機株式会社 冷却貯蔵庫の運転制御装置
JP5647912B2 (ja) * 2011-02-02 2015-01-07 新電元工業株式会社 電子回路装置及びその製造方法
US9085719B2 (en) * 2013-03-18 2015-07-21 International Business Machines Corporation Thermally reversible thermal interface materials with improved moisture resistance
JP6075218B2 (ja) 2013-06-11 2017-02-08 株式会社デンソー 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258448A (ja) * 2006-03-23 2007-10-04 Fujitsu Ltd 半導体装置
JP2008300476A (ja) * 2007-05-30 2008-12-11 Sumitomo Electric Ind Ltd パワーモジュール
JP2009283768A (ja) * 2008-05-23 2009-12-03 Yokogawa Electric Corp 冷却シールド装置

Also Published As

Publication number Publication date
EP3327768A4 (en) 2019-05-01
KR20180019221A (ko) 2018-02-23
US20190027421A1 (en) 2019-01-24
EP3327768A1 (en) 2018-05-30
US10304754B2 (en) 2019-05-28
JP6790432B2 (ja) 2020-11-25
JP2017191903A (ja) 2017-10-19
EP3327768B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US9973104B2 (en) Power module
WO2015029159A1 (ja) 半導体装置
CN111261598B (zh) 封装结构及其适用的电源模块
US9159715B2 (en) Miniaturized semiconductor device
JP2008042074A (ja) 半導体装置及び電力変換装置
KR101946467B1 (ko) 반도체 장치의 방열구조
JP2013219290A (ja) 半導体装置
US9837592B2 (en) Ceramic substrate and semiconductor package having the same
JP2017162866A (ja) 半導体装置
JP6480856B2 (ja) 半導体モジュール
WO2017179264A1 (ja) 半導体装置の放熱構造
JP2018074088A (ja) 半導体装置
WO2014192093A1 (ja) 半導体装置
JP2015122453A (ja) パワーモジュール
JP2020184561A (ja) 半導体装置
WO2013105456A1 (ja) 回路基板および電子デバイス
JP2005150596A (ja) 半導体装置及びその製造方法
JP7170614B2 (ja) 半導体装置
US20150179540A1 (en) Semiconductor device
JP6584333B2 (ja) パワーモジュール
JP6060053B2 (ja) パワー半導体装置
JP2013182936A (ja) 電子部品実装方法
JP2011096828A (ja) 半導体モジュール
JP6884723B2 (ja) 半導体装置
JP2017199830A (ja) パワーモジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187001995

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE