WO2013105456A1 - 回路基板および電子デバイス - Google Patents

回路基板および電子デバイス Download PDF

Info

Publication number
WO2013105456A1
WO2013105456A1 PCT/JP2012/083963 JP2012083963W WO2013105456A1 WO 2013105456 A1 WO2013105456 A1 WO 2013105456A1 JP 2012083963 W JP2012083963 W JP 2012083963W WO 2013105456 A1 WO2013105456 A1 WO 2013105456A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
terminal group
arm series
switching arm
circuit terminal
Prior art date
Application number
PCT/JP2012/083963
Other languages
English (en)
French (fr)
Inventor
八木 茂幸
新居 良英
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN201280066436.XA priority Critical patent/CN104040714A/zh
Priority to KR1020147022005A priority patent/KR20140116911A/ko
Publication of WO2013105456A1 publication Critical patent/WO2013105456A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • H05K1/0265High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board characterized by the lay-out of or details of the printed conductors, e.g. reinforced conductors, redundant conductors, conductors having different cross-sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10272Busbars, i.e. thick metal bars mounted on the PCB as high-current conductors

Definitions

  • the present invention relates to a circuit board for mounting a switching element and an electronic device in which the switching element is mounted on the circuit board.
  • Active elements that generate heat by such driving include switching elements such as MOSFET (Metal Oxide Semiconductor Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), and organic EL (Electro Luminescent Light Emitting Light). An element is mentioned.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • organic EL Electro Luminescent Light Emitting Light
  • a circuit board having a metal substrate is used as a circuit board for mounting a circuit including such a heating element.
  • a circuit board includes a metal substrate having a high thermal conductivity (for example, an aluminum substrate), an insulating layer formed by coating the surface of the metal substrate with an insulating material, and wiring provided on the insulating layer. And a conductor layer including a pattern.
  • Patent Document 1 includes a metal substrate, an insulating layer provided on the metal substrate, and a wiring layer forming conductor layer provided on the insulating layer, and a circuit for mounting a light emitting element A substrate is disclosed.
  • the metal board is made of a metal having high thermal conductivity such as aluminum, copper, stainless steel, or an alloy thereof. Heat generated from the light emitting element mounted on the circuit board is transmitted to the metal substrate through the insulating layer and is radiated from the metal substrate.
  • the insulating layer has low thermal conductivity, and thus is emitted from the light emitting element mounted on the circuit board. In some cases, it is not possible to sufficiently transfer the heat to the metal substrate.
  • a typical example of a circuit with a large amount of heat mounted on the circuit board as described above is an inverter circuit composed of switching elements.
  • Patent Document 2 discloses a circuit board having a metal substrate, an insulating layer provided on the metal substrate, and a metal wiring provided on the insulating layer, and an inverter circuit provided on the circuit board. It is disclosed.
  • the switching element and the drive circuit that drives the switching element are each mounted on different circuit boards. Therefore, the electrical connection between the switching element and the drive circuit is realized via a connection terminal provided on a substrate on which the switching element is mounted.
  • Such a problem may occur not only in an inverter circuit but also in a circuit such as a switching regulator circuit having a switching element on a circuit board, a PWM (Pulse Width Modulation) circuit, and an organic EL circuit.
  • a switching regulator circuit having a switching element on a circuit board
  • PWM Pulse Width Modulation
  • An object of the present invention is to reduce the size and thickness while maintaining sufficient heat dissipation to dissipate heat generated from an active element, and further improve the operational stability of a circuit to be mounted.
  • An object of the present invention is to provide a circuit board that can be used, and an electronic device using the circuit board.
  • Such an object is achieved by the present inventions (1) to (12) below.
  • the wiring pattern of the conductor layer further has a capacitor terminal for mounting a capacitor,
  • the capacitor terminal is on the same plane as the switching arm series circuit terminal group and the drive circuit terminal group, and the drive circuit terminal group of the switching arm series circuit terminal group is not disposed.
  • the circuit board according to (3) which is disposed on the end side.
  • the wiring pattern of the conductor layer has three terminal groups for the drive circuit, The circuit board according to (5), wherein each of the three drive circuit terminal groups is disposed on one end side of the three switching arm series circuit terminal groups.
  • Each of the drive circuit terminal groups forms an asymmetric pattern by the plurality of drive circuit terminals, Of the three switching arm series circuit terminal groups, the drive circuit terminal groups respectively disposed on one end sides of the two switching arm series circuit terminal groups at both ends are arranged in the same direction. Forming a pattern, The drive circuit terminal group disposed on one end side of the switching arm series circuit terminal group in the center is the two groups of the two disposed on one end side of the two switching arm series circuit terminal groups on both ends.
  • the circuit board according to (7), wherein the asymmetric pattern is formed by rotating the asymmetric pattern formed by the drive circuit terminal group by 180 degrees about a normal line to the horizontal plane of the metal substrate as a rotation center.
  • the drive circuit terminal group respectively disposed on one end side of the two switching arm series circuit terminal groups is configured to switch the two switching arm series circuits.
  • the drive circuit terminal group disposed on one end side of the switching arm series circuit terminal group in the center is on one end side opposite to the drive circuit terminal group of the switching arm series circuit terminal groups on both ends.
  • Each of the drive circuit terminal groups forms an asymmetric pattern by a plurality of the drive circuit terminals, The circuit board according to (7), wherein each of the drive circuit terminal groups forms the asymmetric pattern all facing the same direction.
  • the wiring pattern of the conductor layer further includes at least three capacitor terminals for mounting a capacitor, The capacitor terminal is on the same plane as the switching arm series circuit terminal group and the drive circuit terminal group, and the drive circuit terminal group of each of the three switching arm series circuit terminal groups is arranged. 10.
  • the wiring pattern of the conductor layer further includes a capacitor terminal for mounting a capacitor,
  • the capacitor terminal is any one of the above (1) to (3) and (5) to (9) formed on the same plane as the switching arm series circuit terminal group and the drive circuit terminal group.
  • the thermal conductivity of the insulating layer is 0.1 to 2.0 W / (m ⁇ K),
  • the insulating layer includes at least one of an epoxy resin, a cyanate resin, and a phenol resin as a main component.
  • circuit board according to any one of (1) to (14), wherein the insulating layer includes a filler having a thermal conductivity of 10 to 150 W / (m ⁇ K).
  • the ratio (t1 / t2) between the thickness t1 of the insulating layer and the thickness t2 of the metal substrate is 1/50 to 1/4. Circuit board.
  • the metal substrate has a quadrangular shape in plan view,
  • the additional conductor joint portion is disposed along each side of the square of the metal substrate,
  • the switching arm series circuit terminal group is arranged at a degree of integration of 0.1 to 5.0 per square centimeter in a region surrounded by the additional conductor junction. Circuit board.
  • circuit board according to any one of (19) to (21), wherein the circuit board further includes the additional conductor joined to the additional conductor joining portion.
  • the circuit board has a plurality of the additional conductors, The circuit board according to (22), wherein the plurality of additional conductors are juxtaposed along the longitudinal direction of the additional conductor joint, and the legs of the additional conductors adjacent to each other are joined.
  • the switching element and the drive circuit for driving the switching element can be mounted on the same surface of the circuit board. Therefore, the conducting wire between the switching element and the drive circuit can be shortened, and the impedance of the conducting wire can be reduced.
  • circuit board of the present invention electrical connection between the switching element and the drive circuit can be realized through the wiring pattern on the circuit board. This eliminates the need for a connection terminal for realizing electrical connection between the switching element and the drive circuit. As a result, it is possible to eliminate the poor connection and the SN ratio due to the connection resistance at the connection portion between the connection terminal and the drive circuit.
  • the switching element and the drive circuit are mounted on the same surface of the circuit board, the number of circuit boards necessary for configuring an electronic device can be reduced.
  • the switching element and the drive circuit are integrated, so that the electronic device can be reduced in size and thickness.
  • the thickness of the metal substrate is set in accordance with the amount of heat generated from the active element mounted on the circuit board and the thermal conductivity of the insulating layer. Therefore, the circuit board of the present invention can reduce the thickness and weight of the metal substrate while maintaining sufficient heat dissipation. Furthermore, since the metal substrate is thinned, the entire circuit board can be thinned, lightened, and reduced in cost.
  • the impedance between the switching element and the drive circuit can be reduced, and further, the deterioration of the SN ratio can be suppressed, so that the operation of the electronic device can be stabilized. Can do. Further, for the same reason as the circuit board of the present invention described above, in addition to the reduction in the number of circuit boards, the switching element and the drive circuit are integrated, so that the electronic device can be reduced in size and thickness. .
  • the circuit board retains sufficient heat dissipation, so that the operation of the electronic device can be stabilized. Furthermore, since the metal substrate is thinned, the electronic device can be thinned, lightened, and reduced in cost.
  • FIG. 1 is a plan view showing a first embodiment of a circuit board according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA of the circuit board shown in FIG.
  • FIG. 3 is a diagram illustrating a configuration example of additional conductors provided on the circuit board illustrated in FIG. 1.
  • FIG. 4 is a perspective view of a leg portion of the additional conductor shown in FIG.
  • FIG. 5 is a plan view showing an embodiment of the electronic device of the present invention.
  • FIG. 6 is a circuit diagram of a switching arm series circuit included in the electronic device shown in FIG.
  • FIG. 7 is a plan view showing a second embodiment of the circuit board of the present invention.
  • Examples of the active element that generates heat by driving include a switching element such as a MOSFET or IGBT, and a light emitting element such as an organic EL or LED.
  • a switching element such as a MOSFET or IGBT
  • a light emitting element such as an organic EL or LED.
  • FIG. 1 is a plan view showing a first embodiment of a circuit board according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA of the circuit board shown in FIG.
  • FIG. 3 is a diagram illustrating a configuration example of additional conductors provided on the circuit board illustrated in FIG. 1.
  • FIG. 4 is a perspective view of a leg portion of the additional conductor shown in FIG.
  • FIG. 5 is a plan view showing an embodiment of the electronic device of the present invention.
  • FIG. 6 is a circuit diagram of a switching arm series circuit included in the electronic device shown in FIG.
  • the upper side of FIG. 1 is “upper”, the lower side is “lower”, the left side is “left”, the right side is “right”, and the upper side of FIGS. Is described as “lower surface side”.
  • a circuit board 1a shown in FIG. 1 is a circuit board for mounting a three-phase (U phase, V phase, W phase) output inverter circuit.
  • the circuit board 1a includes a metal substrate 2, an insulating layer 3 provided on the upper surface side of the metal substrate 2, and a conductor layer 4 provided on the upper surface of the insulating layer 3.
  • the conductor layer 4 is a layer which is mainly composed of a conductive metal material and functions as a wiring pattern of the circuit board 1a by being formed in a predetermined pattern according to the purpose.
  • the metal material which comprises the conductor layer 4 is not specifically limited, For example, copper, aluminum, iron, silver, gold, or the alloy containing these is preferable.
  • the conductor layer 4 is made of copper or a copper-based alloy, a wiring pattern having a relatively small resistance value can be formed.
  • a method for forming the conductor layer 4 in a predetermined pattern is not particularly limited, and examples thereof include an etching process.
  • the thickness of the conductor layer 4 is not particularly limited, but is preferably 10 to 80 ⁇ m, more preferably 30 to 50 ⁇ m, when it is made of the above-described materials. If the thickness of the conductor layer 4 is less than this lower limit, depending on other conditions, the resistance may increase and the amount of heat generated from the conductor layer 4 may increase, and the thickness of the conductor layer 4 may exceed this upper limit. Even if the value exceeds 1, the conductivity of the conductor layer 4 may not be improved further, or pattern formation by etching or the like may be difficult.
  • the conductor layer 4 is laminated with a coating layer (solder resist layer) 5 covering at least a part thereof. Thereby, the conductor layer 4 can be protected and the deterioration and short circuit of the conductor layer 4 can be prevented.
  • the covering layer 5 is omitted and exposed at the terminal portion for connecting the switching element or the like.
  • the constituent material of the coating layer 5 is not specifically limited, For example, various resin materials, such as an epoxy resin, cyanate resin, a phenol resin, are preferable.
  • the thickness of the coating layer 5 is not particularly limited, but is preferably 10 to 100 ⁇ m, and more preferably 10 to 30 ⁇ m, when it is made of the resin material described above. If the thickness of the coating layer 5 is less than this lower limit value, the protective function of the coating layer 5 may not be sufficiently exhibited depending on other conditions, and even if the thickness of the coating layer 5 exceeds this upper limit value. Further, the protective function of the coating layer 5 may not be improved.
  • the conductor layer 4 has a terminal for connecting a switching element that generates heat of 200 to 700 J / s when driven by a current of 60 A, for example.
  • These terminals are preferably arranged on the conductor layer 4 with an integration degree of 0.1 to 5.0 per square centimeter, and preferably with an integration degree of 1.0 to 3.0. More preferred. If the integration degree of the terminal is less than this lower limit value, it is disadvantageous for miniaturization of the circuit board 1a. If the integration degree of the terminal exceeds this upper limit value, the terminal of the conductor layer 4 is interposed via the insulating layer 3 described later. In some cases, heat generated from the switching element connected to the substrate cannot be sufficiently dissipated from the metal substrate 2 described later.
  • the current value of the current for driving the switching element is not limited to 60 A, and may be a different current value depending on the type of the switching element.
  • the current value is preferably 10 to 400 A, and preferably 40 to 350 A. More preferably.
  • the insulating layer 3 is provided on the upper surface side of the metal substrate 2 and is a layer that insulates the metal substrate 2 and the conductor layer 4. By providing the insulating layer 3, a short circuit (short circuit) of the conductor layer 4 can be reliably prevented.
  • the shape of the insulating layer 3 is a quadrangle (rectangle, square) in plan view in the illustrated configuration.
  • the insulating layer 3 is made of an insulating material.
  • the insulating material which comprises the insulating layer 3 is not specifically limited, For example, various resin materials are mentioned, Especially an epoxy resin, cyanate resin, a phenol resin etc. are preferable.
  • a constituent material of the insulating layer 3 a mixture of an insulating material and a filler may be used.
  • the insulating layer 3 has excellent thermal conductivity, and heat generated in the circuit on the circuit board 1a is more efficiently transferred to the metal substrate 2. be able to.
  • the rigidity of the insulating layer 3 can be improved by mixing a predetermined filler with the constituent material of the insulating layer 3.
  • the content of the filler to be mixed with the constituent material of the insulating layer 3 is preferably 5 to 40% by weight, more preferably 15 to 30% by weight of the whole constituent material of the insulating layer 3. If the filler content is less than this lower limit, depending on other conditions, the thermal conductivity of the insulating layer 3 may not be sufficiently improved. If the filler content exceeds this upper limit, Depending on the conditions, the toughness of the insulating layer 3 may decrease, and the mechanical strength of the insulating layer 3 may not be sufficiently secured.
  • the thermal conductivity of the filler mixed with the constituent material of the insulating layer 3 is preferably higher than that of the above-described resin material, specifically, 10 to 150 W / (m ⁇ K). Is preferred. If the thermal conductivity of the filler is less than this lower limit, depending on other conditions, the thermal conductivity of the insulating layer 3 may not be sufficiently improved, and the thermal conductivity of the filler exceeds this upper limit. Even if this is not the case, the thermal conductivity of the insulating layer 3 may not be further improved.
  • the insulating layer 3 By mixing such a high thermal conductivity filler into the constituent material of the insulating layer 3, the insulating layer 3 has excellent thermal conductivity, and more efficiently generates heat generated in the circuit on the circuit board 1a. It can be transmitted to the metal substrate 2.
  • fillers examples include talc, calcined clay, unfired clay, mica, silicates such as glass, oxides such as titanium oxide and alumina, fused silica (fused spherical silica, fused crushed silica), Of silicon compounds like crystalline silica, carbonates like calcium carbonate, magnesium carbonate, hydrotalcite, hydroxides like aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium sulfate, calcium sulfate, calcium sulfite Sulfates or sulfites such as zinc borate, barium metaborate, borate such as aluminum borate, calcium borate, sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride, glass fiber And fibers such as carbon fiber.
  • silicates such as glass
  • oxides such as titanium oxide and alumina
  • fused silica fused silica (fused spherical silica, fused crushed si
  • the thermal conductivity of the insulating layer 3 is preferably 0.1 to 2.0 W / (m ⁇ K), more preferably 0.4 to 1.0 W / (m ⁇ K). If the thermal conductivity of the insulating layer 3 is less than this lower limit value, the heat generated from the switching element connected to the terminal of the conductor layer 4 cannot be sufficiently transferred to the metal substrate 2, and the thermal conductivity of the insulating layer 3. Even if the rate exceeds this upper limit, depending on the thickness of the metal substrate 2 to be described later, the heat dissipation efficiency for heat generated from the switching element mounted on the terminal of the conductor layer 4 is not further improved.
  • the thickness of the insulating layer 3 is not particularly limited, but is preferably 30 to 200 ⁇ m, more preferably 50 to 100 ⁇ m when the insulating layer 3 is made of the materials described above. If the thickness of the insulating layer 3 is less than this lower limit value, when a current exceeding the upper limit value of the current value described above is input to the conductor layer 4, sufficient insulation may not be ensured. If the thickness exceeds the upper limit, the heat generated by the switching element may not be sufficiently transferred to the metal substrate 2 due to the thermal resistance of the insulating layer 3.
  • the metal substrate 2 mainly bears rigidity of the circuit board 1a and has a function of releasing heat generated from the element to the lower surface side.
  • the shape of the metal substrate 2 is not particularly limited, but in the configuration shown in the figure, the shape is a quadrangle (rectangle, square) in plan view.
  • the metal substrate 2 is made of a metal material.
  • the metal material which comprises the metal substrate 2 is not specifically limited, For example, copper, aluminum, iron, or an alloy containing these with high heat conductivity is mentioned. Among these, aluminum or an aluminum-based alloy is preferable.
  • the metal substrate 2 becomes a substrate having a relatively high thermal conductivity, and reliably generates heat generated by a switching element or a circuit mounted on the circuit substrate 1a. Can dissipate heat.
  • the metal substrate 2 may contain a ceramic material.
  • the thermal conductivity of the metal substrate 2 is preferably 100 to 500 W / (m ⁇ K), more preferably 200 to 300 W / (m ⁇ K).
  • the thermal conductivity of the metal substrate 2 is less than this lower limit value, the switching element connected to the terminal of the conductor layer 4 is driven for a long time, and sufficient heat is generated from the switching element when a large amount of heat is generated. Even if the thermal conductivity of the metal substrate 2 exceeds the upper limit, depending on the thickness of the conductor layer 4 and the insulating layer 3 and the thermal conductivity, the heat generated from the switching element may not be The heat dissipation efficiency may not be improved further.
  • the thickness of the metal substrate 2 is not particularly limited, it is preferably 0.5 to 1.8 mm, more preferably 0.8 to 1.5 mm when it is made of the above-described materials. If the thickness of the metal substrate 2 is less than this lower limit value, depending on the constituent material of the metal substrate 2, the strength of the metal substrate 2 may be insufficient and warping may occur. Exceeding the upper limit is disadvantageous in reducing the thickness of the circuit board 1a, and the material cost of the metal substrate 2 may increase. Even if the thickness of the metal substrate 2 exceeds this upper limit value, the thermal conductivity of the insulating layer 3 is low, so that the heat dissipation efficiency for the heat generated from the switching element connected to the terminal of the conductor layer 4 is There are cases where it does not improve.
  • the conductor layer 4 is formed on the same plane, the first switching arm series circuit terminal group 41U for mounting the switching arm series circuit, the second switching arm series circuit terminal. Group 41V, third switching arm series circuit terminal group 41W, first drive circuit terminal group 42U for mounting the drive circuit, second drive circuit terminal group 42V, and third drive circuit
  • the terminal group 42 ⁇ / b> W the capacitor terminal 43 for mounting the capacitor 63 (see FIG. 5), the DC input terminals 44 a and 44 b for inputting DC current, and the conductor layer 4.
  • the heat radiation terminals 46a and 46b and the wiring part 47 covered with the covering layer 5 are formed, thereby forming a wiring pattern.
  • the surface of the “same surface” here may constitute a continuous surface, or may be divided by some dividing line. Similarly, when there are some steps or slopes on the surface, they can be regarded as the same surface.
  • first switching arm series circuit terminal group 41U the second switching arm series circuit terminal group 41V, the third switching arm series circuit terminal group 41W, the first drive circuit terminal group 42U, the second The drive circuit terminal group 42V, the third drive circuit terminal group 42W, the capacitor terminal 43, and the DC input terminals 44a and 44b will be sequentially described.
  • the first switching arm series circuit terminal group 41U is a terminal for mounting the U-phase switching arm series circuit constituting the three-phase output inverter circuit.
  • the second switching arm series circuit terminal group 41V is a terminal for mounting a V-phase switching arm series circuit constituting a three-phase output inverter circuit.
  • the third switching arm series circuit terminal group 41W is a terminal for mounting a W-phase switching arm series circuit constituting a three-phase output inverter circuit. Since the switching arm series circuit terminal groups 41U, 41V, and 42W have the same basic configuration, the first switching arm series circuit terminal group 41U will be described below as a representative.
  • the first switching arm series circuit terminal group 41U includes a plurality of switching element terminal pairs including a positive switching element terminal 411a and a negative switching element terminal 411b, a plurality of resistance terminals 415, and an output. Terminal 416.
  • the positive side switching element terminal 411a and the negative side switching element terminal 411b are terminals for mounting a (semiconductor) switching element such as a MOSFET or an IGBT.
  • a switching arm series circuit terminal group 41U a plurality of positive electrode side switching element terminals 411a are arranged on the left side in FIG. 1, and a plurality of negative electrode side switching element terminals 411b are arranged on the right side in FIG. .
  • the positive side switching element terminal 411a and the negative side switching element terminal 411b have a drain terminal 412, a source terminal 413, and a gate terminal 414, respectively.
  • the drain terminal 412 is a terminal for connecting the drain of the switching element.
  • the source terminal 413 is a terminal for connecting the source of the switching element.
  • the gate terminal 414 is a terminal for connecting the gate of the switching element. The switching element is driven by applying a driving voltage to the gate connected to the gate terminal 414.
  • the resistance terminal 415 is a terminal for connecting a resistor for adjusting the amount of current flowing from the drive circuit to the gate of the switching element.
  • the resistance terminal 415 is provided between the gate terminal 414 and the source terminal 413, and is electrically connected via the first drive circuit terminal group 42 U and the gate terminal 414, and the wiring portion 47. It is connected.
  • the output terminal 416 is a terminal for outputting U phase, V phase, or W phase. Each output terminal 416 has a strip-like (straight) shape in the illustrated configuration.
  • the output terminal 416 of the first switching arm series circuit terminal group 41U is disposed between the positive-side switching element terminal 411a and the negative-side switching element terminal 411b.
  • the positive electrode side switching element terminal 411a arranged on the left side in FIG. 1 and the negative electrode side switching element terminal 411b adjacent to the positive electrode side switching element terminal 411a constitute a pair of switching element terminal pairs, respectively. To do.
  • the first switching arm series circuit terminal group 41U of FIG. 1 nine switching element terminal pairs are configured.
  • the plurality of switching element terminal pairs are arranged in a row along the vertical direction in FIG.
  • the switching element terminal pairs are arranged in parallel at equal intervals.
  • the switching elements connected to the positive-side switching element terminal 411a and the negative-side switching element terminal 411b constituting the switching element terminal pair operate in a complementary manner, so that the output of each phase is output from the output terminal 416. Can be output.
  • the first switching arm series circuit terminal group 41U in FIG. 1 has nine switching element terminal pairs and eighteen resistance terminals 415, but the number thereof is not limited to this. .
  • the first switching arm series circuit terminal group 41U includes at least one switching element terminal pair and a number of resistance terminals 415 equal to the sum of the positive switching element terminal 411a and the negative switching element terminal 411b. It only has to have. The same applies to the second switching arm series circuit terminal group 41V and the third switching arm series circuit terminal group 41W.
  • each switching arm series circuit terminal group 41U, 41V, 41W includes a first switching arm series circuit terminal group 41U and a second switching arm series circuit terminal group from left to right.
  • 41V and the third switching arm series circuit terminal group 41W are arranged in parallel in the direction orthogonal to the longitudinal direction of each switching arm series circuit terminal group 41U, 41V, 41W.
  • the first switching arm series circuit terminal group 41U and the second switching arm series circuit terminal group 41V are separated by a distance s1.
  • the second switching arm series circuit terminal group 41V and the third switching arm series circuit terminal group 41W are separated by a distance s2.
  • the values of the distances s1 and s2 are each preferably 1 to 20 mm, and more preferably 5 to 10 mm.
  • the values of the distances s1 and s2 are less than the lower limit value, depending on other conditions, the resistance between the distances s1 and s2 increases, and heat generation due to the resistance increases.
  • the positive-side switching element terminal 411a and the negative-electrode side The operation of the switching element mounted on the switching element terminal 411b may become unstable. If the values of the distances s1 and s2 exceed the upper limit value, it is effective for preventing an increase in resistance between the distances s1 and s2. However, the circuit board 1a increases in size.
  • the distances s1 and s2 may be different from each other, but may be the same. When the distances s1 and s2 are different, the difference is preferably 40% or less of the distance s1.
  • a heat radiation terminal 46a is disposed between the first switching arm series circuit terminal group 41U and the second switching arm series circuit terminal group 41V.
  • a heat radiation terminal 46b is disposed between the second switching arm series circuit terminal group 41V and the third switching arm series circuit terminal group 41W.
  • the switching arm series circuit terminal groups 41U, 41V, and 41W have the same vertical length and horizontal width, respectively, and the upper ends of the switching arm series circuit terminal groups 41U, 41V, and 41W, respectively. And the lower end are aligned so as to be aligned.
  • the first switching arm series circuit terminal group 41U and the third switching arm series circuit terminal group 41W are arranged in the same direction.
  • the second switching arm series circuit terminal group 41V is arranged 180 degrees inverted with respect to the first switching arm series circuit terminal group 41U and the third switching arm series circuit terminal group 41W.
  • the third switching arm series circuit terminal group 41W has a normal to the horizontal plane of the circuit board 1a with respect to the first switching arm series circuit terminal group 41U and the third switching arm series circuit terminal group 41W. As a center of rotation, it is rotated 180 degrees.
  • the switching element terminal 411b is disposed adjacent to the switching element terminal 411b. For this reason, the plurality of negative-side switching element terminals 411b included in the first switching arm series circuit terminal group 41U and the plurality of negative-side switching element terminals 411b included in the second switching arm series circuit terminal group 41V.
  • the wiring part 47 can be shared.
  • a plurality of positive electrode side switching element terminals 411a included in the second switching arm series circuit terminal group 41V, and a plurality of positive electrode side switching element terminals 411a included in the third switching arm series circuit terminal group 41W. are placed close together. Therefore, the plurality of positive electrode side switching element terminals 411a included in the second switching arm series circuit terminal group 41V and the plurality of positive electrode side switching element terminals 411a included in the third switching arm series circuit terminal group 41W.
  • the wiring part 47 can be shared.
  • the wiring portion 47 for the positive switching element terminal 411a and the negative switching element terminal 411b of the second switching arm series circuit terminal group 41V it is not necessary to separately form the wiring portion 47 for the positive switching element terminal 411a and the negative switching element terminal 411b of the second switching arm series circuit terminal group 41V. Therefore, the wiring pattern can be simplified and the integration degree of the switching elements can be improved. Therefore, the circuit board 1a can be reduced in size.
  • the first drive circuit terminal group 42U the second drive circuit terminal group 42V, and the third drive circuit terminal group 42W will be described. Since each of the drive circuit terminal groups 42U, 42V, and 42W has the same basic configuration, the first drive circuit terminal group 42U will be described below as a representative.
  • the first drive circuit terminal group 42U is a first drive circuit 101U (see FIG. 5) that drives the first switching arm series circuit 6U (see FIG. 5) mounted on the first switching arm series circuit terminal group 41U. 5) is a terminal for mounting.
  • the first drive circuit 101U applies a drive voltage to the gate of the switching element in accordance with a control signal transmitted from a control IC such as an MPU (Micro Processing Unit) mounted on another circuit board (not shown). Thus, the switching element is driven.
  • the first drive circuit 101U is constituted by a connector 105 used for connection of the drive element 104 and the control IC.
  • the drive element 104 is constituted by, for example, an IC package or the like, and has a function of applying a drive voltage to the switching element in accordance with a control signal transmitted from the control IC via the connector 105.
  • the first drive circuit terminal group 42U includes a drive element terminal group 421 for connecting the drive element 104 and a connector terminal group 422 for connecting the connector 105.
  • a drive element terminal group 421 is arranged on the left side in FIG. 1, and a connector terminal group 422 is arranged on the right side in FIG. Since the drive element terminal group 421 and the connector terminal group 422 have different shapes, the first drive circuit terminal group 42U forms an asymmetric pattern as shown.
  • the first drive circuit terminal group 42U is arranged on the same plane as the first switching arm series circuit terminal group 41U and in the vicinity of the lower end side of the first switching arm series circuit terminal group 41U. ing.
  • the term “near” here means that the impedance of the wiring portion 47 that connects the first drive circuit terminal group 42U and the first switching arm series circuit terminal group 41U is substantially negligible. A distance that decreases.
  • the distance d1 from the upper end of the first drive circuit terminal group 42U to the lower end of the first switching arm series circuit terminal group 41U (the first drive circuit terminal group 42U and the first switching arm).
  • Distance from the series circuit terminal group 41U) and a distance d2 from the upper end to the lower end of the first switching arm series circuit terminal group 41U (the vertical length of the first switching arm series circuit terminal group 41U). )) (D1 / d2) is preferably 1/200 to 1/5, and more preferably 1/100 to 1/10.
  • the distance d2 is preferably 5 to 150 mm, and more preferably 20 to 100 mm. If the distance d2 is less than this lower limit value, it may be difficult to form a wiring pattern depending on other conditions such as edging conditions. If the distance d2 exceeds this condition value, the thickness and configuration of the conductor layer 4 may be reduced. Depending on the material or the like, the impedance of the wiring portion 47 for configuring the first switching arm series circuit terminal group 41U may increase, and the SN ratio may deteriorate.
  • the first drive circuit terminal group 42U is formed on the same plane as the first switching arm series circuit terminal group 41U, the first drive circuit terminal group 42U is connected to the first drive circuit terminal group 42U.
  • the electrical connection between the drive circuit 101 ⁇ / b> U and the first switching arm series circuit 6 ⁇ / b> U connected to the first switching arm series circuit terminal group 41 ⁇ / b> U is realized by the wiring portion 47.
  • the connection terminals required when the first drive circuit 101U and the first switching arm series circuit 6U are mounted on different substrates are not required, and the connection terminals and the first drive circuit are eliminated. It is possible to prevent the SN ratio from deteriorating due to the contact resistance of the connecting portion with 101U.
  • the first drive circuit terminal group 42U is formed on the same surface as the first switching arm series circuit terminal group 41U, the first drive circuit terminal group 42U is mounted on the first drive circuit terminal group 42U.
  • the heat generated from the drive circuit 101U is transmitted to the metal substrate 2 through the insulating layer 3 and radiated from the lower surface side of the metal substrate 2. Therefore, the first drive circuit 101U can be efficiently cooled, and the operation of the first drive circuit 101U can be stabilized.
  • the first drive circuit terminal group 42U is disposed in the vicinity of the DC input terminal 44b connected to the negative electrode side of the DC power supply. Since the wiring portion 47 connecting the first drive circuit terminal group 42U and the DC input terminal 44b is shortened, the impedance of the wiring portion 47 is reduced, and the operation of the drive circuit can be further stabilized.
  • the first drive circuit terminal group 42U is disposed on the lower end side of the first switching arm series circuit terminal group 41U.
  • the second drive circuit terminal group 42V is disposed on the lower end side of the second switching arm series circuit terminal group 41V.
  • the third drive circuit terminal group 42W is disposed on the lower end side of the third switching arm series circuit terminal group 41W. That is, the drive circuit terminal groups 42U, 42V, and 42W are disposed on the same end side of the switching arm series circuit terminal groups 41U, 41V, and 41W, respectively.
  • the first drive circuit terminal group 42U and the third drive circuit terminal group 42W form the same pattern in plan view. That is, the first drive circuit terminal group 42U and the third drive circuit terminal group 42W are arranged in the same direction.
  • the second drive circuit terminal group 42V is arranged 180 degrees inverted with respect to the first drive circuit terminal group 42U and the third drive circuit terminal group 42W. That is, the second drive circuit terminal group 42V is 180 with respect to the first drive circuit terminal group 42U and the third drive circuit terminal group 42W with the normal to the horizontal plane of the circuit board 1a as the rotation center. It is arranged in degrees.
  • the second switching arm series circuit terminal group 41V is inverted 180 degrees with respect to the first switching arm series circuit terminal group 41U and the third switching arm series circuit terminal group 41W.
  • the drive circuit terminal groups 42U, 42V, 42W can be arranged on the same end side of the switching arm series circuit terminal groups 41U, 41V, 41W, respectively.
  • the capacitor terminal 43 is a terminal for mounting the capacitor 63, and in the present embodiment, a plurality (eight) are provided.
  • the capacitors 63 mounted on the capacitor terminals 43 are connected to the first switching arm series circuit 6U mounted on the first switching arm series circuit terminal group 41U and the second switching arm series circuit terminal group 41V.
  • the second switching arm series circuit 6V mounted and the third switching arm series circuit 6W mounted on the third switching arm series circuit terminal group 41W are shared.
  • Capacitor 63 suppresses a surge current generated by the switching operation of the switching element, and at the same time smoothes the direct current input to circuit board 1a.
  • the plurality of capacitor terminals 43 are formed on the same plane as the switching arm series circuit terminal groups 41U, 41V, 41W and the drive circuit terminal groups 42U, 42V, 42W. Thereby, the heat generated from the capacitors 63 connected to the plurality of capacitor terminals 43 can be transmitted to the metal substrate 2 via the insulating layer 3 and radiated. Therefore, the capacitor 63 is efficiently cooled, and evaporation of the filling liquid in the capacitor 63 can be suppressed. As a result, the capacity of the filling liquid in the capacitor 63 at the time of shipment can be reduced. In addition, since the evaporation of the filling liquid in the capacitor 63 is suppressed, the life of the capacitor 63 can be extended.
  • the plurality of capacitor terminals 43 are arranged on the upper end side of the switching arm series circuit terminal groups 41U, 41V, 41W, that is, on the side where the drive circuit terminal groups 42U, 42V, 42W are not arranged. Therefore, each capacitor terminal 43 is arranged in the vicinity of the DC input terminal 44a. Therefore, the impedance of the wiring portion 47 that connects the DC input terminal 44a and each capacitor terminal 43 can be reduced. As a result, surge current suppression and smoothing of the direct current input to the circuit board 1a can be performed more effectively.
  • the circuit board 1a has a total of eight capacitor terminals 43, but is not necessarily limited thereto.
  • the circuit board 1a only needs to have the minimum number of capacitor terminals 43 according to the magnitude of the input DC voltage (current) and the number of switching elements.
  • the DC input terminals 44a and 44b are connected to a DC power source and are terminals for inputting a DC voltage to the circuit board 1a.
  • the DC input terminal 44a is formed in an L shape by joining long portions 442a and 443a at right angles.
  • the DC input terminal 44b is formed in an L shape by joining the long portions 442b and 443b at a right angle.
  • the long portions 442a and 443a of the DC input terminal 44a and the long portions 442b and 443b of the DC input terminal 44b have a length of 70% or more of one side of the circuit board 1a.
  • the DC input terminal 44a is arranged such that the long portion 442a is parallel to the upper side of the circuit board 1a and the long portion 443a is parallel to the left side of the circuit board 1a. Further, the DC input terminal 44a is arranged in the vicinity of the outer peripheral portion of the circuit board 1a so that the corner portion 441a of the DC input terminal 44a corresponds to the upper left corner portion of the circuit board 1a.
  • the DC input terminal 44b is arranged such that the long portion 442b is parallel to the lower side of the circuit board 1a and the long portion 443b is parallel to the right side of the circuit board 1a. Further, the DC input terminal 44b is arranged in the vicinity of the outer peripheral portion of the circuit board 1a so that the corner portion 441b of the DC input terminal 44b and the lower right corner portion of the circuit board 1a correspond to each other.
  • the DC input terminals 44a and 44b are arranged along each square side (outer peripheral part) of the metal substrate 2 in plan view. As described above, by arranging the DC input terminals 44a and 44b along the outer peripheral portion of the metal substrate 2, the heat generated from the DC input terminals 44a and 44b is generated by the current flowing, so that the lower surface of the metal substrate 2 is exposed. It is possible to dissipate heat not only from the side but also from the side. Therefore, the heat generated from the DC input terminals 44a and 44b can be radiated more efficiently.
  • the switching arm series circuit terminal groups 41U, 41V, 41W, the drive circuit terminal groups 42U, 42V, 42W, the capacitor terminals 43, and the heat dissipation terminals 46a, 46b are disposed in a region surrounded by the DC input terminals 44a and 44b.
  • a region surrounded by the DC input terminals 44a and 44b is referred to as a terminal region.
  • the DC input terminal 44a is connected to the positive side of the DC power supply, and the DC input terminal 44b is connected to the negative side of the DC power supply, whereby a DC voltage is input to the circuit board 1a.
  • the DC input terminal 44a is connected to the positive electrode side of the DC power supply, and the DC input terminal 44b is connected to the negative electrode side of the DC power supply, but this is not necessarily limited thereto. That is, the DC input terminal 44a may be connected to the negative electrode side of the DC power supply, and the DC input terminal 44b may be connected to the positive electrode side of the DC power supply.
  • a relatively large current flows through the DC input terminals 44a and 44b, the output terminal 416, and the heat dissipation terminals 46a and 46b. Therefore, depending on other conditions, a large amount of heat may be generated from the DC input terminals 44a and 44b, the output terminal 416, and the heat dissipation terminals 46a and 46b. Therefore, when a current exceeding a predetermined amount flows through the DC input terminals 44a and 44b, the output terminal 416, and the heat dissipation terminals 46a and 46b, as shown in FIG. It is preferable to provide the additional conductor 45 on 44b, the output terminal 416, and the thermal radiation terminals 46a and 46b.
  • the DC input terminals 44a and 44b, the output terminal 416, and the heat radiating terminals 46a and 46b have a function as an additional conductor joining portion for joining the additional conductor 45.
  • the DC input terminals 44a and 44b, the output terminal 416 or the heat radiation terminals 46a and 46b and the additional conductor 45 are electrically integrated and the resistance value is lowered, so that heat generation can be suppressed.
  • the additional conductor 45 is added. Is preferred.
  • the material constituting the additional conductor 45 is not particularly limited, and may be, for example, the same metal material as that of the conductor layer 4 described above or a different metal material.
  • the additional conductor 45 is preferably made of a metal material (for example, copper and a copper-based alloy) that is the same as the constituent material of the conductor layer 4 or has the same main component. Thereby, the electric corrosion of the additional conductor 45 can be reduced.
  • the thickness of the additional conductor 45 is, for example, preferably 1 to 15 mm, more preferably 5 to 10 mm, when it is made of the same metal material as the constituent material of the conductor layer 4 described above. If the thickness of the additional conductor 45 is less than this lower limit value, the resistance may not be sufficiently lowered depending on other conditions, and even if the thickness of the additional conductor 45 exceeds this upper limit value, it is more than that. There may be no decrease in resistance.
  • the additional conductor 45 Since the additional conductor 45 has the above-described thickness, the area of the portion in contact with air is large. Furthermore, since the additional conductor 45 is made of a metal material having a high thermal conductivity similar to the constituent material of the conductor layer 4 described above, the additional conductor 45 has a heat dissipation function, that is, a heat sink function. Therefore, heat generated from the DC input terminals 44 a and 44 b and the like is radiated from the additional conductor 45.
  • the heat generated from the element connected to the terminal region is transmitted to the lower surface of the circuit board 1a and radiated from the lower surface of the metal substrate 2, but is also transmitted to the surface direction of the circuit board 1a.
  • the heat transmitted in the surface direction of the circuit board 1a is transmitted to the additional conductor 45 joined on the DC input terminals 44a, 44b, etc., and is radiated. As a result, the heat generated from the element connected to the terminal region can be radiated more efficiently.
  • the additional conductor 45 When the additional conductor 45 is joined to the DC input terminals 44a and 44b, the element connected to the terminal region is surrounded by the additional conductor 45 having a heat sink function in all directions (up and down, left and right directions in FIG. 1). Become. Therefore, the heat emitted from the elements connected to the terminal region and diffused in the surface direction of the circuit board 1a, that is, in all directions, is transmitted to the additional conductor 45 and dissipated in all directions. Therefore, the heat emitted from the element connected to the terminal region can be radiated more efficiently.
  • the long portions 442a and 443a of the DC input terminal 44a and the long portions 442b and 443b of the DC input terminal 44b each have a length of 70% or more of one side of the circuit board 1a. Therefore, the circuit board 1a is arranged along substantially the entire corresponding side. Therefore, the heat generated from the elements connected to the terminal region and diffusing in the surface direction of the circuit board 1a is transmitted to the additional conductor 45 almost uniformly in all four directions and radiated.
  • FIG. 3 is a diagram showing a configuration example of the additional conductor 45 bonded onto the DC input terminal 44b of the circuit board 1a shown in FIG.
  • FIG. 3A is an example of a cross-sectional view taken along the line BB of FIG.
  • the additional conductor 45 is joined to almost the entire surface of the DC input terminal 44b.
  • the means for joining the DC input terminal 44b to the additional conductor 45 is not particularly limited. For example, joining using a conductive adhesive, joining using a brazing material such as solder, and the like can be mentioned. Bonding is preferable. This is because solder bonding (adhesion) is low in cost and excellent in connection reliability.
  • the additional conductor 45 may be a continuous body, or a part thereof may be missing, for example, the inside of the dotted line in FIG. Further, the additional conductor 45 may change in width, thickness, and the like along its longitudinal direction.
  • FIG. 3B is another example of a cross-sectional view taken along the line BB in FIG.
  • the additional conductor 45 includes a pair of leg portions 451 joined to the DC input terminal 44b and a connecting portion that is separated from the DC input terminal 44b and connects the pair of leg portions. 452, that is, in the form of a bridge.
  • the additional conductor 45 is soldered only at the lower surface side end portion 453 of the leg portion 451 which is a contact portion between the DC input terminal 44 b and the additional conductor 45.
  • solder can be saved.
  • the solder connection is performed only at the contact portion between the DC input terminal 44b and the additional conductor 45, the working efficiency when the additional conductor 45 is added is improved. Further, the portion excluding the lower surface side end 453 of the additional conductor 45 is separated from the DC input terminal 44b through a gap. For this reason, compared with the case of FIG. 3A, the areas of the DC input terminal 44b and the additional conductor 45 in contact with air are increased, and the DC input terminal 44b and the additional conductor 45 are efficiently cooled. can do.
  • the strength of the bridge-shaped additional conductor 45 may be insufficient and may be deformed. If the bridge-shaped additional conductor 45 exceeds a predetermined length, a plurality of bridge-shaped additional conductors 45 having a total length equal to or shorter than the predetermined length may be used to add the additional conductor 45 to the DC input terminal 44b. Good.
  • the predetermined length is preferably set within a range of 20 to 50 mm, for example.
  • 3 (c) and 3 (d) are other examples of the sectional view taken along the line BB of FIG. 3 (c) and 3 (d), a plurality of bridge-shaped additional conductors 45 having a total length equal to or shorter than the predetermined length described above are joined to the DC input terminal 44b. That is, the plurality of additional conductors 45 are arranged along the longitudinal direction of the DC input terminal 44b which is an additional conductor joint.
  • the legs 451 of the adjacent additional conductors 45 may be joined to each other.
  • the legs 451 of the adjacent additional conductors 45 are connected to each other. , It may not be joined.
  • the leg portions 451 of the adjacent additional conductors 45 are separated from each other, but the leg portions 451 of the adjacent additional conductors 45 may be in contact with each other.
  • the plurality of additional conductors 45 are integrated, so that the strength of the bridge-shaped additional conductor 45 is sufficient. Can be high.
  • the leg portions 451 of the adjacent additional conductors 45 are not joined to each other as shown in FIG. 3D, the number of the additional conductors 45 joined to the DC input terminal 44b is adjusted. Therefore, the resistance value when the DC input terminal 44b and the plurality of additional conductors 45 are electrically integrated can be easily adjusted.
  • the additional conductor 45 and the DC input terminal 44b may be joined by providing solder 48 between the legs 451 of the adjacent additional conductors 45.
  • the amount of solder 48 used for joining increases, but the legs 451 of the adjacent additional conductors 45 are joined by the solder 48, so that the strength of the bridge-shaped additional conductor 45 can be increased.
  • the bonding strength between the DC input terminal 44b and the additional conductor 45 can be increased.
  • the DC input terminal 44b and the solder 48 are electrically integrated. Therefore, the resistance between the leg portions 451 of the adjacent additional conductors 45 can be lowered.
  • FIG. 4 is a perspective view of the leg 451 of the bridge-shaped additional conductor 45 shown in FIGS. 3B, 3C, 3D, and 3E.
  • all of the additional conductors 45 may have the same thickness, or only the lower surface side end 453 of the leg 451 becomes thinner as shown in FIG. 4B. It may be.
  • FIG. 4B when the thickness of the lower surface side end 453 of the additional conductor 45 is thin, the heat capacity of the lower surface side end 453 can be reduced.
  • the leg portion 451 of the additional conductor 45 may have a cutout portion 454.
  • the soldering operation efficiency can be improved by pouring solder into the notch 454 and performing solder bonding.
  • the lower surface side end 453 of the additional conductor 45 may have a punched portion 455.
  • the soldering work efficiency can be improved by pouring solder into the punched portion 455 and performing solder joining.
  • circuit board 1a according to the first embodiment of the present invention has been described above.
  • the present invention is not limited to this, and the number of elements, the arrangement, and the like are arbitrary structures having similar functions. Can be substituted. In addition, any other component may be added to the present invention.
  • FIG. 5 is a plan view of the inverter circuit (electronic device) 100 mounted on the circuit board 1a.
  • the inverter circuit (electronic device) 100 includes the circuit board 1a described above, a first switching arm series circuit 6U mounted on the first switching arm series circuit terminal group 41U, and a second switching arm series circuit terminal.
  • the second switching arm series circuit 6V mounted on the group 41V
  • the third switching arm series circuit 6W mounted on the third switching arm series circuit terminal group 41W
  • the first drive circuit terminal group 42U The first drive circuit 101U mounted on the second drive circuit
  • Circuit 101W, capacitor 63 mounted on capacitor terminal 43, DC input conductors 102a and 102b, and first output conductor 103 Has a second output wire 103V, and a third output conductor 103W.
  • the capacitors 63 are concentrated on the upper end side of the switching arm series circuits 6U, 6V, 6W, that is, on the side where the drive circuits 101U, 101V, 101W are not disposed.
  • the capacitor 63 normally has a longer length (height) in the normal direction of the circuit board 1a than the switching arm series circuit terminal groups 41U, 41V, 41W and the drive circuits 101U, 101V, 101W. Therefore, by arranging the capacitors 63 so as to be concentrated on one end side of the circuit board 1a, the space in the height direction of the portion where the capacitors 63 are not disposed can be effectively utilized.
  • the additional conductor 45 is joined to the DC input terminals 44a and 44b, the output terminal 416, and the heat dissipation terminals 46a and 46b of the circuit board 1a.
  • the DC input lead wire 102a is a lead wire for connecting the DC input terminal 44a to which the additional conductor 45 is joined and the positive electrode side of a DC power source (not shown).
  • the DC input lead wire 102b is a lead wire for connecting the DC input terminal 44b to which the additional conductor 45 is joined and the negative electrode side of the DC power source.
  • the first output conducting wire 103U is a conducting wire for connecting the first switching arm series circuit 6U and the motor (device).
  • the second output conducting wire 103V is a conducting wire for connecting the second switching arm series circuit 6V and the motor (device).
  • the third output conducting wire 103W is a conducting wire for connecting the output terminal 416 of the third switching arm series circuit 6W and the motor (device).
  • the inverter circuit (electronic device) 100 can control the motor in three phases (U phase, V phase, W phase) by the outputs of the output conductive wires 103U, 103V, 103W.
  • FIG. 6 is a circuit diagram of the switching arm series circuits 6U, 6V, 6W included in the inverter circuit (electronic device) 100 shown in FIG.
  • FIG. 6 is a circuit diagram of the switching arm series circuit 6 (6U, 6V, 6W) connected to the switching arm series circuit terminal group 41U, 41V, 41W.
  • the switching arm series circuit 6 includes a plurality of positive electrode side switching elements 61a, a plurality of negative electrode side switching elements 61b, a positive electrode side switching element driving terminal 62a connected to one of the drive circuits 101U, 101V, and 101W, and a negative electrode side.
  • An output terminal 416 is provided.
  • the positive side switching element 61a and the negative side switching element 61b are constituted by MOSFETs.
  • the drain 611 of the positive electrode side switching element 61a is connected to the DC input terminal 44a.
  • the source 612 of the positive side switching element 61a is connected to the drain 611 of the negative side switching element 61b.
  • the gate 613 of the positive side switching element 61a is connected to the positive side switching element driving terminal 62a via the resistor 64.
  • the positive side switching element 61a performs a switching operation by a driving voltage applied to the gate 613 from the positive side switching element driving terminal 62a.
  • the drain 611 of the negative electrode side switching element 61b is connected to the source 612 of the positive electrode side switching element 61a.
  • the source 612 of the negative side switching element 61b is connected to the DC input terminal 44b.
  • the gate 613 of the negative side switching element 61 b is connected to the negative side switching element driving terminal 62 b through the resistor 64.
  • the negative side switching element 61b performs a switching operation by a drive voltage applied to the gate 613 from the negative side switching element driving terminal 62b.
  • the plurality of positive electrode side switching elements 61a are connected in parallel, and perform a switching operation in synchronization with the drive voltage applied to the gate 613 from the positive electrode side switching element driving terminal 62a.
  • the plurality of negative-side switching elements 61b are connected in parallel, and perform a switching operation in synchronization with the drive voltage applied to the gate 613 from the negative-side switching element driving terminal 62b.
  • the plurality of positive electrode side switching elements 61a and the plurality of negative electrode side switching elements 61b are connected in series with the corresponding positive electrode side switching element 61a and negative electrode side switching element 61b, respectively.
  • An output terminal 416 is connected between the source 612 of the positive switching element 61a and the drain 611 of the negative switching element 61b.
  • the positive-side switching element 61a and the negative-side switching element 61b operate in a complementary manner, so that the output of each phase in the three-phase output inverter can be output from the output terminal 416.
  • the plurality of capacitors 63 are connected in parallel, the positive electrode of each capacitor 63 is connected to the drain 611 of the positive electrode side switching element 61a, and the negative electrode of each capacitor 63 is connected to the source 612 of the negative electrode side switching element 61b. It is connected.
  • a DC input terminal 44 a is connected to the positive electrode of the capacitor 63, and a DC input terminal 44 b is connected to the negative electrode of the capacitor 63.
  • Each capacitor 63 suppresses a surge current generated by the switching operation of the positive electrode side switching element 61a and the negative electrode side switching element 61b, and at the same time smoothes the DC voltage input to the switching arm series circuit 6.
  • the plurality of resistors 64 are for adjusting the current flowing through the gate 613 of the positive side switching element 61a and the gate 613 of the negative side switching element 61b.
  • the resistor 64 is connected between the positive electrode side switching element driving terminal 62a and the gate 613 of the positive electrode side switching element 61a, or between the negative electrode side switching element driving terminal 62b and the negative electrode side switching element 61b. .
  • the positive-side switching elements 61a are mounted on all the positive-side switching element terminals 411a
  • the negative-side switching elements 61b are mounted on all the negative-side switching element terminals 411b.
  • the positive electrode side switching element 61a is not mounted on some of the positive electrode side switching element terminals 411a
  • the negative electrode side switching element 61b is not mounted on some of the negative electrode side switching element terminals 411b.
  • FIG. 7 is a plan view showing a second embodiment of the circuit board of the present invention.
  • the second embodiment will be described with a focus on the differences from the first embodiment described above, and the description of the same matters will be omitted.
  • the circuit board 1b according to the second embodiment is the same as the first embodiment except that the arrangement of the second drive circuit terminal group 42V and the capacitor terminal 43 is different. The description is omitted.
  • the second switching arm series circuit terminal group 41V includes a first switching arm series circuit terminal group 41U and a third switching arm series. It is inverted 180 degrees with respect to the circuit terminal group 41W.
  • the second drive circuit terminal group 42V is connected to the upper end side of the second switching arm series circuit terminal group 41V, that is, the first drive circuit terminal group 42U and the third drive circuit terminal group 42W. It is arrange
  • the wiring portion 47 is separately provided for the positive side switching element terminal 411a and the negative side switching element terminal 411b of the second switching arm series circuit terminal group 41V. No need to form. Therefore, the wiring pattern can be simplified and the integration degree of the switching elements can be improved.
  • the total impedance of the wiring portion 47 connecting the positive electrode and each capacitor 63 and the wiring portion connecting the negative electrode and each capacitor 63 can be set to a close value. As a result, the surge current can be suppressed more stably, and at the same time, the current can be smoothed more stably.
  • the second drive circuit terminal group 42V is arranged in the same direction as the first drive circuit terminal group 42U and the third drive circuit terminal group 42W.
  • the drive circuit terminal groups 42U, 42V, and 42W are all arranged in the same direction, so that the drive circuit terminal groups 42U, 42V, and 42W all have the same pattern. Therefore, it becomes easy to form the drive circuit terminal groups 42U, 42V, and 42W on the circuit board 1b.
  • circuit board and the electronic device of the present invention have been described based on the illustrated embodiments.
  • the present invention is not limited to this, and the configuration of each element is an arbitrary configuration having the same function. Can be substituted.
  • any other component may be added to the present invention.
  • the present invention may be a combination of any two or more configurations (features) of the embodiment.
  • the inverter circuit has been described as an example of the circuit mounted on the circuit board, but the present invention is not limited to this.
  • the circuit mounted on the circuit board is not particularly limited as long as an element that generates heat by driving the switching element or the like is mounted on the circuit board.
  • the switching regulator circuit, the PWM circuit, and the organic EL driving Examples include a circuit, an organic EL circuit, an LED driving circuit, and an LED circuit.
  • MOSFET and the IGBT are cited as the switching elements mounted on the circuit board, the present invention is not limited to this.
  • switching elements include, but are not limited to, bipolar transistors, thyristors, various diodes such as rectifier diodes, and semiconductor relays.
  • a switching element is cited as an active element that generates heat by driving, the present invention is not limited to this.
  • Other active elements include light emitting elements such as organic EL or LED, vacuum tubes, electric motors, and the like.
  • the switching element and the drive circuit for driving the switching element can be mounted on the same surface of the circuit board. Therefore, the conducting wire between the switching element and the drive circuit can be shortened, and the impedance of the conducting wire can be reduced. Therefore, it has industrial applicability.

Abstract

 実装される回路の動作安定性を向上させることができる回路基板、およびその回路基板を用いた電子デバイスを提供する。 回路基板1aは、金属基板2と、金属基板2の一方の面側に設けられた絶縁層3と、絶縁層3上に設けられた導体層4とを備える。導体層4は、スイッチング素子を接続するための複数のスイッチング素子用端子から構成されるスイッチングアーム直列回路用端子群41U、41V、41Wと、スイッチング素子に駆動電圧を印加する駆動回路を接続するための複数の駆動回路用端子から構成される駆動回路用端子群42U、42V、42Wとを有する配線パターンを備える。スイッチングアーム直列回路用端子群41U、41V、41Wおよび駆動回路用端子群42U、42V、42Wは、同一面上に形成されている。

Description

回路基板および電子デバイス
 本発明は、スイッチング素子を実装するための回路基板、および回路基板上にスイッチング素子が実装された電子デバイスに関する。
 近年、電子機器の高性能化、小型化に伴い、半導体の高密度化および高機能化が要求される傾向にある。このような傾向の中、スイッチング素子等の発熱素子によって構成される回路においては、能動素子に電流が流れることにより発熱し、温度が上昇するため、回路の動作が不安定になる場合がある。
 このような駆動により発熱する能動素子としては、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子、有機EL(Electro Luminescence)、LED(Light Emitting Diode)等の発光素子が挙げられる。
 このような発熱素子を含む回路を実装する回路基板として、金属基板を有する回路基板が用いられている。このような回路基板は、熱伝導率の高い金属基板(例えばアルミ基板)と、金属基板の表面に絶縁性材料を被覆することにより形成された絶縁層と、この絶縁層上に設けられた配線パターンを含む導体層とを有する。このような回路基板上に、発熱素子を含む回路を実装することにより、発熱素子で発生した熱を、絶縁層を介して金属基板に伝達し、金属基板から放熱することができる。そのため、発熱素子で発生した熱により、回路の動作が不安定になることを抑制することができる。なお、ここでいう「実装」とは、素子または回路等が回路基板上の所定の端子に電気的に接続されることを言う。
 例えば、特許文献1には、金属基板と、金属基板上に設けられた絶縁層と、絶縁層上に設けられた配線パターン形成用の導体層とを有し、発光素子を実装するための回路基板が開示されている。特許文献1の回路基板では、金属基板はアルミニウム、銅、ステンレス等またはこれらの合金等の熱伝導率の高い金属により構成されている。回路基板上に実装された発光素子から発せられた熱は、絶縁層を介して、金属基板へ伝達され、金属基板から放熱される。
 しかしながら、特許文献1の回路基板のように、熱伝導率の高い金属により金属基板を構成したとしても、絶縁層の熱伝導率が低いことから、回路基板上に実装された発光素子から発せられた熱を、十分に金属基板に伝達できない場合がある。
 そのため、金属基板の厚みを増大させたとしても、回路基板の放熱性を向上させることができないという問題があった。また、金属基板を厚くすることは、回路基板の薄型化、軽量化に不利であり、さらに、回路基板の材料コストを増大させるという問題がある。
 また、上述のような回路基板に実装される発熱量の大きい回路の代表例としては、スイッチング素子により構成されるインバータ回路が挙げられる。
 例えば、特許文献2には、金属基板と、金属基板上に設けられた絶縁層と、絶縁層上に設けられた金属配線とを有する回路基板と、該回路基板上に設けられたインバータ回路が開示されている。特許文献2のインバータ回路では、スイッチング素子と、スイッチング素子を駆動する駆動回路は、それぞれ、異なった回路基板上に実装されている。そのため、スイッチング素子と駆動回路との間の電気的接続は、スイッチング素子が実装された基板上に設けられた接続用端子を介して、実現されている。
 特許文献2のインバータ回路のように、スイッチング素子を実装した回路基板と、駆動回路を実装した回路基板が異なる場合、スイッチング素子と駆動回路との間の導線を短くすることが困難である。このため、スイッチング素子と駆動回路との間における導線のインピーダンスが増大し、インバータ回路がノイズおよび電流アンバランスの影響を受け易くなる。この結果、インバータ回路の動作が不安定になるという問題があった。さらに、接続用端子を介して、スイッチング素子と駆動回路との間の電気的接続を実現する必要があるため、接続用端子と駆動回路との接続部分における接続不良や接触抵抗によって、信号のレベルが低下し、SN比が悪化する。このようなSN比の悪化によっても、インバータ回路の動作が不安定になるという問題があった。
 このような問題は、インバータ回路のみならず、回路基板上にスイッチング素子を有するスイッチングレギュレーター回路、PWM(Pulse Width Modulation)回路、有機EL回路等の回路においても、同様に生じる場合がある。
特開2011-77270号公報 特開2008-29093号公報
 本発明の目的は、能動素子から発せられる熱を放熱するのに十分な放熱性を保持しつつ、小型化、薄型化を図ることができ、さらに、実装される回路の動作安定性を向上させることができる回路基板、およびその回路基板を用いた電子デバイスを提供することにある。
 このような目的は、下記(1)~(12)の本発明により達成される。
(1)金属基板と、
 前記金属基板の一方の面側に設けられた絶縁層と、
 前記絶縁層上に設けられた導体層とを備え、
 前記導体層は、
 スイッチング素子を実装するための複数のスイッチング素子用端子から構成される3つのスイッチングアーム直列回路用端子群と、
 前記スイッチング素子に駆動電圧を印加する駆動回路を実装するための複数の駆動回路用端子から構成される駆動回路用端子群とを有する配線パターンを備え、
 前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群は、同一面上に形成されており、
 前記スイッチングアーム直列回路用端子群は、それぞれ、1対の前記スイッチング素子用端子で構成されたスイッチング素子用端子対を複数有していることを特徴とする回路基板。
(2) 前記各スイッチングアーム直列回路用端子群を構成する複数の前記スイッチング素子用端子対は、一方向に沿って列状に配置されている上記(1)に記載の回路基板。
(3) 前記駆動回路用端子群は、複数の前記スイッチング素子用端子対により構成されるスイッチングアーム直列回路用端子群の一端側に配置されている上記(2)に記載の回路基板。
(4)前記導体層の配線パターンは、さらに、コンデンサを実装するためのコンデンサ用端子を有し、
 前記コンデンサ用端子は、前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群と同一面上であって、前記スイッチングアーム直列回路用端子群の前記駆動回路用端子群が配置されていない他端側に配置されている上記(3)に記載の回路基板。
(5)複数の前記スイッチング素子用端子対から構成される前記3つのスイッチングアーム直列回路用端子群は、並設されている上記(2)に記載の回路基板。
(6)前記導体層の配線パターンは、3つの前記駆動回路用端子群を有し、
 前記3つの駆動回路用端子群は、それぞれ、前記3つのスイッチングアーム直列回路用端子群の一端側に配置されている上記(5)に記載の回路基板。
(7)前記各駆動回路用端子群は、全て前記3つのスイッチングアーム直列回路用端子群の同一端側に配置されている上記(6)に記載の回路基板。
(8)前記各駆動回路用端子群は、それぞれ、複数の前記駆動回路用端子によって非対称なパターンを形成し、
 前記3つのスイッチングアーム直列回路用端子群のうち、両端の前記2つのスイッチングアーム直列回路用端子群の一端側にそれぞれ配置されている前記駆動回路用端子群は、同一方向を向いた前記非対称なパターンを形成し、
 中央の前記スイッチングアーム直列回路用端子群の一端側に配置されている前記駆動回路用端子群は、前記両端2つのスイッチングアーム直列回路用端子群の一端側に、配置されている2群の前記駆動回路用端子群が形成する前記非対称なパターンに対し、前記金属基板の水平面に対する法線を回転中心として180度回転した前記非対称なパターンを形成する上記(7)に記載の回路基板。
(9)前記3つのスイッチングアーム直列回路用端子群のうち、両端2つの前記スイッチングアーム直列回路用端子群の一端側に、それぞれ配置されている前記駆動回路用端子群は、前記両端2つのスイッチングアーム直列回路用端子群の同一側に配置され、
 中央の前記スイッチングアーム直列回路用端子群の一端側に配置されている前記駆動回路用端子群は、前記両端のスイッチングアーム直列回路用端子群の前記駆動回路用端子群とは反対の一端側に配置され、
 前記各駆動回路用端子群は、それぞれ、複数の前記駆動回路用端子によって非対称なパターンを形成し、
 前記各駆動回路用端子群は、全て同一方向を向いた前記非対称なパターンを形成する上記(7)に記載の回路基板。
(10)前記導体層の配線パターンは、さらに、コンデンサを実装するための、少なくとも3つのコンデンサ用端子を有し、
 前記コンデンサ用端子は、前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群と同一面上であって、前記3つのスイッチングアーム直列回路用端子群それぞれの、前記駆動回路用端子群が配置されていない側に、少なくとも1つ配置されている上記(6)ないし(9)のいずれかに記載の回路基板。
(11)前記導体層の配線パターンは、さらに、コンデンサを実装するためコンデンサ用端子を有し、
 前記のコンデンサ用端子は、前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群と同一面上に形成されている上記(1)ないし(3)、および(5)ないし(9)のいずれかに記載の回路基板。
(12)前記絶縁層の熱伝導率が、0.1~2.0W/(m・K)であり、
 前記金属基板の厚さが、0.8~1.5mmである上記(1)ないし(11)のいずれかに記載の回路基板。
(13)前記絶縁層の厚さが、30~200μmである上記(1)ないし(12)のいずれかに記載の回路基板。
(14)前記絶縁層は、エポキシ樹脂、シアネート樹脂およびフェノール樹脂のうちの少なくとも1種を主成分とする上記(1)ないし(13)のいずれかに記載の回路基板。
(15)前記絶縁層は、熱伝導率が10~150W/(m・K)のフィラーを含む上記(1)ないし(14)のいずれかに記載の回路基板。
(16)前記絶縁層の厚さt1と前記金属基板の厚さt2との比(t1/t2)が、1/50~1/4である上記(1)ないし(15)のいずれかに記載の回路基板。
(17)前記金属基板の熱伝導率が、100~500W/(m・K)である上記(1)ないし(16)のいずれかに記載の回路基板。
(18)前記導体層の厚さが、10~80μmである上記(1)ないし(17)のいずれかに記載の回路基板。
(19)前記導体層は、該導体層上に追加導体を接合するための長尺状の追加導体接合部を有する上記(1)ないし(18)のいずれかに記載の回路基板。
(20)前記金属基板は、平面視で四角形の形状を有し、
 前記追加導体接合部は、前記金属基板の四角形の各辺に沿って配置され、
 前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群端子は、前記追加導体接合部によって囲まれる領域に配置されている上記(19)に記載の回路基板。
(21)前記スイッチングアーム直列回路用端子群は、前記追加導体接合部によって囲まれる領域に、1平方センチメートル当たり、0.1~5.0個の集積度で配置されている上記(20)に記載の回路基板。
(22)前記回路基板は、さらに、前記追加導体接合部に接合された前記追加導体を有する上記(19)ないし(21)のいずれかに記載の回路基板。
(23)前記追加導体は、前記導体層の構成材料と同一、または主成分を同一とする材料によって構成されている上記(22)に記載の回路基板。
(24)前記追加導体は、前記追加導体接合部と接合する1対の脚部と、前記追加導体接合部から離間し、前記1対の脚部を連結する連結部とを有する上記(22)または(23)に記載の回路基板。
(25)前記回路基板は、複数の前記追加導体を有し、
 前記複数の追加導体は、前記追加導体接合部の長尺方向に沿って並配され、互いに隣り合う前記追加導体同士の前記脚部が接合されている上記(22)に記載の回路基板。
(26)上記(1)ないし(25)のいずれかに記載の回路基板と、
 前記回路基板上に実装されたスイッチング素子と、
 前記回路基板に実装され、前記スイッチング素子に駆動電圧を印加する前記駆動回路とを備えることを特徴とする電子デバイス。
(27)前記スイッチング素子は、駆動により200~700J/sの熱を発する上記(26)に記載の電子デバイス。
(28)前記電子デバイスは、さらに、前記回路基板に10~400Aの電流を入力する電源装置を有する上記(26)または(27)に記載の電子デバイス。
 本発明の回路基板によれば、スイッチング素子とスイッチング素子を駆動するための駆動回路を、回路基板の同一面上に実装することができる。そのため、スイッチング素子と駆動回路との間の導線を短くすることができ、導線のインピーダンスを小さくすることができる。
 また、本発明の回路基板によれば、回路基板上の配線パターンを介して、スイッチング素子と駆動回路との電気的接続を実現することができる。そのため、スイッチング素子と駆動回路との間の電気的接続を実現するための接続用端子が不要となる。その結果、接続用端子と駆動回路との接続部における接続不良や接続抵抗によるSN比の悪化をなくすことができる。
 また、本発明の回路基板では、スイッチング素子と駆動回路とを回路基板の同一面上に実装することから、電子デバイスを構成するために必要な回路基板の枚数を削減することができる。このような回路基板の枚数削減に加え、スイッチング素子と駆動回路とが集積化されるので、電子デバイスを小型化、薄型化することができる。
 また、本発明の回路基板は、金属基板の厚さを、回路基板上に実装された能動素子から発せられる熱量および絶縁層の熱伝導率に応じた厚さにしている。そのため、本発明の回路基板は、十分な放熱性を保持しつつ、金属基板を薄型化、軽量化することができる。さらに、金属基板が薄型化されていることから、回路基板全体の薄型化、軽量化、および低コスト化を図ることができる。
 また、本発明の電子デバイスによれば、スイッチング素子と駆動回路との間におけるインピーダンスを小さくすることができ、さらに、SN比の悪化を抑制することができることから、電子デバイスの動作を安定させることができる。また、前述した本発明の回路基板と同様の理由から、回路基板の枚数削減に加え、スイッチング素子と駆動回路とが集積化されるので、電子デバイスの小型化、および薄型化を図ることができる。
 また、本発明の電子デバイスによれば、回路基板が十分な放熱性を保持していることから、電子デバイスの動作を安定させることができる。さらに、金属基板が薄型化されていることから、電子デバイスの薄型化、軽量化、および低コスト化を図ることができる。
図1は、本発明の回路基板の第1実施形態を示す平面図である。 図2は、図1に示す回路基板のA-A線断面図である。 図3は、図1に示す回路基板上に設けられた追加導体の構成例を示す図である。 図4は、図3に示す追加導体の脚部の斜視図である。 図5は、本発明の電子デバイスの実施形態を示す平面図である。 図6は、図5に示す電子デバイスが備えるスイッチングアーム直列回路の回路図である。 図7は、本発明の回路基板の第2実施形態を示す平面図である。
 以下、本発明の回路基板および電子デバイスを添付の図面を参照して、詳細に説明する。なお、駆動により発熱する能動素子としては、例えば、MOSFETまたはIGBT等のスイッチング素子、有機ELまたはLED等の発光素子等が挙げられるが、以下代表的に、スイッチング素子を用いた場合を説明する。また、以下では、回路基板の一例として、前述のようなスイッチング素子を含むインバータ回路を実装するための回路基板について説明する。
 <第1実施形態>
 図1は、本発明の回路基板の第1実施形態を示す平面図である。図2は、図1に示す回路基板のA-A線断面図である。図3は、図1に示す回路基板上に設けられた追加導体の構成例を示す図である。図4は、図3に示す追加導体の脚部の斜視図である。図5は、本発明の電子デバイスの実施形態を示す平面図である。図6は、図5に示す電子デバイスが備えるスイッチングアーム直列回路の回路図である。なお、以下の説明において、図1の上側を「上」、下側を「下」、左側を「左」、右側を「右」、図2および図3の上側を「上面側」、下側を「下面側」として説明を行う。
 図1に示す回路基板1aは、3相(U相、V相、W相)出力インバータ回路を実装するための回路基板である。
 図2に示すように、回路基板1aは、金属基板2と、金属基板2の上面側に設けられた絶縁層3と、絶縁層3の上面に設けられた導体層4とを含む。
 導体層4は、主に導電性を有する金属材料によって構成され、目的に応じた所定のパターンに形成されることにより、回路基板1aの配線パターンとして機能する層である。導体層4を構成する金属材料は、特に限定されないが、例えば、銅、アルミニウム、鉄、銀、金またはこれらを含む合金が好ましい。特に、導体層4が銅または銅系合金で構成されている場合、比較的抵抗値の小さい配線パターンを形成することができる。導体層4を所定のパターンに形成する方法は、特に限定されないが、例えば、エッチング処理等が挙げられる。
 導体層4の厚さは、特に限定されないが、前述した材料で構成した場合、10~80μmであるのが好ましく、30~50μmであるのがより好ましい。導体層4の厚さがこの下限値未満であると、その他の条件によっては、抵抗が増大し、導体層4からの発熱量が増大する場合があり、導体層4の厚さがこの上限値を超えても、それ以上に導体層4の導電性の向上がみられない場合や、エッチング等によるパターン形成が困難になる場合がある。
 また、導体層4には、その少なくとも一部を覆う被覆層(ソルダーレジスト層)5が積層されている。これにより、導体層4を保護することができ、導体層4の劣化や短絡を防止することができる。なお、導体層4において、スイッチング素子等を接続するための端子部分には、被覆層5が省略されており、露出している。また、被覆層5の構成材料は、特に限定されないが、例えば、エポキシ樹脂、シアネート樹脂、フェノール樹脂等の各種樹脂材料が好ましい。
 被覆層5の厚さは、特に限定されないが、前述した樹脂材料で構成した場合、10~100μmであるのが好ましく、10~30μmであるのがより好ましい。被覆層5の厚さがこの下限値未満であると、その他の条件によっては、被覆層5の保護機能を十分に発揮できない場合があり、被覆層5の厚さがこの上限値を超えても、それ以上に被覆層5の保護機能向上がみられない場合がある。
 また、導体層4は、例えば、60Aの電流により駆動した場合に、200~700J/sの熱を発するスイッチング素子を接続するための端子を有している。この端子は、導体層4上に1平方センチメートル当たり0.1~5.0個の集積度で配置されているのが好ましく、1.0~3.0個の集積度で配置されているのがより好ましい。端子の集積度がこの下限値未満であると、回路基板1aの小型化に不利であり、端子の集積度がこの上限値を超えると、後述する絶縁層3を介して、導体層4の端子に接続されたスイッチング素子から発せられる熱を、後述する金属基板2から十分に放熱することができない場合がある。
 なお、スイッチング素子を駆動する電流の電流値は60Aに限られず、スイッチング素子の種類に応じて、異なった電流値であってもよく、例えば、10~400Aであるのが好ましく、40~350Aであるのがより好ましい。
 絶縁層3は、金属基板2の上面側に設けられており、金属基板2と導体層4とを絶縁する層である。この絶縁層3が設けられていることにより、導体層4のショート(短絡)を確実に防止することができる。また、絶縁層3の形状は、図示の構成では、平面視で四角形(長方形、正方形)を成している。絶縁層3は、絶縁性材料で構成される。絶縁層3を構成する絶縁性材料は、特に限定されないが、例えば、各種樹脂材料が挙げられ、特にエポキシ樹脂、シアネート樹脂、フェノール樹脂等が好ましい。
 また、絶縁層3の構成材料として、絶縁性材料とフィラーとの混合物を用いてもよい。絶縁層3の構成材料に所定のフィラーを混合することにより、絶縁層3は優れた熱伝導性を有し、回路基板1a上の回路で発生した熱をより効率的に金属基板2に伝達することができる。さらに、絶縁層3の構成材料に所定のフィラーを混合することにより、絶縁層3の剛性を向上させることができる。
 絶縁層3の構成材料に混合するフィラーの含有率は、絶縁層3の構成材料全体の5~40重量%であるのが好ましく、15~30重量%であるのがより好ましい。フィラーの含有率がこの下限値未満であると、その他の条件によっては、絶縁層3の熱伝導率を十分に向上させられない場合があり、フィラーの含有率がこの上限値を超えると、その他の条件によっては、絶縁層3の靱性が低下し、絶縁層3の機械的強度を十分に確保できない場合がある。
 また、絶縁層3の構成材料に混合するフィラーの熱伝導率は、前述した樹脂材料よりも熱伝導率の高いものが好ましく、具体的には、10~150W/(m・K)であるのが好ましい。フィラーの熱伝導率がこの下限値未満であると、その他の条件によっては、絶縁層3の熱伝導率を十分に向上させることができない場合があり、フィラーの熱伝導率がこの上限値を超えたとしても、それ以上に絶縁層3の熱伝導率の向上が見られない場合がある。
 絶縁層3の構成材料にこのような熱伝導率の高いフィラーを混合することにより、絶縁層3は優れた熱伝導性を有し、回路基板1a上の回路で発生した熱をより効率的に金属基板2に伝達することができる。
 このようなフィラーとしては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラスのようなケイ酸塩、酸化チタン、アルミナのような酸化物、溶融シリカ(溶融球状シリカ、溶融破砕シリカ)、結晶シリカのようなケイ素化合物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトのような炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムのような水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムのような硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムのようなホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素のような窒化物、ガラス繊維、炭素繊維等のような繊維等が挙げられる。
 また、絶縁層3の熱伝導率は、0.1~2.0W/(m・K)であるのが好ましく、0.4~1.0W/(m・K)であるのがより好ましい。絶縁層3の熱伝導率がこの下限値未満であると、導体層4の端子に接続されたスイッチング素子から発せられる熱を、十分に金属基板2に伝達させられず、絶縁層3の熱伝導率がこの上限値を超えても、後述する金属基板2の厚みによっては、導体層4の端子に実装されたスイッチング素子から発せられる熱に対する放熱効率が、それ以上向上しない。
 絶縁層3の厚さとしては、特に限定されないが、前述した材料で構成した場合、30~200μmであるのが好ましく、50~100μmであるのがより好ましい。絶縁層3の厚さがこの下限値未満であると、導体層4に前述した電流値の上限値を超えた電流が入力された場合、十分な絶縁性を確保できない場合があり、絶縁層3の厚さがこの上限値を超えると、絶縁層3の熱抵抗によって、スイッチング素子から発せられる熱を十分に金属基板2に伝達させられない場合がある。
 金属基板2は、回路基板1aの主に剛性を担い、素子から発せられた熱を下面側へ放出する機能を有する。金属基板2の形状は、特に限定されないが、図示の構成では、平面視で、四角形(長方形、正方形)を成している。
 金属基板2は、金属材料で構成される。金属基板2を構成する金属材料は、特に限定されないが、例えば、熱伝導率の高い銅、アルミニウム、鉄またはこれらを含む合金が挙げられる。これらの中でも、アルミニウムまたはアルミニウム系合金が好ましい。金属基板2がアルミニウムまたはアルミニウム系合金で構成されている場合、金属基板2は、熱伝導率が比較的高い基板となり、回路基板1a上に実装されたスイッチング素子や回路等で発生した熱を確実に放熱することができる。また、金属基板2は、セラミック材料を含んでいてもよい。
 また、金属基板2の熱伝導率は、100~500W/(m・K)であるのが好ましく、200~300W/(m・K)であるのがより好ましい。金属基板2の熱伝導率がこの下限値未満であると、導体層4の端子に接続されたスイッチング素子が長時間駆動し、大量の発熱があった場合に、スイッチング素子から発せられる熱を十分に放熱することができない場合があり、金属基板2の熱伝導率がこの上限値を超えたとしても、導体層4および絶縁層3の厚さや熱伝導率によっては、スイッチング素子から発せられる熱に対する放熱効率が、それ以上向上しない場合がある。
 金属基板2の厚さは、特に限定されないが、前述した材料で構成した場合、0.5~1.8mmであるのが好ましく、0.8~1.5mmであるのがより好ましい。金属基板2の厚さがこの下限値未満であると、金属基板2の構成材料によっては、金属基板2の強度が不足し、反り等が発生する場合があり、金属基板2の厚さがこの上限値を超えると、回路基板1aの薄型化に不利であり、また金属基板2の材料コストが増大する場合がある。また、金属基板2の厚さがこの上限値を超えたとしても、絶縁層3の熱伝導率が低いため、導体層4の端子に接続されたスイッチング素子から発せられる熱に対する放熱効率が、それ以上向上しない場合がある。
 次に、図1に示す回路基板が有する配線パターンについて説明する。
 図1に示すように、導体層4は、同一平面上に形成された、スイッチングアーム直列回路を実装するための第1のスイッチングアーム直列回路用端子群41U、第2のスイッチングアーム直列回路用端子群41V、および第3のスイッチングアーム直列回路用端子群41Wと、駆動回路を実装するための第1の駆動回路用端子群42U、第2の駆動回路用端子群42V、および第3の駆動回路用端子群42Wと、コンデンサ63(図5参照)を実装するためのコンデンサ用端子43と、直流電流を入力するための直流入力用端子44a、44bと、導体層4が発する熱を放熱するための放熱用端子46a、46bと、被覆層5によって覆われた配線部47とを有しており、これらにより、配線パターンが形成されている。
 なお、ここでいう「同一面」の面は、連続面を構成していてもよいし、何らかの分断線により分断されていてもよい。また、面上に多少の段差や傾斜等が存在する場合も同様に同一面と見なすことができる。
 以下、第1のスイッチングアーム直列回路用端子群41U、第2のスイッチングアーム直列回路用端子群41V、第3のスイッチングアーム直列回路用端子群41W、第1の駆動回路用端子群42U、第2の駆動回路用端子群42V、第3の駆動回路用端子群42W、コンデンサ用端子43、直流入力用端子44a、44bを順次説明する。
 まず、第1のスイッチングアーム直列回路用端子群41U、第2のスイッチングアーム直列回路用端子群41V、および第3のスイッチングアーム直列回路用端子群41Wについて説明する。第1のスイッチングアーム直列回路用端子群41Uは、3相出力インバータ回路を構成するU相用のスイッチングアーム直列回路を実装するための端子である。第2のスイッチングアーム直列回路用端子群41Vは、3相出力インバータ回路を構成するV相用のスイッチングアーム直列回路を実装するための端子である。同様に、第3のスイッチングアーム直列回路用端子群41Wは、3相出力インバータ回路を構成するW相用のスイッチングアーム直列回路を実装するための端子である。なお、スイッチングアーム直列回路用端子群41U、41V、42Wは、基本的な構成が同一であるので、以下代表して第1のスイッチングアーム直列回路用端子群41Uを説明する。
 第1のスイッチングアーム直列回路用端子群41Uは、正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411bから構成される複数のスイッチング素子用端子対と、複数の抵抗用端子415と、出力用端子416とを有している。
 正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411bは、MOSFETまたはIGBT等の(半導体)スイッチング素子を実装するための端子である。第1のスイッチングアーム直列回路用端子群41Uにおいて、図1中左側には複数の正極側スイッチング素子用端子411aが、図1中右側には複数の負極側スイッチング素子用端子411bが配置されている。
 正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411bは、それぞれ、ドレイン用端子412と、ソース用端子413と、ゲート用端子414を有している。
 ドレイン用端子412は、スイッチング素子のドレインを接続するための端子である。ソース用端子413は、スイッチング素子のソースを接続するための端子である。ゲート用端子414は、スイッチング素子のゲートを接続するための端子である。このゲート用端子414に接続されたゲートに駆動用電圧が印加されることによって、スイッチング素子が駆動される。
 抵抗用端子415は、駆動回路からスイッチング素子のゲートに流れる電流量を調整する抵抗を接続するための端子である。抵抗用端子415は、ゲート用端子414とソース用端子413との間に設けられており、第1の駆動回路用端子群42Uおよびゲート用端子414と、配線部47を介して、電気的に接続されている。
 出力用端子416は、U相、V相、またはW相の出力を行うための端子である。各出力用端子416は、図示の構成では、帯状(直線状)の形状をなしている。第1のスイッチングアーム直列回路用端子群41Uの出力用端子416は、正極側スイッチング素子用端子411aと、負極側スイッチング素子用端子411bとの間に配置されている。
 また、図1中左側に配置された正極側スイッチング素子用端子411aと、正極側スイッチング素子用端子411aに隣り合う負極側スイッチング素子用端子411bは、それぞれ、1対のスイッチング素子用端子対を構成する。図1の第1のスイッチングアーム直列回路用端子群41Uにおいては、9対のスイッチング素子用端子対が構成されている。この複数のスイッチング素子用端子対は、図1中の上下方向に沿って、列状に配置されている。また、各スイッチング素子用端子対は、等間隔で平行に並設されている。
 このスイッチング素子用端子対を構成する正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411bに接続されたスイッチング素子が、相補的に動作することにより、各相の出力を出力用端子416から出力することができる。
 なお、図1の第1のスイッチングアーム直列回路用端子群41Uは、9対のスイッチング素子用端子対と18個の抵抗用端子415を有しているが、それらの数は、これに限定されない。第1のスイッチングアーム直列回路用端子群41Uは、少なくとも1対のスイッチング素子用端子対と、正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411bの合計と等しい数の抵抗用端子415を有していればよい。第2のスイッチングアーム直列回路用端子群41Vおよび第3のスイッチングアーム直列回路用端子群41Wについても同様である。
 次に、第1のスイッチングアーム直列回路用端子群41U、第2のスイッチングアーム直列回路用端子群41V、および第3のスイッチングアーム直列回路用端子群41Wの配置について説明する。図1に示すように、各スイッチングアーム直列回路用端子群41U、41V、41Wは、左から右へ向かって第1のスイッチングアーム直列回路用端子群41U、第2のスイッチングアーム直列回路用端子群41V、第3のスイッチングアーム直列回路用端子群41Wの順で、各スイッチングアーム直列回路用端子群41U、41V、41Wの長手方向に対して直交する方向に、平行配置されている。
 第1のスイッチングアーム直列回路用端子群41Uと第2のスイッチングアーム直列回路用端子群41Vは、距離s1だけ離間している。第2のスイッチングアーム直列回路用端子群41Vと、第3のスイッチングアーム直列回路用端子群41Wは、距離s2だけ離間している。前述した金属材料によって導体層4が構成されている場合、距離s1、s2の値は、それぞれ、1~20mmであるのが好ましく、5~10mmであるのがより好ましい。距離s1、s2の値がこの下限値未満であると、その他の条件によっては、距離s1、s2間の抵抗が増大し、抵抗による発熱が増大した結果、正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411bに実装されたスイッチング素子の動作が不安定になる場合があり、距離s1、s2の値がこの上限値を超えると、距離s1、s2間の抵抗増大防止には有効であるが、回路基板1aが大型化する。また、距離s1、s2は、それぞれ異なっていてもよいが、同一であってもよい。距離s1、s2が異なっている場合、その差が距離s1の40%以下であることが好ましい。
 また、第1のスイッチングアーム直列回路用端子群41Uと第2のスイッチングアーム直列回路用端子群41Vの間には、放熱用端子46aが配置されている。同様に、第2のスイッチングアーム直列回路用端子群41Vと、第3のスイッチングアーム直列回路用端子群41Wの間には、放熱用端子46bが配置されている。
 後述するように、第1のスイッチングアーム直列回路用端子群41Uと第2のスイッチングアーム直列回路用端子群41Vの間、および第2のスイッチングアーム直列回路用端子群41Vと第3のスイッチングアーム直列回路用端子群41Wの間に、比較的大きな電流が流れることにより、大量の熱が配線部47から発生する場合がある。そのため、被覆層5を省略した放熱用端子46a、46bを各スイッチングアーム直列回路用端子群41U、41V、41Wの近傍に配置するのが好ましい。これにより、配線部47から発せられる熱を放熱することができる。その結果、配線部47から発せられた熱が正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411bに実装されたスイッチング素子に与える影響を抑制することができる。
 また、スイッチングアーム直列回路用端子群41U、41V、41Wは、それぞれ、同じ上下方向の長さと左右方向の幅を有しており、各スイッチングアーム直列回路用端子群41U、41V、41Wの上端部と下端部が、一直線上に揃うように整列されている。
 なお、図1に示すように、第1のスイッチングアーム直列回路用端子群41Uおよび第3のスイッチングアーム直列回路用端子群41Wは、同一方向を向いて配置されている。一方、第2のスイッチングアーム直列回路用端子群41Vは、第1のスイッチングアーム直列回路用端子群41Uおよび第3のスイッチングアーム直列回路用端子群41Wに対し、180度反転して配置されている。すなわち、第3のスイッチングアーム直列回路用端子群41Wは、第1のスイッチングアーム直列回路用端子群41Uおよび第3のスイッチングアーム直列回路用端子群41Wに対し、回路基板1aの水平面に対する法線を回転中心として、180度回転して配置されている。
 このような配置とすることにより、第1のスイッチングアーム直列回路用端子群41Uが有する複数の負極側スイッチング素子用端子411bと、第2のスイッチングアーム直列回路用端子群41Vが有する複数の負極側スイッチング素子用端子411bとが近接して配置される。そのため、第1のスイッチングアーム直列回路用端子群41Uが有する複数の負極側スイッチング素子用端子411bと、第2のスイッチングアーム直列回路用端子群41Vが有する複数の負極側スイッチング素子用端子411bとで配線部47を共有することができる。
 同様に、第2のスイッチングアーム直列回路用端子群41Vが有する複数の正極側スイッチング素子用端子411aと、第3のスイッチングアーム直列回路用端子群41Wが有する複数の正極側スイッチング素子用端子411aとが近接して配置される。そのため、第2のスイッチングアーム直列回路用端子群41Vが有する複数の正極側スイッチング素子用端子411aと、第3のスイッチングアーム直列回路用端子群41Wが有する複数の正極側スイッチング素子用端子411aとで配線部47を共有することができる。
 これらの結果、第2のスイッチングアーム直列回路用端子群41Vの正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411b用に別途、配線部47を形成する必要がなくなる。そのため、配線パターンを簡素化することができ、スイッチング素子の集積度を向上させることができる。そのため、回路基板1aを小型化することができる。
 次に、第1の駆動回路用端子群42U、第2の駆動回路用端子群42V、および第3の駆動回路用端子群42Wについて説明する。各駆動回路用端子群42U、42V、42Wは、基本的な構成が同一であるので、以下代表して第1の駆動回路用端子群42Uを説明する。
 第1の駆動回路用端子群42Uは、第1のスイッチングアーム直列回路用端子群41Uに実装される第1のスイッチングアーム直列回路6U(図5参照)を駆動する第1の駆動回路101U(図5参照)を実装するための端子である。
 この第1の駆動回路101Uは、図示しない別の回路基板上に実装された、MPU(Micro Processing Unit)等の制御用ICから伝達される制御信号に従い、スイッチング素子のゲートに駆動電圧を印加することにより、スイッチング素子を駆動させる機能を有する。図5に示すように、この第1の駆動回路101Uは、駆動素子104と、制御用ICとの接続に用いられるコネクタ105によって構成される。駆動素子104は、例えば、ICパッケージ等によって構成され、コネクタ105を介して制御用ICから伝達される制御用信号に従い、スイッチング素子に駆動電圧を印加する機能を有する。
 第1の駆動回路用端子群42Uは、駆動素子104を接続するための駆動素子用端子群421と、コネクタ105を接続するためのコネクタ用端子群422とを有する。第1の駆動回路用端子群42Uにおいては、図1中左側に駆動素子用端子群421が、図1中右側にコネクタ用端子群422が配置されている。駆動素子用端子群421とコネクタ用端子群422は、それぞれ異なった形状を有することから、第1の駆動回路用端子群42Uは、図示のように非対称なパターンを形成している。
 また、第1の駆動回路用端子群42Uは、第1のスイッチングアーム直列回路用端子群41Uと同一面上であって、第1のスイッチングアーム直列回路用端子群41Uの下端側近傍に配置されている。なお、ここでいう「近傍」とは、第1の駆動回路用端子群42Uと、第1のスイッチングアーム直列回路用端子群41Uとを接続する配線部47のインピーダンスが実質的に無視できる程度に小さくなるような距離を言う。
 具体的には、第1の駆動回路用端子群42Uの上端から第1のスイッチングアーム直列回路用端子群41Uの下端までの距離d1(第1の駆動回路用端子群42Uと第1のスイッチングアーム直列回路用端子群41Uとの離間距離)と、第1のスイッチングアーム直列回路用端子群41Uの上端から下端までの距離d2(第1のスイッチングアーム直列回路用端子群41Uの上下方向の長さ)との比(d1/d2)は、好ましくは1/200~1/5であり、1/100~1/10であるのがより好ましい。これにより、スイッチングアーム直列回路自身が有するインピーダンスと比較して、第1の駆動回路用端子群42Uと第1のスイッチングアーム直列回路用端子群41Uとを接続する配線部47のインピーダンスが十分に小さくなり、実質的に無視することができる。
 また、距離d2は、好ましくは5~150mmであり、20~100mmであるのがより好ましい。距離d2がこの下限値未満であると、エッジング条件等のその他の条件によっては、配線パターンの形成が困難になる場合があり、距離d2がこの条件値を超えると、導体層4の厚みや構成材料等によっては、第1のスイッチングアーム直列回路用端子群41Uを構成するための配線部47のインピーダンスが増大し、SN比が悪化する場合がある。
 また、第1の駆動回路用端子群42Uは、第1のスイッチングアーム直列回路用端子群41Uと同一面上に形成されているので、第1の駆動回路用端子群42Uに接続された第1の駆動回路101Uと、第1のスイッチングアーム直列回路用端子群41Uに接続された第1のスイッチングアーム直列回路6Uとの電気的接続は、配線部47によって実現される。この結果、第1の駆動回路101Uと第1のスイッチングアーム直列回路6Uとを別々の基板上に実装した場合に必要であった接続用端子が不要となり、その接続用端子と第1の駆動回路101Uとの接続部の接触抵抗によるSN比の悪化を防止することができる。
 また、第1の駆動回路用端子群42Uは、第1のスイッチングアーム直列回路用端子群41Uと同一面上に形成されているので、第1の駆動回路用端子群42Uに実装された第1の駆動回路101Uから発生した熱は、絶縁層3を介して、金属基板2に伝達され、金属基板2の下面側から放熱される。そのため、第1の駆動回路101Uを効率的に冷却することができ、第1の駆動回路101Uの動作を安定させることができる。
 さらに、第1の駆動回路用端子群42Uは、直流電源の負極側に接続される直流入力用端子44bの近傍に配置されている。第1の駆動回路用端子群42Uと、直流入力用端子44bとを接続する配線部47が短くなるため、配線部47のインピーダンスが小さくなり、駆動回路の動作をより安定させることができる。
 図1に示すように、第1の駆動回路用端子群42Uは、第1のスイッチングアーム直列回路用端子群41Uの下端側に配置されている。第2の駆動回路用端子群42Vは、第2のスイッチングアーム直列回路用端子群41Vの下端側に配置されている。同様に、第3の駆動回路用端子群42Wは、第3のスイッチングアーム直列回路用端子群41Wの下端側に配置されている。すなわち、駆動回路用端子群42U、42V、42Wは、それぞれ、スイッチングアーム直列回路用端子群41U、41V、41Wの同端側に配置されている。このような配置にすることにより、各駆動回路と制御用ICとを接続するためのコネクタ105を全て、回路基板1aの同じ側(図1中の下端側)に設けることができ、制御用ICとの接続において、配置上有利となる。
 なお、図1に示すように、第1の駆動回路用端子群42Uおよび第3の駆動回路用端子群42Wは、平面視で同一パターンを構成する。すなわち、第1の駆動回路用端子群42Uおよび第3の駆動回路用端子群42Wは、同一方向を向いて配置されている。一方、第2の駆動回路用端子群42Vは、第1の駆動回路用端子群42Uおよび第3の駆動回路用端子群42Wに対して、180度反転して配置されている。すなわち、第2の駆動回路用端子群42Vは、第1の駆動回路用端子群42Uおよび第3の駆動回路用端子群42Wに対して、回路基板1aの水平面に対する法線を回転中心として、180度回転して配置されている。これにより、第2のスイッチングアーム直列回路用端子群41Vが、第1のスイッチングアーム直列回路用端子群41Uおよび第3のスイッチングアーム直列回路用端子群41Wに対し、180度反転して配置されている場合に、駆動回路用端子群42U、42V、42Wを、それぞれ、スイッチングアーム直列回路用端子群41U、41V、41Wの同端側に配置することができる。
 次に、コンデンサ用端子43について説明する。コンデンサ用端子43は、コンデンサ63を実装するための端子であり、本実施形態では複数個(8個)設けられている。各コンデンサ用端子43に実装されたコンデンサ63は、第1のスイッチングアーム直列回路用端子群41Uに実装される第1のスイッチングアーム直列回路6Uと、第2のスイッチングアーム直列回路用端子群41Vに実装される第2のスイッチングアーム直列回路6Vと、第3のスイッチングアーム直列回路用端子群41Wに実装される第3のスイッチングアーム直列回路6Wで共有されている。コンデンサ63は、スイッチング素子のスイッチング動作によって生じるサージ電流を抑制すると同時に、回路基板1aに入力される直流電流を平滑化する。
 複数のコンデンサ用端子43は、スイッチングアーム直列回路用端子群41U、41V、41Wおよび駆動回路用端子群42U、42V、42Wと同一面上に形成されている。これにより、複数のコンデンサ用端子43に接続されたコンデンサ63から発生した熱を、絶縁層3を介して、金属基板2に伝達し、放熱することができる。そのため、コンデンサ63が効率的に冷却され、コンデンサ63内の充填液の蒸発を抑制することができる。その結果、出荷時のコンデンサ63内の充填液の容量を少なくすることができる。また、コンデンサ63内の充填液の蒸発が抑制されるので、コンデンサ63の長寿命化を図ることができる。
 また、複数のコンデンサ用端子43は、スイッチングアーム直列回路用端子群41U、41V、41Wの上端側、すなわち、駆動回路用端子群42U、42V、42Wの配置されていない側に配置されている。そのため、各コンデンサ用端子43は、直流入力用端子44aの近傍に配置される。そのため、直流入力用端子44aと各コンデンサ用端子43とを接続する配線部47のインピーダンスを減少させることができる。その結果、サージ電流抑制および回路基板1aに入力される直流電流の平滑化をより効果的に行うことができる。
 なお、回路基板1aは、合計8つのコンデンサ用端子43を有しているが、必ずしもこれに限定されない。回路基板1aは、入力される直流電圧(電流)の大きさ、スイッチング素子の数に応じて、最低限必要な数だけコンデンサ用端子43を有していればよい。
 次に、直流入力用端子44a、44bについて説明する。直流入力用端子44a、44bは、直流電源に接続され、回路基板1aに直流電圧を入力するための端子である。直流入力用端子44aは、長尺部442aと443aが直角に接合され、L字状を成している。同様に、直流入力用端子44bは、長尺部442bと443bが直角に接合され、L字状を成している。また、直流入力用端子44aの長尺部442a、443a、および直流入力用端子44bの長尺部442b、443bは、回路基板1aの1辺の70%以上の長さを有している。
 直流入力用端子44aは、長尺部442aが回路基板1aの上辺に、長尺部443aが回路基板1aの左辺に対し、平行になるよう配置されている。また、直流入力用端子44aは、回路基板1aの外周部の近傍に、直流入力用端子44aの角部441aと回路基板1aの左上角部とが対応するよう配置されている。
 直流入力用端子44bは、長尺部442bが回路基板1aの下辺に、長尺部443bが回路基板1aの右辺に対し、平行になるよう配置されている。また、直流入力用端子44bは、回路基板1aの外周部の近傍に、直流入力用端子44bの角部441bと回路基板1aの右下角部とが対応するよう配置されている。
 すなわち、直流入力用端子44a、44bは、平面視において、金属基板2の四角形の各辺(外周部)に沿って配置されている。このように、直流入力用端子44a、44bを金属基板2の外周部に沿って配置することにより、電流が流れることによって、直流入力用端子44a、44bから発せられる熱を、金属基板2の下面からだけでなく、側面からも放熱することができる。そのため、直流入力用端子44a、44bから発せられる熱を、より効率的に放熱することができる。
 また、このような配置とすることにより、スイッチングアーム直列回路用端子群41U、41V、41Wと、駆動回路用端子群42U、42V、42Wと、コンデンサ用端子43と、放熱用端子46a、46bは、直流入力用端子44a、44bに囲まれた領域に配置される。以下、直流入力用端子44a、44bに囲まれた領域を端子領域という。
 この直流入力用端子44aが、直流電源の正極側に接続され、直流入力用端子44bが、直流電源の負極側に接続されることによって、回路基板1aに直流電圧が入力される。なお、本実施形態では、直流入力用端子44aは、直流電源の正極側に接続され、直流入力用端子44bは、直流電源の負極側に接続されるが、必ずしもこれに限られない。すなわち、直流入力用端子44aが、直流電源の負極側に接続され、直流入力用端子44bが、直流電源の正極側に接続されてもよい。
 なお、直流入力用端子44a、44b、出力用端子416および放熱用端子46a、46bには、比較的大きな電流が流れることとなる。そのため、その他の条件によっては、直流入力用端子44a、44b、出力用端子416および放熱用端子46a、46bから大量の熱が発生する場合がある。そこで、直流入力用端子44a、44b、出力用端子416および放熱用端子46a、46bに、所定の量を超える電流が流れる場合は、図3(a)に示すように、直流入力用端子44a、44b、出力用端子416および放熱用端子46a、46b上に追加導体45を設けるのが好ましい。この場合、直流入力用端子44a、44b、出力用端子416および放熱用端子46a、46bは、追加導体45を接合するための追加導体接合部としての機能を有することとなる。これにより、直流入力用端子44a、44b、出力用端子416または放熱用端子46a、46bと追加導体45が電気的に一体化し、抵抗値が下がるため、発熱を抑制することができる。なお、前述した材料で構成した導体層4の厚さが10~80μmである場合や、直流入力用端子44a、44bに入力される電流量が50A以上である場合は、追加導体45を加えるのが好ましい。
 追加導体45を構成する材料は、特に限定されず、例えば、前述した導体層4の構成材料と同様の金属材料であってもよいし、異なる金属材料であってもよい。特に、追加導体45は、導体層4の構成材料と同一、または主成分を同一とする金属材料(例えば銅と銅系合金)によって構成されているのが好ましい。これにより、追加導体45の電蝕を減少させることができる。
 追加導体45の厚さは、前述した導体層4の構成材料と同様の金属材料により構成した場合、例えば、1~15mmであるのが好ましく、5~10mmであるのがより好ましい。追加導体45の厚さがこの下限値未満であると、その他の条件によっては、十分に抵抗を下げることができない場合があり、追加導体45の厚さがこの上限値を超えても、それ以上抵抗の低下がみられない場合がある。
 追加導体45は、前述した厚さを有することから、空気と接触する部分の面積が大きい。さらに、追加導体45は、前述した導体層4の構成材料と同様の熱伝導率の高い金属材料により構成されていることから、追加導体45は放熱機能、すなわち、ヒートシンク機能を有する。そのため、直流入力用端子44a、44b等から発せられる熱は、追加導体45から放熱される。
 また、端子領域に接続された素子から発せられる熱は、回路基板1aの下面方向に伝達され、金属基板2の下面から放熱されるが、回路基板1aの面方向にも伝達される。回路基板1aの面方向に伝達された熱は、直流入力用端子44a、44b等の上に接合された追加導体45に伝達され、放熱される。その結果、より効率的に、端子領域に接続された素子から発せられる熱を放熱することができる。
 また、直流入力用端子44a、44bに追加導体45を接合した場合、端子領域に接続された素子は、四方(図1の上下左右方向)を、ヒートシンク機能を有する追加導体45に囲まれることとなる。そのため、端子領域に接続された素子から発せられ、回路基板1aの面方向、すなわち四方に拡散していく熱は、四方の全ての方向において、追加導体45に伝達され、放熱される。そのため、より効率的に、端子領域に接続された素子から発せられる熱を放熱することができる。また、前述したように直流入力用端子44aの長尺部442a、443a、および直流入力用端子44bの長尺部442b、443bはそれぞれ、回路基板1aの1辺の70%以上の長さを有しているので、回路基板1aの対応する辺のほぼ全体に沿うように配置されている。したがって、端子領域に接続された素子から発せられ、回路基板1aの面方向に拡散していく熱は、四方全ての方向で、ほぼ均等に追加導体45に伝達され、放熱される。
 図3は、図1に示す回路基板1aの直流入力用端子44b上に接合された追加導体45の構成例を示す図である。図3(a)は、図1のB-B線断面図の1実施例である。図3(a)に示すように、直流入力用端子44bのほぼ全面に、追加導体45が接合されている。このように、直流入力用端子44bと追加導体45とを接合し、電気的に一体化することによって、抵抗値を下げることができる。直流入力用端子44bに追加導体45との接合手段は、特に限定されないが、例えば、導電性の接着剤を用いた接合、はんだ等のろう材を用いた接合等が挙げられ、特にはんだを用いた接合が好ましい。はんだ接合(接着)は、低コストであり、接続信頼性に優れるためである。
 追加導体45は、連続体であってもよいし、一部が欠損、例えば、図3(a)の点線内側が欠損していてもよい。また、追加導体45は、その長手方向に沿って、その幅、厚さ等が変化しててもよい。
 図3(b)は、図1のB-B線断面図の別の実施例である。図3(b)に示すように、追加導体45は、直流入力用端子44bに接合する1対の脚部451と、直流入力用端子44bから離間し、1対の脚部を連結する連結部452とによって構成、すなわち、ブリッジ状に構成されている。また、追加導体45は、直流入力用端子44bと追加導体45との接触部分である脚部451の下面側端部453でのみ、はんだ接合されている。このようにブリッジ状の追加導体45を直流入力用端子44bに接続することにより、はんだを節約することができる。また、直流入力用端子44bと追加導体45との接触部分でのみ、はんだ接続を行うため、追加導体45を追加する際の作業効率が向上する。さらに、追加導体45の下面側端部453を除く部分は、空隙を介して、直流入力用端子44bから離間している。このため、図3(a)の場合と比較して、直流入力用端子44bおよび追加導体45の空気と接触する部分の面積が増大し、直流入力用端子44bおよび追加導体45を効率的に冷却することができる。
 なお、図3(b)のブリッジ状の追加導体45の全長が所定の長さを超える場合、ブリッジ状の追加導体45の強度が不足し、変形する場合がある。ブリッジ状の追加導体45が所定の長さを超える場合には、所定の長さ以下の全長を有するブリッジ状の追加導体45を複数用いて、直流入力用端子44bに追加導体45を加えてもよい。なお、追加導体45の厚みにもよるが、所定の長さは、例えば、20~50mmの範囲内で設定することが好ましい。
 図3(c)、および図3(d)は、それぞれ、図1のB-B線断面図の別の実施例である。図3(c)、(d)では、前述した所定の長さ以下の全長を有する複数のブリッジ状の追加導体45が、直流入力用端子44bに接合されている。すなわち、複数の追加導体45は、追加導体接合部である直流入力用端子44bの長尺方向に沿って配置されている。図3(c)に示すように、隣り合う追加導体45の脚部451同士は接合されていてもよいし、図3(d)に示すように、隣り合う追加導体45の脚部451同士は、接合されていなくてもよい。なお、図3(d)では、隣り合う追加導体45の脚部451同士が、離間しているが、互いに隣り合う追加導体45の脚部451同士が接触していてもよい。
 図3(c)のように、隣り合う追加導体45の脚部451同士が接合されている場合は、複数の追加導体45が一体となっているので、ブリッジ状の追加導体45の強度を十分高くすることができる。図3(d)のように、隣り合う追加導体45の脚部451同士が接合されておらず、離間している場合は、直流入力用端子44bに接合する追加導体45の数を調整することができるので、直流入力用端子44bと複数の追加導体45が電気的に一体となった場合の抵抗値を容易に調整することができる。
 図3(c)、(d)のように追加導体45を接合する場合も、図3(b)のように追加導体45を接合した場合と同様、追加導体45と直流入力用端子44bとの接触部分である下面側端部453でのみ、はんだ接合を行う。
 なお、図3(e)のように、隣り合う追加導体45の脚部451の間にはんだ48を設けることによって、追加導体45と直流入力用端子44bとを接合してもよい。この場合、接合に使用するはんだ48の量は増大するが、はんだ48によって、隣り合う追加導体45の脚部451同士が接合されるので、ブリッジ状の追加導体45の強度を高くすることができ、さらに、直流入力用端子44bと追加導体45の接合強度を高くすることができる。また、隣り合う追加導体45の脚部451間では、直流入力用端子44bとはんだ48が電気的に一体となる。したがって、隣り合う追加導体45の脚部451間の抵抗を下げることができる。
 また、図4は、図3(b)、(c)、(d)、(e)に示したブリッジ状の追加導体45の脚部451の斜視図である。図4(a)のように、追加導体45は、全て同じ厚さを有していてもよいし、図4(b)のように脚部451の下面側端部453のみ厚さが薄くなっていてもよい。図4(b)のように、追加導体45の下面側端部453の厚さが薄い場合には、下面側端部453の熱容量を低下させることができる。
 また、図4(c)のように、追加導体45の脚部451は、切欠け部454を有していてもよい。このような切欠け部454に、はんだを流し込み、はんだ接合を行うことによって、はんだ接合の作業効率を向上させることができる。また、図4(d)に示すように、追加導体45の下面側端部453は、打ち抜き部455を有していてもよい。このような打ち抜き部455に、はんだを流し込み、はんだ接合を行うことによって、はんだ接合の作業効率を向上させることができる。
 以上、本発明の第1実施形態に係る回路基板1aについて説明したが、本発明はこれに限定されるものではなく、各要素の数、配置等の構成は、同様の機能を有する任意の構成の物に置換することができる。また、本発明に、他の任意の構成物が付加されていてもよい。
 次に、図5に基づいて、本発明の電子デバイスの実施形態を説明する。図5は、回路基板1aに実装されたインバータ回路(電子デバイス)100の平面図である。
 インバータ回路(電子デバイス)100は、前述した回路基板1aと、第1のスイッチングアーム直列回路用端子群41Uに実装された第1のスイッチングアーム直列回路6Uと、第2のスイッチングアーム直列回路用端子群41Vに実装された第2のスイッチングアーム直列回路6Vと、第3のスイッチングアーム直列回路用端子群41Wに実装された第3のスイッチングアーム直列回路6Wと、第1の駆動回路用端子群42Uに実装された第1の駆動回路101Uと、第2の駆動回路用端子群42Vに実装された第2の駆動回路101Vと、第3の駆動回路用端子群42Wに実装された第3の駆動回路101Wと、コンデンサ用端子43に実装されたコンデンサ63と、直流入力用導線102a、102bと、第1の出力用導線103U、第2の出力用導線103V、第3の出力用導線103Wとを有している。
 図示のように、コンデンサ63は、スイッチングアーム直列回路6U、6V、6Wの上端側、すなわち、駆動回路101U、101V、101Wが配置されていない側に、集中して配置されている。コンデンサ63は、通常、スイッチングアーム直列回路用端子群41U、41V、41Wや駆動回路101U、101V、101Wよりも、回路基板1aの法線方向の長さ(高さ)が長い。したがって、このようにコンデンサ63を回路基板1aの一端側に集中して配置することにより、コンデンサ63が配置されていない部分の高さ方向の空間を、有効に活用することができる。
 また、回路基板1aの直流入力用端子44a、44b、出力用端子416および放熱用端子46a、46bには、追加導体45が接合されている。
 直流入力用導線102aは、追加導体45が接合された直流入力用端子44aと直流電源(図示せず)の正極側とを接続するための導線である。直流入力用導線102bは、追加導体45が接合された直流入力用端子44bと直流電源の負極側とを接続するための導線である。直流入力用導線102a、102bが直流電源に接続されることによって、直流入力用導線102a、102bを介して、インバータ回路(電子デバイス)100に直流電圧が入力される。
 第1の出力用導線103Uは、第1のスイッチングアーム直列回路6Uとモーター(デバイス)とを接続するための導線である。第2の出力用導線103Vは、第2のスイッチングアーム直列回路6Vと、モーター(デバイス)とを接続するための導線である。同様に、第3の出力用導線103Wは、第3のスイッチングアーム直列回路6Wの出力用端子416とモーター(デバイス)とを接続するための導線である。出力用導線103U、103V、103Wのそれぞれの出力によって、インバータ回路(電子デバイス)100は、モーターを3相(U相、V相、W相)制御することができる。
 次に、図6を参照して、図5のインバータ回路(電子デバイス)100が有するスイッチングアーム直列回路6U、6V、6Wを説明する。図6は、図5に示すインバータ回路(電子デバイス)100が有するスイッチングアーム直列回路6U、6V、6Wの回路図である。
 図6は、スイッチングアーム直列回路用端子群41U、41V、41Wに接続されたスイッチングアーム直列回路6(6U、6V、6W)の回路図である。スイッチングアーム直列回路6は、複数の正極側スイッチング素子61aと、複数の負極側スイッチング素子61bと、駆動回路101U、101V、101Wのいずれかに接続される正極側スイッチング素子駆動用端子62aおよび負極側スイッチング素子駆動用端子62bと、複数のコンデンサ63と、抵抗64と、直流電源の正極側に接続された直流入力用端子44aと、直流電源の負極側に接続された直流入力用端子44bと、出力用端子416を有している。
 正極側スイッチング素子61aおよび負極側スイッチング素子61bは、図示の形態では、MOSFETで構成されている。
 正極側スイッチング素子61aのドレイン611は、直流入力用端子44aに接続されている。正極側スイッチング素子61aのソース612は、負極側スイッチング素子61bのドレイン611に接続されている。正極側スイッチング素子61aのゲート613は、抵抗64を介して、正極側スイッチング素子駆動用端子62aに接続されている。正極側スイッチング素子61aは、正極側スイッチング素子駆動用端子62aからゲート613に印加される駆動電圧によって、スイッチング動作を行う。
 負極側スイッチング素子61bのドレイン611は、正極側スイッチング素子61aのソース612に接続されている。負極側スイッチング素子61bのソース612は、直流入力用端子44bに接続されている。負極側スイッチング素子61bのゲート613は、抵抗64を介して、負極側スイッチング素子駆動用端子62bに接続されている。負極側スイッチング素子61bは、負極側スイッチング素子駆動用端子62bからゲート613に印加される駆動電圧によって、スイッチング動作を行う。
 複数の正極側スイッチング素子61aは、それぞれ、並列に接続されており、正極側スイッチング素子駆動用端子62aからゲート613に印加される駆動電圧に応じて、同期してスイッチング動作を行う。
 複数の負極側スイッチング素子61bは、それぞれ、並列に接続されており、負極側スイッチング素子駆動用端子62bからゲート613に印加される駆動電圧に応じて、同期してスイッチング動作を行う。
 また、複数の正極側スイッチング素子61aと複数の負極側スイッチング素子61bは、それぞれ、対応する正極側スイッチング素子61aと負極側スイッチング素子61bとで、直列に接続されている。正極側スイッチング素子61aのソース612と負極側スイッチング素子61bのドレイン611との間には、出力用端子416が接続されている。正極側スイッチング素子61aと負極側スイッチング素子61bが、それぞれ相補的に動作することにより、3相出力インバータにおける各相の出力を出力用端子416から出力することができる。
 複数のコンデンサ63は、並列に接続されており、各コンデンサ63の正極は、正極側スイッチング素子61aのドレイン611に接続されており、各コンデンサ63の負極は、負極側スイッチング素子61bのソース612に接続されている。また、コンデンサ63の正極には、直流入力用端子44aが接続されており、コンデンサ63の負極には、直流入力用端子44bが接続されている。
 各コンデンサ63は、正極側スイッチング素子61aおよび負極側スイッチング素子61bのスイッチング動作によって生じるサージ電流を抑制すると同時に、スイッチングアーム直列回路6に入力される直流電圧を平滑化する。
 複数の抵抗64は、正極側スイッチング素子61aのゲート613、および負極側スイッチング素子61bのゲート613に流れる電流を調節するためのものである。抵抗64は、正極側スイッチング素子駆動用端子62aと正極側スイッチング素子61aのゲート613との間、または負極側スイッチング素子駆動用端子62bと負極側スイッチング素子61bとの間に、それぞれ接続されている。
 なお、本実施形態では、全ての正極側スイッチング素子用端子411aに正極側スイッチング素子61aが、全ての負極側スイッチング素子用端子411bに負極側スイッチング素子61bが実装されているが、必ずしもこれに限られない。すなわち、正極側スイッチング素子61aおよび負極側スイッチング素子61bは、最低限インバータ回路(電子デバイス)100に必要とされる性能を満たすだけの数が実装されていればよい。例えば、一部の正極側スイッチング素子用端子411aに正極側スイッチング素子61aが実装されていない場合、一部の負極側スイッチング素子用端子411bに負極側スイッチング素子61bが実装されていない場合であっても本発明に含まれる。
<第2実施形態>
 次に、図7に基づき本発明の第2実施形態を説明する。
 図7は、本発明の回路基板の第2実施形態を示す平面図である。以下、第2実施形態について、前述した第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
 すなわち、第2実施形態に係る回路基板1bは、第2の駆動回路用端子群42Vおよびコンデンサ用端子43の配置が異なること以外は前記第1実施形態と同様であるので、その他の構成については、説明を省略する。
 図7に示すように、第1実施形態の回路基板1aと同様に、第2のスイッチングアーム直列回路用端子群41Vは、第1のスイッチングアーム直列回路用端子群41Uおよび第3のスイッチングアーム直列回路用端子群41Wに対し、180度反転して配置されている。
 また、第2の駆動回路用端子群42Vは、第2のスイッチングアーム直列回路用端子群41Vの上端側、すなわち、第1の駆動回路用端子群42U、および第3の駆動回路用端子群42Wとは反対の一端側に配置されている。さらに、2つのコンデンサ用端子43が第2のスイッチングアーム直列回路用端子群41Vの下端側、すなわち、第2の駆動回路用端子群42Vが配置されていない側に配置されている。このような配置とすることにより、コンデンサ用端子43に接続されるコンデンサが、直流電源の正極側に接続される直流入力用端子44aの近傍と、直流電源の負極側に接続される直流入力用端子44bの近傍とに分散して実装される。
 これにより、第1実施形態の回路基板1aと同様に、第2のスイッチングアーム直列回路用端子群41Vの正極側スイッチング素子用端子411aおよび負極側スイッチング素子用端子411b用に別途、配線部47を形成する必要がなくなる。そのため、配線パターンを簡素化することができ、スイッチング素子の集積度を向上させることができる。
 同時に、複数のコンデンサ63が正極側と負極側に分散して配置されるので、正極と各コンデンサ63とを接続する配線部47のインピーダンスの合計と、負極と各コンデンサ63とを接続する配線部47のインピーダンスの合計とを近い値とすることができる。その結果、より安定してサージ電流を抑制することができ、同時により安定して電流の平滑化を実現できる。
 また、第2の駆動回路用端子群42Vは、第1の駆動回路用端子群42Uおよび第3の駆動回路用端子群42Wと同一方向を向いて配置されている。このように、駆動回路用端子群42U、42V、42Wが全て同一方向を向くように配置することにより、駆動回路用端子群42U、42V、42Wが全て同一のパターンとなる。そのため、回路基板1bに駆動回路用端子群42U、42V、42Wを形成するのが容易となる。
 以上、本発明の回路基板および電子デバイスを、図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各要素の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物が付加されていてもよい。また、本発明は、前記実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
 以上、回路基板上に実装される回路の一例として、インバータ回路を説明したが、本発明はこれに限られるものではない。回路基板上に実装される回路としては、回路基板上にスイッチング素子等の駆動により発熱する素子が実装されていればよく、特に限定されないが、例えば、スイッチングレギュレーター回路、PWM回路、有機EL駆動用回路、有機EL回路、LED駆動用回路、LED回路等が挙げられる。
 また、回路基板上に実装されるスイッチング素子として、MOSFETおよびIGBTを挙げたが、本発明はこれに限られるものではない。その他のスイッチング素子としては、特に限定されないが、例えば、バイポーラトランジスタ、サイリスタ、整流ダイオード等の各種ダイオード、半導体リレー等が挙げられる。
 また、駆動により発熱する能動素子として、スイッチング素子を挙げたが、本発明はこれに限られるものではない。その他の能動素子としては、有機ELまたはLED等の発光素子、真空管、電気モーター等が挙げられる。
 本発明によれば、スイッチング素子とスイッチング素子を駆動するための駆動回路を、回路基板の同一面上に実装することができる。そのため、スイッチング素子と駆動回路との間の導線を短くすることができ、導線のインピーダンスを小さくすることができる。したがって産業上の利用可能性を有する。

Claims (28)

  1.  金属基板と、
     前記金属基板の一方の面側に設けられた絶縁層と、
     前記絶縁層上に設けられた導体層とを備え、
     前記導体層は、
     スイッチング素子を実装するための複数のスイッチング素子用端子から構成される3つのスイッチングアーム直列回路用端子群と、
     前記スイッチング素子に駆動電圧を印加する駆動回路を実装するための複数の駆動回路用端子から構成される駆動回路用端子群とを有する配線パターンを備え、
     前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群は、同一面上に形成されており、
     前記スイッチングアーム直列回路用端子群は、それぞれ、1対の前記スイッチング素子用端子で構成されたスイッチング素子用端子対を複数有していることを特徴とする回路基板。
  2.  前記各スイッチングアーム直列回路用端子群を構成する複数の前記スイッチング素子用端子対は、一方向に沿って列状に配置されている請求項1に記載の回路基板。
  3.  前記駆動回路用端子群は、複数の前記スイッチング素子用端子対により構成されるスイッチングアーム直列回路用端子群の一端側に配置されている請求項2に記載の回路基板。
  4.  前記導体層の配線パターンは、さらに、コンデンサを実装するためのコンデンサ用端子を有し、
     前記コンデンサ用端子は、前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群と同一面上であって、前記スイッチングアーム直列回路用端子群の前記駆動回路用端子群が配置されていない他端側に配置されている請求項3に記載の回路基板。
  5.  複数の前記スイッチング素子用端子対から構成される前記3つのスイッチングアーム直列回路用端子群は、並設されている請求項2に記載の回路基板。
  6.  前記導体層の配線パターンは、3つの前記駆動回路用端子群を有し、
     前記3つの駆動回路用端子群は、それぞれ、前記3つのスイッチングアーム直列回路用端子群の一端側に配置されている請求項5に記載の回路基板。
  7.  前記各駆動回路用端子群は、全て前記3つのスイッチングアーム直列回路用端子群の同一端側に配置されている請求項6に記載の回路基板。
  8.  前記各駆動回路用端子群は、それぞれ、複数の前記駆動回路用端子によって非対称なパターンを形成し、
     前記3つのスイッチングアーム直列回路用端子群のうち、両端の前記2つのスイッチングアーム直列回路用端子群の一端側にそれぞれ配置されている前記駆動回路用端子群は、同一方向を向いた前記非対称なパターンを形成し、
     中央の前記スイッチングアーム直列回路用端子群の一端側に配置されている前記駆動回路用端子群は、前記両端2つのスイッチングアーム直列回路用端子群の一端側に、配置されている2群の前記駆動回路用端子群が形成する前記非対称なパターンに対し、前記金属基板の水平面に対する法線を回転中心として180度回転した前記非対称なパターンを形成する請求項7に記載の回路基板。
  9.  前記3つのスイッチングアーム直列回路用端子群のうち、両端2つの前記スイッチングアーム直列回路用端子群の一端側に、それぞれ配置されている前記駆動回路用端子群は、前記両端2つのスイッチングアーム直列回路用端子群の同一側に配置され、
     中央の前記スイッチングアーム直列回路用端子群の一端側に配置されている前記駆動回路用端子群は、前記両端のスイッチングアーム直列回路用端子群の前記駆動回路用端子群とは反対の一端側に配置され、
     前記各駆動回路用端子群は、それぞれ、複数の前記駆動回路用端子によって非対称なパターンを形成し、
     前記各駆動回路用端子群は、全て同一方向を向いた前記非対称なパターンを形成する請求項7に記載の回路基板。
  10.  前記導体層の配線パターンは、さらに、コンデンサを実装するための、少なくとも3つのコンデンサ用端子を有し、
     前記コンデンサ用端子は、前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群と同一面上であって、前記3つのスイッチングアーム直列回路用端子群それぞれの、前記駆動回路用端子群が配置されていない側に、少なくとも1つ配置されている請求項6ないし9のいずれかに記載の回路基板。
  11.  前記導体層の配線パターンは、さらに、コンデンサを実装するためコンデンサ用端子を有し、
     前記のコンデンサ用端子は、前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群と同一面上に形成されている請求項1ないし3、および5ないし9のいずれかに記載の回路基板。
  12.  前記絶縁層の熱伝導率が、0.1~2.0W/(m・K)であり、
     前記金属基板の厚さが、0.8~1.5mmである請求項1ないし11のいずれかに記載の回路基板。
  13.  前記絶縁層の厚さが、30~200μmである請求項1ないし12のいずれかに記載の回路基板。
  14.  前記絶縁層は、エポキシ樹脂、シアネート樹脂およびフェノール樹脂のうちの少なくとも1種を主成分とする請求項1ないし13のいずれかに記載の回路基板。
  15.  前記絶縁層は、熱伝導率が10~150W/(m・K)のフィラーを含む請求項1ないし14のいずれかに記載の回路基板。
  16.  前記絶縁層の厚さt1と前記金属基板の厚さt2との比(t1/t2)が、1/50~1/4である請求項1ないし15のいずれかに記載の回路基板。
  17.  前記金属基板の熱伝導率が、100~500W/(m・K)である請求項1ないし16のいずれかに記載の回路基板。
  18.  前記導体層の厚さが、10~80μmである請求項1ないし17のいずれかに記載の回路基板。
  19.  前記導体層は、該導体層上に追加導体を接合するための長尺状の追加導体接合部を有する請求項1ないし18のいずれかに記載の回路基板。
  20.  前記金属基板は、平面視で四角形の形状を有し、
     前記追加導体接合部は、前記金属基板の四角形の各辺に沿って配置され、
     前記スイッチングアーム直列回路用端子群および前記駆動回路用端子群端子は、前記追加導体接合部によって囲まれる領域に配置されている請求項19に記載の回路基板。
  21.  前記スイッチングアーム直列回路用端子群は、前記追加導体接合部によって囲まれる領域に、1平方センチメートル当たり、0.1~5.0個の集積度で配置されている請求項20に記載の回路基板。
  22.  前記回路基板は、さらに、前記追加導体接合部に接合された前記追加導体を有する請求項19ないし21のいずれかに記載の回路基板。
  23.  前記追加導体は、前記導体層の構成材料と同一、または主成分を同一とする材料によって構成されている請求項22に記載の回路基板。
  24.  前記追加導体は、前記追加導体接合部と接合する1対の脚部と、前記追加導体接合部から離間し、前記1対の脚部を連結する連結部とを有する請求項22または23に記載の回路基板。
  25.  前記回路基板は、複数の前記追加導体を有し、
     前記複数の追加導体は、前記追加導体接合部の長尺方向に沿って並配され、互いに隣り合う前記追加導体同士の前記脚部が接合されている請求項22に記載の回路基板。
  26.  請求項1ないし25のいずれかに記載の回路基板と、
     前記回路基板上に実装されたスイッチング素子と、
     前記回路基板に実装され、前記スイッチング素子に駆動電圧を印加する前記駆動回路とを備えることを特徴とする電子デバイス。
  27.  前記スイッチング素子は、駆動により200~700J/sの熱を発する請求項26に記載の電子デバイス。
  28.  前記電子デバイスは、さらに、前記回路基板に10~400Aの電流を入力する電源装置を有する請求項26または27に記載の電子デバイス。
PCT/JP2012/083963 2012-01-13 2012-12-27 回路基板および電子デバイス WO2013105456A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280066436.XA CN104040714A (zh) 2012-01-13 2012-12-27 电路基板以及电子器件
KR1020147022005A KR20140116911A (ko) 2012-01-13 2012-12-27 회로 기판 및 전자 디바이스

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012005650 2012-01-13
JP2012-005651 2012-01-13
JP2012005651 2012-01-13
JP2012-005650 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105456A1 true WO2013105456A1 (ja) 2013-07-18

Family

ID=48781412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083963 WO2013105456A1 (ja) 2012-01-13 2012-12-27 回路基板および電子デバイス

Country Status (5)

Country Link
JP (1) JPWO2013105456A1 (ja)
KR (1) KR20140116911A (ja)
CN (1) CN104040714A (ja)
TW (1) TW201352088A (ja)
WO (1) WO2013105456A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146815A1 (ja) * 2017-02-13 2018-08-16 新電元工業株式会社 電子モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608957A4 (en) * 2017-04-03 2020-04-08 Mitsubishi Electric Corporation SWITCHING ELEMENT ATTACKING UNIT
JP7036221B2 (ja) * 2018-09-14 2022-03-15 富士電機株式会社 半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136333A (ja) * 1991-11-13 1993-06-01 Sansha Electric Mfg Co Ltd インテリジエントパワーモジユール
JP2002203940A (ja) * 2001-01-04 2002-07-19 Mitsubishi Electric Corp 半導体パワーモジュール
JP2003303940A (ja) * 2002-04-12 2003-10-24 Hitachi Ltd 絶縁回路基板および半導体装置
JP2006196680A (ja) * 2005-01-13 2006-07-27 Toyota Motor Corp コンデンサ装置および車両
JP2007037301A (ja) * 2005-07-27 2007-02-08 Denso Wave Inc ロボット制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786320B2 (ja) * 1997-09-29 2006-06-14 株式会社デンソー モータ駆動用のインバータモジュール
JP3941266B2 (ja) * 1998-10-27 2007-07-04 三菱電機株式会社 半導体パワーモジュール
JP3701228B2 (ja) * 2001-11-01 2005-09-28 三菱電機株式会社 半導体装置
JP2004055756A (ja) * 2002-07-18 2004-02-19 Sanyo Electric Co Ltd 混成集積回路装置
JP2004265931A (ja) * 2003-02-14 2004-09-24 Hitachi Ltd 半導体素子駆動用集積回路及び電力変換装置
JP4603956B2 (ja) * 2005-08-26 2010-12-22 日立オートモティブシステムズ株式会社 電力変換装置
JP5550225B2 (ja) * 2008-09-29 2014-07-16 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 回路装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136333A (ja) * 1991-11-13 1993-06-01 Sansha Electric Mfg Co Ltd インテリジエントパワーモジユール
JP2002203940A (ja) * 2001-01-04 2002-07-19 Mitsubishi Electric Corp 半導体パワーモジュール
JP2003303940A (ja) * 2002-04-12 2003-10-24 Hitachi Ltd 絶縁回路基板および半導体装置
JP2006196680A (ja) * 2005-01-13 2006-07-27 Toyota Motor Corp コンデンサ装置および車両
JP2007037301A (ja) * 2005-07-27 2007-02-08 Denso Wave Inc ロボット制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146815A1 (ja) * 2017-02-13 2018-08-16 新電元工業株式会社 電子モジュール

Also Published As

Publication number Publication date
CN104040714A (zh) 2014-09-10
KR20140116911A (ko) 2014-10-06
JPWO2013105456A1 (ja) 2015-05-11
TW201352088A (zh) 2013-12-16

Similar Documents

Publication Publication Date Title
EP3107120B1 (en) Power semiconductor module
JP5841500B2 (ja) スタック型ハーフブリッジ電力モジュール
US6373705B1 (en) Electronic semiconductor module
JP6354845B2 (ja) 半導体モジュール
US9159715B2 (en) Miniaturized semiconductor device
CN109995246B (zh) 开关电源装置
US11398448B2 (en) Semiconductor module
JP2010087400A (ja) 半導体装置
US11915999B2 (en) Semiconductor device having a carrier, semiconductor chip packages mounted on the carrier and a cooling element
JP2010097967A (ja) 半導体装置
US11923266B2 (en) Semiconductor module circuit structure
JP2007068302A (ja) 電力用半導体素子及び半導体電力変換装置
JP2003017658A (ja) 電力用半導体装置
US9209099B1 (en) Power semiconductor module
WO2013105456A1 (ja) 回路基板および電子デバイス
US11081412B2 (en) Semiconductor device
JP7365405B2 (ja) 半導体装置
WO2020218298A1 (ja) 半導体装置
JP4246040B2 (ja) 半導体装置の実装体
JP2016001644A (ja) 半導体モジュール
JP2013098343A (ja) 半導体装置とその製造方法
JP6493751B2 (ja) 電力変換装置
CN111279476A (zh) 半导体装置
JP6884723B2 (ja) 半導体装置
JP2015133427A (ja) 基板付きモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553252

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147022005

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12865146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE