WO2017179214A1 - 多孔質セパレータ長尺、その製造方法、捲回体及びリチウムイオン電池 - Google Patents
多孔質セパレータ長尺、その製造方法、捲回体及びリチウムイオン電池 Download PDFInfo
- Publication number
- WO2017179214A1 WO2017179214A1 PCT/JP2016/062185 JP2016062185W WO2017179214A1 WO 2017179214 A1 WO2017179214 A1 WO 2017179214A1 JP 2016062185 W JP2016062185 W JP 2016062185W WO 2017179214 A1 WO2017179214 A1 WO 2017179214A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- long
- porous
- porous separator
- slit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H18/00—Winding webs
- B65H18/08—Web-winding mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H35/00—Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers
- B65H35/02—Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers from or with longitudinal slitters or perforators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/423—Polyamide resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/10—Handled articles or webs
- B65H2701/19—Specific article or web
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/494—Tensile strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a slit porous separator long used for a battery such as a lithium ion battery, a method for manufacturing a porous separator long, and a porous separator wound body in which the porous separator long is wound around a core. And a lithium ion battery including a porous separator obtained by cutting a long porous separator into a predetermined length.
- the raw material of the separator used for the lithium ion battery is slit (cut) along the longitudinal direction of the raw material to obtain a plurality of long separators having a predetermined slit width in a direction perpendicular to the longitudinal direction. Can do.
- Each of the long separators is wound around a core and supplied to a battery manufacturing process as a separator winding body.
- each separator is cut into a predetermined length in a direction perpendicular to the slit width. And used as a separator.
- the slit side surface in the separator is long, it becomes the side surface of the battery separator, and its shape is important.
- Patent Document 1 in a separator including a base material layer and an inorganic layer, when the separator is bent, the side surface of the separator is formed in a tapered shape in order to prevent the inorganic layer from peeling from the base material layer. It is described to do.
- Patent Document 2 describes that a photosensitive material is cut at a right angle by using a shear cut method (also referred to as a shear cut method).
- the separator In a wound battery, between the positive electrode and the negative electrode, the separator is wound together with the positive electrode and the negative electrode in MD (machine direction: longitudinal direction of the separator), and the wound positive electrode material, negative electrode material and separator are Insert into a cylindrical container. Therefore, in the wound positive electrode material, negative electrode material, and separator to be inserted into the cylindrical container, the side surface of the battery separator corresponding to the slit side surface in the long separator is exposed.
- the separator is placed on the positive electrode or the negative electrode so as to cover the positive electrode or the negative electrode, it corresponds to the slit side surface of the separator long as in the case of the wound battery. The side surface of the battery separator is exposed.
- the slit side surface of the long separator is exposed.
- the battery separator may be torn.
- the linearity of the slit side surface in the long separator and the side surface of the battery separator is P, the linear distance between two points on the straight line along the MD on these side surfaces, and the straight line along the MD.
- R is the distance along the shape of the side surface between two points, it is indicated by the value of R / P.
- a large value means that the unevenness in the direction perpendicular to the MD is large.
- This small value means that the unevenness in the direction perpendicular to the MD is small.
- the linearity of the slit side surface of the separator and the side surface of the battery separator is important.
- Patent Document 1 describes that both sides of the separator are formed in a tapered shape in order to prevent the inorganic layer from peeling from the base material layer. Not paying attention.
- Patent Document 2 describes that a non-porous material is cut at right angles on both side surfaces using a shear cut method, but unlike a porous material such as a separator, it is porous. Since the linearity of the side of non-material is high in the first place, it is not a big problem.
- the present invention has been made in view of the above-described problems, and provides a long porous separator and a method for manufacturing a long porous separator in which the possibility of tearing during operation is suppressed. With the goal.
- the long porous separator according to the present invention has an image of the porous separator long side, the porous separator long and the porous
- the shape of the side surface between the two points on the straight line along the longitudinal direction is defined as P, and the straight line distance between the two points on the straight line along the longitudinal direction is obtained by binarization processing with a part other than the separator length.
- the distance along R is R, the R / P value is less than 1.04.
- the side surface has high linearity despite being a porous material. It is possible to suppress the possibility that the separator length will tear during the operation.
- the method for producing a long porous separator according to the present invention is a method for producing a long porous separator in which the raw material of the porous separator is slit along the longitudinal direction of the original material.
- a method comprising: an upper blade and a lower blade that are rotatable in different directions, wherein the upper blade is formed between the lower blades adjacent to each other in a transverse direction perpendicular to the longitudinal direction.
- the method includes a step of forming the long side surface of the porous separator using a slit portion that contacts one of the adjacent lower blades.
- the porous material is a porous material, it is possible to form a long side surface of the porous separator with high linearity. Can be suppressed.
- FIG. 1 It is a schematic diagram which shows the cross-sectional structure of a lithium ion secondary battery. It is a schematic diagram which shows the detailed structure of the lithium ion secondary battery shown by FIG. It is a schematic diagram which shows the other structure of the lithium ion secondary battery shown by FIG.
- (A) is a schematic diagram which shows the structure of the slit apparatus which slits the original fabric of a separator
- (b) is a figure which shows a mode that the original fabric of a separator is slit by several slit length by a slit device.
- (A) is a figure which shows the cutting apparatus of the shear cut system with which the slit apparatus shown by FIG.
- (b) is a figure which shows the slit part with which the cutting apparatus of the shear cut system was equipped.
- C is a figure which shows a mode that the raw material of a separator is slit by the slit part. It is a figure which shows the part which evaluated linearity in the separator long side. It is a figure for demonstrating the cutting method by a leather blade (razor blade).
- A is a figure for demonstrating the linearity evaluation method in a separator long side
- (b) And (c) is a figure which shows the linearity evaluation result.
- (A) is the figure which showed typically the linearity of the separator long side surface of this embodiment
- (b) is the schematic of the linearity of the separator long side surface slit by the leather cut method. It is the figure shown in. It is a figure for demonstrating the measuring method of the tensile strength of the test piece which makes the side surface of the long porous separator which consists of polyethylene one side, and its result. It is a figure for demonstrating the measuring method of the Charpy impact test of the test piece which makes the side surface of the long porous separator which consists of polyethylene one side, and its result.
- Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density, and are therefore currently used for mobile devices such as personal computers, mobile phones, personal digital assistants, automobiles, airplanes, etc.
- a battery it is widely used as a stationary battery that contributes to the stable supply of electric power.
- FIG. 1 is a schematic diagram showing a cross-sectional configuration of a lithium ion secondary battery 1.
- the lithium ion secondary battery 1 includes a cathode 11, a separator 12, and an anode 13.
- An external device 2 is connected between the cathode 11 and the anode 13 outside the lithium ion secondary battery 1. Then, electrons move in the direction A when the lithium ion secondary battery 1 is charged, and in the direction B when the lithium ion secondary battery 1 is discharged.
- the separator 12 is disposed between the cathode 11 that is the positive electrode of the lithium ion secondary battery 1 and the anode 13 that is the negative electrode thereof so as to be sandwiched between them.
- the separator 12 is a porous film that allows lithium ions to move between the cathode 11 and the anode 13 while separating them.
- the separator 12 includes, for example, polyolefin such as polyethylene and polypropylene as its material.
- FIG. 2 is a schematic diagram showing a detailed configuration of the lithium ion secondary battery 1 shown in FIG. 1, where (a) shows a normal configuration, and (b) shows a temperature rise of the lithium ion secondary battery 1. (C) shows a state when the temperature of the lithium ion secondary battery 1 is rapidly increased.
- the separator 12 is provided with a large number of holes P.
- the lithium ions 3 of the lithium ion secondary battery 1 can come and go through the holes P.
- the lithium ion secondary battery 1 may be heated due to an overcharge of the lithium ion secondary battery 1 or a large current caused by a short circuit of an external device.
- the separator 12 is melted or softened, and the hole P is closed. Then, the separator 12 contracts. Thereby, since the movement of the lithium ion 3 stops, the above-mentioned temperature rise also stops.
- the separator 12 when the temperature of the lithium ion secondary battery 1 is rapidly increased, the separator 12 is rapidly contracted. In this case, as shown in FIG. 2C, the separator 12 may be broken. And since the lithium ion 3 leaks from the destroyed separator 12, the movement of the lithium ion 3 does not stop. Therefore, the temperature rise continues.
- FIG. 3 is a schematic diagram showing another configuration of the lithium ion secondary battery 1 shown in FIG. 1, where (a) shows a normal configuration, and (b) shows that the lithium ion secondary battery 1 is abruptly changed. The state when the temperature is raised is shown.
- the separator 12 may be a heat-resistant separator including a porous film 5 and a heat-resistant layer 4.
- the heat-resistant layer 4 is laminated on one surface of the porous film 5 on the cathode 11 side.
- the heat-resistant layer 4 may be laminated on one surface of the porous film 5 on the anode 13 side, or may be laminated on both surfaces of the porous film 5.
- the heat-resistant layer 4 is also provided with holes similar to the holes P. Usually, the lithium ions 3 move through the holes P and the holes of the heat-resistant layer 4.
- the heat resistant layer 4 includes, for example, wholly aromatic polyamide (aramid resin) as a material thereof.
- the heat-resistant layer 4 assists the porous film 5. Therefore, the shape of the porous film 5 is maintained. Therefore, the porous film 5 is melted or softened, and the holes P are only blocked. Thereby, since the movement of the lithium ion 3 is stopped, the above-described overdischarge or overcharge is also stopped. Thus, destruction of the separator 12 is suppressed.
- the production of the heat-resistant separator of the lithium ion secondary battery 1 is not particularly limited, and can be performed using a known method.
- the porous film 5 mainly contains polyethylene as the material is assumed and demonstrated.
- the separator 12 can be manufactured by the same manufacturing process.
- a plasticizer is added to a thermoplastic resin to form a film, and then the plasticizer is removed with an appropriate solvent.
- a plasticizer is added to a thermoplastic resin to form a film, and then the plasticizer is removed with an appropriate solvent.
- the porous film 5 is formed from a polyethylene resin containing ultrahigh molecular weight polyethylene, it can be produced by the following method.
- This method includes (1) a kneading step of kneading ultrahigh molecular weight polyethylene and an inorganic filler such as calcium carbonate to obtain a polyethylene resin composition, and (2) a rolling step of forming a film using the polyethylene resin composition. (3) Removal step of removing the inorganic filler from the film obtained in the step (2), and (4) Stretching step of obtaining the porous film 5 by stretching the film obtained in the step (3). including.
- a large number of micropores are provided in the film by the removing process.
- the micropores of the film stretched by the stretching process become the above-described holes P.
- the porous film 5 which is a polyethylene microporous film having a predetermined thickness and air permeability is formed.
- 100 parts by weight of ultrahigh molecular weight polyethylene, 5 to 200 parts by weight of a low molecular weight polyolefin having a weight average molecular weight of 10,000 or less, and 100 to 400 parts by weight of an inorganic filler may be kneaded.
- the heat-resistant layer 4 is formed on the surface of the porous film 5 in the coating process.
- an aramid / NMP (N-methyl-pyrrolidone) solution (coating solution) is applied to the porous film 5 to form the heat-resistant layer 4 which is an aramid heat-resistant layer.
- the heat-resistant layer 4 may be provided only on one side of the porous film 5 or on both sides.
- the method for applying the coating solution to the porous film 5 is not particularly limited as long as it is a method that enables uniform wet coating, and a conventionally known method can be employed.
- a capillary coating method, a spin coating method, a slit die coating method, a spray coating method, a dip coating method, a roll coating method, a screen printing method, a flexographic printing method, a bar coater method, a gravure coater method, a die coater method, etc. Can do.
- the thickness of the heat-resistant layer 4 can be controlled by adjusting the thickness of the coating wet film and the solid content concentration in the coating liquid.
- a resin film, a metal belt, a drum, or the like can be used as a support for fixing or transporting the porous film 5 during coating.
- the separator 12 heat resistant separator in which the heat resistant layer 4 is laminated on the porous film 5 can be manufactured.
- the manufactured separator is wound around a cylindrical core.
- the object manufactured with the above manufacturing method is not limited to a heat-resistant separator. This manufacturing method does not need to include a coating process.
- the object to be manufactured is a separator having no heat-resistant layer.
- the heat-resistant separator or the separator having no heat-resistant layer (hereinafter referred to as “separator”) preferably has a width (hereinafter referred to as “product width”) suitable for application products such as the lithium ion secondary battery 1.
- product width a width suitable for application products such as the lithium ion secondary battery 1.
- the separator is manufactured such that its width is equal to or greater than the product width. This is called the separator web.
- the “separator width” which means the length in the direction substantially perpendicular to the longitudinal direction and the thickness direction of the separator is used as the product width. Cut (slit) to make the separator long.
- a wide separator before slitting is referred to as a “separator raw material”, and a separator whose width is slit to a product width is particularly referred to as “separator long”.
- the slit means to cut the raw material of the separator along the longitudinal direction (film flow direction in manufacturing, MD: Machine direction), and the cut means the transverse direction of the separator (TD: transverse). direction)).
- the transverse direction (TD) means a direction substantially perpendicular to the longitudinal direction (MD) of the separator and the thickness direction.
- Embodiment 1 (Configuration of slitting device) 4A is a schematic diagram showing a configuration of the slit device 6 including the shear-cut type cutting device 7, and FIG. 4B is a diagram of the separator (porous separator) by the slit device 6. It is a figure which shows a mode that original fabric 120 is slit by several separator long (porous separator long) 12a * 12b.
- a description will be given by taking as an example a raw material 12O of a separator in which a wholly aromatic polyamide (aramid resin) is laminated as a heat-resistant layer 4 on one surface of a porous film 5.
- the separator 12O may be a porous film 5 that does not include the heat-resistant layer 4, and is provided with the heat-resistant layer 4 on both sides of the porous film 5. There may be.
- the slit device 6 includes a cylindrically-shaped unwinding roller 63 that is rotatably supported, a plurality of rollers 64, 65, 68U, 68L, 69U, and 69L, Touch roller 81U, second touch roller 81L, first arm 82U, second arm 82L, first winding auxiliary roller 83U, second winding auxiliary roller 83L, first winding roller 70U, second winding roller 70L, A cutting device 7 is provided.
- a cylindrical core c around which a separator raw sheet 120 is wound is fitted to the unwinding roller 63.
- the separator 12O is unwound from the core c through the path U or L.
- it is unwound by the path L.
- route L since it conveys by using the A surface of the raw material 120 of a separator as an upper surface, it unwinds by the path
- the A surface is a surface facing the surface of the porous film 5 that contacts the heat resistant layer 4
- the B surface is a surface facing the surface of the heat resistant layer 4 that contacts the porous film 5. It is.
- the separator roll 12O thus unwound is conveyed to the cutting device 7 via the roller 64 and the roller 65, and as shown in FIGS. 4 (a) and 4 (b), by the cutting device 7. It is slit into a plurality of long separators 12a and 12b.
- FIG. 5A is a diagram showing a shear cutting type cutting device 7 provided in the slit device 6 shown in FIG. 4, and FIG. 5B is a slit portion provided in the cutting device 7.
- FIG. 5C is a diagram illustrating a state in which the raw material 120 of the separator is slit by the slit portion S provided in the cutting device 7.
- the shear cutting type cutting device 7 includes a cylindrical lower shaft 66 and an upper shaft 67 that are rotatably supported in different directions. A plurality (eight in the present embodiment) of upper blades 67 a that are round blades are attached to the upper shaft 67. As shown in FIG. 5 (b), a plurality of upper blades 67a, which are round blades, are inserted into each of a plurality (eight in the present embodiment) of space portions provided on the lower shaft 66. The As shown in FIG. 5A, the shear cut type cutting device 7 includes a plurality of (eight in the present embodiment) slit portions S.
- each of the slit portions S provided in the shear-cut type cutting device 7 is mutually connected with the upper blade 67a in the transverse direction (TD) perpendicular to the longitudinal direction (MD). It has an adjacent lower blade 66a and a space 66b formed between the adjacent lower blades 66a. The lower blade 66a and the space 66b are provided on the lower shaft 66.
- the upper blade 67a is inserted in the space part 66b, and contacts the side surface of the lower blade 66a on the left side in the drawing in the two adjacent lower blades 66a.
- the cutting edge portion of the upper blade 67a has a flat portion 67b and an inclined portion 67c, and the flat portion 67b is a portion in contact with the lower blade 66a.
- the inclined portion 67c is a portion that faces the flat portion 67b, and is a portion that is inclined so that the blade edge portion of the upper blade 67a gradually becomes sharper toward the tip.
- the upper blade 67a is a single blade
- the upper blade 67a may be a return blade or the like.
- each of the long separators 12a and 12b is opposed to the upper blade 67a (specifically, the inclined portion 67c of the upper blade 67a). And the side surface 12c formed by the space portion 66b, and the side surface 12d formed by the upper blade 67a (specifically, the flat portion 67b of the upper blade 67a) and the lower blade 66a with which the upper blade 67a contacts. Formed.
- the upper blade 67a enters from the A surface which is the surface facing the heat-resistant layer 4 in the porous film 5.
- the present invention is not limited to this.
- the angle at which the upper blade 67a and the lower blade 66a are in contact with each other and the pressure at which the upper blade 67a and the lower blade 66a are in contact with each other may be appropriately adjusted to an angle and pressure suitable for manufacturing the separators 12a and 12b.
- the plurality of separator lengths 12a and 12b slit by the plurality of slit portions S provided in the cutting device 7 are part 12a of the plurality of separator lengths 12a and 12b as shown in FIG. Is wound around each cylindrical core u (bobbin) fitted to the first winding roller 70U via the roller 68U, the roller 69U and the first winding auxiliary roller 83U.
- each of the other part 12b of the plurality of long separators 12a and 12b has a cylindrical shape that is fitted to the second winding roller 70L via the roller 68L, the roller 69L, and the second winding auxiliary roller 83L.
- the separator length 12a * 12b wound up in roll shape is called separator winding body 12U * 12L.
- the separators 12a and 12b are wound so that the A surface of the separators 12a and 12b faces the outside and the B surface faces the inside.
- the separator web 120 is moved along the longitudinal direction (MD) of the separator web in the transverse direction (TD) of the separator web.
- MD longitudinal direction
- TD transverse direction
- the separator web 120 is moved along the longitudinal direction (MD) of the separator web in the transverse direction (TD) of the separator web.
- the number of long separators 12a and 12b that are formed by slitting the original fabric 12O depends on the size of the separator 12O and the width of the separators 12a and 12b. Needless to say, you can. In the present embodiment, long separators at both ends slit by the eight slit portions S are not used.
- the number of long separators wound around each cylindrical core u (bobbin) fitted to the first winding roller 70U and the cylindrical shape fitted to the second winding roller 70L may be the same.
- Winding club Four cores u are detachably attached to the first winding roller 70U (winding portion) according to the number of the four odd-numbered separator lengths 12a. Similarly, three cores l are detachably attached to the second winding roller 70L (winding portion) according to the number of the three even-numbered separator lengths 12b.
- the first winding roller 70U rolls the separator 12a by rotating in the direction of the arrow in FIG. 4 (a) together with the core u (winding step). ).
- the core u can be removed from the first winding roller 70U together with the separator 12a wound around the core u.
- the second winding roller 70L is wound in the direction of the arrow in FIG. 4A together with the core l to wind the separator length 12b (winding step).
- the core l can be removed from the second winding roller 70L together with the separator length 12b wound around the core l.
- the first touch roller 81U and the second touch roller 81L provided in the slit device 6 shown in FIG. 4A are rotatably provided (fixed) at one end of the first arm 82U and the second arm 82L, respectively.
- the first arm 82U and the second arm 82L can rotate around the rotation shafts 84U and 84L (shafts) at the other ends (in the direction of the arrow in FIG. 4A).
- the first winding auxiliary roller 83U is disposed between the first touch roller 81U and the rotation shaft 84U of the first arm 82U, and is rotatably fixed to the first arm 82U.
- the second winding auxiliary roller 83L is disposed between the second touch roller 81L and the rotation shaft 84L of the second arm 82L, and is rotatably fixed to the second arm 82L.
- first and second touch rollers 81U and 81L press the wound separator lengths 12a and 12b to the winding surfaces (surfaces) of the separator winding bodies 12U and 12L, respectively.
- the first and second touch rollers 81U and 81L respectively press the separators 12a and 12b by their own weights.
- wrinkles and the like are suppressed from occurring in the wound separator lengths 12a and 12b.
- the position of 1st and 2nd touch roller 81U * 81L changes (displaces) so that a winding surface may be touched.
- FIG. 6 is a diagram showing a portion where the linearity is evaluated on the side surfaces of the separators 12a and 12b.
- the linearity of the side faces 12c of the long separators 12a and 12b was evaluated. More specifically, the linearity of the portion in contact with the B surface in the side surface 12c was evaluated.
- This portion corresponds to the end portion (A portion in the figure) in the separator wound body 12U / 12L shown in FIG. 6B, and the separator lengths 12a and 12b shown in FIG. 6C. Corresponds to the portion A in the figure.
- the separator long and the raw material 12O of the separator slit by the above-described shear cutting type cutting device 7 with the porous film 5 not provided with the heat-resistant layer 4 are described above.
- separators 12a and 12b slit by means of a shear-cut type cutting device 7 a separator separator 12O was used as a comparative example, in which a separator 12O was slit with a leather blade (razor blade) described later.
- FIG. 7 is a diagram for explaining a cutting (slit) method using a conventional leather blade (razor blade).
- the separator web 120 is conveyed to the roller 101.
- the roller 101 is provided with a groove into which a part of the blade edge of a leather blade (razor blade) 100 can be inserted. Therefore, the separator raw 120 ⁇ / b> O is slit into a long separator by the leather blade (razor blade) 100 and the groove.
- FIG. 8 is a diagram for demonstrating the linearity evaluation method in a separator elongate side surface
- (b) of FIG. 8 shows the porous film 5 which is not equipped with the heat-resistant layer 4
- FIG. 8C is a diagram showing the results of evaluating the linearity of the side of a long separator (herein referred to as a polyolefin separator) slit by the shear cut method shown in FIG. No. 4 separators 12a and 12b (here, slitting the raw material 12O of the separator laminated with wholly aromatic polyamide (aramid resin) by the leather cutting method shown in FIG. 7 and the shear cutting method shown in FIG.
- FIG. 9 is a diagram showing the linearity evaluation result of the side surface 12c of the laminated separator.
- linearity evaluation method for the separator long sides 12a and 12b will be described as an example, and the linearity evaluation method for the separator long sides will be described.
- an original image is obtained with respect to the side surfaces 12c of the separators 12a and 12b.
- this original image is binarized by the separator lengths 12a and 12b and portions other than the separator lengths 12a and 12b.
- the part other than the separator lengths 12a and 12b in the processed image is a peripheral length composed of a left side length (O), a long side length (P), a right side length (Q), and an edge length (R). (O + P + Q + R).
- edge length (R) / long side length (P) was determined, and the linearity of the long side of the separator was evaluated.
- edge length (R) / long side length (P) was obtained.
- 1. Read the original image. 2. It is separated into three colors of green, red and blue by color separation. 3. In the separated image separated in green, automatic binarization is performed and a background part is extracted (discriminant analysis method: mode method). 4). 3. above. Measure the perimeter (O + P + Q + R) of the region extracted in step (1). 5). 3. above. The line length (O + P + Q) of the three sides excluding the interface between the sample and the background is measured in the region extracted in (1). 6). 4. above.
- the edge length (R) is calculated by subtracting the line length (O + P + Q) of the three sides measured in step (1). 7). The calculated edge length (R) is divided by the long side length (P).
- the long side length (P) corresponds to the linear distance between two points on the straight line along the MD on the side surface 12c of the separators 12a and 12b, and the edge length (R) is the straight line along the MD. This corresponds to the distance along the shape of the side surface 12c between the two points.
- a large value of edge length (R) / long side length (P) means that the unevenness in the direction orthogonal to the MD is large, and a small value means that the unevenness in the direction orthogonal to the MD is small. Mean small.
- edge length (R) / long side length (P) needs to be less than 1.04.
- a separator raw 12O in which a wholly aromatic polyamide (aramid resin) is laminated as a heat-resistant layer 4 on one surface of a porous film 5 is converted into a leather cut shown in FIG.
- a laminated separator hereinafter referred to as a laminated separator
- the value of edge length (R) / long side length (P) is 1.047, which is far from the ideal value of 1.
- the separator 12O having the wholly aromatic polyamide (aramid resin) laminated as the heat-resistant layer 4 on one side of the porous film 5 is shown in FIG.
- Separator lengths 12a and 12b (laminated in this case) obtained by slitting a raw material 12O of a separator in which a wholly aromatic polyamide (aramid resin) is laminated as a heat-resistant layer 4 on one surface of a porous film 5 and slitting by a shear cut method shown in FIG.
- an ideal value of 1 could be obtained as the value of edge length (R) / long side length (P).
- FIG. 9A shows a separator length obtained by slitting a separator 12O in which a wholly aromatic polyamide (aramid resin) is laminated as a heat-resistant layer 4 on one surface of a porous film 5 by the shear cut method shown in FIG.
- FIG. 9B is a diagram schematically showing the linearity of the side surface 12c of the scales 12a and 12b (laminated separator).
- FIG. 9B shows a wholly aromatic polyamide (aramid resin) as the heat-resistant layer 4 on one side of the porous film 5.
- the separator lengths 12a and 12b having high side linearity are separator lengths 12a having low side linearity. It is more preferable than “ ⁇ 12b”.
- FIG. 10 shows a tensile strength of a test piece 12e having a side surface 12c '' of a separator long 12a '' and 12b '' wound in a roll shape as one side surface in a separator wound body 12U '' and 12L ''. It is a figure for demonstrating this measuring method and its result.
- the separator wound body 12U ′′ and 12L ′′ shown in FIG. 10A is a separator made of a wholly aromatic polyamide laminated as a heat-resistant layer on one side of a porous film made of polyethylene.
- the separators 12a ′′ and 12b ′′, which are slit along the opposite longitudinal direction (MD), are 200 m on a core u ⁇ l having a diameter of 3 inches.
- the test piece 12e was prepared by cutting the separators 12a '' and 12b '' long using a cutter so that the side surface 12c '' was included as one side and the size was 1 cm wide ⁇ 5 cm long.
- the upper and lower portions of the test piece 12e are placed on the chucks (grip bases) 14a and 14b, and the chuck 14a and the chuck 14b have a distance between the chucks of 2 cm.
- the tensile strength was measured based on “JIS K 7161 plastic? Test method for tensile properties”.
- the specific measurement apparatus and measurement conditions used are as follows. Equipment: Tensilon Universal Material Testing Machine (A & D Co., Ltd., RTF-1210 type) Test piece: 5cm x 1cm Test speed (chuck 14a speed): 100 mm / min Number of measurements: 3 times Distance between chucks: 2 cm Test direction: Longitudinal direction of the separator (MD)
- the tensile strength X (MPa) was calculated from the stress A (N) at the time of fracture of the test piece 12e. Specifically, the tensile strength X (MPa) was calculated using the following (Formula 1).
- test piece 12e having a side surface slit by shear cut The tensile strength of is clearly higher than that of the test piece having the side surface slit by the leather cut method.
- FIG. 11 shows a Charpy impact of a test piece 12f having a side surface 12c '' of a separator long 12a '' and 12b '' wound in a roll shape as one side surface in a separator wound body 12U '' and 12L ''. It is a figure for demonstrating the measuring method of a test, and its result.
- the separator wound body 12U ′′ and 12L ′′ shown in FIG. 11A is a separator made of a wholly aromatic polyamide laminated as a heat-resistant layer on one side of a porous film made of polyethylene.
- the separators 12a ′′ and 12b ′′, which are slit along the opposite longitudinal direction (MD), are 200 m on a core u ⁇ l having a diameter of 3 inches.
- the test piece 12f was prepared by cutting out the separators 12a '' and 12b '' using a cutter so as to include a side surface 12c '' as one side surface and a width of 1 cm and a length of 8 cm.
- the Charpy impact test was measured based on “JIS K 7111-1 Plastic—How to Obtain Charpy Impact Properties”.
- the specific measurement apparatus and measurement conditions used are as follows. Equipment: Universal impact tester (Yasuda Seiki Seisakusho, No. 258) Test piece: 8cm x 1cm Lifting angle: 150 ° Number of measurements: 5 times Pendulum (hammer) capacity: 1J Number of test pieces: 1 piece Notch of test piece: None Test direction: Cross direction (TD) Normally, a test piece for a Charpy impact test is provided with a notch, but in this experiment, in order to evaluate the slit end shape itself of the test piece, an additional notch was not provided in a sample cut into a rectangle.
- FIG. 11B is a schematic diagram for explaining the measurement method of the Charpy impact test of the test piece 12f
- FIG. 11C is a diagram showing the result of the Charpy impact test of the test piece 12f. .
- the pendulum (hammer) 15 having a heavy weight is swung down from the height h ′ with respect to the test piece 12f, the pendulum 15 breaks the test piece 12f, Swing up again to height h.
- the distance k is the distance from the rotation center of the pendulum 15 to the center of gravity of the pendulum 15.
- the angle ⁇ in the figure is an invariable angle even if the specimen changes, and corresponds to the lifting angle.
- the angle ⁇ in the figure is the angle of the pendulum 15, and when the energy consumed when the test piece is broken is large, the angle ( ⁇ ) of the pendulum 15 becomes small, and when the test piece is broken. When the energy consumed is small, the angle ( ⁇ ) of the pendulum 15 is large.
- the pendulum 15 is swung down from a predetermined height h ′ regardless of the type of the test piece, so that the initial state energy (positional energy) of the pendulum 15 is constant, and the test piece is determined from the initial state energy.
- the remaining energy after subtracting the energy consumed when destroying the lens is expressed as the angle ( ⁇ ) of the pendulum 15.
- the raw material of a separator in which a wholly aromatic polyamide was laminated as a heat-resistant layer on one side of a porous film made of polyethylene was obtained from a separator long slit by a shear cut method.
- the angle ( ⁇ ) of the pendulum 15 of the test piece (edge length (R) / long side length (P): 1.000) has an average value of 5 times of 114.9 °, and is made of polyethylene.
- Test piece (edge length (R) / long side length (P): 1 obtained from a long separator made by slitting a raw material of a separator in which a wholly aromatic polyamide is laminated as a heat-resistant layer on one side of a film by a leather cut method: 1
- the angle ( ⁇ ) of the pendulum 15 of .047) was an average of 117.4 ° for five times.
- the long porous separator according to the first aspect of the present invention is the side of the long porous separator, the image of the long side of the porous separator is the same as that of the long porous separator and the long porous separator.
- the linear distance between two points on a straight line along the longitudinal direction obtained by binarizing with the part is P, and the distance along the shape of the side surface between the two points on the straight line along the longitudinal direction is P.
- R the value of R / P is less than 1.04.
- the side surface has high linearity despite being a porous material. It is possible to suppress the possibility that the separator length will tear during the operation.
- the long porous separator according to the second aspect of the present invention may be the long porous separator according to the first aspect, and may include a plurality of layers.
- the plurality of layers may be layers in which a porous heat-resistant layer is laminated on one side of the porous film layer.
- the plurality of layers may be layers in which a porous heat-resistant layer is laminated on both sides of the porous film layer.
- the long porous separator according to Aspect 5 of the present invention is any one of Aspects 1 to 4, wherein the side of the long porous separator includes an upper blade and a lower blade that are rotatable in different directions.
- the upper blade is a side surface slit by a slit portion that contacts one of the adjacent lower blades. May be.
- the porous separator roll according to aspect 6 of the present invention has a configuration in which the long porous separator according to any one of aspects 1 to 5 is wound around a core.
- a lithium ion battery according to Aspect 7 of the present invention is a porous material obtained by cutting the porous separator according to any one of Aspects 1 to 5 to a predetermined length along a transverse direction perpendicular to the longitudinal direction. It is the structure provided with the quality separator.
- the method for producing a long porous separator according to Aspect 8 of the present invention is a method for producing a long porous separator slit along the longitudinal direction of the original fabric of the porous separator, An upper blade and a lower blade that are rotatable in different directions, and the upper blade is adjacent to the lower blade in a space formed between the lower blades adjacent to each other in a transverse direction orthogonal to the longitudinal direction.
- the method includes a step of forming the long side surface of the porous separator using a slit portion that contacts one of the above.
- the porous material is a porous material, it is possible to form a long side surface of the porous separator with high linearity. Can be suppressed.
- the present invention can be used for a long porous separator, a manufacturing method thereof, a wound body, a lithium ion battery, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Cell Separators (AREA)
- Nonmetal Cutting Devices (AREA)
Abstract
Description
リチウムイオン二次電池、セパレータ、耐熱セパレータ、耐熱セパレータの製造方法、スリット装置について順に説明する。
リチウムイオン二次電池に代表される非水電解液二次電池は、エネルギー密度が高く、それゆえ、現在、パーソナルコンピュータ、携帯電話、携帯情報端末等の機器、自動車、航空機等の移動体に用いる電池として、また、電力の安定供給に資する定置用電池として広く使用されている。
セパレータ12は、リチウムイオン二次電池1の正極であるカソード11と、その負極であるアノード13との間に、これらに挟持されるように配置される。セパレータ12は、カソード11とアノード13との間を分離しつつ、これらの間におけるリチウムイオンの移動を可能にする多孔質フィルムである。セパレータ12は、その材料として、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを含む。
図3は、図1に示されるリチウムイオン二次電池1の他の構成を示す模式図であって、(a)は通常の構成を示し、(b)はリチウムイオン二次電池1が急激に昇温したときの様子を示す。
リチウムイオン二次電池1の耐熱セパレータの製造は特に限定されるものではなく、公知の方法を利用して行うことができる。以下では、多孔質フィルム5がその材料として主にポリエチレンを含む場合を仮定して説明する。しかし、多孔質フィルム5が他の材料を含む場合でも、同様の製造工程により、セパレータ12を製造できる。
耐熱セパレータまたは耐熱層を有しないセパレータ(以下「セパレータ」)は、リチウムイオン二次電池1などの応用製品に適した幅(以下「製品幅」)であることが好ましい。しかし、生産性を上げるために、セパレータは、その幅が製品幅以上となるように製造される。これをセパレータの原反という。このセパレータの原反を、一旦製造した後に、スリット装置においては、セパレータの原反の長手方向と厚み方向とに対し略垂直である方向の長さを意味する「セパレータの幅」を製品幅に切断(スリット)し、セパレータ長尺とする。
(スリット装置の構成)
図4の(a)は、シェアカット方式の切断装置7を備えたスリット装置6の構成を示す模式図であり、図4の(b)は、スリット装置6によって、セパレータ(多孔質セパレータ)の原反12Oが複数のセパレータ長尺(多孔質セパレータ長尺)12a・12bにスリットされる様子を示す図である。
図5の(a)は、図4に示されるスリット装置6に備えられたシェアカット方式の切断装置7を示す図であり、図5の(b)は、切断装置7に備えられたスリット部Sを示す図であり、図5の(c)は、切断装置7に備えられたスリット部Sによってセパレータの原反12Oがスリットされる様子を示す図である。
第1巻取ローラー70U(捲回部)には、4つの奇数番目のセパレータ長尺12aの数に応じて、4つのコアuが着脱可能に取り付けられている。同様に、第2巻取ローラー70L(捲回部)には、3つの偶数番目のセパレータ長尺12bの数に応じて、3つのコアlが着脱可能に取り付けられている。
図4の(a)に示されるスリット装置6に備えられた第1タッチローラー81U及び第2タッチローラー81Lは、それぞれ第1アーム82U及び第2アーム82Lの一端に回転可能に設けられる(固定される)。第1アーム82U及び第2アーム82Lは、それぞれ他端にある回転軸84U、84L(シャフト)を中心として回動可能である(図4の(a)中の矢印の方向に回動可能である)。第1捲回補助ローラー83Uは、第1タッチローラー81Uと第1アーム82Uの回転軸84Uとの間に配置され、第1アーム82Uに回転可能に固定される。第2捲回補助ローラー83Lは、第2タッチローラー81Lと第2アーム82Lの回転軸84Lとの間に配置され、第2アーム82Lに回転可能に固定される。
図6は、セパレータ長尺12a・12bの側面において、直線性を評価した部分を示す図である。
1.元画像を読み込む。
2.カラー分離により緑、赤、青の三色に分離する。
3.緑色に分離された分離画像において自動二値化を実施し背景部を抽出する(判別分析法:モード法)。
4.上記3.で抽出された領域の周囲長(O+P+Q+R)を測定する。
5.上記3.で抽出された領域でサンプルと背景の界面を除く三辺のライン長(O+P+Q)を測定する。
6.上記4.で測定された周囲長(O+P+Q+R)から、上記5.で測定された三辺のライン長(O+P+Q)を引き算しエッジ長さ(R)を算出する。
7.算出されたエッジ長さ(R)を、長辺長さ(P)で除す。
以下、図10に基づいて、図8の(c)に図示したR/Pの値を有する多孔質フィルム5の片面に耐熱層4を積層したセパレータ長尺、具体的には、多孔質フィルム5であるポリオレフィンセパレータの片面に耐熱層4として全芳香族ポリアミド(アラミド樹脂)を積層したセパレータ長尺12a’’・12b’’の引張強度の測定方法及びその結果について説明する。
装置:テンシロン万能材料試験機(株式会社エー・アンド・デイ、RTF-1210型)
試験片:5cm×1cm
試験速度(チャック14aの速度):100mm/min
測定回数:3回
チャック間距離:2cm
試験方向:セパレータ長尺の長手方向(MD)
試験片12eの破断時の応力A(N)から引張強度X(MPa)を算出した。具体的には以下の(式1)を用いて、引張強度X(MPa)を算出した。
図10の(c)に図示されているように、ポリエチレンからなる多孔質フィルムの片面に耐熱層として全芳香族ポリアミドを積層したセパレータの原反をレザーカット法でスリットしたセパレータ長尺から得た試験片(エッジ長さ(R)/長辺長さ(P):1.047、レザーn=1・レザーn=2・レザーn=3)と比較すると、ポリエチレンからなる多孔質フィルムの片面に耐熱層として全芳香族ポリアミドを積層したセパレータの原反をシェアカット法でスリットしたセパレータ長尺から得た試験片12e(エッジ長さ(R)/長辺長さ(P):1.000、シェアカットn=1・シェアカットn=2・シェアカットn=3)の破断時の荷重(N)の方が大きいことがわかる。
以下、図11に基づいて、図8の(c)に図示したR/Pの値を有する多孔質フィルム5の片面に耐熱層4を積層したセパレータ長尺、具体的には、多孔質フィルム5であるポリオレフィンセパレータの片面に耐熱層4として全芳香族ポリアミド(アラミド樹脂)を積層したセパレータ長尺12a’’・12b’’のシャルピー衝撃試験の測定方法及びその結果について説明する。
装置:万能衝撃試験機(安田精機製作所、No.258)
試験片:8cm×1cm
持ち上げ角度:150°
測定回数:5回
振り子(ハンマー)容量:1J
試験片の枚数:1枚
試験片のノッチ:なし
試験方向:横断方向(TD)
なお、通常、シャルピー衝撃試験用の試験片には、ノッチを入れるが、本実験では試験片のスリット端部形状自身を評価するため、長方形に切り出したサンプルに追加のノッチは入れなかった。
本発明の態様1に係る多孔質セパレータ長尺は、多孔質セパレータ長尺の側面において、上記多孔質セパレータ長尺の側面の画像を、上記多孔質セパレータ長尺と上記多孔質セパレータ長尺以外の部分とで2値化処理して得られる、長手方向に沿う直線上の2点間の直線距離をPとし、上記長手方向に沿う直線上の2点間の上記側面の形状に沿った距離をRとした場合、R/Pの値が1.04未満であることを特徴としている。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
4 耐熱層(多孔質耐熱層)
5 多孔質フィルム(多孔質フィルム層)
6 スリット装置
7 切断装置
12 セパレータ(多孔質セパレータ)
12a セパレータ長尺(多孔質セパレータ長尺)
12b セパレータ長尺(多孔質セパレータ長尺)
12c 側面
12d 側面
12a’’ セパレータ長尺(多孔質セパレータ長尺)
12b’’ セパレータ長尺(多孔質セパレータ長尺)
12c’’ 側面
12d’’ 側面
12U セパレータ捲回体(多孔質セパレータ捲回体)
12L セパレータ捲回体(多孔質セパレータ捲回体)
12U’’ セパレータ捲回体(多孔質セパレータ捲回体)
12L’’ セパレータ捲回体(多孔質セパレータ捲回体)
12O セパレータの原反(多孔質セパレータの原反)
66 下側の軸
66a 下刃
66b 空間部
67 上側の軸
67a 上刃
67b 平坦部
67c 傾斜部
l コア
u コア
MD セパレータ長尺またはセパレータの原反の長手方向
TD セパレータ長尺またはセパレータの原反の横断方向
S スリット部
A面 多孔質フィルムの耐熱層と接する面と対向する表面
B面 耐熱層の多孔質フィルムと接する面と対向する表面
O 左側長さ
P 長辺長さ(長手方向に沿う直線上の2点間の直線距離)
Q 右側長さ
R エッジ長さ(長手方向に沿う直線上の2点間の側面の形状に沿った距離)
Claims (8)
- 多孔質セパレータ長尺の側面において、
上記多孔質セパレータ長尺の側面の画像を、上記多孔質セパレータ長尺と上記多孔質セパレータ長尺以外の部分とで2値化処理して得られる、長手方向に沿う直線上の2点間の直線距離をPとし、上記長手方向に沿う直線上の2点間の上記側面の形状に沿った距離をRとした場合、R/Pの値が1.04未満であることを特徴とする多孔質セパレータ長尺。 - 上記多孔質セパレータ長尺は、複数の層からなることを特徴とする請求項1に記載の多孔質セパレータ長尺。
- 上記複数の層は、多孔質フィルム層の片面に多孔質耐熱層が積層された層であることを特徴とする請求項2に記載の多孔質セパレータ長尺。
- 上記複数の層は、多孔質フィルム層の両面に多孔質耐熱層が積層された層であることを特徴とする請求項2に記載の多孔質セパレータ長尺。
- 上記多孔質セパレータ長尺の側面は、互いに異なる方向に回転可能な上刃と下刃とを備え、上記上刃が、上記長手方向と直交する横断方向において互いに隣接する上記下刃間に形成された空間部において、上記隣接する下刃の一方に接触する、スリット部によって、スリットされた側面であることを特徴とする請求項1から4の何れか1項に記載の多孔質セパレータ長尺。
- 上記請求項1から5の何れか1項に記載の多孔質セパレータ長尺を、コアに捲回したことを特徴とする多孔質セパレータ捲回体。
- 上記請求項1から5の何れか1項に記載の多孔質セパレータ長尺を、上記長手方向と直交する横断方向に沿って、所定の長さにカットした多孔質セパレータを備えたことを特徴とするリチウムイオン電池。
- 多孔質セパレータの原反が、上記原反の長手方向に沿って、スリットされた多孔質セパレータ長尺の製造方法であって、
互いに異なる方向に回転可能な上刃と下刃とを備え、上記上刃が、上記長手方向と直交する横断方向において互いに隣接する上記下刃間に形成された空間部において、上記隣接する下刃の一方に接触する、スリット部を用いて、上記多孔質セパレータ長尺の側面を形成する工程を含むことを特徴とする多孔質セパレータ長尺の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/312,916 US10727463B2 (en) | 2016-04-15 | 2016-04-15 | Long porous separator sheet, method for producing the same, roll, and lithium-ion battery |
CN201680001616.8A CN107529343B (zh) | 2016-04-15 | 2016-04-15 | 多孔质间隔件条带及其制造方法、卷绕体及锂离子电池 |
PCT/JP2016/062185 WO2017179214A1 (ja) | 2016-04-15 | 2016-04-15 | 多孔質セパレータ長尺、その製造方法、捲回体及びリチウムイオン電池 |
JP2016544648A JP6381652B2 (ja) | 2016-04-15 | 2016-04-15 | 多孔質セパレータ長尺、その製造方法、捲回体及びリチウムイオン電池 |
KR1020167013975A KR101807445B1 (ko) | 2016-04-15 | 2016-04-15 | 다공질 세퍼레이터 장척, 그의 제조 방법, 권회체 및 리튬 이온 전지 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/062185 WO2017179214A1 (ja) | 2016-04-15 | 2016-04-15 | 多孔質セパレータ長尺、その製造方法、捲回体及びリチウムイオン電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179214A1 true WO2017179214A1 (ja) | 2017-10-19 |
Family
ID=60042082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062185 WO2017179214A1 (ja) | 2016-04-15 | 2016-04-15 | 多孔質セパレータ長尺、その製造方法、捲回体及びリチウムイオン電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10727463B2 (ja) |
JP (1) | JP6381652B2 (ja) |
KR (1) | KR101807445B1 (ja) |
CN (1) | CN107529343B (ja) |
WO (1) | WO2017179214A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6912272B2 (ja) * | 2016-05-26 | 2021-08-04 | 住友化学株式会社 | 多孔質セパレータ捲回体の包装体、その製造方法及び多孔質セパレータ捲回体の保管方法 |
CN110950132A (zh) * | 2019-07-03 | 2020-04-03 | 河北华胜塑胶机械制造有限公司 | 一种不粘连不停机裁切收卷装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273684A (ja) * | 2001-03-14 | 2002-09-25 | Sumitomo Chem Co Ltd | 電池セパレーター用樹脂フィルム状物のスリット方法および電池セパレーター用樹脂フィルム状物 |
WO2009123015A1 (ja) * | 2008-03-31 | 2009-10-08 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜、及び捲回物 |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2006392A (en) | 1933-04-10 | 1935-07-02 | Carey Philip Mfg Co | Material and article containing fiber and method of making the same |
US3459086A (en) | 1966-10-06 | 1969-08-05 | Beloit Eastern Corp | Self-sharpening slitter |
US3847047A (en) | 1972-03-29 | 1974-11-12 | Roll O Sheets | Apparatus for perforating a web of flexible film |
JPH0489510A (ja) | 1990-08-01 | 1992-03-23 | Matsushita Electric Ind Co Ltd | 段差形状検出装置 |
JPH11144713A (ja) | 1997-11-07 | 1999-05-28 | Tdk Corp | 電池用電極の切断方法 |
US6103050A (en) | 1998-08-10 | 2000-08-15 | American National Can Company | Method of laser slitting and sealing two films |
US6357691B1 (en) | 1998-10-14 | 2002-03-19 | Fuji Photo Film Co., Ltd. | Web processing system |
JP2000167794A (ja) | 1998-12-04 | 2000-06-20 | Mitsubishi Electric Corp | 切断装置 |
US20010003939A1 (en) | 1999-03-13 | 2001-06-21 | Sheng-Feng Liu | Automatic carton slitting machine |
EP1679162B1 (en) | 1999-10-01 | 2009-03-11 | FUJIFILM Corporation | Sheet material cutting apparatus for cutting a band-shaped thermal imaging material |
JP2001111076A (ja) | 1999-10-08 | 2001-04-20 | Tdk Corp | コーティング体および太陽電池モジュール |
DE19953908A1 (de) * | 1999-11-10 | 2001-05-17 | Sms Demag Ag | Hochgeschwindigkeitsschere zum Querteilen von Walzband |
ATE246555T1 (de) | 2000-02-01 | 2003-08-15 | Heidelberger Druckmasch Ag | Vorrichtung zur entfernung von partikeln von materialbahnen |
JP3813047B2 (ja) * | 2000-03-17 | 2006-08-23 | 三菱製紙株式会社 | ウェブの裁断方法 |
JP2002110146A (ja) | 2000-10-03 | 2002-04-12 | Mekatekku Kk | 回転刃を用いた電極部材の製造方法及び電池の製造方法 |
JP2002308489A (ja) | 2001-04-16 | 2002-10-23 | Fuji Photo Film Co Ltd | 磁気テープの製造方法 |
JP2003080489A (ja) | 2001-09-07 | 2003-03-18 | Sony Corp | テープ裁断機 |
JP2003183795A (ja) | 2001-12-13 | 2003-07-03 | Tanaka Kikinzoku Kogyo Kk | 箔状ろう材の加工方法 |
JP2004272968A (ja) * | 2003-03-06 | 2004-09-30 | Tdk Corp | 磁気テープおよびその製造方法 |
JP2004351524A (ja) | 2003-05-27 | 2004-12-16 | Fuji Photo Film Co Ltd | 研削装置及びそれを用いた磁気記録媒体の製造方法 |
JP2005066796A (ja) | 2003-08-27 | 2005-03-17 | Konica Minolta Medical & Graphic Inc | 広幅帯状感光材料の裁断方法及び広幅帯状感光材料用裁断装置 |
JP2005285385A (ja) | 2004-03-29 | 2005-10-13 | Sanyo Electric Co Ltd | セパレータ及びこのセパレータを用いた非水電解質電池 |
JP5202060B2 (ja) | 2008-03-24 | 2013-06-05 | 三菱重工印刷紙工機械株式会社 | スリッタ刃の高さ調整方法及び装置 |
WO2010071387A2 (ko) | 2008-12-19 | 2010-06-24 | 주식회사 엘지화학 | 고출력 리튬 이차 전지 |
US8516936B2 (en) | 2009-04-15 | 2013-08-27 | Nishimura Mfg. Co., Ltd | Slitter |
CN201478365U (zh) * | 2009-08-21 | 2010-05-19 | 先恩特(南京)机电科技有限公司 | 隔板裁切装置 |
US20120219864A1 (en) | 2009-11-09 | 2012-08-30 | Toray Industries, Inc. | Porous film and electric storage device |
JP2011148035A (ja) | 2010-01-21 | 2011-08-04 | Hitachi Maxell Ltd | スリット装置及びこれを用いた磁気テープの製造方法 |
JP2011159434A (ja) | 2010-01-29 | 2011-08-18 | Toyota Motor Corp | セパレータとその製造方法 |
HUE042737T2 (hu) | 2010-06-25 | 2019-07-29 | Toray Industries | Kompozit porózus membrán, eljárás kompozit porózus membrán elõállítására és akkumulátor-elválasztóelem ennek alkalmazásával |
JP3164798U (ja) | 2010-10-05 | 2010-12-16 | 株式会社不二鉄工所 | シート切断装置 |
US9172075B2 (en) | 2010-12-21 | 2015-10-27 | GM Global Technology Operations LLC | Battery separators with variable porosity |
JP5692644B2 (ja) | 2011-03-18 | 2015-04-01 | 株式会社Gsユアサ | 電池、電池用のセパレータ及び電池用のセパレータの製造方法 |
DE102011087094A1 (de) | 2011-11-25 | 2013-05-29 | Voith Patent Gmbh | Verfahren zur Überführung einer Materialbahn von einer Trockenanordnung zu einer nachgeordneten Funktionseinheit und Trockenvorrichtung |
PL2789560T3 (pl) | 2011-12-07 | 2018-06-29 | Toray Industries, Inc. | Mikroporowata rolka membranowa i sposób jej wytwarzania |
KR20140107256A (ko) | 2011-12-27 | 2014-09-04 | 도레이 카부시키가이샤 | 미다공 플라스틱 필름롤의 제조 장치 및 제조 방법 |
JP6245817B2 (ja) | 2012-03-14 | 2017-12-13 | 日東電工株式会社 | 光学フィルムロール |
JP5742784B2 (ja) | 2012-05-21 | 2015-07-01 | トヨタ自動車株式会社 | 塗工装置、塗装済材の製造方法、耐熱皮膜付セパレータ原反の製造方法、耐熱皮膜付セパレータの製造方法及び電池の製造方法 |
JP5355828B1 (ja) | 2012-05-30 | 2013-11-27 | パナソニック株式会社 | 電池、電池用セパレータおよび電池用セパレータの製造方法 |
JP6106957B2 (ja) | 2012-06-01 | 2017-04-05 | 株式会社Gsユアサ | 蓄電素子、電極体、捲回方法および捲回装置 |
CN108054326A (zh) | 2012-08-06 | 2018-05-18 | 住友化学株式会社 | 分隔件的制造方法、分隔件及二次电池的制造方法 |
CN102962858B (zh) * | 2012-10-25 | 2015-07-08 | 东莞市鸿宝锂电科技有限公司 | 一种锂电池隔膜滚切机构 |
JP6146353B2 (ja) | 2014-03-24 | 2017-06-14 | 株式会社豊田自動織機 | 電極収納セパレータの製造装置 |
JP6427909B2 (ja) | 2014-03-24 | 2018-11-28 | 日産自動車株式会社 | 電気デバイスのセパレータ接合装置 |
JP6264163B2 (ja) | 2014-04-08 | 2018-01-24 | 住友化学株式会社 | セパレータの製造方法 |
KR102217721B1 (ko) | 2014-06-10 | 2021-02-22 | 주식회사 아모그린텍 | 복합 다공성 분리막 및 그 제조방법과 이를 이용한 이차전지 |
CN105916645B (zh) * | 2014-12-25 | 2017-10-03 | 住友化学株式会社 | 分离器制造方法及切开方法 |
JP5886480B1 (ja) * | 2014-12-25 | 2016-03-16 | 住友化学株式会社 | スリット装置及びセパレータ捲回体の製造方法 |
JP5885888B1 (ja) * | 2014-12-25 | 2016-03-16 | 住友化学株式会社 | セパレータ製造方法及びスリット方法 |
KR101748100B1 (ko) | 2016-04-15 | 2017-06-15 | 스미또모 가가꾸 가부시키가이샤 | 다공질 세퍼레이터 장척, 그의 권회체, 그의 제조 방법 및 리튬 이온 전지 |
-
2016
- 2016-04-15 WO PCT/JP2016/062185 patent/WO2017179214A1/ja active Application Filing
- 2016-04-15 US US15/312,916 patent/US10727463B2/en active Active
- 2016-04-15 CN CN201680001616.8A patent/CN107529343B/zh active Active
- 2016-04-15 KR KR1020167013975A patent/KR101807445B1/ko active IP Right Grant
- 2016-04-15 JP JP2016544648A patent/JP6381652B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273684A (ja) * | 2001-03-14 | 2002-09-25 | Sumitomo Chem Co Ltd | 電池セパレーター用樹脂フィルム状物のスリット方法および電池セパレーター用樹脂フィルム状物 |
WO2009123015A1 (ja) * | 2008-03-31 | 2009-10-08 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜、及び捲回物 |
Also Published As
Publication number | Publication date |
---|---|
JP6381652B2 (ja) | 2018-08-29 |
US20190027726A1 (en) | 2019-01-24 |
CN107529343B (zh) | 2019-12-10 |
US10727463B2 (en) | 2020-07-28 |
CN107529343A (zh) | 2017-12-29 |
JPWO2017179214A1 (ja) | 2018-04-19 |
KR20170126780A (ko) | 2017-11-20 |
KR101807445B1 (ko) | 2017-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10661462B2 (en) | Method for producing separator roll and device for producing separator roll | |
JP6381652B2 (ja) | 多孔質セパレータ長尺、その製造方法、捲回体及びリチウムイオン電池 | |
JP6499997B2 (ja) | リチウムイオン二次電池用セパレータ製造方法及びリチウムイオン二次電池用セパレータスリット方法 | |
JP6122224B1 (ja) | 多孔質セパレータ長尺、その捲回体、多孔質セパレータ長尺の製造方法及び多孔質セパレータの製造方法 | |
JP6618951B2 (ja) | セパレータ巻芯及びセパレータ捲回体 | |
JP5885888B1 (ja) | セパレータ製造方法及びスリット方法 | |
WO2016103758A1 (ja) | セパレータ製造方法及びスリット方法 | |
CN108604657B (zh) | 隔膜的卷曲量测定方法、分切装置及卷曲量测定装置 | |
US10673098B2 (en) | Separator core and separator roll | |
JP6549175B2 (ja) | 多孔質セパレータ長尺、その捲回体、その製造方法及びリチウムイオン電池 | |
JP2018034999A (ja) | 巻芯、セパレータ捲回体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20167013975 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016544648 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16898674 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16898674 Country of ref document: EP Kind code of ref document: A1 |