WO2017175664A1 - 積層型鉄心およびその製造方法 - Google Patents

積層型鉄心およびその製造方法 Download PDF

Info

Publication number
WO2017175664A1
WO2017175664A1 PCT/JP2017/013376 JP2017013376W WO2017175664A1 WO 2017175664 A1 WO2017175664 A1 WO 2017175664A1 JP 2017013376 W JP2017013376 W JP 2017013376W WO 2017175664 A1 WO2017175664 A1 WO 2017175664A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
core
iron core
laminated core
concave portion
Prior art date
Application number
PCT/JP2017/013376
Other languages
English (en)
French (fr)
Inventor
崇裕 田中
匠 中上
隆之 鬼橋
智宏 別所
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018510569A priority Critical patent/JP6602467B2/ja
Priority to CN201780022103.XA priority patent/CN109075628B/zh
Publication of WO2017175664A1 publication Critical patent/WO2017175664A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to an iron core structure such as an electric motor or a transformer, and relates to a laminated iron core in which a plurality of laminated cores in which plate-like core pieces are laminated is connected in a ring shape and a method for manufacturing the same.
  • a laminated core obtained by laminating press-cut sheet-like core pieces has been used as an iron core device.
  • the laminated core By forming a laminated core consisting of core pieces in a shape where each tooth is connected in a straight line through a thin part with a mold, the laminated core can be wound as a unit, and its ends are bent into an annular shape.
  • the structure which can obtain an iron core device is indicated (for example, refer to patent documents 1).
  • stacked core edge part and the recessed part of an opposite edge part, and inserting in a product width direction is disclosed (for example, patent document 2). reference).
  • Japanese Patent Laid-Open No. 10-1778749 paragraphs [0022] to [0024] and FIGS. 1 and 3) Japanese Patent Laid-Open No. 10-271770 (paragraphs [0012] to [0014] and FIG. 1)
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a laminated iron core capable of easily connecting laminated cores and miniaturizing a mold, and a method for manufacturing the same.
  • a laminated iron core according to the present invention is a laminated iron core that is formed by connecting a plurality of laminated cores in which plate-shaped core pieces having the same shape are laminated and fixed, and has a convex portion at one end of the laminated core.
  • a method for manufacturing a laminated iron core according to the present invention is a method for producing a laminated iron core in which a plurality of laminated cores are connected to form a ring, and has a convex portion at one end of the laminated core.
  • a laminated core that has a recess at the other end has a notch at a part of the outer periphery of the recess, and the recess can be deformed into a C shape so as to form a hole surrounding the protrusion.
  • the laminated iron core according to the present invention has a notch in a part on the outer peripheral side of the concave portion, and the concave portion is a structure that can be deformed into a C shape so as to form a hole portion surrounding the convex portion.
  • the laminated cores can be easily connected and the mold can be miniaturized.
  • the recess is deformed into a U shape to form a hole surrounding the convex portion of the first laminated core, and the temporary connection for preventing the laminated cores from coming apart. Since the step and the main connecting step of fixing the laminated cores in an annular shape by deforming the concave portion from the U shape to the C shape, the laminated core laminated cores can be easily connected and the mold can be downsized.
  • Embodiment 1 has a core convex part at the first end of the laminated core, a core concave part at the second end of the laminated core, and the core concave part at the second end of the laminated core is a jaw-shaped protrusion.
  • the jaw-shaped projection has a structure that can be deformed in two stages so as to form a hole surrounding the core convex portion of the first end portion with the slide guide projection.
  • FIG. 1 is a cross-sectional view showing the configuration of the laminated core of the electric motor and the manufacturing method thereof according to Embodiment 1
  • FIG. 2 is an enlarged view of the main part of FIG. 2
  • FIG. 4 is a perspective view and a plan view showing the alignment step
  • FIG. 5 and FIG. 7, FIG. 5 and FIG. 6 and 8 which are enlarged views of the main part of FIG. 7, a perspective view and FIG. 9 which is a plan view of the connecting process
  • FIG. 10 which is an enlarged view of the main part of FIG. 9, and a winding process of the laminated core of the comparative example
  • FIG. 11 is an explanatory diagram of FIG. 12, FIG.
  • FIG. 12 is an explanatory diagram of the rounding process of the laminated core of the comparative example
  • FIG. 13 is an explanatory diagram of the winding process of the laminated core according to the first embodiment
  • an explanation of the temporary connecting process 14 and 15 which are diagrams
  • FIGS. 16 to 18 which are explanatory diagrams of a winding process
  • an explanatory diagram of a main connecting process. 19 is described based on FIG. 21 is a flowchart according to the manufacturing method of FIG. 20 and laminated iron core.
  • FIG. 1 is a cross-sectional view showing a configuration of a laminated iron core of an electric motor.
  • the laminated iron core 1 has a configuration in which a plurality of laminated cores 10 are connected in a ring shape, and a winding 2 is wound around the laminated core 10.
  • the laminated cores 10 are connected to each other by fitting the core convex portion 11a and the core concave portion 12a.
  • a laminated core 10 is obtained by laminating and fixing a plate-like core piece 13 made of a magnetic material in the axial direction.
  • the laminated core 10 includes a back yoke portion 14 and a tooth portion 15.
  • the laminated core 10 includes a first end portion 11 and a second end portion 12.
  • the first end portion 11 is formed with a core convex portion 11a as a connecting means
  • the second end portion 12 is formed with a core concave portion 12a for connection with the core convex portion 11a.
  • adhesion, welding, caulking by dowels, or a combination thereof is used as a means for fixing the layers.
  • connection procedure positioning, temporary connection, main connection process of the laminated core 10
  • winding process the temporary connection using a jig
  • main connection process the connection procedure (positioning, temporary connection, main connection process) of the laminated core 10
  • winding process the winding process
  • temporary connection using a jig the temporary connection using a jig
  • FIGS. 4A is a perspective view showing the alignment step
  • FIG. 4B is a plan view. 2 (a) and 2 (b)
  • adjacent cores 11a and core recess 12a are brought close to each other, and the positions of inner locking step 11e and inner locking projection 12e in FIG. Together to obtain the states of FIGS. 4 (a) and 4 (b).
  • the opening width of the core recess 12a surrounded by the jaw-shaped protrusion 12b and the slide guide protrusion 12d is larger than the width of the core protrusion 11a, so that the alignment can be performed smoothly.
  • FIG. 3 the opening width of the core recess 12a surrounded by the jaw-shaped protrusion 12b and the slide guide protrusion 12d is larger than the width of the core protrusion 11a, so that the alignment can be performed smoothly.
  • the first end portion 11 further includes an outer slide relief groove 11b, an outer latching step 11c, an inner slide relief groove 11d, a convex side end surface 11f, a springback prevention projection 11g, and a core rounding latch.
  • a recess 11h is provided.
  • the second end portion 12 is further provided with an outer locking projection 12c, a recess-side end surface 12f, a thin portion 12g, and a deformation relief groove 12h.
  • FIGS. 5 (a) and 7 (a) are perspective views showing a temporary connecting step
  • FIGS. 5 (b) and 7 (b) are plan views.
  • FIG. 6 is an enlarged view of a main part in which the periphery of the jaw-shaped protrusion 12b is enlarged.
  • the jaw-shaped protrusion 12b and the slide guide protrusion 12d form a hole 12p. Since the width of the outer locking projection 12c at the tip of the jaw projection 12b and the inner locking projection 12e at the tip of the slide guide projection 12d is narrower than the width of the core projection 11a, the stacked cores 10 do not come apart.
  • the jaw-shaped protrusion 12b is connected to the plate-shaped core piece 13 via the thin-walled portion 12g and the deformation relief groove 12h, the force necessary for the deformation of the jaw-shaped protrusion 12b can be reduced. Further, the deformation relief groove 12h suppresses out-of-plane deformation and springback, thereby improving the shape accuracy.
  • FIG. 8 is an enlarged view of a main part in which the periphery of the jaw projection 12b is enlarged. It is prevented that the laminated cores 10 are separated from each other by meshing the outer latching protrusion 12c and the outer latching step 11c, and the inner latching projection 12e and the inner latching step 11e. Further, by providing the outer slide relief groove 11b and the inner slide relief groove 11d, the laminated cores 10 can be slid in the direction of approaching each other.
  • FIG. 9A is a perspective view showing this connection step
  • FIG. 9B is a plan view.
  • the laminated core 10 is deformed into an annular shape. Further, by applying a force to the jaw-shaped protrusion 12b to cause deformation (second deformation) further toward the inner diameter side of the laminated core 10 than the temporary connection, the laminated core 10 becomes the state shown in FIGS. 9 (a) and 9 (b). That is, the core recess 12a is C-shaped.
  • FIG. 10 is an enlarged view of a main part in which the periphery of the jaw-shaped protrusion 12b is enlarged.
  • the laminated core 10 is rotated so that the concave-side end face 12f of one laminated core 10 and the convex-side end face 11f of the laminated core 10 to be connected are abutted to form an annular shape. .
  • the multi-layer core 10 shown in FIG. 1 is formed by performing the main connection to the plurality of laminated cores 10.
  • the jaw-shaped projection 12b after the second deformation is accommodated inside the outer slide escape groove 11b by the springback prevention projection 11g.
  • a force may be applied from the outside with a jig or the like, or a force may be applied by pressing the jaw projection 12b with the springback prevention projection 11g by a force that rotates the laminated core 10.
  • the shape of the inner slide relief groove 11d is a polygon, the slide guide protrusion 12d is accommodated in the inner slide relief groove 11d even when the laminated core 10 is rotated.
  • the convex part of the claims is the core convex part 11a
  • the concave part is the core concave part 12a
  • the outer peripheral side of the concave part is the jaw-shaped protrusion 12b
  • the notch is the deformation relief groove 12h
  • the hole part is the hole part 12p.
  • the thin part in the claims is the thin part 12g.
  • the protrusion extending in the radial direction on the outer peripheral side of the convex part in the claims is a springback prevention protrusion 11g.
  • the protrusion provided at the tip on the inner diameter side of the concave portion of the claims is the inner locking convex portion 12e, and the trough portion on the inner diameter side of the base of the convex portion having a shape matching the protrusion provided at the tip portion on the inner diameter side of the recess is It is a core rounding locking recess 11h.
  • the teeth portions 15 of the laminated core 10 can be slid in the direction away from each other, as described in the temporary connection step of FIG. Because of this feature, it is possible to increase the winding space between the teeth 15 of the laminated core 10 and wind more windings.
  • FIGS. 11A and 11B show a winding process of the laminated core 110 of the comparative example.
  • FIG.11 (b) is the figure which expanded the two laminated cores 110 of the right end of Fig.11 (a).
  • the laminated core 110 of the comparative example is connected via the slit part 110a and the thin part 110b.
  • the laminated core 110 includes a back yoke portion 114 and a tooth portion 115.
  • the laminated core 110 is fixed by a winding machine core chuck 51.
  • the thin portion 110b is plastically deformed and arranged in an annular shape, and the laminated core 110 is fixed by the core end joint 110c, and the annular shape shown in FIG.
  • the iron core device 101 of the comparative example is formed.
  • welding or adhesion is used for the core end joint 110c.
  • the problem of the laminated core 110 of the comparative example will be described.
  • the winding machine nozzle 50 and the winding 2 interfere when the winding 2 is wound around the left tooth portion 115 after the winding 2 is wound around the rightmost tooth portion 115.
  • the outer diameter of the iron core device 101 of the comparative example is also increased, and as a result, the electric motor is increased in size.
  • the outer diameter of the iron core device 101 of the comparative example is not changed, it is necessary to reduce the number of coils to be wound, and as a result, the efficiency of the electric motor is lowered.
  • FIGS. 13A and 13B show the winding process of the laminated iron core and the manufacturing method thereof according to the first embodiment.
  • FIG. 13A shows a state in which the winding space is expanded between the tooth portions 15 of the laminated core 10 and the winding is wound.
  • FIG. 13B shows a state in which the winding space between the tooth portions 15 of the laminated core 10 is narrowed after the winding is finished.
  • the winding machine core chuck 52 of the first embodiment is used as the winding machine core chuck 52.
  • the winding 2 and the winding machine nozzle 50 do not interfere with each other by sliding them in the directions away from each other to obtain a distance B (B> A) between the laminated cores. For this reason, more windings can be wound than the laminated core 110 of the comparative example, and as a result, the efficiency of the electric motor can be improved.
  • the laminated cores 10 are slid in the direction to bring them closer together, and the distance B between the laminated cores is reduced to the distance A between the laminated cores, so that the same as the laminated core 110 of the comparative example.
  • the distance between the laminated cores is A, and the laminated iron core 1 shown in FIG.
  • the laminated iron core 1 of the first embodiment has the same outer diameter as that of the iron core device 101 of the comparative example and can wind more coils. Therefore, the laminated iron core and the manufacturing method thereof according to Embodiment 1 can facilitate the winding work and improve the line area ratio.
  • FIG. 14A shows a method of arranging a pair of laminated cores 10 to be connected to the temporary connecting jig 60.
  • FIG. 14B shows a state in which the laminated core 10 is aligned.
  • FIG. 14C shows a state where the first deformation of the jaw-shaped protrusion 12b is performed and the temporary connection is completed.
  • the temporary connecting jig 60 includes a temporary connecting jig base 61 for positioning the laminated core 10 and a temporary connecting jig punch 63 for pressing and deforming the jaw-shaped protrusion 12b.
  • a core positioning projection 62 is formed on the temporary connecting jig base 61, and positioning is performed by aligning the convex-side end surface 11f and the concave-side end surface 12f of the laminated core 10 with the core positioning projection 62 (FIG. 14B). State).
  • the temporary connection jig punch 63 is used to apply a force to the jaw projection 12b to perform the first deformation, thereby completing the temporary connection (state shown in FIG. 14C).
  • tip part of the convex part side end surface 11f has a right angle or inclination.
  • the recess-side end surface 12f has a right angle or an inclination on the inner diameter side of the base.
  • the protrusion provided on the inner diameter side of the base of the convex portion in the claims is the convex-side end surface 11f, and the inner-diameter-side protrusion constituting the concave portion is the concave-side end surface 12f.
  • FIG. 15A shows a state where a plurality of laminated cores 10 are aligned and installed on a jig.
  • FIG. 15B shows a state in which the first deformation of the jaw-shaped protrusion 12b is collectively performed and the temporary connection is completed.
  • the temporarily connected laminated core 10 is referred to as a temporarily connected laminated core 16.
  • the temporary connection jig 60 in FIG. 14 is a jig that temporarily connects one place at a time, but the collective temporary connection jig 64 shown in FIG. 15 can temporarily connect a plurality of connection positions simultaneously. it can.
  • a plurality of laminated cores 10 are arranged on the collective temporary connecting jig base 65 (the state shown in FIG. 15A), and the first deformation is simultaneously performed on the jaw projections 12b by the collective temporary connecting jig punch 66. Then, the temporarily connected laminated cores 16 can be formed (state shown in FIG. 15B). As a result, the time for temporary connection per laminated core 10 can be shortened.
  • the wound laminated core 10 is referred to as a laminated core 17 after winding.
  • the winding machine body (not shown) includes a plurality of winding machine core chucks 52, a winding machine core chuck base 54 that fixes the winding machine core chuck 52 in a slidable state, and a plurality of winding machine nozzles 50.
  • the temporarily connected laminated core 16 is attached to the winding machine core chuck 52.
  • the temporarily connected laminated cores 16 are slid in a direction to reduce the distance between the tooth portions 15 of the laminated core 10 to increase the contact points of the connecting parts, thereby improving the rigidity of the whole core, and conveying and winding machines. Attachment to the core chuck 52 is facilitated.
  • the winding machine core chuck 52 is slid in the direction of increasing the distance between the teeth 15 of the laminated core 10, and then a plurality of winding machine nozzles attached to the winding machine nozzle holder 53. 50 is used to simultaneously wind the winding 2 around all the teeth portions 15 of the temporarily connected laminated cores 16.
  • the winding machine nozzle 50 is retracted, and then the winding machine core chuck 52 is slid in a direction to reduce the distance between the tooth portions 15 of the laminated core 10.
  • the subsequent laminated core 17 is removed from the winding machine core chuck 52.
  • FIGS. 19 and 20 the application of the jig in the main connection step in which main connection is performed to the connection portion of the laminated core 17 after winding to form the annular laminated core 1 will be described with reference to FIGS. 19 and 20.
  • the main connection push claw 70 is applied to perform the main connection
  • FIG. 19A the laminated core 17 after winding is rounded into an annular shape, and a force is applied from the outer peripheral side with the main connecting push claws 70 to jump out of the outer diameter of the laminated core 17 after winding.
  • the main connection is performed by performing the second deformation on the jaw-shaped protrusion 12b, and the laminated iron core 1 is formed as shown in FIG.
  • there are three main connecting push claws 70 but two may be used, or four or more.
  • FIG.20 (a) shows the structure of a jig
  • FIG.20 (b) is explanatory drawing of the point of this connection.
  • the connecting jig includes a main connecting core 71 for positioning the inner diameter of the laminated core 17 after winding, and a main connecting push roller 72 for deforming the jaw-shaped protrusion 12b by applying a force.
  • the laminated core 17 after winding is wound around the connecting core rod 71.
  • the laminated core 10 can also be fixed by generating a magnetic attractive force on the connecting core rod 71 using an electromagnet or a permanent magnet.
  • a force is applied to the main connecting push roller 72 to press the laminated core 17 after winding onto the main connecting core 71, and the second protrusion 12b protrudes from the outer diameter of the laminated core 17 after winding.
  • the main connecting core rod 71 and the laminated core 17 after winding are rotate in the direction of the arrow in FIG. For this reason, it is possible to perform the main connection in a short time.
  • the method for manufacturing the laminated core of the first embodiment has a core convex portion 11a at the first end 11 of the laminated core 10 and a core concave portion 12a at the second end 12 of the laminated core 10.
  • the core recess 12a of the second end 12 of the laminated core 10 has a jaw projection 12b and a slide guide projection 12d.
  • the jaw projection 12b has a first end formed by the jaw projection 12b and the slide guide projection 12d.
  • the laminated core 10 having a structure that can be deformed in two stages so as to form a hole 12p surrounding the 11 core convex portions 11a is used.
  • the laminated cores 10 can be slid without being separated from each other, and in the second modification, the laminated cores 10 are connected to each other.
  • the manufacturing method of the laminated iron core according to the first embodiment includes the following steps 1 (S01) to 4 (S04).
  • Step 1 the core protrusion 11a of the first laminated core 10 is inserted into the core recess 12a of the second laminated core 10, and the second lamination with the first laminated core 10 is performed. Alignment with the core 10 is performed.
  • Step 2 the first deformation is performed on the jaw-shaped protrusion 12b of the laminated core 10 to reduce the opening width of the core recess 12a.
  • a hole 12p is formed by the jaw-shaped protrusion 12b and the slide guide protrusion 12d. This prevents the laminated cores 10 from coming off.
  • Step 3 the laminated cores 10 are slid to wind the winding 2 around the tooth portion 15 of the laminated core 10 in a state where the interval between the tooth portions 15 is widened.
  • the cores 10 are slid to narrow the interval between the teeth portions 15.
  • Step 4 the plurality of laminated cores 10 around which the windings 2 are wound are arranged in an annular shape, and the second deformed portions 12b of the laminated core 10 are subjected to the second deformation to be connected and fixed.
  • the laminated iron core 1 is formed.
  • the first embodiment has a core convex portion at the first end of the laminated core, a core concave portion at the second end of the laminated core, and a core at the second end of the laminated core.
  • the recess has a jaw projection and a slide guide projection, and the jaw projection has a structure that can be deformed in two stages so as to form a hole surrounding the core projection at the first end with the slide guide projection.
  • the laminated cores can be slid without being separated from each other, and in the second modification, the laminated cores are connected to each other to form an annular laminated iron core.
  • the present invention relates to a method for manufacturing a laminated core including a mold core, an alignment step, a temporary connection step, a winding step, and a main connection step.
  • the laminated iron core and the manufacturing method thereof according to the first embodiment can easily connect the laminated cores and reduce the size of the mold. Furthermore, the winding work can be facilitated and the line product ratio can be improved.
  • Embodiment 2 The laminated iron core according to the second embodiment has a simplified structure of the laminated iron core and a method for manufacturing the laminated iron core except for the structure in which the laminated cores are slid between the laminated iron cores according to the first embodiment. Is.
  • FIG. 22 is a plan view showing a state before connection of the laminated cores and FIG. 22 is an enlarged view of the main part, and a plan view and an enlarged view of the main part showing the alignment step.
  • FIG. 23 which is a plan view showing the provisional connection step, and FIG. 24, which is an enlarged view of the main portion, and FIG. 25, which is a plan view showing the main connection step, and FIG. The explanation is centered.
  • connection procedure positioning, temporary connection, main connection process
  • FIGS. 22A is a plan view of the laminated core 20
  • FIG. 22B is an enlarged view of a main part.
  • FIG. 23A is a plan view showing the alignment step
  • FIG. 23B is an enlarged view of a main part.
  • the laminated core 20 is obtained by laminating and fixing plate-like core pieces made of a magnetic material in the axial direction.
  • the laminated core 20 includes a back yoke portion 24 and a tooth portion 25.
  • the laminated core 20 includes a first end 21 and a second end 22.
  • the first end portion 21 is formed with a core convex portion 21a as a connecting means
  • the second end portion 22 is formed with a core concave portion 22a for connecting with the core convex portion 21a.
  • adhesion, welding, caulking by dowels, or a combination thereof is used as a means for fixing the layers.
  • the first end portion 21 of the laminated core 20 includes an outer slide escape groove 21b and an inner slide relief groove 21d on both sides of the core convex portion 21a.
  • a connection locking projection 21j is provided on a part of the core projection 21a.
  • a convex portion side end face 21f for positioning the laminated core 20 in an annular shape is provided on the inner diameter side.
  • the second end portion 22 of the laminated core 20 includes a core recess 22a, and a jaw-shaped protrusion 22b and a slide guide protrusion 22d on both sides thereof.
  • the base of the jaw-shaped protrusion 22b includes a thin portion 22g and a deformation relief groove 22h.
  • the outer locking projection 22c is positioned at the distal end of the jaw-shaped protrusion 22b, the main connection locking groove 22j for fitting in the main connection step on the inner diameter side, and the connection locking projection 21j in the temporary connection step. Provisional connection locking projections 22k. Further, on the inner diameter side of the slide guide protrusion 22d, a convex portion side end surface 21f and a concave portion side end surface 22f for positioning are provided.
  • the adjacent laminated cores 20 are brought close to each other, and the positions of the core convex portion 21a and the core concave portion 22a are aligned to obtain the states of FIGS. 23 (a) and 23 (b). At this time, since the opening width of the core recess 22a surrounded by the jaw-shaped protrusion 22b and the slide guide protrusion 22d is larger than the width of the core protrusion 21a, the alignment can be performed smoothly.
  • FIG. 24A is a plan view showing a temporary connection step
  • FIG. 24B is an enlarged view of a main part.
  • the temporarily connected laminated core 20 is referred to as a temporarily connected laminated core 26.
  • the core convex portion 21a Due to the deformation of the jaw-shaped protrusion 22b, the core convex portion 21a is fixed by being sandwiched between the slide guide protrusion 22d, the temporary connection locking protrusion 22k, and the core concave portion 22a. Furthermore, the rotation of the laminated cores 20 is also suppressed by the contact between the outer slide relief groove 21b and the outer locking projection 22c. As a result, the laminated core 26 in which the laminated cores 20 are temporarily connected can be easily transported and wound as a single unit, like the laminated core 110 of the comparative example.
  • the jaw-shaped protrusion 22b is connected to the plate-shaped core piece via the thin-walled portion 22g and the deformation relief groove 22h, so that the force required for the deformation of the jaw-shaped protrusion 22b can be reduced. Further, the deformation relief groove 22h suppresses out-of-plane deformation and springback, thereby improving the shape accuracy.
  • FIG. 25A is a plan view showing the connecting step
  • FIG. 25B is an enlarged view of a main part.
  • the laminated core 20 is deformed into an annular shape. Further, by applying a force to the jaw-shaped protrusion 22b to cause deformation (second deformation) further toward the inner diameter side of the laminated core 20 than the temporary connection, the laminated core 20 becomes the state shown in FIG. Specifically, by rotating the laminated core 20, the concave side end face 22 f of the second end 22 of the laminated core 20 and the convex side end face 21 f of the first end 21 of the laminated core 20 are brought into contact with each other.
  • the laminated cores 20 are arranged in an annular shape. Thereafter, a force is applied to the jaw-shaped protrusion 22b to further deform the inner side of the laminated core 20 from the temporary connection, thereby fixing the laminated core 20 in an annular shape. As shown in FIG. 25 (b), the coupling locking groove 22j on the inner diameter side of the jaw-shaped protrusion 22b and the coupling locking projection 21j are fitted, and the root of the core projection 21a is the outer locking projection.
  • the laminated cores 20 are fixed by being sandwiched between the portion 22c and the slide guide protrusion 22d. At this time, the slide guide protrusion 22d fits inside the inner slide escape groove 21d.
  • the protrusion on the inner diameter base side of the outer diameter side projection constituting the concave portion of the claims is the temporary connection locking projection 22k
  • the trough portion on the inner diameter tip side of the outer diameter projection forming the concave portion is the main connection locking projection.
  • the overhang on the outer diameter side of the groove 22j and the base of the convex portion is a coupling locking convex portion 21j.
  • the winding work is omitted because it is the same as that described for the laminated core 110 of the comparative example described in the first embodiment. Since the laminated iron core of Embodiment 2 is divided for each laminated core, the laminated core can be manufactured with a small mold, and the mold cost can be reduced. On the other hand, since the same process as the laminated core 110 of the comparative example can be used for the winding process, the capital investment cost can be kept low.
  • the manufacturing method of the laminated core of the second embodiment includes a core convex portion 21a at the first end portion 21 of the laminated core 20, and a core concave portion 22a at the second end portion 22 of the laminated core 20.
  • the core recess 22a of the second end 22 of the core 20 has a jaw-shaped protrusion 22b and a slide guide protrusion 22d.
  • the jaw-shaped protrusion 22b is formed by the jaw-shaped protrusion 22b and the slide guide protrusion 22d.
  • the laminated core 20 having a structure that can be deformed in two steps so as to form a hole surrounding the core convex portion 21a is used.
  • the manufacturing method of the laminated iron core according to the second embodiment includes the following steps 11 (S11) to 14 (S14).
  • step 11 the core convex portion 21a of the first multilayer core 20 is inserted into the core concave portion 22a of the second multilayer core 20, and the second multilayer core with the first multilayer core 20 is inserted. Align with 20.
  • the first deformation is performed on the jaw-shaped protrusion 22b of the laminated core 20 to reduce the opening width of the core recess 22a.
  • a hole 22p is formed by the jaw-shaped protrusion 22b and the slide guide protrusion 22d. This prevents the laminated cores 20 from coming off.
  • step 13 the winding 2 is wound around the tooth portion 25 of the laminated core 20.
  • step 14 the plurality of laminated cores 20 around which the windings are wound are arranged in a ring shape, the second deformation is performed on the jaw-shaped protrusions 22b of the laminated core 20, and the layers are connected and fixed. Form the core.
  • the collective temporary connecting jig (collective temporary connecting jig base, collective temporary connecting jig punch) in the temporary connecting process described in the first embodiment is used.
  • the main connection jig (the main connection pressing claw, or the main connection core rod and the main connection pressing roller) in the main connection step described in the first embodiment can be used.
  • the laminated iron core according to the second embodiment is simplified compared to the divided laminated iron core according to the first embodiment except for a structure in which the laminated cores are slid at the time of temporary connection. .
  • the laminated core and the manufacturing method thereof according to the second embodiment can easily connect the laminated cores, reduce the size of the mold, and reduce the capital investment cost.
  • Embodiment 3 FIG.
  • the structure of the laminated iron core and the manufacturing method thereof are simplified by changing the jaw-shaped protrusions to only one stage with respect to the laminated iron core of the second embodiment.
  • FIG. 26 is a plan view showing a state before connection of laminated cores and FIG. 26 is an enlarged view of a main part, and a plan view and an enlarged view of the main part showing an alignment process.
  • the laminated cores are connected in two stages, so that they are distinguished from the temporary connection and the main connection.
  • the connection process is performed without distinction.
  • the step of forming the laminated core by connecting the laminated cores in an annular shape is a rounding step.
  • FIG. 26A is a plan view of the laminated core 30, and FIG. FIG. 27A is a plan view showing the alignment step, and FIG. 27B is an enlarged view of the main part.
  • the laminated core 30 is obtained by laminating and fixing plate-like core pieces made of a magnetic material in the axial direction.
  • the laminated core 30 includes a back yoke portion 34 and a tooth portion 35.
  • the laminated core 30 includes a first end 31 and a second end 32.
  • the first end portion 31 is formed with a core convex portion 31a as a connecting means
  • the second end portion 32 is formed with a core concave portion 32a for connection with the core convex portion 31a.
  • adhesion, welding, caulking by dowels, or a combination thereof is used as a means for fixing the layers.
  • the first end portion 31 of the laminated core 30 has an inner slide relief groove 31d on the inner diameter side of the core convex portion 31a, and a convex portion side end surface 31f for positioning the laminated core 30 in an annular shape.
  • the core convex part 31a is provided with a jaw-shaped protrusion escape concave part 31m partially depressed.
  • the second end portion 32 of the laminated core 30 is provided with a jaw-shaped protrusion 32b and a slide guide protrusion 32d on both sides of the core recess 32a.
  • the base of the jaw-shaped protrusion 32b includes a thin portion 32g and a deformation relief groove 32h.
  • a jaw-shaped projection pressurizing application portion 32m that fits with the jaw-shaped projection relief recess 31m when connected is provided on the inner diameter side of the jaw-shaped projection 32b. Furthermore, a recess-side end face 32f for positioning in an annular shape is provided on the inner diameter side of the slide guide protrusion 32d.
  • the adjacent laminated cores 30 are brought close to each other, and the positions of the core convex portion 31a and the core concave portion 32a are aligned to obtain the states of FIGS. 27 (a) and 27 (b). At this time, since the opening width of the core concave portion 32a surrounded by the jaw-shaped projection 32b and the slide guide projection 32d is larger than the width of the core convex portion 31a, the alignment can be performed smoothly.
  • FIG. 28A is a plan view showing the connecting step
  • FIG. 28B is an enlarged view of a main part.
  • the rotation of the laminated cores 30 is also suppressed by fitting the jaw-shaped projection pressurizing application portion 32m and the jaw-shaped projection relief recess 31m.
  • the connected laminated cores 38 can be easily transported and wound as an integrated body, similarly to the laminated core 110 of the comparative example described in the first embodiment.
  • the jaw projection 32b is connected to the plate-shaped core piece via the thin portion 32g and the deformation relief groove 32h, so that the force required to deform the jaw projection 32b can be reduced.
  • the deformation relief groove 32h suppresses out-of-plane deformation and springback, thereby improving the shape accuracy.
  • FIG. 29A is a plan view showing a rounding process
  • FIG. 29B is an enlarged view of a main part.
  • the laminated core 30 is rotated as shown in FIG. 29A, and the recess-side end surface 32f and the projection-side end surface 31f are brought into contact with each other and deformed into an annular shape.
  • FIG. 28 (b) the jaw-shaped projection pressurizing application portion 32m and the jaw-shaped projection relief recess 31m were in close contact.
  • the jaw shape is a portion in which a portion of the jaw-shaped projection pressurizing application portion 32m bites into the jaw-shaped projection relief recess 31m.
  • the protrusion fastening allowance 32n occurs.
  • the jaw projection 32b is elastically deformed to the outer diameter side so that the jaw projection protrusion 32n becomes zero.
  • a pressure corresponding to the elastic deformation is applied to the jaw projection relief recess 31m.
  • the laminated cores 30 can be fixed by this pressurization.
  • the winding work is performed after the connecting step, but is omitted because it is the same as the content described in the laminated core 110 of the comparative example. Since the laminated core of the third embodiment can manufacture the laminated core with a small mold as in the first and second embodiments, the mold cost can be reduced. Moreover, since the same equipment as the laminated core 110 of the comparative example can be used for the winding process, the equipment investment cost can be kept low. Furthermore, since the connection process is performed only once, the number of manufacturing steps can be reduced as compared with the first and second embodiments.
  • the third embodiment simplifies the structure and the manufacturing method of the laminated iron core with only one step of the deformation of the jaw projection. For this reason, the laminated core and the manufacturing method thereof according to Embodiment 3 can easily connect the laminated cores, and can downsize the mold. In addition, the capital investment cost can be kept low and the number of manufacturing steps can be reduced.
  • the present invention can easily connect the laminated cores and reduce the size of the mold, the laminated iron core such as an electric motor and the manufacturing method thereof can be widely applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

同一形状の板状コア片(13)を積層固定した積層コア(20)を複数連結して環状と成す積層型鉄心であって、積層コア(20)の第1端部(21)にコア凸部(21a)を有し、第2端部(22)にコア凹部(22a)を有し、積層コア(20)の第2端部(22)のコア凹部(22a)は外周側の一部に切り欠き(22h)を有し、コア凹部(22a)は第1端部(21)のコア凸部(21a)を囲む穴部(22p)を形成するように変形可能な構造であり、積層コア(20)同士の連結は、積層コア(20)の穴部(22p)と積層コア(20)のコア凸部(21a)で行う。

Description

積層型鉄心およびその製造方法
 この発明は、電動機や変成器等の鉄心構造に関し、板状のコア片が積層された複数の積層コアを環状に連結する積層型鉄心およびその製造方法に関するものである。
 従来、電動機の固定子として、プレス打抜きされたシート状のコア片を積層した積層コアが鉄心装置として使用されている。各ティースが薄肉部を介して直線状に繋がる形状のコア片からなる積層コアを金型で一度に形成し、積層コアを一体として巻線可能とし、その端部同士を円環状に折り曲げることで鉄心装置が得られる構成が開示されている(例えば、特許文献1参照)。
 また、積層コア端部に形成された凸部と、反対端部の凹部を位置合わせして積巾方向に挿入することで、鉄心装置が得られる構成が開示されている(例えば、特許文献2参照)。
特開平10-178749号公報(段落[0022]~[0024]および図1、3) 特開平10-271770号公報(段落[0012]~[0014]および図1)
 しかし、特許文献1開示発明では、積層コアの生産性が良く、巻線と搬送は容易であるが、金型およびプレス装置が大型化するため、大きな投資が必要となり、生産台数が少ない機種には適用が難しかった。又、特許文献2開示発明では、積層コアを凸部と凹部を位置合わせして積巾方向に挿入するため、挿入時にカジリが発生し、端部まで挿入できない懸念がある。
 この発明は、上記の問題を解決するためになされたものであり、積層コアを容易に連結でき、金型を小型化できる積層型鉄心およびその製造方法を提供することを目的とする。
 この発明に係る積層型鉄心は、同一形状の板状コア片を積層固定した積層コアを複数連結して環状と成す積層型鉄心であって、積層コアの一方の端部に凸部を有し、積層コアの他方の端部に凹部を有し、凹部の外周側の一部に切り欠きを有し、凹部は、凸部を囲む穴部を形成するようにC字型に変形可能な構造を持つものである。
 この発明に係る積層型鉄心の製造方法は、複数の積層コアを連結して環状となす積層型鉄心の製造方法であって、積層コアの一方の端部に凸部を有し、積層コアの他方の端部に凹部を有し、凹部の外周側の一部に切り欠きを有し、凹部は凸部を囲む穴部を形成するようにC字型に変形可能な積層コアを用い、第1の積層コアの凸部を第2の積層コアの凹部に挿入する位置合わせ工程と、凹部をU字型に変形させて第1の積層コアの凸部を囲む穴部を形成し、積層コア同士が外れることを防止する仮連結工程と、積層コアのティース部に巻線を行う巻線工程と、凹部をU字型からC字型に変形させて積層コア同士を環状に固定する本連結工程と、を備えたものである。
 この発明に係る積層型鉄心によれば、凹部の外周側の一部に切り欠きを有し、凹部は、凸部を囲む穴部を形成するようにC字型に変形可能な構造であるため、積層コアを容易に連結でき、金型を小型化できる。 
 この発明に係る積層型鉄心の製造方法によれば、凹部をU字型に変形させて第1の積層コアの凸部を囲む穴部を形成し、積層コア同士が外れることを防止する仮連結工程と、凹部をU字型からC字型に変形させて積層コア同士を環状に固定する本連結工程とを備えるため、積層型鉄心積層コアを容易に連結でき、金型を小型化できる。
この発明の実施の形態1に係る電動機の積層型鉄心の構成を示す断面図である。 この発明の実施の形態1の積層型鉄心に係る連結前の状態を示す斜視図と平面図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの連結前の状態を示す平面図の要部拡大図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの位置合わせ工程を示す斜視図と平面図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの仮連結工程を示す斜視図と平面図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの仮連結工程を示す平面図の要部拡大図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの仮連結工程を示す斜視図と平面図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの仮連結工程を示す平面図の要部拡大図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの本連結工程を示す斜視図と平面図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの本連結工程を示す平面図の要部拡大図である。 この発明の実施の形態1の積層型鉄心に係る比較例の積層鉄心の巻線工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る比較例の積層鉄心の丸め工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る巻線工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る仮連結工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る仮連結工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの製造工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの巻線工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの巻線工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの本連結工程の説明図である。 この発明の実施の形態1の積層型鉄心に係る積層コアの本連結工程の説明図である。 この発明の実施の形態1の積層型鉄心の製造方法に係るフローチャートである。 この発明の実施の形態2の積層型鉄心に係る積層コアの連結前の状態を示す平面図と要部拡大図である。 この発明の実施の形態2の積層型鉄心に係る位置合わせ工程を示す平面図と要部拡大図である。 この発明の実施の形態2の積層型鉄心に係る仮連結工程を示す平面図と要部拡大図である。 この発明の実施の形態2の積層型鉄心に係る本連結工程を示す平面図と要部拡大図である。 この発明の実施の形態3の積層型鉄心に係る積層コアの連結前の状態を示す平面図と要部拡大図である。 この発明の実施の形態3の積層型鉄心に係る位置合わせ工程を示す平面図と要部拡大図である。 この発明の実施の形態3の積層型鉄心に係る本連結工程を示す平面図と要部拡大図である。 この発明の実施の形態3の積層型鉄心に係る丸め工程を示す平面図と要部拡大図である。
実施の形態1.
 実施の形態1は、積層コアの第1端部にコア凸部を有し、積層コアの第2端部にコア凹部を有し、積層コアの第2端部のコア凹部は顎型突起とスライドガイド突起とを有し、顎型突起はスライドガイド突起とで第1端部のコア凸部を囲む穴部を形成するように2段階の変形が可能な構造であり、第1段階の変形(以降、第1の変形と記載する)は、積層コア同士が外れることなく、積層コア同士をスライドさせることができ、第2段階の変形(以降、第2の変形と記載する)は、積層コア同士を連結して円環状の積層型鉄心を形成する構造の積層型鉄心、および位置合わせ工程と、仮連結工程と、巻線工程と、本連結工程と、を備える積層型鉄心の製造方法に関するものである。
 以下、実施の形態1に係る積層型鉄心の構成およびその製造方法について、電動機の積層型鉄心の構成を示す断面図である図1、連結前の状態を示す斜視図と平面図である図2、図2の要部拡大図である図3、位置合わせ工程を示す斜視図と平面図である図4、仮連結工程を示す斜視図と平面図である図5および図7、図5および図7の要部拡大図である図6および図8、本連結工程を示す斜視図と平面図である図9、図9の要部拡大図である図10、比較例の積層鉄心の巻線工程の説明図である図11、比較例の積層鉄心の丸め工程の説明図である図12、実施の形態1に係る積層型鉄心の巻線工程の説明図である図13、仮連結工程の説明図である図14、図15、巻線工程の説明図である図16~図18、本連結工程の説明図である図19、図20、および積層型鉄心の製造方法に係るフローチャートである図21に基づいて説明する。
 まず、実施の形態1の積層型鉄心を適用する装置例として、電動機の積層型鉄心の構成を図1に基づいて、また積層コアの基本構成を図2に基づいて説明する。なお、図2(a)は積層コアの斜視図、図2(b)は積層コアの平面図である。
 図1は、電動機の積層型鉄心の構成を示す断面図である。積層型鉄心1は複数の積層コア10を環状に連結した構成で、積層コア10には巻線2が巻き回される。積層コア10同士は、コア凸部11aとコア凹部12aが嵌合することで連結されている。
 図2(a)、(b)において、積層コア10は磁性材料から成る板状コア片13を軸方向に積層固定したものである。積層コア10は、バックヨーク部14とティース部15から構成される。積層コア10は、第1端部11と第2端部12を備える。第1端部11には連結手段としてのコア凸部11a、第2端部12にはコア凸部11aと連結するためのコア凹部12aが形成されている。積層固定の手段としては、接着、溶接、ダボによるカシメ、あるいはそれらの組合せを使用する。
 次に積層コア10の連結手順(位置合わせ、仮連結、本連結工程)、巻線工程、および治具を使用した仮連結、本連結工程について説明する。なお、巻線工程の説明では、実施の形態1の積層型鉄心およびその製造方法の特徴を明確にするために、比較例の積層鉄心の巻線工程についても説明する。
 まず、積層コア10の連結前の状態および位置合わせ工程について、図2~図4に基づいて説明する。なお、図4(a)は位置合わせ工程を示す斜視図、図4(b)は平面図である。
 図2(a)、図2(b)に示す隣接する積層コア10同士を、コア凸部11aとコア凹部12aを近づけて、図3の内側係止段差11eと内側係止凸部12eの位置を合わせて図4(a)、(b)の状態とする。この時、図3に示すように顎型突起12bとスライドガイド突起12dで囲われたコア凹部12aの開口幅は、コア凸部11aの幅より大きいため、スムーズに位置合わせすることができる。
 なお、図3において、第1端部11には、さらに外側スライド逃し溝11b、外側係止段差11c、内側スライド逃し溝11d、凸部側端面11f、スプリングバック防止突起11g、およびコア丸め係止凹部11hを備える。また、第2端部12には、さらに外側係止凸部12c、凹部側端面12f、薄肉部12g、および変形逃し溝12hを備える。これらの機能、役割については後で順次説明する。
 次に、積層コア10の仮連結工程について、図5~図8に基づいて説明する。なお、図5(a)、図7(a)は仮連結工程を示す斜視図、図5(b)、図7(b)は平面図である。
 顎型突起12bに力を加えて第1の変形をさせることで、積層コア10は図5(a)、(b)に示す状態となる。顎型突起12bの第1の変形により、コア凹部12aの開口幅はコア凸部11aの幅より小さくなり、積層コア10同士を一体として扱うことが可能となる。すなわち、コア凹部12aはU字型となる。
 図6は顎型突起12b周辺を拡大した要部拡大図である。顎型突起12bとスライドガイド突起12dとで穴部12pを形成している。顎型突起12b先端の外側係止凸部12cと、スライドガイド突起12d先端の内側係止凸部12eとの幅はコア凸部11aの幅より狭いため、積層コア10同士は外れることはない。
 ここで、顎型突起12bは薄肉部12gおよび変形逃がし溝12hを介して板状コア片13とつながっているため、顎型突起12bの変形に必要な力を小さくすることができる。さらに、変形逃がし溝12hが面外変形とスプリングバックを抑制して形状精度を向上させている。
 次に、積層コア10同士を近づける方向にスライドさせることで、積層コア10は図7(a)、(b)に示す状態となる。図8は顎型突起12b周辺を拡大した要部拡大図である。外側係止凸部12cと外側係止段差11c、および内側係止凸部12eと内側係止段差11eが噛み合うことで積層コア10同士が分離することを防止する。また、外側スライド逃し溝11bと内側スライド逃し溝11dを設けることで、積層コア10同士を近づける方向にスライドさせることできる。
 次に、積層コア10の本連結工程について、図9、図10に基づいて説明する。なお、図9(a)は本連結工程を示す斜視図、図9(b)は平面図である。
 積層コア10を円環状に変形させる。さらに顎型突起12bに力を加えて、仮連結よりさらに積層コア10内径側に変形(第2の変形)をさせることで、積層コア10は図9(a)(b)の状態となる。すなわち、コア凹部12aはC字型となる。
 図10は顎型突起12b周辺を拡大した要部拡大図である。
 これと共に、積層コア10を回転させて、片方の積層コア10の凹部側端面12fと、連結する積層コア10の凸部側端面11fを突き合わせることで、積層コア10同士を円環状に配置する。
 後に説明する巻線を巻き回した後に複数の積層コア10に対して本連結を行うことで、図1の積層型鉄心1を形成する。
 図10において、第2の変形後の顎型突起12bは、スプリングバック防止突起11gにより外側スライド逃し溝11b内部に収まる。顎型突起12bの変形には外から治具等により力を加えてもよいし、積層コア10を回転させる力によりスプリングバック防止突起11gで顎型突起12bを押すことで力を加えてもよい。内側スライド逃し溝11dの形状が多角形であるため、積層コア10を回転させても、スライドガイド突起12dは内側スライド逃し溝11dの内部に収まる。さらにスライドガイド突起12dの先端に設けた内側係止凸部12eとコア凸部11aの根元に設けたコア丸め係止凹部11hが噛み合うことで、環状形成後の積層コア10をロックする。
 なお、図10において、コア凹部12aがC字型に変形された後、変形逃がし溝12hには空間(逃がし代)が残る。これは逃がし溝の役割をする。
 ここで、請求の範囲の記載との対応を説明する。
 請求の範囲の凸部はコア凸部11a、凹部はコア凹部12a、凹部の外周側は顎型突起12b、切り欠きは変形逃がし溝12h、穴部は穴部12pである。
 請求の範囲の薄肉部は薄肉部12gである。
 請求の範囲の凸部の外周側に径方向に伸びる突起部はスプリングバック防止突起11gである。
 請求の範囲の凹部の内径側の先端部に設けた突起は内側係止凸部12e、凹部の内径側の先端部に設けた突起と一致する形状の凸部の基部の内径側の谷部はコア丸め係止凹部11hである。
 次に、先に説明した仮連結工程の後に行う巻線工程について、図11~図13に基づいて説明する。
 実施の形態1の積層型鉄心およびその製造方法では、図5の仮連結工程で説明したように、積層コア10のティース部15同士を離れる方向にスライドさせることができる。この特徴があるため、積層コア10のティース部15間の巻線スペースを広げて、より多くの巻線を巻き回すことが可能である。
 実施の形態1の積層型鉄心およびその製造方法のこの特徴を明確にするため、まず比較例の積層鉄心の巻線工程と丸め工程とについて図11、図12で説明する。
 図11(a)、(b)に比較例の積層コア110の巻線工程を示す。ここで、図11(b)は図11(a)の右端の2個の積層コア110を拡大した図である。
 比較例の積層コア110は、スリット部110aと薄肉部110bを介して繋がっている。積層コア110は、バックヨーク部114とティース部115から構成される。
 積層コア110は、巻線機コアチャック51で固定される。巻線機ノズル50を用いて巻線2を巻き回した後、薄肉部110bを塑性変形させて円環状に配置し、積層コア110をコア端部接合110cにより固定し、図12に示す円環状の比較例の鉄心装置101を形成する。コア端部接合110cには溶接や接着等が使用される。
 ここで比較例の積層コア110の課題について説明する。図11(b)において、右端のティース部115に巻線2を巻き回した後、左側のティース部115に巻線2を巻き回す際に、巻線機ノズル50と巻線2が干渉する。積層コア間距離Aを拡大すると、比較例の鉄心装置101の外径も拡大し、その結果電動機が大型化する。比較例の鉄心装置101の外径を変更しない場合は、巻線するコイルの数を減らす必要があり、その結果電動機の効率が低下する。
 これに対して、実施の形態1の積層型鉄心およびその製造方法の巻線工程を図13(a)、(b)に示す。図13(a)は、積層コア10のティース部15間の巻線スペースを広げて巻線を巻き回す状態を示す。図13(b)は巻線を終了して、積層コア10のティース部15間の巻線スペースを狭めた状態を示す。なお、比較例の積層コア110用の巻線機コアチャック51に対して、実施の形態1の積層コア10用を巻線機コアチャック52としている。
 積層コア10を巻線機コアチャック52で固定した後、それぞれ離れる方向にスライドさせて積層コア間距離B(B>A)とすることで、巻線2と巻線機ノズル50は干渉しない。このため、比較例の積層コア110より多くの巻線を巻き回すことができ、その結果電動機の効率を向上させることができる。
 巻線後は図13(b)に示すように、積層コア10同士を近づける方向にスライドさせて、積層コア間距離Bを積層コア間距離Aまで縮めることで、比較例の積層コア110と同じ積層コア間距離Aとなり、本連結工程により図1の積層型鉄心1を形成する。実施の形態1の積層型鉄心1は比較例の鉄心装置101と同一の外径で、より多くのコイルを巻線できる。
 したがって、実施の形態1の積層型鉄心およびその製造方法は、巻線作業を容易化して、線積率を向上させることができる。
 次に、仮連結工程における治具の適用について、図14、図15に基づいて説明する。
 まず、仮連結治具パンチを1台使用する場合を図14で説明する。
 図14(a)は、連結する一対の積層コア10を、仮連結治具60へ配置する方法を示す。図14(b)は、積層コア10の位置合わせした状態を示す。図14(c)は、顎型突起12bの第1の変形を行い、仮連結が完了した状態を示す。
 仮連結治具60は、積層コア10を位置決めする仮連結治具ベース61と、顎型突起12bを押して変形させるための仮連結治具パンチ63とを備える。
 仮連結治具ベース61には、コア位置決め突起62が形成されており、積層コア10の凸部側端面11fと凹部側端面12fをコア位置決め突起62に合わせて位置決めを行う(図14(b)の状態)。次に仮連結治具パンチ63を用いて顎型突起12bに力を加えて第1の変形を行い、仮連結を完了する(図14(c)の状態)。
 なお、凸部側端面11fの先端部は直角または傾斜を有する。また、凹部側端面12fは基部の内径側に直角または傾斜を有する。
 ここで、請求の範囲の凸部の基部の内径側に設けた突起は凸部側端面11f、凹部を構成する内径側の突起は凹部側端面12fである。
 次に、一括仮連結治具を使用する場合を図15で説明する。図15(a)は、複数個の積層コア10の位置合わせを行い、治具に設置した状態を示す。図15(b)は、顎型突起12bの第1の変形を一括して行い仮連結を完了した状態を示す。ここで、仮連結された積層コア10を仮連結した積層コア16とする。
 図14の仮連結治具60は、1箇所ずつ仮連結を行う治具であったが、図15に示す一括仮連結治具64は、複数の連結箇所を同時に一括で仮連結を行うことができる。
 一括仮連結治具ベース65に、積層コア10を複数個並べ(図15(a)の状態)、一括仮連結治具パンチ66により複数の顎型突起12bに対して第1の変形を同時に行い、仮連結した積層コア16を形成できる(図15(b)の状態)。この結果、積層コア10当たりの仮連結を行う時間を短縮することができる。
 次に、複数の積層コア10に対して、一括して巻線2を巻き回す巻線工程について、図16~図18に基づいて説明する。ここで、巻線された積層コア10を巻線後の積層コア17とする。
 図13の巻線工程は巻線機ノズル50が1本の例を示したが、図16~図18に示すように仮連結した積層コア16を一括で巻線することもできる。巻線機本体(図示なし)は複数の巻線機コアチャック52と、巻線機コアチャック52をスライド可能な状態で固定する巻線機コアチャックベース54と、複数の巻線機ノズル50と、巻線機ノズル50を固定する巻線機ノズルホルダ53とを備える。まず、図16に示すように仮連結した積層コア16を巻線機コアチャック52に取り付ける。この時、仮連結した積層コア16は積層コア10のティース部15間の距離を縮める方向にスライドさせて連結部の接触点を増やすことで、コア全体の剛性を向上させ、搬送や巻線機コアチャック52への取付けを容易にしている。次に図17に示すように、巻線機コアチャック52を積層コア10のティース部15間の距離を広げる方向にスライドさせた後、巻線機ノズルホルダ53に取付けた複数の巻線機ノズル50を用いて、仮連結した積層コア16の全ティース部15に同時に巻線2を巻き回す。巻線完了後、図18に示すように、巻線機ノズル50を退避させた後、巻線機コアチャック52を積層コア10のティース部15間の距離を縮める方向にスライドさせて、巻線後の積層コア17を巻線機コアチャック52から取り外す。
 次に、巻線後の積層コア17の連結部に本連結を行い、円環状の積層型鉄心1を形成する本連結工程における治具の適用について、図19、図20に基づいて説明する。
 まず、本連結押し爪70を適用して本連結を行う場合を図19で説明する。
 図19(a)に示すように、巻線後の積層コア17を円環状に丸め、外周側から本連結押し爪70で力を加えて、巻線後の積層コア17の外径から飛び出た顎型突起12bに第2の変形を行うことで本連結を行い、図19(b)に示すように積層型鉄心1を形成する。
 図19では、本連結押し爪70を3台としているが、2台でも可能であるし、あるいは4台以上としてもよい。
 次に、本連結芯棒71および本連結押しローラ72を適用して本連結を行う場合を図20で説明する。ここで、図20(a)は治具の構成を示し、図20(b)、(c)は、本連結の要領の説明図である。
 本連結用治具は、巻線後の積層コア17の内径を位置決めするための本連結芯棒71と、顎型突起12bに力を加えて変形させるための本連結押しローラ72とで構成される。
 図20(b)において、本連結芯棒71に対して、巻線後の積層コア17を巻きつける。このとき、本連結芯棒71に電磁石、または永久磁石を用いて磁気吸引力を発生させることで積層コア10を固定することもできる。次に本連結押しローラ72に力を加えて、巻線後の積層コア17を本連結芯棒71へ押し付け、巻線後の積層コア17の外径から飛び出している顎型突起12bに第2の変形を行い、本連結を行う。図20(c)の矢印方向へ、本連結芯棒71と巻線後の積層コア17を回転させることで、本連結押しローラ72により、連続して本連結を行うことができる。このため、短時間での本連結を行うことが可能となる。
 次に上記で説明した本実施の形態1の積層型鉄心の製造方法について、図21のフローチャートに基づいて説明する。
 なお、本実施の形態1の積層型鉄心の製造方法は、積層コア10の第1端部11にコア凸部11aを有し、積層コア10の第2端部12にコア凹部12aを有し、積層コア10の第2端部12のコア凹部12aは顎型突起12bとスライドガイド突起12dとを有し、顎型突起12bは、顎型突起12bとスライドガイド突起12dとで第1端部11のコア凸部11aを囲む穴部12pを形成するように2段階の変形が可能な構造の積層コア10を用いるものである。第1の変形は、積層コア10同士が外れることなく、積層コア10同士をスライドさせることができ、第2の変形は、積層コア10同士を連結する。実施の形態1の積層型鉄心の製造方法は、以下のステップ1(S01)からステップ4(S04)の工程から成る。
 ステップ1(S01)の位置合わせ工程では、第1の積層コア10のコア凸部11aを第2の積層コア10のコア凹部12aに挿入して、第1の積層コア10との第2の積層コア10との位置合わせを行う。
 ステップ2(S02)の仮連結工程では、積層コア10の顎型突起12bに第1の変形を行い、コア凹部12aの開口幅を縮小させる。顎型突起12bとスライドガイド突起12dとで穴部12pを形成する。これで積層コア同士10が外れることが防止される。
 ステップ3(S03)の巻線工程では、積層コア10同士をスライドさせて、ティース部15の間隔を広げた状態で積層コア10のティース部15に巻線2を巻き回し、巻線後、積層コア10同士をスライドさせて、ティース部15の間隔を狭める。
 ステップ4(S04)の本連結工程では、巻線2が巻き回された複数の積層コア10を環状に配列し、積層コア10の顎型突起12bに第2の変形を行って連結固定して、積層型鉄心1を形成する。
 以上説明したように、実施の形態1は、積層コアの第1端部にコア凸部を有し、積層コアの第2端部にコア凹部を有し、積層コアの第2端部のコア凹部は顎型突起とスライドガイド突起とを有し、顎型突起はスライドガイド突起とで第1端部のコア凸部を囲む穴部を形成するように2段階の変形が可能な構造であり、第1の変形は、積層コア同士が外れることなく、積層コア同士をスライドさせることができ、第2の変形は、積層コア同士を連結して円環状の積層型鉄心を形成する構造の積層型鉄心、および位置合わせ工程と、仮連結工程と、巻線工程と、本連結工程と、を備える積層型鉄心の製造方法に関するものである。
 このため、実施の形態1の積層型鉄心およびその製造方法は、積層コアを容易に連結でき、金型を小型化できる。さらに、巻線作業を容易化して、線積率を向上させることができる。
実施の形態2.
 実施の形態2の積層型鉄心は、実施の形態1の積層型鉄心に対して、仮連結時における積層コア同士をスライドさせる構造を除いて、積層型鉄心の構造およびその製造方法を簡素化したものである。
 以下、実施の形態2の積層型鉄心およびその製造方法について、積層コアの連結前の状態を示す平面図と要部拡大図である図22、位置合わせ工程を示す平面図と要部拡大図である図23、仮連結工程を示す平面図と要部拡大図である図24、および本連結工程を示す平面図と要部拡大図である図25に基づいて、実施の形態1との差異を中心に説明する。
 積層コア20の連結手順(位置合わせ、仮連結、本連結工程)について順次説明する。
 まず、積層コア20の連結前の状態および位置合わせ工程について、図22、図23に基づいて説明する。なお、図22(a)は積層コア20の平面図、図22(b)は要部拡大図である。また図23(a)は位置合わせ工程を示す平面図、図23(b)は要部拡大図である。
 図22(a)において、積層コア20は磁性材料から成る板状コア片を軸方向に積層固定したものである。積層コア20は、バックヨーク部24とティース部25から構成される。積層コア20は、第1端部21と第2端部22を備える。第1端部21には連結手段としてのコア凸部21a、第2端部22にはコア凸部21aと連結するためのコア凹部22aが形成されている。積層固定の手段としては、接着、溶接、ダボによるカシメ、あるいはそれらの組合せを使用する。
 図22(b)において、積層コア20の第1端部21には、コア凸部21aの両側に外側スライド逃し溝21bと内側スライド逃し溝21dとを備える。コア凸部21aの一部に連結係止凸部21jを備えている。また、内径側には積層コア20を円環状に位置決めするための凸部側端面21fを備える。
 一方、積層コア20の第2端部22は、コア凹部22aを備え、その両側には顎型突起22bとスライドガイド突起22dとを備える。顎型突起22bの根元には薄肉部22gと変形逃し溝22hとを備える。顎型突起22bの先端部には外側係止凸部22cと、内径側には本連結工程において嵌合するための本連結係止溝22jと、仮連結工程において連結係止凸部21jを位置決めするための仮連結係止突起22kとを備える。またスライドガイド突起22dの内径側には凸部側端面21fと位置決めするための凹部側端面22fとを備える。
 隣接する積層コア20同士を近づけてコア凸部21aとコア凹部22aとの位置を合わせて図23(a)、(b)の状態とする。この時、顎型突起22bとスライドガイド突起22dで囲われたコア凹部22aの開口幅は、コア凸部21aの幅より大きいため、スムーズに位置合わせすることができる。
 次に、積層コア20の仮連結工程について、図24に基づいて説明する。なお、図24(a)は仮連結工程を示す平面図、図24(b)は要部拡大図である。ここで、仮連結された積層コア20を仮連結した積層コア26とする。
 顎型突起22bに力を加えて第1の変形をさせることで、積層コア20は図24(a)に示す状態となる。顎型突起22bとスライドガイド突起22dとで穴部22pを形成している。顎型突起22bの変形により、コア凸部21aは、スライドガイド突起22d、仮連結係止突起22k、およびコア凹部22aにより挟まれることで固定される。
 さらに外側スライド逃し溝21bと外側係止凸部22cとが接することで、積層コア20同士の回転についても抑制される。これにより、積層コア20を仮連結した積層コア26は比較例の積層コア110と同様に一体として容易に搬送や巻線作業を実施できる。
 ここで、顎型突起22bは薄肉部22gおよび変形逃がし溝22hを介して板状コア片とつながっており、顎型突起22bの変形に必要な力を小さくすることができる。さらに、変形逃がし溝22hが面外変形とスプリングバックを抑制して形状精度を向上させている。
 次に、積層コア20の本連結工程について、図25に基づいて説明する。なお、図25(a)は本連結工程を示す平面図、図25(b)は要部拡大図である。
 積層コア20を円環状に変形させる。さらに顎型突起22bに力を加えて、仮連結よりさらに積層コア20内径側に変形(第2の変形)をさせることで、積層コア20は図25(a)の状態となる。
 具体的には、積層コア20を回転させて、積層コア20の第2端部22の凹部側端面22fと、積層コア20の第1端部21の凸部側端面21fとを突き合わせることで、積層コア20同士を円環状に配置する。この後に、顎型突起22bに力を加えて、仮連結よりさらに積層コア20内径側に変形させて、積層コア20を円環状に固定する。
 図25(b)に示すように、顎型突起22bの内径側にある本連結係止溝22jと連結係止凸部21jとが嵌合し、コア凸部21aの根元部は外側係止凸部22cとスライドガイド突起22dにより挟まれることで、積層コア20同士が固定される。この時、スライドガイド突起22dは内側スライド逃し溝21dの内部に収まる。
 なお、請求の範囲の凹部を構成する外径側の突起の内径基部側の張り出しは仮連結係止突起22k、凹部を構成する外径側の突起の内径先端側の谷部は本連結係止溝22j、凸部の基部の外径側の張り出しは連結係止凸部21jである。
 なお、巻線作業については、実施の形態1で説明した比較例の積層コア110について説明した内容と同様であるため省略する。
 実施の形態2の積層型鉄心は積層コア毎に分割されているため、積層コアを小さな金型で製造でき、金型コストを低減できる。一方で、巻線工程は比較例の積層コア110と同じ設備を使用できるため、設備投資コストを低く抑えることが可能である。
 次に上記で説明した本実施の形態2の積層型鉄心の製造方法について説明する。なお、フローチャートは実施の形態1の図21と同じであるため、図21を参照して説明する。
 なお、実施の形態1と区別するため、ステップ番号は10番台として説明する。
 本実施の形態2の積層型鉄心の製造方法は、積層コア20の第1端部21にコア凸部21aを有し、積層コア20の第2端部22にコア凹部22aを有し、積層コア20の第2端部22のコア凹部22aは顎型突起22bとスライドガイド突起22dとを有し、顎型突起22bは、顎型突起22bとスライドガイド突起22dとで第1端部21のコア凸部21aを囲む穴部を形成するように2段階の変形が可能な構造である積層コア20を用いるものである。実施の形態2の積層型鉄心の製造方法は、以下のステップ11(S11)からステップ14(S14)の工程から成る。
 ステップ11(S11)の位置合わせ工程では、第1の積層コア20のコア凸部21aを第2の積層コア20のコア凹部22aに挿入して第1の積層コア20との第2の積層コア20との位置合わせを行う。
 ステップ12(S12)の仮連結工程では、積層コア20の顎型突起22bに第1の変形を行い、コア凹部22aの開口幅を縮小させる。顎型突起22bとスライドガイド突起22dとで穴部22pを形成する。これで積層コア同士20が外れることが防止される。
 ステップ13(S13)の巻線工程では、積層コア20のティース部25に巻線2を巻き回す。
 ステップ14(S14)の本連結工程では、巻線が巻き回された複数の積層コア20を環状に配列し、積層コア20の顎型突起22bに第2の変形を行い、連結固定して積層型鉄心を形成する。
 なお、実施の形態2の積層コア20に対しても、実施の形態1で説明した仮連結工程における一括仮連結治具(一括仮連結治具ベース、一括仮連結治具パンチ)を使用することができる。また、実施の形態1で説明した本連結工程における本連結用治具(本連結押し爪、または本連結芯棒と本連結押しローラ)を使用することができる。
 以上説明したように、実施の形態2の積層型鉄心は、実施の形態1の分割積層鉄心に比較して、仮連結時における積層コア同士をスライドさせる構造を除いて、簡素化したものである。このため、実施の形態2の積層型鉄心およびその製造方法は、積層コアを容易に連結でき、金型を小型化することができると共に設備投資コストを低く抑えることができる。
実施の形態3.
 実施の形態3は、実施の形態2の積層型鉄心に対して、顎型突起の変形を1段階のみとして、積層型鉄心の構造およびその製造方法を簡素化したものである。
 以下、実施の形態3の積層型鉄心およびその製造方法について、積層コアの連結前の状態を示す平面図と要部拡大図である図26、位置合わせ工程を示す平面図と要部拡大図である図27、連結工程を示す平面図と要部拡大図である図28、および丸め工程を示す平面図と要部拡大図である図29に基づいて、実施の形態1、2との差異を中心に説明する。
 なお、実施の形態1、2では、積層コアの連結を2段階で行ったため、仮連結、本連結と区別した。実施の形態3では、積層コアの連結は1段階であるため、区別せずに連結工程としている。また、積層コアを円環状に連結して、積層型鉄心を形成する工程を丸め工程としている。
 積層コア30の連結手順(位置合わせ、連結工程)および丸め工程について順次説明する。
 まず、積層コア30の連結前の状態および位置合わせ工程について、図26、図27に基づいて説明する。なお、図26(a)は積層コア30の平面図、図26(b)は要部拡大図である。また図27(a)は位置合わせ工程を示す平面図、図27(b)は要部拡大図である。
 図26(a)において、積層コア30は磁性材料から成る板状コア片を軸方向に積層固定したものである。積層コア30は、バックヨーク部34とティース部35から構成される。積層コア30は、第1端部31と第2端部32を備える。第1端部31には連結手段としてのコア凸部31a、第2端部32にはコア凸部31aと連結するためのコア凹部32aが形成されている。積層固定の手段としては、接着、溶接、ダボによるカシメ、あるいはそれらの組合せを使用する。
 図26(b)において、積層コア30の第1端部31には、コア凸部31aの内径側に内側スライド逃し溝31dと、積層コア30を円環状に位置決めするための凸部側端面31fとを備える。またコア凸部31aは一部を窪ませた顎型突起逃し凹部31mを備える。
 一方、積層コア30の第2端部32には、コア凹部32aの両側には顎型突起32bとスライドガイド突起32dとを備える。顎型突起32bの根元には薄肉部32gと変形逃し溝32hとを備える。また顎型突起32bの内径側には連結時に顎型突起逃し凹部31mと嵌合する顎型突起与圧付加部32mを備える。さらにスライドガイド突起32dの内径側には円環状に位置決めするための凹部側端面32fを備える。
 隣接する積層コア30同士を近づけてコア凸部31aとコア凹部32aとの位置を合わせて図27(a)、(b)の状態とする。この時、顎型突起32bとスライドガイド突起32dで囲われたコア凹部32aの開口幅は、コア凸部31aの幅より大きいため、スムーズに位置合わせすることができる。
 次に、積層コア30の連結工程について、図28に基づいて説明する。なお、図28(a)は連結工程を示す平面図、図28(b)は要部拡大図である。
 顎型突起32bに力を加えて変形をさせることで、積層コア30は図28(a)に示す状態となる。顎型突起32bの変形により、顎型突起32bとスライドガイド突起32dとで穴部32pを形成する。コア凸部31aは、顎型突起32b、スライドガイド突起32d、およびコア凹部32aにより挟まれることで固定される。
 さらに顎型突起与圧付加部32mと顎型突起逃し凹部31mとが嵌合することで、積層コア30同士の回転についても抑制される。これにより、連結した積層コア38は、実施の形態1で説明した比較例の積層コア110と同様に一体として容易に搬送や巻線を実施できる。
 ここで、顎型突起32bは薄肉部32gおよび変形逃がし溝32hを介して板状コア片とつながっており、顎型突起32bの変形に必要な力を小さくすることができる。さらに、変形逃がし溝32hが面外変形とスプリングバックを抑制して形状精度を向上させている。
 次に、積層コア30の丸め工程について、図29に基づいて説明する。なお、図29(a)は丸め工程を示す平面図、図29(b)は要部拡大図である。
 積層コア30を、図29(a)に示すように回転させて、凹部側端面32fと凸部側端面31fを突き合わせて円環状に変形させる。
 図28(b)では顎型突起与圧付加部32mと顎型突起逃し凹部31mが密着していた。これに対して、図29(b)では相対的に回転することで距離が変化し、顎型突起与圧付加部32mの一部が顎型突起逃し凹部31mに対して食い込む部分である顎型突起締め代32nが生じる。実際には顎型突起32bが外径側に弾性変形することで顎型突起締め代32nはゼロとなるが、顎型突起逃し凹部31mに対して弾性変形分の与圧を与える。この与圧により、積層コア30同士を固定することができる。
 なお、巻線作業は、連結工程後に行うが、比較例の積層コア110で説明した内容と同様であるため省略する。
 実施の形態3の積層型鉄心は、実施の形態1、2と同様に、積層コアを小さな金型で製造できるため、金型コストを低減できる。また、巻線工程は比較例の積層コア110と同じ設備を使用できるため、設備投資コストを低く抑えることができる。さらに、連結工程が1回のみとなるから、実施の形態1、2と比較して製造工数を削減することができる。
 以上説明したように、実施の形態3は、顎型突起の変形を1段階のみとして、積層型鉄心の構造および製造方法を簡素化したものである。このため、実施の形態3の積層型鉄心およびその製造方法は、積層コアを容易に連結でき、金型を小型化することができる。また、設備投資コストを低く抑えるとともに、製造工数を削減することができる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、実施の形態を適宜、変形、省略したりすることが可能である。
 この発明は、積層コアを容易に連結でき、金型を小型化できるため、電動機等の積層型鉄心およびその製造方法を広く適用できる。

Claims (13)

  1. 同一形状の板状コア片を積層固定した積層コアを複数連結して環状と成す積層型鉄心であって、
    前記積層コアの一方の端部に凸部を有し、前記積層コアの他方の端部に凹部を有し、
    前記凹部の外周側の一部に切り欠きを有し、
    前記凹部は、前記凸部を囲む穴部を形成するようにC字型に変形可能な構造を持つ積層型鉄心。
  2. 前記切り欠きを有する前記凹部の前記外周側の一部は薄肉部であり、
    前記切り欠きは、逃がし溝を有する請求項1に記載の積層型鉄心。
  3. 前記凹部は2段階の変形が可能な構造であり、
    前記凹部がU字型となることで、前記積層コア同士を径方向にスライド可能な状態で連結させる第1段階の変形と、
    前記凹部が前記C字型となることで、前記積層コア同士が動かない状態で固定する第2段階の変形を有する、請求項1または請求項2に記載の積層型鉄心。
  4. 前記凹部の前記外周側の先端部と接する位置に、前記凸部の外周側に径方向に伸びる突起部を有する構造を有し、
    前記凹部が前記C字型に変形後にスプリングバックによって変形が戻ることを防止する請求項1から請求項3のいずれか1項に記載の積層型鉄心。
  5. 前記凸部の基部の内径側に、前記凹部の内径側の先端部に設けた突起と一致する形状の谷部を有する構造により、前記積層コアを精度よく環状を成すことを可能とする請求項1から請求項4のいずれか1項に記載の積層型鉄心。
  6. 前記凸部の基部の内径側に突起を設け、前記突起の先端部を直角または傾斜を有する構造にするとともに、
    前記凹部を構成する内径側の突起の基部の内径側に、直角または傾斜を有する構造とする、請求項1から請求項5のいずれか1項に記載の積層型鉄心。
  7. 前記凹部を構成する外径側の突起において、前記突起の内径基部側に張り出しを設け、内径先端側に谷部を設ける構造とし、
    一方前記凸部の基部の外径側に張り出しを有する構造とし、
    前記積層コア同士を直線状態に並べた時に、前記凹部の前記張り出し部と前記凸部の前記張り出し部が接触し、
    前記積層コア同士を円環状態に並べた時に、前記凹部の前記谷部と前記凸部の前記張り出しが嵌合する構造を有する、請求項1または請求項2に記載の積層型鉄心。
  8. 前記凸部の基部の外径側の一部に谷部を有する構造である、請求項1または請求項2に記載の積層型鉄心。
  9. 複数の積層コアを連結して環状となす積層型鉄心の製造方法であって、
    前記積層コアの一方の端部に凸部を有し、前記積層コアの他方の端部に凹部を有し、前記凹部の外周側の一部に切り欠きを有し、前記凹部は前記凸部を囲む穴部を形成するようにC字型に変形可能な前記積層コアを用い、
    第1の前記積層コアの前記凸部を第2の前記積層コアの前記凹部に挿入する位置合わせ工程と、
    前記凹部をU字型に変形させて前記第1の積層コアの前記凸部を囲む穴部を形成し、前記積層コア同士が外れることを防止する仮連結工程と、
    前記積層コアのティース部に巻線を行う巻線工程と、
    前記凹部を前記U字型から前記C字型に変形させて前記積層コア同士を環状に固定する本連結工程と、
    を備えた積層型鉄心の製造方法。
  10. 前記巻線工程において、複数の前記ティース部に同時に巻線を巻き回す請求項9に記載の積層型鉄心の製造方法。
  11. 前記仮連結工程において、複数箇所の前記凹部の外周側を同時に変形させる請求項9または請求項10に記載の積層型鉄心の製造方法。
  12. 前記本連結工程において、前記積層コアを環状に変形させた後に、外周から前記積層コアの外形を加圧して、前記凹部の外径側を同時に変形させて、環状の積層型鉄心を形成する請求項9または請求項10に記載の積層型鉄心の製造方法。
  13. 前記本連結工程において、前記積層コアを環状に変形させた後に、前記積層コアの内径側および外径側より加圧して、前記凹部の外径側を順番に変形させて、環状の積層型鉄心を形成する請求項9または請求項10に記載の積層型鉄心の製造方法。
PCT/JP2017/013376 2016-04-08 2017-03-30 積層型鉄心およびその製造方法 WO2017175664A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018510569A JP6602467B2 (ja) 2016-04-08 2017-03-30 積層型鉄心およびその製造方法
CN201780022103.XA CN109075628B (zh) 2016-04-08 2017-03-30 层叠型铁心以及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-077907 2016-04-08
JP2016077907 2016-04-08

Publications (1)

Publication Number Publication Date
WO2017175664A1 true WO2017175664A1 (ja) 2017-10-12

Family

ID=60000459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013376 WO2017175664A1 (ja) 2016-04-08 2017-03-30 積層型鉄心およびその製造方法

Country Status (3)

Country Link
JP (1) JP6602467B2 (ja)
CN (1) CN109075628B (ja)
WO (1) WO2017175664A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195158A1 (ja) * 2019-03-28 2020-10-01 日本電産株式会社 固定子コア
JP2021141654A (ja) * 2020-03-03 2021-09-16 三菱電機株式会社 回転電機
JP2022060508A (ja) * 2017-12-07 2022-04-14 京セラインダストリアルツールズ株式会社 固定子鉄心
CN114678972A (zh) * 2020-12-24 2022-06-28 三菱电机株式会社 电枢铁芯、旋转电机、电梯曳引机和电枢铁芯的制造方法
WO2023248466A1 (ja) * 2022-06-24 2023-12-28 三菱電機株式会社 ステータ、電動機、圧縮機、冷凍サイクル装置および電動機の製造方法
US11909259B2 (en) 2018-08-28 2024-02-20 Mitsubishi Electric Corporation Stator, motor, fan, air conditioner, and method for manufacturing stator
WO2024075549A1 (ja) * 2022-10-07 2024-04-11 三菱電機株式会社 回転電機の固定子、回転電機および回転電機の固定子の製造方法
WO2024127838A1 (ja) * 2022-12-13 2024-06-20 パナソニックIpマネジメント株式会社 ステータコア及びモータ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155248A (ja) * 1996-09-30 1998-06-09 Matsushita Electric Ind Co Ltd 回転電機のコア製造方法とコア
JPH10174319A (ja) * 1996-12-17 1998-06-26 Shinko Electric Co Ltd 回転電機の固定子
JP2000184636A (ja) * 1998-12-18 2000-06-30 Calsonic Kansei Corp モータ
WO2014024987A1 (ja) * 2012-08-08 2014-02-13 株式会社デンソー ステータ、ステータのステータコアおよびステータコアの製造方法、シートコア曲げ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201145A (ja) * 1996-11-12 1998-07-31 Matsushita Electric Ind Co Ltd 電動機の固定子
CN1249878C (zh) * 1998-06-30 2006-04-05 三菱电机株式会社 铁芯组件及其制造方法
JP5460370B2 (ja) * 2010-02-17 2014-04-02 三菱電機株式会社 ステータ分割コア
JP2013136485A (ja) * 2011-12-28 2013-07-11 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
JP5859112B2 (ja) * 2012-03-15 2016-02-10 三菱電機株式会社 回転電機の電機子、及び回転電機の電機子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155248A (ja) * 1996-09-30 1998-06-09 Matsushita Electric Ind Co Ltd 回転電機のコア製造方法とコア
JPH10174319A (ja) * 1996-12-17 1998-06-26 Shinko Electric Co Ltd 回転電機の固定子
JP2000184636A (ja) * 1998-12-18 2000-06-30 Calsonic Kansei Corp モータ
WO2014024987A1 (ja) * 2012-08-08 2014-02-13 株式会社デンソー ステータ、ステータのステータコアおよびステータコアの製造方法、シートコア曲げ装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022060508A (ja) * 2017-12-07 2022-04-14 京セラインダストリアルツールズ株式会社 固定子鉄心
US11909259B2 (en) 2018-08-28 2024-02-20 Mitsubishi Electric Corporation Stator, motor, fan, air conditioner, and method for manufacturing stator
WO2020195158A1 (ja) * 2019-03-28 2020-10-01 日本電産株式会社 固定子コア
JPWO2020195158A1 (ja) * 2019-03-28 2020-10-01
JP7435591B2 (ja) 2019-03-28 2024-02-21 ニデック株式会社 固定子コア
JP2021141654A (ja) * 2020-03-03 2021-09-16 三菱電機株式会社 回転電機
CN114678972A (zh) * 2020-12-24 2022-06-28 三菱电机株式会社 电枢铁芯、旋转电机、电梯曳引机和电枢铁芯的制造方法
CN114678972B (zh) * 2020-12-24 2024-05-17 三菱电机株式会社 电枢铁芯、旋转电机、电梯曳引机和电枢铁芯的制造方法
WO2023248466A1 (ja) * 2022-06-24 2023-12-28 三菱電機株式会社 ステータ、電動機、圧縮機、冷凍サイクル装置および電動機の製造方法
WO2024075549A1 (ja) * 2022-10-07 2024-04-11 三菱電機株式会社 回転電機の固定子、回転電機および回転電機の固定子の製造方法
WO2024127838A1 (ja) * 2022-12-13 2024-06-20 パナソニックIpマネジメント株式会社 ステータコア及びモータ

Also Published As

Publication number Publication date
JPWO2017175664A1 (ja) 2018-08-02
CN109075628A (zh) 2018-12-21
JP6602467B2 (ja) 2019-11-06
CN109075628B (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
JP6602467B2 (ja) 積層型鉄心およびその製造方法
US7893591B2 (en) Laminated rotor core and method for manufacturing the same
US10587172B2 (en) Manufacturing method for laminated iron core and manufacturing device for laminated iron core
EP2120313B1 (en) Electrical motor and method for manufacturing the same
JP4886375B2 (ja) 積層鉄心製造方法
CN110601465A (zh) 层叠铁心的制造方法
JP5212129B2 (ja) 積層コアの製造方法及びその製造治具
JP5893904B2 (ja) 積層鉄心及びその製造方法
JP6250149B2 (ja) 回転電機の電機子鉄心および電機子の製造方法
WO2013179505A1 (ja) 巻線装置、巻線方法、および電機子の製造方法
CN108352735B (zh) 铁心装置及其制造方法
JP2008220170A (ja) 回転子積層鉄心およびその製造方法
JP2010259174A (ja) モータステータの製造方法
JP4657661B2 (ja) 積層固定子鉄心の製造方法
JP2015019507A (ja) 回転電機の積層鉄心、回転電機の固定子及び回転電機の積層鉄心の製造方法
JP2004320878A (ja) 積層鉄心の製造方法及び積層鉄心
JP2006217718A (ja) 積層鉄心とその製造方法
WO2018066518A1 (ja) 鉄心片の製造方法
JP2006158002A (ja) 積層固定子鉄心の製造方法
JP2012125149A (ja) 回転子積層鉄心及びその製造方法
JP2021040388A (ja) ステータの製造方法
WO2023182257A1 (ja) 固定子コアの製造方法、固定子コア及びモータ
JP4291205B2 (ja) 積層型鉄心及びその製造方法
JP2006136178A (ja) 積層固定子鉄心の製造方法
JP2007135264A (ja) 積層鉄心の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779043

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779043

Country of ref document: EP

Kind code of ref document: A1