WO2017175408A1 - 基板処理装置、半導体装置の製造方法及びプログラム - Google Patents

基板処理装置、半導体装置の製造方法及びプログラム Download PDF

Info

Publication number
WO2017175408A1
WO2017175408A1 PCT/JP2016/078436 JP2016078436W WO2017175408A1 WO 2017175408 A1 WO2017175408 A1 WO 2017175408A1 JP 2016078436 W JP2016078436 W JP 2016078436W WO 2017175408 A1 WO2017175408 A1 WO 2017175408A1
Authority
WO
WIPO (PCT)
Prior art keywords
recipe
maintenance
chamber
production
substrate
Prior art date
Application number
PCT/JP2016/078436
Other languages
English (en)
French (fr)
Inventor
一人 斉藤
司 八島
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to CN201680082674.8A priority Critical patent/CN108885968B/zh
Priority to JP2018510223A priority patent/JP6600081B2/ja
Publication of WO2017175408A1 publication Critical patent/WO2017175408A1/ja
Priority to US16/131,973 priority patent/US10998210B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber

Definitions

  • the present invention relates to a substrate processing apparatus for processing a substrate, a method for manufacturing a semiconductor device, and a program.
  • a predetermined maintenance timing set by maintenance information for example, when a predetermined substrate processing time, a predetermined number of processing times, a predetermined cumulative film thickness value, or the like is reached, maintenance is performed.
  • a maintenance recipe was automatically executed.
  • the maintenance recipe is automatically executed at the timing when the process recipe execution is completed (Patent Document 1).
  • an object of the present invention is to provide a configuration capable of maintaining the productivity in a semiconductor manufacturing apparatus and automatically controlling the execution of a recipe.
  • a processing chamber for processing a substrate a first transfer chamber in which a substrate is transferred in a vacuum state, a second transfer chamber in which a substrate is transferred in an atmospheric pressure state
  • the control unit includes: When an instruction to execute the production recipe is received while the maintenance recipe is being executed, the maintenance recipe is temporarily stopped and the production recipe is preferentially executed.
  • a configuration for continuously executing the maintenance recipe is provided.
  • FIG. 2 is a schematic view of a plane passing through line AA in FIG. 1. It is a functional block diagram of the controller used suitably as one Embodiment of this invention. It is the hardware constitutions of the controller used suitably as one Embodiment of this invention. It is a figure which shows an example of the processing flow in this invention.
  • a substrate processing apparatus 10 according to an embodiment of the present invention will be described with reference to FIGS.
  • the substrate processing apparatus 10 is a cluster type, and is divided into a vacuum side and an atmosphere side.
  • the substrate processing apparatus 10 includes a plurality of modules.
  • the substrate processing apparatus 10 is a process chamber (PC) 12 as a processing chamber for processing a substrate, a vacuum transfer chamber (transfer chamber: TM) 14 as a first transfer chamber, and a load lock as a spare chamber.
  • a chamber (load lock chamber: LC) 16 an atmospheric transfer chamber (LM) 18 as a second transfer chamber, and a load port (LP) 20 are provided.
  • PCs 12 Process chamber 12a and process chamber 12b for processing the wafer 2 as a substrate
  • TM14 vacuum-tight TM14
  • LC load lock chamber 16a and a load lock chamber 16b
  • PC process chamber
  • LC load lock chamber 16
  • a TM 14 is connected to each PC 12, and each LC 16 is connected to the TM 14.
  • the wall portion 22 blocks the PC 12.
  • the PC 12 processes the wafer 2. For example, the PC 12 performs a process of forming a thin film on the wafer 2, a process of forming an oxide film or a nitride film on the surface of the wafer 2, a process of forming a metal thin film or a metal compound thin film on the wafer 2.
  • each PC 12 includes a mass flow controller (MFC) 24 that controls the flow rate of the processing gas supplied into the PC 12, an auto pressure controller (APC) 26 that controls the pressure in the PC 12, And a valve I / O 30 for controlling on / off of a process gas supply / exhaust valve.
  • MFC mass flow controller
  • API auto pressure controller
  • the PC 12a communicates with TM14 via a gate valve (GV) 32a, and the PC 12b communicates with TM14 via GV32b.
  • the PC 12 and the TM 14 communicate with each other through the GV 32a and the GV 32b as the first opening / closing section.
  • the operation is as follows. First, the atmosphere in the PC 12a is the same as that in the TM14. The GV 32a is opened and the wafer 2 is transferred into the PC 12a. The GV 32a is closed and a predetermined process is performed on the wafer 2. Next, after returning the atmosphere in the PC 12a to the same atmosphere as in the TM 14, the GV 32a is opened, and the wafer 2 is unloaded from the PC 12a. Then, the GV 32a is closed. Similarly, the opening / closing operation of the GV 32b is also performed in the PC 12b, whereby the wafer 2 is processed while appropriately maintaining the indoor atmosphere.
  • Each of the PCs 12a and 12b includes a first processing unit 42, a second processing unit 44 disposed farther from the TM 14 than the first processing unit 42, the second processing unit 44 and the TM 14 And a wafer transfer device 46 for transferring the wafer 2 between them.
  • the first processing unit 42 includes a first mounting table 48 on which the wafer 2 is mounted, and a first heater 50 that heats the wafer 2 mounted on the first mounting table 48.
  • the second processing unit 44 includes a second mounting table 52 on which the wafer 2 is mounted and a second heater 54 that heats the wafer 2 mounted on the second mounting table 52.
  • the 1st mounting base 48 and the 2nd mounting base 52 are formed, for example with aluminum.
  • the wafer transfer device 46 includes a substrate support member 56 that supports the wafer 2, and a moving shaft 58 that rotates and lifts the substrate support member 56.
  • the moving shaft 58 is provided in the vicinity of the wall portion 22.
  • the wafer transfer device 46 transfers the wafer 2 to and from the TM 14 vacuum transfer robot 62 on the first processing unit 42 side by rotating the substrate support member 56 toward the first processing unit 42.
  • the moving shaft 58 is disposed on the wall portion 22 side, space saving can be achieved as compared with the case where this configuration is not provided. Specifically, the space required on the outside of each of the PCs 12a and 12b is omitted, and a large external space (for example, a maintenance space for maintenance personnel to enter) is secured.
  • the PC 12 a and the PC 12 b are configured symmetrically with respect to the wall portion 22.
  • the wafer transfer devices 46 of the PC 12a and PC 12b are arranged so as to approach each other with the wall portion 22 interposed therebetween.
  • TM14 has a load lock chamber structure that can withstand a pressure (negative pressure) less than atmospheric pressure such as a vacuum state.
  • the housing of TM14 is formed in a box shape in which the plan view is hexagonal and the upper and lower ends are closed.
  • the case of TM14 is not limited to this form, and may take other forms.
  • a vacuum transfer robot 62 as a first transfer unit is provided in the TM 14 as the first transfer chamber.
  • the vacuum transfer robot 62 places the wafer 2 on the substrate platform 62b provided on the arm 62a, and transfers the wafer 2 between the PC 12 and the LC 16.
  • the vacuum transfer robot 62 is moved up and down by the elevator 64 while maintaining the airtightness of the TM 14.
  • the arm 62 a and the substrate platform 62 b function as a first transfer unit that transfers the wafer 2.
  • the TM 14 communicates with the LC 16a via the GV 32c, and communicates with the vacuum lock chamber 16b via the GV 32d.
  • TM14 and LC16 communicate with each other through GV32c and GV32d as the second opening / closing section.
  • the LC 16 functions as a spare chamber for transferring the wafer 2 between the TM 14 and the atmosphere side while maintaining the vacuum state of the TM 14.
  • the LC 16 has a structure that can withstand negative pressure.
  • the LC 16a and LC 16b are configured such that the inside thereof is evacuated by a vacuum pump 16c.
  • a boat 66a and a boat 66b (hereinafter may be collectively referred to as “boat 66”) as a substrate support for supporting the wafer 2 are provided.
  • the boat 66 holds, for example, 25 wafers 2 stacked at regular intervals.
  • the boat 66 is made of, for example, silicon carbide or aluminum.
  • the LC 16 is provided with a cooling mechanism (not shown) for cooling the wafer 2.
  • the cooling mechanism may be provided separately from the LC 16.
  • the LC 16a and LC 16b are provided with a vacuum pump 16c used in common.
  • the LC 16a communicates with the LM 18 on the atmosphere side via the GV 32e.
  • the LC 16b communicates with the LM 18 on the atmosphere side via the GV 32f.
  • the TM 14 in a vacuum state and the LM 18 in an atmospheric pressure state are not in direct communication.
  • at least one of GV32c and GV32e is in a closed state
  • at least one of GV32d and GV32f is in a closed state.
  • the GV 32c on the TM14 side is opened
  • the GV 32e on the LM 18 side is closed and the inside of the LC 16a is evacuated by the pump 16c.
  • “Vacuum” indicates an industrial vacuum.
  • the GV 32c on the TM 14 side is closed and the inside of the LC 16a is brought into an atmospheric pressure state.
  • the wafer 2 is transferred between the LCs 16a and 16b and the LM 18 while maintaining the inside of the TM 14 in a vacuum.
  • the GVs 32c and 32d are opened to maintain the vacuum state of the TM 14, and the wafer 2 between the LCs 16a and 16b and the TM 14 is maintained. Is transported.
  • TM14 and LC16 communicate with the PC 12 via GVs 32a to 32d as opening / closing parts.
  • TM14 and LC16 function as a passage chamber through which the wafer 2 transported between the PC 12 and the LM 18 in the atmospheric pressure state passes while maintaining the vacuum state of the PC 12.
  • the LM 18 that is a second transfer chamber connected to the LC 16, and three LP 20 a, LP 20 b and LP 20 c (“LP ( Load port) 20 ").
  • Each of the LPs 20a to 20c is mounted with a pod 4 as a substrate storage container for storing a plurality of wafers 2.
  • the pod 4 is provided with a plurality of slots as substrate storage portions for storing a plurality of wafers 2.
  • an atmospheric transfer robot 72 as a second transfer unit is provided in the LM 18.
  • the atmospheric transfer robot 72 has an arm, on which a substrate placement unit for placing a plurality of wafers 2 is formed.
  • the atmospheric transfer robot 72 transfers the wafers 2 between the pod 4 and the LC 16 placed on the LP 20.
  • an alignment device 74 is provided as a substrate position correction device that aligns the orientation flat of the wafer 2.
  • the alignment device 74 may align the position of the notch of the wafer 2 instead of the orientation flat according to the type of the wafer 2 to be processed.
  • the substrate processing apparatus 10 includes a controller 80 as a control unit, and each component of the substrate processing apparatus 10 is controlled by the controller 80.
  • the controller 80 includes an overall control unit 82 that collectively controls the substrate processing apparatus 10, and process chamber controllers (PMC) 84 a and 84 b that control the PCs 12 a and 12 b (hereinafter, may be collectively referred to as “PMC 84”). And an operating device 86 that exchanges information with the operator.
  • the overall control unit 82, the PMC 84, and the operation device 86 are connected to each other via a network 88 such as a LAN line.
  • the PMC 84 controls the MFC 24, the APC 26, the temperature regulator 28, and the input / output valve I / O 30 provided in the corresponding PC 12.
  • the PMC 84 performs processing such as exhausting the corresponding PC 12, supplying processing gas into the PC 12, controlling pressure and temperature, and the like, thereby processing the wafer 2.
  • the overall control unit 82 is connected to the PMC 84, the vacuum transfer robot 62, the atmospheric transfer robot 72, the GVs 32a to GV32f, the LC 16 and the like via the network 88.
  • the overall control unit 82 controls the transfer operation of the vacuum transfer robot 62 and the atmospheric transfer robot 72, the opening / closing operation of the GVs 32a to 32f, the exhaust operation inside the LC 16, and the like.
  • the overall control unit 82 includes wafer storage information relating to which slot of which pod 4 the wafer 2 is to be arranged, wafer position information relating to the current position of the wafer 2, process processing status for the wafer 2, Each component is controlled based on a wafer ID that uniquely identifies each of the plurality of wafers 2, a recipe relating to processing conditions of the wafers 2, and the like.
  • the controller 80 includes a control device 96 including a central processing unit (CPU) 92 and a memory 94, a storage device 98 such as a hard disk drive (HDD), a display device 100 such as a liquid crystal display, and an input device such as a keyboard and a mouse. 102 and a communication device 104 that communicates via a network 88.
  • a control device 96 including a central processing unit (CPU) 92 and a memory 94, a storage device 98 such as a hard disk drive (HDD), a display device 100 such as a liquid crystal display, and an input device such as a keyboard and a mouse. 102 and a communication device 104 that communicates via a network 88.
  • a general-purpose computer is used as the controller 80.
  • the controller 80 includes a display device 100, an input device 102, and the like, and performs recipe creation, setting input, or input of a recipe created in advance.
  • the display device 100 may be a touch panel, and the input
  • a predetermined program is stored in the storage device 98 via the communication device 104 or the recording medium 106, loaded into the memory 94, and executed on an OS (Operating System) operating on the control device 96.
  • OS Operating System
  • the memory 94 is a recording medium that includes an EEPROM, a flash memory, a hard disk, and the like, and stores a CPU operation program and the like.
  • the memory 94 functions as a work area for the CPU.
  • the CPU 92 constitutes the center of the operation unit, executes a control program stored in the memory 94, and executes a recipe (for example, a process recipe) stored in the recipe storage unit in accordance with an instruction from the operation panel.
  • a recipe for example, a process recipe
  • the control device 96 can be configured by installing the above-described program stored in an external storage medium (for example, a semiconductor memory such as a USB memory or a memory card) 106 in a computer.
  • the storage device 98 and the storage medium 106 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 98 alone, only the external storage medium 106 alone, or both.
  • the means for supplying these programs is arbitrary. In addition to being able to be supplied via a predetermined recording medium as described above, for example, it may be supplied via a communication line, a communication network, a communication system, or the like. In this case, for example, the program may be posted on a bulletin board of a communication network and provided by being superimposed on a carrier wave via the network. Then, the above-described processing can be executed by starting the program thus provided and executing it in the same manner as other application programs under the control of the OS.
  • the storage device 98 of the controller 80 includes an overall control program for controlling the entire system of the substrate processing apparatus 10, a process chamber operation program for operating the PC 12, the vacuum transfer chamber 14 as a passage chamber, and the LC 16.
  • a passage chamber adjustment program for adjusting the atmosphere of the room is stored.
  • the controller 80 further includes a program storage unit and a data storage unit.
  • the program storage section there are a process program for executing a process, a recipe program for executing a recipe corresponding to the process (also referred to as a production recipe in the present embodiment), and a substrate processing program necessary for substrate processing.
  • a maintenance recipe also referred to as a maintenance recipe in the present embodiment
  • a production recipe interruption program for storing an indoor atmosphere, which will be described later, are also stored. Further, data such as the temperature, pressure, gas flow rate, etc. of the PC 12 during the recipe process is recorded in the data storage unit.
  • FIG. 5 shows a flow of a production recipe interruption program executed by the control device 96.
  • FIG. 5 shows an outline of the processing flow.
  • the maintenance recipe is configured to cycle purge the inside of the LC 16 as a spare room.
  • the LC 16 as a spare room is configured to perform a leak check.
  • the cycle purge is to repeat the purging of the preliminary chamber (LC16) and to adjust the indoor atmosphere.
  • the preparatory chamber is repeatedly depressurized to a predetermined pressure, and an inert gas (for example, N 2 gas) is supplied to the preparatory chamber (atmospheric pressure) repeatedly. Note that a small amount of inert gas may be supplied when the vacuum pump 16c is depressurized in the preliminary chamber.
  • an inert gas for example, N 2 gas
  • the control device 96 executes the maintenance recipe because the number of processed substrates in LC1 exceeds a predetermined threshold (S101). It is assumed that this maintenance recipe is composed of, for example, all 20 steps.
  • the control device 96 transfers the wafer 2 as a specified substrate from the LP 20 to the LC 2 via the atmospheric transfer robot 72.
  • the production recipe for processing the wafer 2 is executed by changing the LC 2 from the air atmosphere to the vacuum atmosphere.
  • the LC2 side confirms the execution of the production recipe after 3 seconds at the 10th step of the maintenance recipe on the LC1 side (S102). While the execution of the production recipe is not confirmed, the control device 96 continues the maintenance recipe on the LC1 side (S103).
  • the control device 96 checks the priority of the recipe execution of LC1 and LC2 (S104). If the priority of LC1 is high, the maintenance recipe executed in LC1 is continued (S103). Here, the control device 96 simply checks the preset priorities of LC1 and LC2, and if the priority of LC1 is low, it is determined that the maintenance recipe of LC1 is lower in priority than the production recipe of LC2. It may be. Further, the control device 96 may determine that the recipe type to be executed in each of the LC1 and LC2, for example, the process recipe has higher priority than the maintenance recipe (S104).
  • the control device 96 may incorporate the maintenance recipe execution status on the LC1 side into the priority determination. For example, LC1 may be determined to have a high priority if it is executed up to a predetermined step of the maintenance recipe, and if the maintenance recipe is a cycle purge, LC1 is given priority if it is executed a predetermined number of times. It may be determined that the degree is high.
  • the control device 96 temporarily stops the LC1 maintenance recipe, the time when the process recipe is executed using both LC1 and LC2, and the LC1 maintenance recipe. It is preferable to compare the time when the process recipe is executed in LC2 and to determine the priority so as to select the process recipe that ends earlier (less time). That is, in this way, the maintenance recipe can be executed while suppressing a decrease in production efficiency.
  • the control device 96 When determining that the priority of the maintenance recipe on the LC1 side is low in the step S104, the control device 96 sets all the valves of the LC1 to “Close” and puts the LC1 into a containment state (S105). Depending on the contents of Step, the 10th Step of the maintenance recipe on the LC1 side may be ended (the step being executed is ended), and the operation may be shifted to the containment operation in LC1. Alternatively, the intermediate step may be forcibly terminated immediately and the operation may be shifted to the containment operation in the LC1. In this case, when the MFC is connected, the flow rate is set to 0 SLM.
  • the control device 96 continues to execute the production recipe of LC2. During this time, the control device 96 monitors the progress state of the production recipe of LC2 (whether the recipe has been completed) at regular intervals (S107).
  • the control device 96 simultaneously monitors signals such as an interlock, and if necessary, cancels the pause state, shifts to the Reset state, and may forcibly terminate the recipe.
  • the control device 96 resumes the recipe for LC1 from the beginning of Step 10 after confirming the completion of the recipe for LC2 (S108).
  • Step 10 is a step of 30 seconds
  • the control device 96 pauses after 3 seconds, and starts Step 10 again from 0 seconds for 30 seconds when restarting.
  • the control device 96 may measure the time until the production recipe on the LC2 side is finished, and when the predetermined time or more elapses, the control recipe 96 may be executed from the beginning. Further, the maintenance recipe may be executed from the beginning according to the number of times until the maintenance recipe is temporarily stopped. For example, if the maintenance recipe is a cycle purge, the number of times until the maintenance recipe is suspended may be cleared and the cycle purge may be repeated from the first time. Further, the control device 96 may execute the maintenance recipe from the beginning unless it has been executed up to a predetermined step.
  • the wafer 2 can be processed using the LC 2 while suppressing the particles of the LC 1, it is possible to suppress a decrease in the apparatus operating rate. Moreover, since the production recipe for processing the wafer 2 can be preferentially executed in the middle of the maintenance recipe, it is possible to suppress a reduction in apparatus productivity.
  • the production recipe for processing the wafer 2 using the LC 2 can be preferentially executed while considering the progress of the maintenance recipe of the LC 1.
  • the wafer 2 since the wafer 2 can be processed, it is possible to suppress a decrease in the apparatus operation rate and to execute a maintenance recipe, and thus it is possible to suppress particles.
  • the maintenance recipe of LC1 is paused, and the wafer 2 is attached using LC2. Since the priority of the maintenance recipe on the LC1 side and the production recipe on the LC2 side is determined by comparing the case of executing the production recipe to be processed, it is possible to suppress a reduction in the apparatus operating rate without reducing the production efficiency. Maintenance recipes can be executed.
  • the present invention can be applied not only to a substrate processing apparatus for a semiconductor device but also to an apparatus for processing a glass substrate such as an LCD device.
  • the film formation process includes, for example, a process for forming CVD, PVD, an oxide film, a nitride film, a process for forming a film containing metal, and the like.
  • the present invention can also be applied to other substrate processing apparatuses (exposure apparatus, lithography apparatus, coating apparatus, etc.).
  • the present invention can be applied to a processing apparatus configured to regularly execute a maintenance recipe in a room other than the processing room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

生産性を維持し、自動でレシピを実行制御できる構成を提供する。基板に処理を施す処理室と、真空状態で基板の搬送が行われる第一搬送室と、大気圧状態で基板の搬送が行われる第二搬送室と、前記第一搬送室と前記第二搬送室を連結する減圧可能な予備室と、前記予備室における保守レシピ及び前記処理室における生産レシピをそれぞれ実行する制御部を備えた構成において、前記制御部は、前記保守レシピを実行中に、前記生産レシピを実行する指示を受付けると、前記保守レシピを一時停止して前記生産レシピを優先して実行させ、前記生産レシピが終了後、一時停止していた前記保守レシピを継続して実行させる構成が提供される。

Description

基板処理装置、半導体装置の製造方法及びプログラム
本発明は基板を処理する基板処理装置、半導体装置の製造方法及びプログラムに関するものである。
一般的な基板処理装置においては、保守情報により設定された所定の保守タイミングに到達、例えば、所定の基板処理時間、所定の処理回数、所定の累積膜厚値等に到達すると、保守(メンテナンス)用のメンテレシピを、自動的に実行していた。一方、ハードインターロック、温度偏差エラー、流量偏差エラー等のアラームが発生すると、プロセスレシピ実行が終了したタイミングで、メンテレシピを自動実行していた(特許文献1)。
近年、ロードロック(LC)室内でのパーティクルについても規制が厳しくなっている。LC室に関しては、定期的なメンテナンスが手動で行われていた。そのメンテナンスでは自動生産処理を一度停止してオペレータが手動で実施しており、このため生産効率が低下するという問題点があった。
更に、装置の排気構成により、複数のロードロックチャンバ及び真空搬送室に接続されているポンプは1個であるため、例えば第1のロードロックチャンバでポンプを使用した排気処理を伴うメンテナンス用自動レシピが実行されている場合、第2のロードロックチャンバでは排気処理を含んだレシピが実行できない。つまり、空いている片方のロードロックチャンバが使えず稼働率の低下が懸念されていた。
特開2011-243677号公報
本発明の目的は、斯かる実情に鑑み、半導体製造装置における生産性を維持し、自動でレシピを実行制御できる構成を提供することにある。
本発明の一態様によれば、基板に処理を施す処理室と、真空状態で基板の搬送が行われる第一搬送室と、大気圧状態で基板の搬送が行われる第二搬送室と、前記第一搬送室と前記第二搬送室を連結する減圧可能な予備室と、前記予備室における保守レシピ及び前記処理室における生産レシピをそれぞれ実行する制御部を備えた構成において、前記制御部は、前記保守レシピを実行中に、前記生産レシピを実行する指示を受付けると、前記保守レシピを一時停止して前記生産レシピを優先して実行させ、前記生産レシピが終了後、一時停止していた前記保守レシピを継続して実行させる構成が提供される。
本発明によれば、半導体製造装置の稼働効率の向上をはかることが可能となる。
本発明の一実施形態として好適に用いられる基板処理装置の上方からの概略図である。 図1のA-A線を通る面の概略図である。 本発明の一実施形態として好適に用いられるコントローラの機能ブロック図である。 本発明の一実施形態として好適に用いられるコントローラのハードウエア構成である。 本発明における、処理フローの一例を示す図である。
本発明の一実施形態に係る基板処理装置10について図1から図3を用いて説明する。
本実施形態に係る基板処理装置10はクラスタ型であり、真空側と大気側とに分けられる。基板処理装置10は、複数のモジュールによって構成される。基板処理装置10はモジュールとして、基板に処理を施す処理室としてのプロセスチャンバ(PC)12と、第一の搬送室としての真空搬送室(トランスファチャンバ:TM)14と、予備室としてのロードロックチャンバ(ロードロック室:LC)16と、第二の搬送室としての大気搬送室(LM)18と、ロードポート(LP)20とを備える。
(真空側)基板処理装置10の真空側には、基板としてのウエハ2を処理する二つのPC12(プロセスチャンバ12a及びプロセスチャンバ12b)と、真空気密自在なTM14と、二つのLC16(ロードロックチャンバ16a及びロードロックチャンバ16b)とが設けられている。ここで、プロセスチャンバ12a及びプロセスチャンバ12bを「PC(プロセスチャンバ)12」と総称し、ロードロックチャンバ16a及びロードロックチャンバ16bを「LC(ロードロックチャンバ)16」と総称する場合がある。PC12それぞれにTM14が接続され、このTM14にLC16それぞれが接続されるようにして配置されている。PC12との間は、壁部22によって遮られている。  
PC12は、ウエハ2を処理する。PC12は例えば、ウエハ2上に薄膜を形成する工程や、ウエハ2表面に酸化膜又は窒化膜を形成する工程、ウエハ2上に金属薄膜又は金属化合物薄膜を形成する工程等を行う。
図3に示すように、各PC12には、PC12内に供給する処理ガスの流量を制御するマスフローコントローラ(MFC)24と、PC12内の圧力を制御するオートプレッシャーコントローラ(APC)26と、PC12内の温度を調整する温度調整器28と、処理ガスの供給・排気用バルブのオン/オフを制御するバルブI/O30とが設けられている。
PC12aはゲートバルブ(GV)32aを介してTM14と連通しており、PC12bはGV32bを介してTM14と連通している。第一の開閉部としてのGV32a及びGV32bを介して、PC12とTM14とは連通している。
例えば、PC12aにおいてウエハ2を処理する場合は、以下のように動作する。まず、PC12a内を、TM14内と同様の雰囲気とする。GV32aを開き、PC12a内にウエハ2を搬送する。GV32aを閉じ、ウエハ2に所定の処理を施す。次いで、PC12a内の雰囲気をTM14内と同様の雰囲気に戻した後、GV32aを開き、このPC12a内からウエハ2を搬出する。そして、GV32aを閉じる。同様に、PC12bにおいてもGV32bの開閉動作を行うことで、室内の雰囲気を適宜維持しつつウエハ2が処理される。
PC12a、12bにはそれぞれ、第一の処理部42と、この第一の処理部42よりもTM14から遠い位置に配置された第二の処理部44と、この第二の処理部44とTM14との間でウエハ2を搬送するウエハ搬送装置46とが設けられている。
第一の処理部42は、ウエハ2を載置する第一の載置台48と、この第一の載置台48に載置されたウエハ2を加熱する第一のヒータ50とを備える。第二の処理部44は、ウエハ2を載置する第二の載置台52と、この第二の載置台52に載置されたウエハ2を加熱する第二のヒータ54とを備える。尚、第一の載置台48及び第二の載置台52は、例えばアルミニウムによって形成される。
ウエハ搬送装置46は、ウエハ2を支持する基板支持部材56と、この基板支持部材56を回転・昇降する移動軸58とを備える。移動軸58は、壁部22近傍に設けられている。ウエハ搬送装置46は、基板支持部材56を第一の処理部42側へ回転させることで、この第一の処理部42側においてTM14の真空搬送ロボット62との間でウエハ2を授受する。
移動軸58が壁部22側に配置されているため、本構成を有さない場合と比較して省スペース化が図れる。具体的には、PC12a、12bそれぞれの外側に要するスペースが省かれ、外部のスペース(例えば、保守者が立ち入るメンテナンススペース等)が大きく確保される。
PC12aとPC12bとは、壁部22に対して対称に構成されている。PC12a及びPC12bそれぞれのウエハ搬送装置46は、壁部22を挟んで近づくように配置されている。
TM14は、真空状態など大気圧未満の圧力(負圧)に耐えるロードロックチャンバ構造となっている。本実施形態においてTM14の筐体は、平面視が六角形であり上下両端が閉塞した箱状に形成されている。TM14の筐体は、この形態に限らず、他の形態としてもよい。
第一搬送室であるTM14内には、第一搬送部としての真空搬送ロボット62が設けられている。真空搬送ロボット62は、アーム62aに設けられた基板載置部62bにウエハ2を載せて、PC12とLC16との間で相互にウエハ2を搬送する。真空搬送ロボット62は、エレベータ64によって、TM14の気密性を維持しつつ昇降するようになっている。真空搬送ロボット62において、アーム62a及び基板載置部62bは、ウエハ2を搬送する第一搬送部として機能する。
TM14は、GV32cを介してLC16aと連通しており、GV32dを介してバキュームロックチャンバ16bと連通している。第二の開閉部としてのGV32c及びGV32dを介して、TM14とLC16とは連通している。
LC16は、TM14の真空状態を維持しながら、このTM14と大気側との間でウエハ2を搬送する予備室として機能する。LC16は、負圧に耐える構造となっている。LC16a及びLC16bは、その内部が真空ポンプ16cによって真空排気されるように構成されている。
LC16a及びLC16bそれぞれの内部には、ウエハ2を支持する基板支持体としてのボート66a及びボート66b(以下、「ボート66」と総称する場合がある)が設けられている。ボート66は、例えば25枚のウエハ2を一定間隔で積層するようにして保持する。ボート66は、例えば炭化ケイ素やアルミニウムで形成される。LC16には、ウエハ2を冷却する冷却機構(非図示)が設けられている。冷却機構は、LC16と別個に設けるようにしてもよい。また、LC16a及びLC16bには、共通して用いられる真空ポンプ16cが設けられている。
LC16aは、GV32eを介して大気側のLM18と連通している。LC16bは、GV32fを介して大気側のLM18と連通している。
真空状態にあるTM14と大気圧状態にあるLM18とは直接連通しないようになっている。具体的には、GV32c及びGV32eの少なくともいずれか一方は閉じられた状態となり、同様にGV32d及びGV32fの少なくともいずれか一方は閉じられた状態となる。例えば、TM14側のGV32cを開ける際は、LM18側のGV32eを閉じるとともに、ポンプ16cによって、LC16a内を真空状態とする。なお、「真空」とは、工業的真空を示す。LM18側のGV32eを開ける際は、TM14側のGV32cを閉じるとともに、LC16a内を大気圧状態とする。
GV32c、32dを閉じた状態でGV32e、32fを開けるようにすることで、TM14内を真空に維持しながら、LC16a、16bとLM18との間でウエハ2が搬送される。GV32c~32fを閉じた状態でLC16a、16bの内部を真空排気した後、GV32c、32dを開けるようにすることで、TM14の真空状態を維持しながら、LC16a、16bとTM14との間でウエハ2が搬送される。
TM14及びLC16は、開閉部としてのGV32a~32dを介してPC12と連通している。TM14及びLC16は、PC12の真空状態を維持しつつ、PC12と大気圧状態にあるLM18との間で搬送されるウエハ2が通過する通過室として機能する。
(大気側)基板処理装置10の大気側には、LC16に接続された第二搬送室であるLM18と、このLM18に接続された基板収容部としての三つのLP20a、LP20b及びLP20c(「LP(ロードポート)20」と総称する場合がある)とが設けられている。LP20a~20cにはそれぞれ、複数枚のウエハ2を収容する基板収容容器としてのポッド4が載置されるようになっている。ポッド4には、ウエハ2を複数収納する基板収納部としてのスロットが複数設けられている。
LM18内には、第二搬送部としての大気搬送ロボット72が設けられている。大気搬送ロボット72はアームを有し、このアームにはウエハ2を複数載置する基板載置部が形成されている。大気搬送ロボット72は、LP20に載置されたポッド4とLC16との間で、相互にウエハ2を搬送する。
LM18内には、ウエハ2のオリフラ(Orientation  Flat)の位置を合わせる基板位置補正装置としての位置合わせ装置74が設けられている。位置合わせ装置74は、処理するウエハ2の種別に応じて、オリフラに替えてウエハ2のノッチの位置を合わせるようにしてもよい。
(制御部)基板処理装置10は制御部としてのコントローラ80を備え、このコントローラ80によって基板処理装置10の各構成部が制御される。コントローラ80は、基板処理装置10を総括して制御する統括制御部82と、PC12a、12bそれぞれを制御するプロセスチャンバコントローラ(PMC)84a、84b(以下、「PMC84」と総称する場合がある)と、操作者との間で情報を授受する操作装置86とを備える。統括制御部82、PMC84及び操作装置86は、LAN回線等のネットワーク88を介してそれぞれ接続されている。
PMC84は、対応するPC12に設けられたMFC24、APC26、温度調整器28及び入出力バルブI/O30を制御する。PMC84によって、対応するPC12内の排気や、PC12内への処理ガスの供給、圧力・温度の制御等が行われることで、ウエハ2が処理される。
統括制御部82はネットワーク88を介して、PMC84や真空搬送ロボット62、大気搬送ロボット72、GV32a~GV32f、LC16等に接続されている。
統括制御部82は、真空搬送ロボット62及び大気搬送ロボット72の搬送動作や、GV32a~32fの開閉動作、LC16内部の排気動作等を制御する。具体的には、統括制御部82は、ウエハ2をどのポッド4のどのスロットに配置するかに関するウエハ収納情報や、ウエハ2の現在の位置に関するウエハ位置情報、ウエハ2についてのプロセス処理の状況、複数のウエハ2それぞれを一意に識別するウエハID、ウエハ2の処理条件に関するレシピ等に基づいて、各構成部を制御する。
  次に、コントローラ80のハードウエア構成について説明する。  
コントローラ80は、CPU(Central Processing Unit)92やメモリ94等を含む制御装置96と、ハードディスクドライブ(HDD)等の記憶装置98と、液晶ディスプレイ等の表示装置100と、キーボードやマウス等の入力装置102と、ネットワーク88を介して通信する通信装置104とを有する。コントローラ80としては、例えば汎用のコンピュータが用いられる。また、コントローラ80は、表示装置100、入力装置102等を具備し、レシピの作成、設定入力、或は予め作成されたレシピの入力を行う。尚、前記表示装置100をタッチパネルとし、入力装置は省略されてもよい。
コントローラ80において所定のプログラムは、通信装置104又は記録媒体106を介して記憶装置98に格納され、メモリ94にロードされて、制御装置96で動作するOS(Operating  System)上で実行される。
メモリ94は、EEPROM、フラッシュメモリ、ハードディスクなどから構成され、CPUの動作プログラム等を記憶する記録媒体である。メモリ94は、CPUのワークエリアなどとして機能する。
CPU92は、操作部の中枢を構成し、メモリ94に記憶された制御プログラムを実行し、操作パネルからの指示に従って、レシピ記憶部に記憶されているレシピ(例えば、プロセス用レシピ)を実行する。
制御装置96は、外部記憶媒体(例えば、USBメモリやメモリカード等の半導体メモリ)106に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置98や記憶媒体106は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置98単体のみを含む場合、外部記憶媒体106単体のみを含む場合、または、その両方を含む場合がある。
そして、これらのプログラムを供給するための手段は任意である。上述のように所定の記録媒体を介して供給できる他、例えば、通信回線、通信ネットワーク、通信システムなどを介して供給してもよい。この場合、例えば、通信ネットワークの掲示板に当該プログラムを掲示し、これをネットワークを介して搬送波に重畳して提供してもよい。そして、このように提供されたプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行することができる。
本実施形態において、コントローラ80の記憶装置98には、基板処理装置10の全体のシステムを制御する統括制御プログラムや、PC12を操作するプロセスチャンバ操作プログラム、通過室としての真空搬送室14及びLC16内の雰囲気を調節する通過室調節プログラム等が格納されている。
更に、コントローラ80はプログラム格納部、データ格納部を具備する。プログラム格納部にはプロセスを実行する為のプロセスプログラム、プロセスに対応するレシピ(本実施の形態では生産レシピともいう)を実行する為のレシピプログラム、基板処理をする為に必要な基板処理プログラムが格納され、後述する室内の雰囲気を整えるためのメンテナンス用レシピ(本実施の形態では保守レシピともいう)や生産レシピ割り込みプログラムも格納されている。また、データ格納部にはレシピ処理中のPC12の温度、圧力、ガス流量等のデータが記録される。
 統括制御プログラムが制御装置96により実行されると、統括制御部82に動作命令(メッセージ)を送信するともに、この統括制御部82から動作報告(メッセージ)を受信する等の機能が実現する。プロセスチャンバ操作プログラムが制御装置96により実行されると、PMC84に動作命令(メッセージ)を送信するとともに、このPMC84から動作報告(メッセージ)を受信する等の機能が実現する。通過室調節プログラムが制御装置96により実行されると、後述する通過室調節工程(S200)を実行する通過室調節動作の機能が実現する。
次に、本発明の基板処理における実施例について、図5を参照して説明する。図5は、制御装置96により実行される生産レシピ割り込みプログラムのフロー示す。
例えば、LC16a(LC1)で保守レシピが実行されているときに生産ロットを処理するための生産レシピが実行された場合、LC16b(LC2)を使用して生産を開始することになる。図5に、処理の流れ概要を示す。ここで、保守レシピは、予備室としてのLC16内をサイクルパージするように構成されている。また、予備室としてのLC16内をリークチェックするように構成されている。ここで、サイクルパージとは、予備室(LC16)のパージを繰返し、室内の雰囲気を整えることである。具体的には、予備室を所定の圧力までの減圧、予備室への不活性ガス(例えば、N2ガス)の供給(大気圧化)を繰返し行う。尚、真空ポンプ16cを予備室の減圧時に少量の不活性ガスは供給されていても構わない。
制御装置96は、LC1で処理基板枚数が予め定めた閾値をオーバーしたため保守レシピを実行する(S101)。この保守レシピは、例えば全20Stepから構成されているとする。
一方で、制御装置96は、LP20から、指定の基板としてのウエハ2を、大気搬送ロボット72を経由してLC2へ搬送する。搬送が終了すると、LC2を大気雰囲気から真空雰囲気に変えてウエハ2を処理するための生産レシピを実行する。制御装置96は、例えば、LC1側の保守レシピの10Step目の3秒経過後に、LC2側が生産用レシピの実行を確認する(S102)。制御装置96は、生産レシピの実行を確認していない間は、LC1側の保守レシピを継続する(S103)。
制御装置96は、LC2側の生産用レシピの実行を確認すると、LC1とLC2とのレシピ実行の優先度をチェックする(S104)。LC1の優先度が高い場合であれば、LC1で実行されている保守レシピを継続する(S103)。ここで、単に、制御装置96は、予め設定されたLC1とLC2の優先度をチェックし、LC1の優先度が低い場合、LC1の保守レシピがLC2の生産レシピより優先度が低いと判断するようにしてもよい。また、制御装置96は、LC1とLC2のそれぞれで実行しようとしているレシピの種別、例えば、プロセスレシピを保守レシピより優先度が高いと判断してもよい(S104)。
S104において、制御装置96が、LC1側の保守レシピ実行状況を優先度の判定に取り入れるようにしてもよい。例えば、保守レシピの所定のステップまで実行していれば、LC1を優先度が高いと判定してもよく、また、保守レシピがサイクルパージであれば、所定回数実行していれば、LC1を優先度が高いと判定してもよい。好ましくは、制御装置96が、LC1の保守レシピを終了するまでの時間とLC1、LC2の両方を用いてプロセスレシピを実行させた場合の時間を加えた時間と、LC1の保守レシピを一時停止させてLC2でプロセスレシピを実行させた場合の時間とを比較して、プロセスレシピが早く終わる方(少ない時間)を選択するよう優先度を判定するようにするのが好ましい。つまり、このようにすれば、生産効率の低下を抑制しつつ、保守レシピを実行することができる。
制御装置96は、S104工程において、LC1側の保守レシピの優先度が低いと判断すると、LC1の全バルブをCloseとして、LC1を封じ込め状態とする(S105)。Stepの内容によっては、LC1側の保守レシピの10Step目を終了させて(実行中のステップを終了させて)、LC1内の封じ込め動作に移行してもよい。また、すぐに途中のStepを強制的に終了させて、LC1内の封じ込め動作に移行してもよい。この場合、MFCが接続されている場合は、流量を0SLMに設定する。
このような状態でLC1の保守レシピを一時停止状態にする(S106)。
制御装置96は、LC2の生産レシピの実行を継続する。この間、制御装置96は、一定周期でLC2の生産レシピの進捗状態(レシピが終了したか否か)を監視する(S107)。
制御装置96は、インターロック等の信号も同時に監視し、必要であれば、一時停止状態を解除し、Reset状態に移行し、レシピを強制終了する場合もある。LC2側の生産レシピが終了すると、制御装置96は、LC2のレシピ終了確認後、Step10の最初からLC1のレシピを再開する(S108)。(例えば、制御装置96は、Step10が30秒のステップであった場合、3秒経過後に一時停止し、再開時もう一度Step10を0秒から開始して30秒間実施する)
S108において、制御装置96は、LC2側の生産レシピが終わるまでの時間を計測しておき、所定時間以上経過する場合、一時停止しておいた保守レシピを最初から実行するようにしてもよい。また、保守レシピの一時停止までに行った回数に応じて保守レシピを最初から実行してもよい。例えば、保守レシピがサイクルパージであれば、保守レシピの一時停止までに行った回数をクリアして、1回目からサイクルパージを繰返すようにしてもよい。また、制御装置96は、所定ステップまで実行していなければ、保守レシピを最初から実行するようにしてもよい。
本実施形態によれば、例えば、LC1のパーティクルを抑制しつつ、LC2を用いてウエハ2を処理することができるので、装置稼働率の低下を抑制できる。また、保守レシピの途中で、ウエハ2を処理する生産レシピを優先的に実行させることができるので、装置生産性の低下を抑制できる。
本実施形態によれば、LC1の保守レシピの進捗状況を考慮しつつ、LC2を用いてウエハ2を処理する生産レシピを優先的に実行することができる。これにより、ウエハ2を処理することができるので装置稼働率の低下を抑制でき、保守レシピを実行することができるのでパーティクルの抑制も可能である。
本実施形態によれば、LC1の保守レシピの終了後、LC1及びLC2を用いてウエハ2を処理する生産レシピを実行する場合と、LC1の保守レシピを一時停止し、LC2を用いてウエハ2を処理する生産レシピを実行する場合を比較して、LC1側の保守レシピとLC2側の生産レシピの優先度を決定しているので、装置稼働率の低下を抑制でき、生産効率を低下させることなく保守レシピを実行することができる。
尚、本発明は半導体装置の基板処理装置に限らず、LCD装置のようなガラス基板を処理する装置でも適用できる。成膜処理は、例えば、CVD、PVD、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理等を含む。また、他の基板処理装置(露光装置、リソグラフィ装置、塗布装置等)にも適用できることは言う迄もない。
この出願は、2016年4月8日に出願された日本出願特願2016-077997を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
 処理室以外の室にも定期的にメンテナンス用のレシピを実行するように構成されている処理装置に適用可能である。
    2       ウエハ    10      基板処理装置    12      プロセスチャンバ(PC)    16      ロードロックチャンバ(LC)    80      コントローラ 

Claims (12)

  1. 基板に処理を施す処理室と、減圧状態で基板の搬送が行われる第一搬送室と、大気圧状態で基板の搬送が行われる第二搬送室と、前記第一搬送室と前記第二搬送室を連結する減圧可能な予備室と、前記予備室を制御して前記予備室における保守レシピを実行させ、前記処理室を制御して前記処理室における生産レシピを実行させる制御部を備えた基板処理装置において、前記制御部は、前記保守レシピを実行中に、前記生産レシピを実行する指示を受付けると、前記保守レシピを一時停止して前記生産レシピを優先して実行させ、前記生産レシピが終了後、一時停止していた前記保守レシピを継続して実行させる基板処理装置。
  2. 生産レシピを実行して基板を処理する工程と保守レシピを実行して各室内の雰囲気を整える工程とを有する半導体装置の製造方法であって、 保守レシピを実行中に前記生産レシピを実行する指示があると、前記保守レシピを一時停止して前記生産レシピを優先して実行させ、前記生産レシピが終了後、一時停止していた前記保守レシピを継続して実行させる半導体装置の製造方法。
  3. 前記制御部は、前記予備室内に搬送された前記基板の枚数に基づいて前記保守レシピを実行するように構成されている請求項1記載の基板処理装置。
  4. 前記保守レシピは、前記予備室内をサイクルパージするように構成されている請求項3記載の基板処理装置。
  5. 前記保守レシピは、前記予備室内をリークチェックするように構成されている請求項3記載の基板処理装置。
  6. 前記制御部は、前記保守レシピの優先度が前記生産レシピよりも低い場合に前記保守レシピを一時停止するよう構成されている請求項1記載の基板処理装置。
  7. 前記制御部は、前記保守レシピを一時停止する際、前記予備室を封じ込め状態にするように構成されている請求項6記載の基板処理装置。
  8. 前記制御部は、前記保守レシピが一時停止した場合、所定ステップの途中であっても、前記所定ステップの初めから再実行するように構成されている請求項7記載の基板処理装置。
  9. 前記制御部は、前記生産レシピを受付けると、前記保守レシピの所定ステップが実行されているかによって、前記保守レシピを継続して実行するように構成されている請求項1記載の基板処理装置。
  10. 前記制御部は、前記生産レシピを受付けると、前記保守レシピとして実行されているサイクルパージの回数に応じて、前記保守レシピを継続して実行するか、前記生産レシピを実行するか決定するように構成されている請求項4記載の基板処理装置。
  11. 前記制御部は、前記生産レシピを受付けると、前記保守レシピを終了するまでの時間と前記予備室を用いて前記生産レシピを実行させた場合の時間を加えた時間と、前記保守レシピを一時停止させて、前記保守レシピを実行していない予備室のみを用いて前記生産レシピを実行させた場合の時間とを比較するように構成されている請求項1記載の基板処理装置。
  12. 基板に処理を施す処理室と、減圧状態で基板の搬送が行われる第一搬送室と、大気圧状態で基板の搬送が行われる第二搬送室と、前記第一搬送室と前記第二搬送室を連結する予備室と、前記予備室における保守レシピ及び前記処理室における生産レシピをそれぞれ実行する制御部を備えた基板処理装置で実行されるプログラムであって、前記保守レシピを実行中に、前記生産レシピを実行する指示があると、前記保守レシピを一時停止して前記生産レシピを優先して実行させる手順と、前記生産レシピが終了後、一時停止していた前記保守レシピを継続して実行させる手順と、を制御部に実行させるプログラム。
PCT/JP2016/078436 2016-04-08 2016-09-27 基板処理装置、半導体装置の製造方法及びプログラム WO2017175408A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680082674.8A CN108885968B (zh) 2016-04-08 2016-09-27 衬底处理装置、半导体器件的制造方法及程序
JP2018510223A JP6600081B2 (ja) 2016-04-08 2016-09-27 基板処理装置、半導体装置の製造方法及びプログラム
US16/131,973 US10998210B2 (en) 2016-04-08 2018-09-14 Substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-077997 2016-04-08
JP2016077997 2016-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/131,973 Continuation US10998210B2 (en) 2016-04-08 2018-09-14 Substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2017175408A1 true WO2017175408A1 (ja) 2017-10-12

Family

ID=60000385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078436 WO2017175408A1 (ja) 2016-04-08 2016-09-27 基板処理装置、半導体装置の製造方法及びプログラム

Country Status (4)

Country Link
US (1) US10998210B2 (ja)
JP (1) JP6600081B2 (ja)
CN (1) CN108885968B (ja)
WO (1) WO2017175408A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049368A1 (ja) * 2019-09-13 2021-03-18 東京エレクトロン株式会社 基板処理装置及び基板処理装置制御方法
JP2021077862A (ja) * 2019-10-31 2021-05-20 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871194B (zh) * 2016-09-28 2020-10-16 北京北方华创微电子装备有限公司 一种生产线设备的调度方法和装置
US11535931B2 (en) * 2018-06-26 2022-12-27 Kokusai Electric Corporation Method of manufacturing semiconductor device, method of managing parts, and recording medium
CN111276429B (zh) * 2020-01-19 2021-07-20 长江存储科技有限责任公司 半导体机台控制方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195805A (ja) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd 電子デバイス製造装置、及びそのメンテナンス制御方法
JP2004281832A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 半導体製造装置内での半導体基板搬送方法および半導体製造装置
JP2009267218A (ja) * 2008-04-28 2009-11-12 Tokyo Electron Ltd 基板処理装置及びその基板搬送方法
JP2011181771A (ja) * 2010-03-02 2011-09-15 Hitachi Kokusai Electric Inc 基板処理装置
JP2014232816A (ja) * 2013-05-29 2014-12-11 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および基板処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793453B1 (ko) * 2000-07-07 2008-01-14 동경 엘렉트론 주식회사 처리 장치의 유지 보수 방법, 처리 장치의 자동 검사방법, 처리 장치의 자동 복귀 방법 및 처리 장치를구동하는 소프트웨어의 자기 진단 방법
JP4656613B2 (ja) * 2000-07-24 2011-03-23 東京エレクトロン株式会社 処理装置のメンテナンス方法
JP5545795B2 (ja) * 2008-02-26 2014-07-09 株式会社日立国際電気 基板処理装置及び半導体製造装置管理方法
JP6094148B2 (ja) 2012-10-29 2017-03-15 東京エレクトロン株式会社 基板処理装置
JPWO2014125653A1 (ja) * 2013-02-15 2017-02-02 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195805A (ja) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd 電子デバイス製造装置、及びそのメンテナンス制御方法
JP2004281832A (ja) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 半導体製造装置内での半導体基板搬送方法および半導体製造装置
JP2009267218A (ja) * 2008-04-28 2009-11-12 Tokyo Electron Ltd 基板処理装置及びその基板搬送方法
JP2011181771A (ja) * 2010-03-02 2011-09-15 Hitachi Kokusai Electric Inc 基板処理装置
JP2014232816A (ja) * 2013-05-29 2014-12-11 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および基板処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049368A1 (ja) * 2019-09-13 2021-03-18 東京エレクトロン株式会社 基板処理装置及び基板処理装置制御方法
JP2021077862A (ja) * 2019-10-31 2021-05-20 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
JP7170692B2 (ja) 2019-10-31 2022-11-14 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム

Also Published As

Publication number Publication date
US10998210B2 (en) 2021-05-04
JPWO2017175408A1 (ja) 2019-01-24
CN108885968A (zh) 2018-11-23
US20190013223A1 (en) 2019-01-10
JP6600081B2 (ja) 2019-10-30
CN108885968B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6600081B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP5491022B2 (ja) 基板処理装置、半導体装置の製造方法、基板処理装置の制御方法および基板処理装置の表示方法
JP5570775B2 (ja) 基板処理装置のセットアップ方法、基板処理装置により実施される半導体装置の製造方法及び基板処理装置
US10133264B2 (en) Method of performing aging for a process chamber
US20180350642A1 (en) Method of Manufacturing Semiconductor Device
JP2012109333A (ja) 基板処理装置
KR101500050B1 (ko) 피처리체의 냉각 방법, 냉각 장치 및 컴퓨터 판독 가능한 기억 매체
JP2011100968A (ja) 基板処理装置、基板処理装置の制御方法、半導体デバイスの製造方法及び装置状態遷移方法
US9818629B2 (en) Substrate processing apparatus and non-transitory computer-readable recording medium
KR20200012665A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
KR101916394B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
JP2005322762A (ja) 基板処理装置
TW202034408A (zh) 半導體裝置之製造方法、基板處理裝置及程式
JP6244131B2 (ja) 基板処理装置及びその制御方法、並びにプログラム
JP2008288282A (ja) 基板処理装置
JP5709286B2 (ja) 基板処理装置、基板処理装置の制御方法及び半導体装置の製造方法
JP2016066668A (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6906559B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
US20210134683A1 (en) Method of Manufacturing Semiconductor Device, Non-transitory Computer-readable Recording Medium and Substrate Processing Apparatus
JP2014130895A (ja) 基板処理装置及び基板搬送方法及び半導体装置の製造方法
JP2012104700A (ja) 基板処理システム
JP6262020B2 (ja) 基板処理装置及び半導体装置の製造方法並びにプログラム
TW202341314A (zh) 基板處理裝置、半導體裝置之製造方法及程式
JP2012164850A (ja) 基板処理装置及び基板処理装置の表示方法
JP2011114264A (ja) 基板処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018510223

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897960

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897960

Country of ref document: EP

Kind code of ref document: A1