WO2017171009A1 - 速硬性モルタル組成物 - Google Patents
速硬性モルタル組成物 Download PDFInfo
- Publication number
- WO2017171009A1 WO2017171009A1 PCT/JP2017/013613 JP2017013613W WO2017171009A1 WO 2017171009 A1 WO2017171009 A1 WO 2017171009A1 JP 2017013613 W JP2017013613 W JP 2017013613W WO 2017171009 A1 WO2017171009 A1 WO 2017171009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- setting
- mass
- quick
- mortar composition
- parts
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/0093—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/06—Aluminous cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/386—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
- C04B16/0616—Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B16/0641—Polyvinylalcohols; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/146—Silica fume
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/14—Acids or salts thereof containing sulfur in the anion, e.g. sulfides
- C04B22/142—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/14—Acids or salts thereof containing sulfur in the anion, e.g. sulfides
- C04B22/142—Sulfates
- C04B22/147—Alkali-metal sulfates; Ammonium sulfate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/04—Carboxylic acids; Salts, anhydrides or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
- C04B40/0042—Powdery mixtures
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/10—Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/10—Accelerators; Activators
- C04B2103/14—Hardening accelerators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/46—Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
- C04B2103/465—Water-sorbing agents, hygroscopic or hydrophilic agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/60—Agents for protection against chemical, physical or biological attack
- C04B2103/601—Agents for increasing frost resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00137—Injection moldable mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0075—Uses not provided for elsewhere in C04B2111/00 for road construction
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/29—Frost-thaw resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/70—Grouts, e.g. injection mixtures for cables for prestressed concrete
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/72—Repairing or restoring existing buildings or building materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/05—Materials having an early high strength, e.g. allowing fast demoulding or formless casting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the present invention relates to a quick-setting mortar composition, and more particularly to a quick-setting mortar composition useful as a cross-section repair material and a pavement injection material.
- This application is filed in Japanese Patent Application No. 2016-73198 filed in Japan on March 31, 2016, Japanese Patent Application No. 2016-73416 filed in Japan on March 31, 2016, and Japan on March 27, 2017. Priority is claimed based on Japanese Patent Application No. 2017-61311 filed in Japan, the contents of which are incorporated herein by reference.
- the cross-section repair method is a method of removing a deteriorated portion of concrete with a hook or the like and repairing the removed cross-section portion with a cross-section repair material.
- a mortar composition containing cement and fine aggregate is used as the cross-sectional repair material used in the present construction method.
- a cross-section repair material for plastering method, a cross-section repair material for spraying method, a cross-section repair material for filling method, and a cross-section repair material for prepacked method are used.
- PC pavement and RC pavement are known as methods for constructing pavements such as roads, harbor facilities, and airport runways.
- the PC pavement is a pavement in which a PC (prestressed concrete) pavement plate is disposed on the roadbed and a backfill grout material is injected into a gap between the PC pavement plate and the roadbed.
- the RC pavement is a pavement using an RC (steel reinforced concrete) pavement board instead of the PC pavement board.
- semi-flexible pavement is known as a pavement for heavy traffic roads.
- Semi-flexible pavement is pavement in which cement milk is injected into an open-graded asphalt mixture having a large porosity.
- a mortar composition containing cement and fine aggregate is also used as a backfill grout material used in PC and RC pavements and as a pavement injection material used as a raw material for cement milk used in semi-flexible pavements. May be.
- the mortar composition used as this pavement infusion material is usually fast-curing, which contains a fast-curing admixture to harden the cement early in order to work at night and open traffic the next morning.
- a mortar composition is usually fast-curing, which contains a fast-curing admixture to harden the cement early in order to work at night and open traffic the next morning.
- a setting modifier is added to adjust the setting start time of the mortar composition.
- the setting adjuster inorganic carbonate, oxycarboxylic acid, and sodium aluminate are used.
- Patent Document 1 includes a quick-hardening cement containing 15-35% by weight of a quick-hardening component in which the weight ratio of calcium aluminate to inorganic sulfate is 1: 0.5 to 3, and includes an internal weight.
- a super-hard cement composition comprising sodium aluminate 0.2 to 3%, inorganic carbonate 0.2 to 5%, and oxycarboxylic acids 0.1 to 2% is disclosed.
- Patent Document 2 discloses a concrete cross-section repair material containing a quick-setting admixture, a cement mineral, an aggregate, a re-emulsified powder resin, and a fiber.
- sodium aluminate, inorganic carbonate and carboxylic acid are used as a setting modifier for a fast-curing admixture, and the particle size composition of these setting modifiers is a first having an average particle size of more than 45 ⁇ m and 90 ⁇ m or less.
- Patent Document 3 discloses a pavement injection material containing a quick-setting admixture, a cement mineral, sand, and a re-emulsified powder resin.
- sodium aluminate, inorganic carbonate and carboxylic acids are used as a setting modifier for a fast-curing admixture, and the particle size composition of these setting modifiers is a first having an average particle size of more than 45 ⁇ m and 90 ⁇ m or less.
- the fast-curing mortar composition containing the fast-curing admixture can ensure the pot life stably and sufficiently, that is, the time from the beginning of the setting is stable and long until the curing reaction proceeds after adding water. Is required to have high fluidity. Moreover, after completion
- the pot life can be secured as long as about 60 minutes without reducing the compressive strength at the young age (about 3 hours). It was difficult, and spots were found on the hardened body of the cement composition, and this part had a defect that it became a defect and the long-term strength was lowered.
- the setting time varies greatly depending on the environmental temperature, and the workability at the construction site is inferior.
- the initial strength is determined by defining the particle size composition of the setting modifier contained in the quick-hardening admixture.
- the environmental temperature dependence of expression and setting time is improved.
- the concrete cross-section restoration material and pavement injection material mixed with this quick-setting admixture when stored for a period of about 3 months, the setting time changes greatly compared to immediately after production, and the initial strength development is reduced. There was a thing.
- the present invention has been made in view of the above-described circumstances, and the variation in the initial setting time due to the environmental temperature is small, the variation in the initial setting time is small even when stored for a long period of time, and the curing reaction occurs after adding water. It is an object of the present invention to provide a quick-setting mortar composition having high fluidity until progress and excellent initial strength development.
- calcium aluminate, inorganic sulfate, and a setting regulator for example, inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate.
- the average particle diameter of the calcium aluminate is in the range of 8 ⁇ m to 100 ⁇ m, and the average particle diameter of the setting modifier is 5 ⁇ m or less. It has been found that it is effective to add a fast setting admixture to a predetermined amount of cement and fine aggregate.
- the fast-setting mortar composition containing a predetermined amount of cement and fine aggregate with respect to the above-mentioned fast-setting admixture has a smaller variation in the initial setting time due to environmental temperature, and the initial setting time even after long-term storage It was found that the fluctuation of the flow rate was small, the fluidity from the addition of water to the progress of the curing reaction was high, and the initial strength was excellent. Moreover, it discovered that the calcium aluminate and setting regulator which have said average particle diameter could be obtained by mixing and crushing the clinker which consists of calcium aluminate, and a setting regulator.
- the quick-setting mortar composition according to one aspect of the present invention includes a quick-setting admixture, cement, and fine aggregate
- the quick-setting mortar composition Contains 100 parts by mass or more and 2000 parts by mass or less of the cement with respect to 100 parts by mass of the quick-setting admixture
- the quick-setting admixture includes calcium aluminate and the calcium aluminate.
- Inorganic sulfate in an amount ranging from 50 parts by weight to 200 parts by weight with respect to 100 parts by weight, and condensation in an amount ranging from 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the calcium aluminate.
- the setting modifier contained in the quick-setting admixture has an average particle size of 5 ⁇ m or less, and calcium aluminate (average particle size: 8 ⁇ m to 100 ⁇ m). Compared with the range of (1), it is fine and easily dissolved in water. For this reason, when water is added to the quick-setting mortar composition according to one embodiment of the present invention, the setting modifier is quickly and stably dissolved in water in a wide temperature range, and the setting adjusting action by the setting modifier is early. Since it is exhibited, the fluctuation of the initial setting time due to the environmental temperature is reduced.
- the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes stable and long, and the fluidity after adding water becomes high. Furthermore, after the setting adjustment action by the setting adjuster is completed, the hardening acceleration action of cement by calcium aluminate and inorganic sulfate is exhibited, so that the initial strength development property of the quick-setting mortar composition can be improved. it can. Furthermore, since the setting modifier is dispersed as fine particles in the fast-curing admixture, the fast-setting mortar composition according to one embodiment of the present invention segregates even when stored for a long period of time. Thus, it is difficult for the content of the setting modifier to become non-uniform. For this reason, even if it preserve
- the fine aggregate may be contained in the range of 200 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the quick-setting admixture. Good.
- the initial strength developability is excellent, and the cured body shrinks (self-shrink) accompanying the curing of the fast-curing mortar composition, or after curing. Shrinkage (dry shrinkage) associated with moisture dissipation is suppressed. For this reason, generation
- the quick-hardening mortar composition which concerns on 1 aspect of this invention, even if it contains fine aggregate in the range of 10 mass% or more and 67 mass% or less with respect to the whole quantity of a quick-hardening mortar composition. Good.
- the fine aggregate is contained in the above range, the initial strength development is excellent and the fluidity of the special fine aggregate to which water is added is improved. Since fine aggregate serves as a medium even in a fine space such as a void of an open-graded asphalt mixture in semi-flexible pavement, it can be satisfactorily filled. Therefore, this quick-hardening mortar composition is particularly useful as a pavement injection material.
- the said setting regulator contains 1 or more of inorganic carbonate, oxycarboxylic acid, sodium aluminate, and sodium sulfate.
- the setting modifier contains one or more of the above-mentioned substances to reliably reduce the fluctuation of the initial setting time of the fast-setting mortar composition due to the environmental temperature. it can.
- the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes more stable and longer, and the fluidity after adding water becomes higher.
- the content of the setting modifier with respect to the total amount of the quick-setting mortar composition is in a range of 0.01% by mass or more and 5% by mass or less.
- a setting regulator may be added.
- the content of the setting modifier with respect to the total amount of the quick-setting mortar composition is in the range of 0.01% by mass or more and 5% by mass or less, the quick-setting mortar composition by environmental temperature and long-term storage.
- the fluctuation of the initial setting time can be reliably reduced, and the initial strength development is enhanced.
- the setting modifier added to the quick-setting mortar composition includes an inorganic powder and the setting adjuster in an amount ranging from 50 parts by mass to 300 parts by mass with respect to 100 parts by mass of the inorganic powder. It is preferable that it is added as a mixture containing a high concentration controller. In this case, by adding the setting modifier as a mixture containing a high concentration of the setting modifier, the setting modifier can be uniformly dispersed in the fast-setting mortar composition. Variations in the initial setting time of the object can be reduced more reliably.
- the short fiber which consists of 1 or more of an organic short fiber and a carbon short fiber is further 0 with respect to the whole quantity of a quick-hardening mortar composition. It may be contained in the range of 1% by mass to 0.3% by mass. In this case, since the short fibers act as a reinforcing material, the cured product obtained by curing the fast-curing mortar composition has improved crack resistance and excellent durability against fatigue.
- re-emulsification powder resin is included in 0.5 to 30 mass% with respect to the whole quantity of a quick-hardening mortar composition. May be.
- the quick-setting mortar composition contains the re-emulsified powder resin, adhesion to the concrete structure is improved.
- the silica fume may further be contained in 1 to 15 mass% with respect to the whole quantity of a quick-hardening mortar composition.
- silica fume since silica fume has a polazone action, long-term strength development is improved.
- the cured product obtained by curing the fast-curing mortar composition is densified, the total pore amount is reduced, and the progress of neutralization and the progress of diffusion of chloride ions are suppressed, so that the durability is improved.
- the synthetic polymer-based thickening water retaining agent is further added in an amount of 0.1% by mass to 0.3% by mass with respect to the total amount of the quick-setting mortar composition.
- the synthetic polymer thickening water retention agent is in the form of powder, and fine bubbles are generated when it comes into contact with water. Therefore, the cured product obtained by curing the fast-curing mortar composition is artificially introduced with entrained air. As a result, the resistance to freezing and thawing is improved.
- an antifreezing agent comprising one or more of sodium acetate, calcium acetate, and calcium nitrite is further added to the total amount of the quick-setting mortar composition. 1 mass% or more and 10 mass% or less may be included. In this case, freezing of the quick-setting mortar composition kneaded with water can be suppressed even under a cryogenic temperature environment in which water freezes, and the initial strength development is enhanced.
- the fluctuation of the initial setting time due to the environmental temperature is small, the fluctuation of the initial setting time is small even when stored for a long period of time, and the flowability from when water is added until the curing reaction proceeds. It is possible to provide a quick-setting mortar composition having a high initial strength and excellent initial strength.
- Example 1 It is a scanning electron microscope image of the mixed pulverized product of the calcium aluminate clinker and the coagulation regulator produced in Example 1, (A) is an image at an apparatus magnification of 1000 times, and (B) is an apparatus magnification at 3000 times. It is an image. (A) is a scanning electron microscope image obtained by enlarging a circled region in FIG. 1 (B), and (B) is an EPMA of sodium obtained by elemental analysis of particles imaged in the image. It is a mapping image. It is a graph which shows the measurement result of the freeze-thaw test of the hardening body which hardened the quick-hardening mortar composition of Example 1, Example 22, and Example 23.
- the quick-setting mortar composition according to this embodiment includes a quick-setting admixture, cement, and fine aggregate.
- the cement is included in the range of 100 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the quick-setting admixture.
- the quick-setting admixture is calcium aluminate, an inorganic sulfate in an amount ranging from 50 parts by mass to 200 parts by mass with respect to 100 parts by mass of the calcium aluminate, and 0 with respect to 100 parts by mass of the calcium aluminate.
- a setting regulator in an amount ranging from 1 part by weight to 10 parts by weight.
- the average particle diameter of the calcium aluminate in the quick-setting admixture is in the range of 8 ⁇ m to 100 ⁇ m, and the average particle diameter of the setting modifier is 5 ⁇ m or less.
- the quick-hardening mortar composition of the present embodiment may further contain various admixtures such as a setting modifier, short fibers, re-emulsified powder resin, silica fume, synthetic polymer thickening water retaining agent, antifreeze agent and the like.
- a setting modifier such as a setting modifier, short fibers, re-emulsified powder resin, silica fume, synthetic polymer thickening water retaining agent, antifreeze agent and the like.
- the quick-setting admixture is a composition containing calcium aluminate, inorganic sulfate and a setting modifier. Calcium aluminate elutes calcium ions and aluminum ions when they come into contact with water during the use of a quick-setting mortar composition, and reacts these with sulfate ions eluted from inorganic sulfates to form acicular crystals.
- ettringite by generating (3CaO ⁇ Al 2 O 3 ⁇ 3CaSO 4 ⁇ 32H 2 O) or mono Sulfate (3CaO ⁇ Al 2 O 3 ⁇ CaSO 4 ⁇ 12H 2 O) hydrate, such as the fast curing mortar It has the effect of improving the initial strength development of the composition. If the elution rate of calcium ions and aluminum ions from the calcium aluminate is too small, the reactivity with sulfate ions is deteriorated, and the initial strength development of the fast-curing mortar composition may be lowered.
- the average particle diameter (average primary particle diameter) of calcium aluminate is set in the range of 8 ⁇ m or more and 100 ⁇ m or less.
- the average particle size of the calcium aluminate is less than 8 ⁇ m, the elution rate of calcium ions and aluminum ions becomes too high, and it may be difficult to adjust the initial setting time of the fast-curing mortar composition.
- the average particle diameter of calcium aluminate exceeds 100 ⁇ m, the elution rate of calcium ions and aluminum ions becomes too small, and the initial strength expression of the quick-setting mortar composition may be lowered.
- the average particle diameter of the calcium aluminate contained in the fast-curing mortar composition can be measured using, for example, SEM (scanning electron microscope) and EPMA (electronic probe microanalyzer). That is, the particles of calcium aluminate contained in the fast-hardening admixture are identified from the SEM image of the quick-hardening admixture and the elements detected by elemental analysis by EPMA, and the particles identified as calcium aluminate are identified. The particle diameter can be measured from the SEM image, and the average value can be obtained. Particles in which only calcium and aluminum are detected by elemental analysis with EPMA can be identified as calcium aluminate particles.
- the calcium aluminate has one or more compositions selected from the group consisting of 12CaO ⁇ 7Al 2 O 3 , 11CaO ⁇ 7Al 2 O 3 ⁇ CaF 2 and CaO ⁇ Al 2 O 3 , and a vitrification rate of 80 It is preferable to use what is% or more.
- the vitrification rate is more preferably 80% or more and 98% or less, and particularly preferably 90% or more and 98% or less.
- Calcium aluminate having the above composition and vitrification rate has a high elution rate of calcium ions and aluminum ions when it comes into contact with water, and the reactivity becomes high. Can be improved.
- Calcium aluminate is preferably Blaine specific surface area of less 3000 cm 2 / g or more 5500cm 2 / g.
- Blaine specific surface area is 3000 cm 2 / g or more
- the Blaine specific surface area is 3000 cm 2 / g or more
- the elution rate of calcium ions and aluminum ions increases, and the reactivity with sulfate ions eluted from inorganic sulfates is increased. Since it increases, it becomes possible to improve the initial strength development property of a quick-hardening mortar composition more reliably.
- the Blaine specific surface area is 5500 cm 2 / g or less, it is avoided that the elution rate of calcium ions and aluminum ions is excessively increased when calcium aluminate comes into contact with water, and the reactivity with sulfate ions is avoided. Is suppressed from becoming too high. Even when the Blaine specific surface area is 5500 cm 2 / g or more, the initial strength of the fast-curing mortar composition is flat, which is not economically preferable because the energy required for pulverization is excessively used.
- the specific surface area of the brane is measured by a specific surface area test using a brane air permeation apparatus described in JIS R 5201 “Cement physical test method”.
- the inorganic sulfate contained in the quick-setting admixture elutes sulfate ions when it comes into contact with water when using the quick-setting mortar composition, and reacts with calcium ions and aluminum ions eluted from calcium aluminate.
- by generating hydration such as ettringite or monosulfate of needle-like crystals, it has the effect of improving the initial strength development of the quick-setting mortar composition.
- the inorganic sulfate has a brane specific surface area of 8000 cm 2 / g or more.
- the inorganic sulfate having the above-mentioned Blaine specific surface area has a high elution rate of sulfate ions and a high reactivity with calcium ions and aluminum ions eluted from calcium aluminate. It becomes possible to improve it reliably.
- the specific surface area of the inorganic sulfate salt is preferably 12000 cm 2 / g or less. If the Blaine specific surface area becomes too large, the elution rate of sulfate ions will become too high, and the reactivity between calcium ions and aluminum ions will become excessively high, so the time from the start of setting to hardening will be shortened, adjusting the setting.
- the inorganic sulfate is preferably anhydrous gypsum, and particularly preferably type II anhydrous gypsum. Since anhydrous gypsum (particularly type II anhydrous gypsum) is highly reactive with calcium aluminate, it is possible to more reliably improve the initial strength development of the quick-setting mortar composition.
- the setting modifier contained in the quick-setting admixture acts to adjust the time from the addition of water to the quick-setting mortar composition until the setting of the quick-setting mortar composition starts. That is, it has the effect of delaying the curing time of the mortar.
- the retarding effect of the setting time of the mortar by the setting modifier is that the setting adjuster dissolves in water and chelate reacts with calcium ions and aluminum ions eluted from the quick setting admixture (calcium aluminate).
- the coagulation adjusting agent contained in the fast-curing admixture is fine particles having an average particle size (average primary particle size) of 5 ⁇ m or less. For this reason, the setting regulator can be quickly dissolved in water in a relatively wide temperature range.
- the average particle size of the setting modifier is preferably 1 ⁇ m or more. If the average particle size is less than 1 ⁇ m, aggregated particles may be easily formed.
- the setting modifier includes one or more of an inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate. Since these agents are easily dissolved in water, the setting modifier contains one or more of these agents, so that the setting control action by the setting agent is exerted at an early stage. Time fluctuation can be reliably reduced. Moreover, since the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes more stable and longer, and the fluidity after adding water becomes higher.
- the inorganic carbonate is preferably an alkali metal carbonate or bicarbonate.
- Examples of the inorganic carbonate include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium carbonate, and ammonium carbonate.
- One of these inorganic carbonates may be used alone, or two or more thereof may be used in combination.
- Examples of oxycarboxylic acids include tartaric acid, citric acid, malic acid, gluconic acid, and maleic acid.
- One of these oxycarboxylic acids may be used alone, or two or more thereof may be used in combination.
- the setting modifier is preferably used in combination of two or more of inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate.
- the combination of two or more is preferably three combinations of inorganic carbonate, oxycarboxylic acid and sodium aluminate, and more preferably four combinations of inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate.
- the average particle diameter of at least one setting modifier is fine particles of 5 ⁇ m or less.
- sodium sulfate has a particularly fast dissolution rate in water. For this reason, sodium sulfate is highly effective in improving the fluidity of the quick-setting mortar composition after adding water. Moreover, since sodium sulfate is easy to melt
- the fine particles of the coagulation adjusting agent are preferably dispersed in the fast-curing admixture as primary particles or aggregate particles close thereto.
- the coagulation modifier is dispersed as primary particles or aggregate particles close to it, the dissolution rate in water is improved, and the coagulation adjustment action by the coagulation modifier is exerted at an early stage. The fluctuation can be reliably reduced.
- the fine setting regulator particles adhere to the surface of the calcium aluminate. In this case, the setting adjuster comes into contact with water prior to calcium aluminate, so it is easy to dissolve, and the setting adjusting action by the setting adjuster is exhibited at an early stage. Can be surely small.
- the average particle size of the setting modifier contained in the fast-curing admixture can be measured using, for example, SEM and EPMA. That is, from the SEM image of the fast-hardening admixture and the results of the elements detected by elemental analysis by EPMA, the particles of the setting modifier contained in the quick-setting admixture are identified, and the particles specified as the setting modifier are identified.
- the particle diameter can be measured from the SEM image, and the average value can be obtained. For example, particles in which only sodium is detected by elemental analysis by EPMA can be specified as particles of sodium carbonate (inorganic carbonate).
- the compounding amount of calcium aluminate, inorganic sulfate, and setting modifier contained in the quick-setting admixture is 50 parts by mass or more and 200 parts by mass or less of inorganic sulfate with respect to 100 parts by mass of calcium aluminate.
- the setting regulator is set in the range of 0.1 parts by mass or more and 10 parts by mass or less. If the amount of inorganic sulfate compounded becomes too small, the amount of reaction products (etringite, monosulfate) produced by inorganic sulfate and calcium aluminate hydrate will decrease, and the initial strength of fast-curing mortar composition will be manifested. May decrease.
- the amount of the inorganic sulfate compounded is too large, the initial setting time of the fast-curing mortar composition is increased, and it may be difficult to ensure sufficient pot life. Moreover, since the amount of calcium ions and aluminum ions eluted from the calcium aluminate is relatively small with respect to sulfate ions, the amount of ettringite produced is reduced. May decrease. Furthermore, the amount of expansion after curing becomes excessive due to the influence of the remaining inorganic sulfate, which may cause expansion and destruction.
- the amount of the setting modifier is too small, the action of the setting agent is completed in a short time and the setting time of the fast-curing mortar composition is increased, and it is difficult to ensure sufficient pot life. There is a risk of becoming.
- the compounding amount of the setting modifier is too large, the action of the setting agent continues for a predetermined time or more, and the initial strength development property of the quick-setting mortar composition may be lowered.
- the quick-hardening admixture for example, mixes and pulverizes a clinker containing calcium aluminate and a coagulation adjusting agent to prepare a mixed pulverized product, and mixes the obtained mixed pulverized product with an inorganic sulfate. And a mixing step.
- the clinker used as a raw material for calcium aluminate has a higher hardness than that of the setting modifier. For this reason, by mixing and pulverizing the calcium aluminate clinker and the coagulation modifier, the coagulation modifier selectively becomes fine particles, and fine particles of the coagulation modifier are generated.
- the fine particles of the setting modifier are likely to adhere to the surface of relatively coarse calcium aluminate particles. Therefore, in the mixing and pulverizing step, it is possible to obtain a mixed pulverized product in which fine particles of the coagulation adjusting agent are dispersed as primary particles or aggregated particles close to the surface of the calcium aluminate.
- pulverizing apparatuses such as an E-type mill, a saddle type mill, and a tube mill can be used. Can be used.
- the clinker containing calcium aluminate is preferably a clinker mineral.
- the calcium aluminate clinker before pulverization preferably has an average particle diameter in the range of 1 mm to 30 mm.
- the setting modifier before pulverization preferably has a particle diameter in the range of 150 ⁇ m to 500 ⁇ m.
- the mixing and grinding process, the mixing and grinding, Blaine specific surface area of the ground mixture is preferably performed until a 3000 cm 2 / g or more 5500cm 2 / g or less in the range, 3000 cm 2 / g or more 4500cm 2 / g to the range It is particularly preferable to carry out until By mixing and pulverizing until the Blaine specific surface area is in the above range, the clinker containing calcium aluminate and the coagulation modifier are sufficiently mixed and pulverized, and the fine particles of the coagulation modifier are primary particles or aggregated particles close thereto, A mixed pulverized product dispersed in a state of adhering to the surface of the calcium aluminate can be reliably obtained. Moreover, the average particle diameter of the calcium aluminate in the mixed pulverized product is usually in the range of 8 ⁇ m to 100 ⁇ m, and the average particle diameter of the setting modifier is usually 5 ⁇ m or less.
- the inorganic sulfate mixed with the mixed pulverized product obtained in the mixing and pulverizing step is preferably anhydrous gypsum having a Blaine specific surface area of 8000 cm 2 / g or more.
- the mixed pulverized product and the inorganic sulfate are mixed by dry mixing.
- a dry mixing device a V-type mixer, a ribbon mixer, a pro-shear mixer or the like can be used.
- the present invention is not limited to this, and various types of commonly used cement material mixing devices can be used. Can be used.
- the mixing time can be appropriately adjusted according to the capacity of the mixing apparatus and the blending amount of each material.
- cement As the cement, ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, blast furnace cement, silica cement, fly ash cement, silica fume cement and the like can be used.
- a cement may be used individually by 1 type and may be used in combination of 2 or more type. It is preferable to use Portland cement, particularly ordinary Portland cement.
- the blending amount of cement is generally in the range of 100 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the quick-setting admixture.
- the blending amount of the cement is in the above range, a quick-setting mortar composition excellent in initial strength development by the quick-setting admixture and long-term strength development by the cement can be obtained.
- the fine aggregate has an effect of suppressing shrinkage of the cured body (self-shrinkage) accompanying the curing of the fast-curing mortar composition and shrinkage (dry shrinkage) accompanying the dissipation of moisture after curing.
- the fine aggregate is preferably sand, more preferably sand having a particle size of 150 to 3000 ⁇ m, and still more preferably 200 to 1500 ⁇ m. Further, sand having a particle size of 90 to 1000 ⁇ m may be used, and sand having a particle size of 90 to 200 ⁇ m may be used.
- the stirring performance of the mortar or cement milk prepared by mixing the quick-setting mortar composition and water and the wear resistance of the hardened body may decrease and the slip resistance may decrease. is there.
- the particle size of the sand becomes too large, the sand tends to settle in the mortar or cement milk, and the adhesion of the mortar or cement milk to the concrete structure and the injectability to the pavement may decrease. is there.
- the fine aggregate when used as a cross-sectional repair material (cross-sectional repair material), it is in a range of 200 parts by mass or more and 1000 parts by mass or less as an amount with respect to 100 parts by mass of the fast-curing admixture.
- the amount of the fine aggregate is too small, not only the shrinkage reduction effect of the cured body can not be sufficiently obtained, but also the stirring performance and wear resistance of the mortar may be lowered and the slip resistance may be lowered.
- the amount of fine aggregate is too large, the initial strength development may be reduced and material separation may occur and bleeding may easily occur.
- the blending amount of fine aggregate is an amount that is in the range of 10% by mass to 67% by mass with respect to the total amount of the quick-setting mortar composition. If the amount of fine aggregate is too small, not only the shrinkage reduction effect of the cured body can not be sufficiently obtained, but also the stirring performance and wear resistance of cement milk may be lowered and the slip resistance may be reduced. On the other hand, if the amount of fine aggregate is too large, expression of initial strength is reduced and material separation may occur and bleeding may easily occur.
- the setting modifier is included as fine particles having an average particle diameter of 5 ⁇ m or less as a constituent of the quick-setting admixture, but with respect to the total amount of the quick-setting mortar composition.
- a coagulation adjusting agent may be added so that the content of the coagulation adjusting agent is in the range of 0.01% by mass to 5% by mass.
- the content of the setting modifier relative to the total amount of the quick-setting mortar composition is the setting adjuster (also referred to as the first setting adjuster) contained in the quick-setting admixture, the quick-setting admixture, Is the total amount of a coagulation modifier added separately (also referred to as a second coagulation modifier).
- the setting time can be adjusted by the setting modifier contained in the fast-setting admixture and the setting control agent added separately from the quick-setting admixture. Variations in the initial setting time of the hard mortar composition can be further reliably reduced. Further, by adding a setting modifier separately, the setting start time of the quick-setting mortar composition can be adjusted to a required time.
- the setting modifier contained in the quick-setting admixture is fine and easily dissolved in water, and usually can be secured sufficiently, so it is added separately.
- the amount of setting modifier can be reduced.
- action which adjusts a setting time may become inadequate that content of the setting regulator with respect to the whole quantity of a quick-hardening mortar composition is less than 0.01 mass%.
- the content of the setting modifier with respect to the total amount of the quick-setting mortar composition exceeds 5% by mass, the expression of long-term strength due to the mortar may be reduced.
- the setting modifier added separately from the quick-setting admixture may be added alone to the fast-setting mortar composition, but it is preferable to add it as a mixture in which the inorganic powder and the setting control agent are mixed in advance.
- the mixture of the inorganic powder and the setting modifier is preferably a high-concentration adjusting agent-containing mixture containing the setting modifier in the range of 50 to 300 parts by mass with respect to 100 parts by mass of the inorganic powder.
- the inorganic powder cement (particularly Portland cement), limestone powder, silica stone powder, blast furnace slag powder, coal ash, fly ash, clay mineral, calcium aluminate powder, and inorganic sulfate powder can be used.
- the inorganic powder is preferably a fine powder having a Blaine specific surface area in the range of 2500 cm 2 / g to 5000 cm 2 / g. Since the inorganic powder having a Blaine specific surface area in the above range is highly dispersible, the high-concentration adjusting agent-containing mixture using the inorganic powder is easily dispersed uniformly in the fast-curing mortar composition.
- the particle diameter of the setting modifier contained in the high-concentration adjusting agent-containing mixture is in the range of 1 ⁇ m to 500 ⁇ m.
- a setting modifier having a particle size in the above range has a high dispersibility in inorganic powder and makes it easy to prepare a high-concentration adjusting agent-containing mixture having a uniform composition.
- the short fiber acts as a reinforcing material. For this reason, the hardened
- organic short fibers and carbon short fibers can be used. Examples of the organic short fibers include PVA short fibers (polyvinyl alcohol short fibers), polyamide short fibers, aramid short fibers, polypropylene short fibers, and rayon short fibers. These short fibers may be used individually by 1 type, and may be used in combination of 2 or more type.
- the short fiber preferably has a fiber length in the range of 1 mm to 10 mm.
- the fiber diameter is usually in the range of 5 ⁇ m to 100 ⁇ m.
- the blending amount of the short fibers is generally in the range of 0.1% by mass or more and 0.3% by mass or less as the amount with respect to the total amount of the quick-setting mortar composition.
- the blending amount of the short fiber is too small, the crack resistance of the cured body is improved, and the effect of improving the durability against fatigue may be insufficient.
- the blending amount of the short fibers is too large, the fluidity of the quick-setting mortar composition and water may be lowered.
- the re-emulsified powder resin is a resin having low water absorption and water permeability, and has an effect of making it difficult for water to penetrate into a cured product obtained by curing the fast-curing mortar composition.
- the re-emulsified powder resin has an effect of improving the adhesion of the quick-setting mortar composition to the concrete structure. For this reason, the quick-hardening mortar composition containing the re-emulsified powder resin is excellent in resistance to freezing and thawing after being immersed in water, and adhesion to a concrete structure is improved.
- re-emulsified powder resin examples include vinyl acetate / veova / acrylic acid ester copolymer resin, vinyl acetate copolymer resin, vinyl acetate / ethylene copolymer, vinyl acetate / acrylic copolymer resin, and acrylic resin. These re-emulsified powder resins may be used alone or in combination of two or more.
- the blending amount of the re-emulsified powder resin is generally in the range of 0.5% by mass or more and 30% by mass or less as an amount with respect to the total amount of the quick-setting mortar composition. If the blending amount of the re-emulsified powder resin is too small, the action of improving the freeze-thaw resistance of the cured product of the fast-curing mortar composition and the action of improving the adhesion to the concrete structure may be insufficient. On the other hand, if the blending amount of the re-emulsified powder resin is too large, the fluidity of the mixture of the quick-setting mortar composition and water may be lowered.
- Silica fume has a polazone effect. For this reason, the fast-curing mortar composition containing silica fume has improved long-term strength development, and the cured product obtained by curing this composition is densified to reduce the total amount of pores. The progress of diffusion is suppressed.
- the blending amount of silica fume is preferably in the range of 0.5% by mass or more and 30% by mass or less as an amount with respect to the total amount of the quick-setting mortar composition. If the amount of silica fume is too small, the long-term strength development by the pozzolanic reaction, the effect of suppressing the neutralization due to the densification of the hardened body structure of the fast-curing mortar composition, and the effect of suppressing the penetration of chloride ions May not be sufficient. On the other hand, if the blending amount of silica fume is too large, the amount of the fast-curing admixture in the fast-curing mortar composition is relatively small, and the initial strength development may be deteriorated.
- Synthetic polymer thickening water retention agents have the effect of generating fine bubbles when in contact with water. For this reason, in the cured product obtained by curing the fast-curing mortar composition containing the synthetic polymer thickening water retaining agent, the entrained air is artificially introduced and the freeze-thaw resistance is improved.
- the blending amount of the synthetic polymer thickening water retention agent is preferably in the range of 0.1% by mass to 0.3% by mass with respect to the total amount of the quick-setting mortar composition. If the blending amount of the synthetic polymer thickening water retention agent is too small, the effect of improving the freeze-thaw resistance of the cured product of the fast-curing mortar composition may be insufficient. On the other hand, if the blending amount of the synthetic polymer thickening water retention agent is too large, not only the fluidity of the mixture of the fast-curing mortar composition and water is lowered, but also excessive bubbles may enter and reduce the strength.
- Anti-freezing agent Sodium acetate, calcium acetate, and calcium nitrite react with water to generate heat, and as an anti-freezing agent that prevents freezing of a mixture of fast-setting mortar composition and water in a cryogenic temperature environment where water freezes. Works. For this reason, the quick-hardening mortar composition containing an anti-freezing agent can suppress freezing of the quick-hardening mortar composition kneaded with water even in an extremely low temperature environment, and the initial strength development is enhanced.
- One type of antifreeze agent may be used alone, or two or more types may be used in combination.
- the blending amount of the antifreeze agent is generally in the range of 1% by mass or more and 10% by mass or less as the amount with respect to the total amount of the quick-setting mortar composition. If the blending amount of the antifreeze agent is too small, the action as the antifreeze agent becomes insufficient, and the quick-setting mortar composition may freeze and the strength may not be obtained at all. On the other hand, if the amount of the anti-freezing agent is too large, a salting out effect occurs in the mixture of the quick-setting mortar composition and water, and the fluidity may be lowered.
- the quick-setting admixture used in the quick-setting mortar composition of the present embodiment configured as described above has an average particle diameter of calcium aluminate in the range of 8 ⁇ m to 100 ⁇ m, and the average particle diameter of the setting modifier. Is set to 5 ⁇ m or less, and the coagulation adjusting agent is finer than calcium aluminate, so it is easily dissolved in water. For this reason, when water is added to the quick-setting mortar composition of this embodiment, the setting modifier is quickly and stably dissolved in water in a wide temperature range, and the setting adjusting action by the setting modifier is exhibited early. Therefore, the fluctuation of the initial setting time due to the environmental temperature is reduced.
- the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes stable and long, and the fluidity after adding water becomes high. Furthermore, after the setting adjustment action by the setting adjuster is completed, the hardening acceleration action of cement by calcium aluminate and inorganic sulfate is exhibited, so that the initial strength development property of the quick-setting mortar composition can be improved. it can. Furthermore, since the setting modifier is dispersed as fine particles in the fast-setting mortar composition, the setting agent is segregated even when stored for a long period of time. In addition, it is difficult for the content of the setting modifier to become non-uniform. For this reason, even if it preserve
- the fast-curing mortar composition of the present embodiment has a small variation in the setting start time due to the environmental temperature and is excellent in initial strength development.
- a plastering method, a spraying method, a filling method, a prepacked method, etc. It can be suitably used as a raw material (cross-section restoration material) for mortar used in repair work for concrete structures constructed by the above. Further, it can be suitably used as a raw material (pavement injecting material) such as a backfill grout material used mainly for PC pavement and RC pavement used outdoors and cement milk used for semi-flexible pavement.
- the fast-curing mortar composition of the present embodiment has a high initial strength, for example, it is possible to form a pavement having a practical strength capable of opening traffic in two hours.
- the quick-setting mortar composition of this embodiment when the fine aggregate is contained in the range of 200 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the quick-setting admixture, the initial strength developability is exhibited.
- the shrinkage of the cured body accompanying the curing of the fast-curing mortar composition and the shrinkage due to the dissipation of moisture after curing can be suppressed. For this reason, generation
- the fine aggregate may be contained in the range of 10% by mass to 67% by mass with respect to the total amount of the quick-setting mortar composition.
- the fluidity of the fine aggregate when water is added is improved. For this reason, since the fine aggregate serves as a medium even in a minute space such as a void of an open-graded asphalt mixture in semi-flexible pavement, it can be satisfactorily filled.
- the quick-setting mortar composition of the present embodiment has a setting modifier containing one or more of inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate, so that the quick-setting mortar composition at ambient temperature The fluctuation of the initial setting time of the can be reliably reduced. Moreover, since the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes more stable and longer, and the fluidity after adding water becomes higher. Since sodium sulfate has a particularly fast dissolution rate in water, it has a high effect of improving the fluidity of the quick-setting mortar composition after adding water.
- the hardened body of the fast-curing mortar composition containing short fibers has improved resistance to cracking and strength, and has excellent durability against fatigue.
- the quick-hardening mortar composition containing this short fiber can be used suitably for the cross-sectional repair of the site
- it can be suitably used as a material for backfill grout materials used in PC pavements and RC pavements on airport runways where heavy loads are applied.
- the quick-hardening mortar composition containing the re-emulsified powder resin is excellent in resistance to freezing and thawing after being immersed in water, and the adhesion to a concrete structure is improved.
- the quick-hardening mortar composition containing the re-emulsified powder resin can be suitably used for cross-sectional repair of various concrete structures such as piers, bridges, tunnels, and concrete pavements. Moreover, it can be conveniently used as an injecting material for pavement in cold regions.
- the quick-hardening mortar composition containing silica fume can be suitably used for repairing a concrete structure damaged by salt damage.
- the hardened body of the fast-curing mortar composition containing the synthetic polymer thickening water retention agent has improved freeze-thaw resistance.
- the quick-hardening cross-section restoration material containing a synthetic polymer thickening water retention agent can be suitably used for restoration of a concrete structure in a cold region.
- a fast-curing mortar composition containing an anti-freezing agent can provide a cured product having a high initial strength even under a very low temperature environment.
- the quick-hardening mortar composition containing this anti-freezing agent can be suitably used as an injecting material for pavement in cold regions.
- a quick-setting mortar composition includes a water reducing agent, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, a fluidizing agent, a waterproofing agent, a foaming agent, a foaming agent, an antifoaming agent, and a rust preventive for reinforced concrete. Further, it may contain an underwater non-separable admixture, a water retention agent, a drying shrinkage reducing agent, a separation reducing agent (thickening agent), an anti-freezing / cold-resistant agent, and the like.
- Table 1 shows the types, compositions and abbreviations of the materials used in the examples and comparative examples.
- SA-1 fast-curing admixture 100 parts by weight of calcium aluminate clinker (CA-CL), 1.0 parts by weight of sodium carbonate (Na-3), 0.5 parts by weight of sodium aluminate (Al-3), tartaric acid (CA) Ta-3) was added to a mixing and pulverizing machine at a ratio of 0.5 parts by mass, and mixed and pulverized until the Blaine specific surface area reached 4500 cm 2 / g.
- the average particle diameter of calcium aluminate contained in the obtained mixed pulverized product was 15 ⁇ m, and the average particle diameter of sodium carbonate was 3.0 ⁇ m.
- the average particle size of sodium carbonate was measured using the following method.
- FIG. 1 shows an SEM image of the mixed pulverized product.
- 1A is an SEM image with an apparatus magnification of 1000 times
- FIG. 1B is an SEM image with an apparatus magnification of 3000 times.
- elemental analysis of the particles imaged in the SEM image was performed using EPMA (Electron Probe Microanalyzer).
- EPMA Electro Probe Microanalyzer
- FIG. 2A is an SEM image obtained by enlarging the circled region in FIG. 1B
- FIG. 2B is an elemental analysis using EPMA for particles captured in the SEM image.
- the white part represents sodium.
- the sodium carbonate particles are identified, and the longest diameter of the particles identified as the sodium carbonate is determined using the SEM image of FIG. Measured. This operation was repeated to measure the particle diameter of 100 sodium carbonates, and the average value was calculated.
- the anhydrous gypsum (CS) as an inorganic sulfate was added to the mixer at a ratio of 120 parts by mass with respect to 100 parts by mass of the mixed pulverized product obtained as described above, and mixed.
- the obtained mixture was used as a fast-curing admixture (SA-1).
- SA-3 fast-curing admixture 100 parts by weight of calcium aluminate clinker (CA-CL), 1.0 parts by weight of sodium carbonate (Na-3), 0.5 parts by weight of sodium aluminate (Al-3), tartaric acid (CA) Ta-3) and sodium sulfate (NS-3) at a ratio of 0.5 parts by mass are charged into a mixing and pulverizing machine and mixed and pulverized until the Blaine specific surface area reaches 4560 cm 2 / g. did.
- the average particle size of calcium aluminate contained in the obtained mixed pulverized product was 14.2 ⁇ m, and the average particle size of sodium carbonate was 2.8 ⁇ m.
- the anhydrous gypsum (CS) was added to the mixer at a ratio of 120 parts by mass with respect to 100 parts by mass of the pulverized mixture obtained as described above, and mixed.
- the obtained mixture was used as a fast-curing admixture (SA-3).
- the physical properties of JIS stationary flow, setting time, and compressive strength were measured at ambient temperatures of 5 ° C, 20 ° C, and 35 ° C. The results are shown in Table 3.
- the quick-setting mortar composition is packed in a plastic bag (capacity: 12 L) and pinholes (hole diameter: 0.5 mm) at four corners of the plastic bag. ) And stored in a room at a temperature of 30 ° C. and a humidity of 80% RH for 3 months and 6 months, respectively.
- the fast-curing mortar compositions of Examples 1 and 2 have smaller variations in JIS static flow, setting time, and compressive strength due to the environmental temperature than the fast-curing mortar composition of Comparative Example 1. It was confirmed that the temperature stability was excellent. In particular, it was confirmed that the quick-setting mortar composition of Example 2 containing sodium sulfate had a large JIS stationary flow and excellent fluidity. Moreover, from the result of Table 4, compared with the quick-hardening mortar composition of Example 1, 2, the quick-hardening mortar composition of Example 1 and 2 has the fluctuation
- the physical properties of JIS 15 striking flow, setting time, and compressive strength were measured at ambient temperatures of 5 ° C, 20 ° C, and 35 ° C. The results are shown in Table 6. Further, in order to confirm the storage characteristics of the quick-setting mortar composition, the quick-setting mortar composition was stored in a room at a temperature of 30 ° C. and a humidity of 80% RH for 3 months and 6 months, respectively. . And the mortar was prepared about the quick-hardening mortar composition after a preservation
- the quick-setting mortar compositions of Examples 3 and 4 have less variation in JIS 15 striking flow, setting time, and compressive strength depending on the environmental temperature than the quick-setting mortar composition of Comparative Example 2. It was confirmed that the temperature stability was excellent. In particular, it was confirmed that the quick-setting mortar composition of Example 4 containing sodium sulfate had a large JIS15 striking flow and excellent fluidity. Further, from the results of Table 7, the fast-curing mortar compositions of Examples 3 and 4 are smaller in variation in JIS 15 striking flow, setting time, and compressive strength due to storage than the fast-curing mortar composition of Comparative Example 2. It was confirmed that the storage stability was excellent.
- J 14 funnel flow time setting time was measured physical properties of compressive strength. J 14 funnel flow time was measured in accordance with JSCE criteria JSCE-F 541 "Test Method of Flowability for Filling Mortar". The setting time and compressive strength were measured by the above methods.
- the fast-curing mortar compositions of Examples 5 and 6 are different from the fast-curing mortar composition of Comparative Example 3 in terms of J 14 funnel flow time, setting time, and compressive strength due to environmental temperature. It was confirmed to be small and excellent in temperature stability.
- fast-curing mortar composition of Example 6 containing sodium sulfate, short J 14 funnel flow time it was confirmed that superior flowability.
- the quick-setting mortar compositions of Examples 5 and 6 were compared with the quick-setting mortar composition of Comparative Example 3 in terms of J 14 funnel flow time, setting time, and compressive strength due to storage. Was small and it was confirmed that it was excellent in storage stability.
- Example 7 PVA short fibers (fiber diameter: 26 ⁇ m, fiber length: 3 mm) as short fibers were added to the quick-setting mortar composition of Example 1 in an amount of 0.05% by mass with respect to the total amount of the quick-setting mortar composition (implementation).
- Example 7 0.1% by mass (Example 8), 0.5% by mass (Example 9), 1.0% by mass (Example 10), 3.0% by mass (Example 11)
- Example 7 0.1% by mass
- Example 9 0.5% by mass
- Example 10 1.0% by mass
- Example 11 Were added and mixed to prepare quick-setting mortar compositions containing the short fibers of Examples 7 to 11. 15 parts by mass of water was added to 100 parts by mass of the quick-setting mortar composition containing the obtained short fibers, and mortar was prepared in the same manner as in Example 1. JIS stationary flow was measured about the obtained mortar.
- Example 12 The content of the re-emulsified powder resin (P) in the quick-setting mortar composition of Example 3 with respect to the total amount of the quick-setting mortar composition is 0.5 mass% (Example 12) and 1.0 mass% (implementation).
- Example 13 2.0% by mass (Example 14), 5.0% by mass (Example 15), 10.0% by mass (Example 16), 15.0% by mass (Example 17)
- Example 13 was prepared in the same manner as in Example 3 by adding 13 parts by mass of water to 100 parts by mass of the quick-setting mortar composition containing the re-emulsified powder resin.
- the cured product produced using the fast-curing mortar composition containing the re-emulsified powder resin has improved adhesion strength with the concrete flat plate, and the content of the re-emulsified powder resin is 1.0% by mass or more. It was confirmed that the cured body produced using the fast-curing mortar composition containing the re-emulsified powder resin had an adhesion strength with a concrete flat plate of 1.5 N / mm 2 or more.
- Example 18 In the quick-setting mortar composition of Example 5, the content of silica fume (SF) with respect to the total amount of the quick-setting mortar composition is 1.0 mass% (Example 18) and 5.0 mass% (Example 19), respectively.
- Fast-hardening mortar compositions containing silica fume of Examples 18 to 21 were prepared by adding and mixing in amounts of 10.0% by mass (Example 20) and 15.0% by mass (Example 21), respectively. did.
- Mortar was prepared in the same manner as in Example 5 by adding 22 parts by mass of water to 100 parts by mass of the quick-setting mortar composition containing silica fume. The obtained mortar was poured into a 100 ⁇ 100 ⁇ 400 mm mold to prepare a test body. The neutralization depth, chloride ion diffusion coefficient, and total pore amount of the prepared specimen were measured by the following methods. The results are shown in Table 13.
- Example 22 In the quick-setting mortar composition of Example 1, the content of the synthetic polymer thickening water retaining agent (Ad) is 0.1% by mass (Example 22) and 0.3% by mass, respectively, with respect to the total amount of the quick-curing cross-sectional restoration material. % (Example 23) were added and mixed to prepare quick-setting mortar compositions containing the thickening and water-retaining agents of Examples 22 and 23. 15 parts by mass of water was added to 100 parts by mass of the fast-curing mortar composition containing the resulting synthetic polymer thickening water retention agent, and mortar was prepared in the same manner as in Example 1. Using the obtained mortar, a freeze / thaw test was performed. The test method was performed up to 300 cycles in accordance with JIS A 1145 “Concrete Freezing and Thawing Test Method”, and the relative dynamic elastic modulus was measured. The result is shown in FIG.
- the concrete produced using the fast-curing mortar composition containing the synthetic polymer thickening water retention agent has a small amount of addition of the thickening water retention agent of 0.1% by mass to 0.3% by mass. Even so, it was confirmed that the resistance to freezing and thawing was remarkably improved and the relative kinematic modulus was maintained at 80% or more even after repeated 300 cycles of freezing and thawing.
- Cement milk was prepared by adding 50 parts by mass of water to 100 parts by mass of the obtained quick-setting mortar composition and kneading with a hand mixer for 2 minutes. Using the prepared cement milk, the physical properties of P funnel flow time, setting time, and compressive strength were measured. In addition, the measurement of P funnel flow time was performed as follows. The setting time and compressive strength were measured by the above methods. The P funnel flow time was measured in accordance with the Japan Society of Civil Engineers standard JSCE-F 521 “Testing method for fluidity of mortar of prepacked concrete (method using P funnel)”.
- the physical properties of P funnel flow time, setting time, and compressive strength were measured at ambient temperatures of 5 ° C, 20 ° C, and 35 ° C. The results are shown in Table 15. Further, in order to confirm the storage characteristics of the quick-setting mortar composition, the quick-setting mortar composition was stored in a room at a temperature of 30 ° C. and a humidity of 80% RH for 3 months and 6 months, respectively. . And the cement milk was prepared about the quick-hardening mortar composition after a preservation
- the fast-curing mortar compositions of Examples 24 and 25 have smaller variations in P funnel flow time, setting time, and compressive strength depending on the environmental temperature than the fast-curing mortar composition of Comparative Example 4. It was confirmed that the temperature stability was excellent. In particular, it was confirmed that the quick-setting mortar composition of Example 25 containing sodium sulfate had a short P funnel flow time and excellent fluidity. In addition, from the results of Table 16, the quick-hardening mortar compositions of Examples 24 and 25 are different from the quick-hardening mortar composition of Comparative Example 2 in the fluctuation of the P funnel flow time, setting time, and compressive strength due to storage. It was confirmed to be small and excellent in storage stability.
- the re-emulsified powder resin (P) has a content of 0.5% by mass (Example 26) and 1.0% by mass (Example 26) with respect to the total amount of the quick-setting mortar composition, respectively.
- Example 27 2.0% by mass (Example 28), 5.0% by mass (Example 29), 10.0% by mass (Example 30), and 30.0% by mass (Example 31).
- Each was added in amounts and mixed to produce a fast-curing mortar composition containing a re-emulsified powder resin.
- Cement milk was prepared by adding 45 parts by mass of water to 100 parts by mass of the fast-curing mortar composition containing the obtained re-emulsified powder resin and kneading with a hand mixer for 2 minutes. Using the prepared cement milk, the P funnel flow time and the compressive strength at age 7 days were measured. The results are shown in Table 17. Moreover, the prepared cement milk was poured into an open-graded asphalt matrix (100 ⁇ 200 ⁇ 100 mm thick) having a porosity of 22%, and cured at a temperature of 20 ° C. for 7 days to prepare a semi-flexible pavement. The obtained semi-flexible pavement was immersed in water, and a freeze-thaw cycle of ⁇ 20 ° C. ⁇ 6 hours and + 20 ° C. ⁇ 6 hours was repeated 200 times, and the appearance of the pavement was observed. The results are shown in Table 17.
- Example 32 In the quick-setting mortar composition of Example 24, the content of the antifreezing agent (CN) with respect to the total amount of the quick-setting mortar composition is 1.0 mass% (Example 32) and 2.0 mass% (Example 33), respectively. ), 3.0% by mass (Example 34), 5.0% by mass (Example 35), and 10.0% by mass (Example 36).
- a quick-setting mortar composition containing was prepared.
- a grout was prepared by adding 45 parts by mass of water at a water temperature of 5 ° C. to 100 parts by mass of the quick-hardening mortar composition containing the anti-freezing agent, and kneading with a hand mixer for 2 minutes in a temperature environment of ⁇ 5 ° C. .
- the obtained grout was each injected into three cylindrical containers (inner diameter ⁇ 50 ⁇ height 100 mm).
- Three of these cylindrical containers were placed in an insulating container made of expanded polystyrene having an inner size of 200 mm 150 ⁇ 150 mm, and cured for 3 hours in a temperature environment of ⁇ 5 ° C. to prepare a cured body.
- the compression strengths of the three cured bodies obtained at the age of 3 hours were measured, and the average was determined. The results are shown in Table 18.
- the fast-curing mortar composition of the present embodiment has a small variation in the initial setting time due to the environmental temperature, and even when stored for a long period of time, the initial setting time is small. In addition, the fluidity from the addition of water to the progress of the curing reaction is high, and the initial strength development is excellent. For this reason, the quick-hardening mortar composition of the present embodiment includes a cross-section restoration material used in the cross-section restoration method, a backfill grout material used in PC pavement and RC pavement, and cement milk used in semi-flexible pavement, etc. As a pavement injection material which is a raw material of
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Nanotechnology (AREA)
- Architecture (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Road Paving Structures (AREA)
Abstract
Description
本願は、2016年3月31日に日本に出願された特願2016-73198号、2016年3月31日に日本に出願された特願2016-73416号、及び2017年3月27日に日本に出願された特願2017-61311号に基づき優先権を主張し、その内容をここに援用する。
この場合、細骨材を上記の範囲にて含有するので、初期強度発現性に優れたものとなると共に、速硬性モルタル組成物の硬化に伴う硬化体の収縮(自己収縮)や、硬化後の水分の逸散に伴う収縮(乾燥収縮)が抑えられる。このため、硬化体のひび割れの発生を抑制することができ、硬化体の強度が高くなる。
従って、この速硬性モルタル組成物は、断面修復材として特に有用である。
この場合、細骨材を上記の範囲にて含有するので、初期強度発現性に優れたものとなると共に、水を加えた特の細骨材の流動性が向上する。半たわみ性舗装における開粒度アスファルト混合物の空隙のように微細な空間内に対しても、細骨材が媒体となるので、良好に充填することができる。
従って、この速硬性モルタル組成物は、舗装用注入材として特に有用である。
この場合、上記の物質は水に溶解しやすいので、凝結調整剤が上記の物質を1つ以上含むことによって、環境温度による速硬性モルタル組成物の凝結始発時間の変動を確実に小さくすることができる。また、凝結調整剤による凝結調整作用が早期に発揮されるので、凝結始発時間がより安定して長くなるとともに、水を加えた後の流動性がより高くなる。
この場合、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲とされているので、環境温度および長期間の保存による速硬性モルタル組成物の凝結始発時間の変動を確実に小さくすることができ、また初期強度発現性が高くなる。
この場合、凝結調整剤を凝結調整剤高濃度含有混合物として加えることによって、凝結調整剤を均一に速硬性モルタル組成物中に分散させることができ、環境温度および長期間の保存による速硬性モルタル組成物の凝結始発時間の変動をより確実に小さくすることができる。
この場合、短繊維は補強材として作用するので、速硬性モルタル組成物を硬化させた硬化体はひび割れ抵抗性が向上して、疲労に対する耐久性が優れたものとなる。
この場合、速硬性モルタル組成物は再乳化粉末樹脂を含むので、コンクリート構造物に対する付着力が向上する。
この場合、シリカフュームはポラゾン作用を有するので長期強度発現性が向上する。さらに速硬性モルタル組成物を硬化させた硬化体は緻密化して、総細孔量が小さくなり、中性化の進行や塩化物イオンの拡散の進行が抑制されるので、耐久性が向上する。
この場合、合成ポリマー系増粘保水剤は、粉末状であり、水と接すると微細な気泡が発生するので、速硬性モルタル組成物を硬化させた硬化体は、疑似的にエントレインドエアが導入されて、凍結融解抵抗性が向上する。
この場合、水が凍結するような極低温の温度環境下においても、水と混練した速硬性モルタル組成物の凍結を抑制することができ、初期強度発現性が高くなる。
本実施形態である速硬性モルタル組成物は、速硬性混和材とセメントと細骨材を含む。速硬性混和材100質量部に対して、セメントを100質量部以上2000質量部以下の範囲にて含む。速硬性混和材は、カルシウムアルミネートと、そのカルシウムアルミネート100質量部に対して50質量部以上200質量部以下の範囲の量の無機硫酸塩と、そのカルシウムアルミネート100質量部に対して0.1質量部以上10質量部以下の範囲の量の凝結調整剤とを含む組成物である。速硬性混和材中のカルシウムアルミネートの平均粒子径は8μm以上100μm以下の範囲とされ、凝結調整剤の平均粒子径は5μm以下とされている。本実施形態の速硬性モルタル組成物は、さらに、凝結調整剤、短繊維、再乳化粉末樹脂、シリカフューム、合成ポリマー系増粘保水剤、防凍剤などの各混和材を含んでいてもよい。
以下、本実施形態の速硬性モルタル組成物の各成分について説明する。
速硬性混和材は、カルシウムアルミネートと無機硫酸塩と凝結調整剤を含む組成物である。
カルシウムアルミネートは、速硬性モルタル組成物の使用時において水に接したときにカルシウムイオンとアルミニウムイオンを溶出し、これらと無機硫酸塩から溶出される硫酸イオンとを反応させて、針状結晶のエトリンガイト(3CaO・Al2O3・3CaSO4・32H2O)あるいはモノサルフェイト(3CaO・Al2O3・CaSO4・12H2O)などの水和物を生成させることによって、その速硬性モルタル組成物の初期強度発現性を向上させる作用を有する。カルシウムアルミネートからのカルシウムイオンとアルミニウムイオンの溶出速度が小さくなりすぎると、硫酸イオンとの反応性が悪くなり、速硬性モルタル組成物の初期強度発現性が低下するおそれがある。一方、カルシウムアルミネートからのカルシウムイオンとアルミニウムイオンの溶出速度が大きくなりすぎると、硫酸イオンとの反応性が高くなり、速硬性モルタル組成物の凝結始発時間が速くなりすぎて、凝結調整剤を使用しても凝結始発時間を調整しにくく、可使時間を十分に確保することが困難となるおそれがある。
このため、本実施形態では、カルシウムアルミネートの平均粒子径(平均一次粒子径)を8μm以上100μm以下の範囲に設定している。カルシウムアルミネートの平均粒子径が8μm未満であると、カルシウムイオンとアルミニウムイオンの溶出速度が大きくなりすぎて、速硬性モルタル組成物の凝結始発時間を調整しにくくなるおそれがある。一方、カルシウムアルミネートの平均粒子径が100μmを超えると、カルシウムイオンとアルミニウムイオンの溶出速度が小さくなりすぎて、速硬性モルタル組成物の初期強度発現が低下するおそれがある。
凝結調整剤によるモルタルの硬化時間の遅延作用は、凝結調整剤が水に溶解し、速硬性混和材(カルシウムアルミネート)から溶出したカルシウムイオンやアルミニウムイオンとキレート反応して、速硬性混和材の表面に皮膜を形成することによって、速硬性混和材からのカルシウムイオンやアルミニウムイオンの溶出が一時的に抑制されることにより発現すると考えられる。ただし、速硬性混和材の表面に形成される皮膜は、極めて薄いため、比較的短時間で溶解して消失する。そして、この被膜が消失した後は、速硬性混和材からのカルシウムイオン、アルミニウムイオンの再溶出が始まって、モルタルの硬化反応が進行する。
本実施形態では、速硬性混和材に含まれる凝凝結調整剤は、平均粒子径(平均一次粒子径)が5μm以下の微粒子とされている。このため、比較的に広い温度範囲において、凝結調整剤を水に速やかに溶解させることができる。凝結調整剤の平均粒子径は1μm以上であることが好ましい。平均粒子径が1μm未満であると、凝集粒子を形成し易くなるおそれがある。
無機炭酸塩は、アルカリ金属の炭酸塩あるいは炭酸水素塩であることが好ましい。無機炭酸塩の例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸リチウム、炭酸アンモニウムが挙げられる。これらの無機炭酸塩は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。オキシカルボン酸の例としては酒石酸、クエン酸、リンゴ酸、グルコン酸、マレイン酸を挙げられる。これらのオキシカルボン酸は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。
凝結調整剤は、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの2つ以上を組合せて使用することが好ましい。2つ以上の組合せは、無機炭酸塩、オキシカルボン酸およびアルミン酸ナトリウムの3つの組合せが好ましく、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムの4つの組合せがより好ましい。なお、凝凝結調整剤を2つ以上の組合せとする場合は、少なくとも一つの凝結調整剤の平均粒子径が5μm以下の微粒子とされていればよい。
無機硫酸塩の配合量が少なくなりすぎると、無機硫酸塩とカルシウムアルミネート水和物との反応生成物(エトリンガイト、モノサルフェイト)の生成量が少なくなり、速硬性モルタル組成物の初期強度発現性が低下するおそれがある。一方、無機硫酸塩の配合量が多くなりすぎると、速硬性モルタル組成物の凝結始発時間が速くなり、可使時間を十分に確保することが困難となるおそれがある。また、カルシウムアルミネートから溶出するカルシウムイオン量とアルミニウムイオン量が、硫酸イオンに対して相対的に少なくなることによって、エトリンガイトの生成量が少なくなるため、速硬性モルタル組成物の初期強度発現性が低下するおそれがある。さらに、残存する無機硫酸塩の影響によって硬化後の膨張量が過剰となり、膨張破壊を起こすおそれがある。
また、凝結調整剤の配合量が少なくなりすぎると、凝結調整剤の作用が短時間で終了して速硬性モルタル組成物の凝結始発時間が速くなり、可使時間を十分に確保することが困難となるおそれがある。一方、凝結調整剤の配合量が多くなりすぎると、凝結調整剤の作用が所定の時間以上継続し、速硬性モルタル組成物の初期強度発現性が低下するおそれがある。
粉砕前のカルシウムアルミネートのクリンカーは、平均粒子径が1mm以上30mm以下の範囲にあることが好ましい。また、粉砕前の凝結調整剤は、粒子径が150μm以上500μm以下の範囲にあることが好ましい。
混合工程において、混合粉砕物と無機硫酸塩との混合は乾式混合により行われる。乾式混合装置としては、V型混合機、リボンミキサー、プロ-シェアミキサー等の混合機を用いることができるが、これに限定されるものではなく、セメント材料の混合装置として通常用いられている各種の混合装置を用いることができる。混合時間は、混合装置の容量や各材料の配合量に合せて適宜調整することができる。
セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、シリカフュームセメント等を用いることができる。セメントは、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。セメントはポルトランドセメント、特に普通ポルトランドセメントを用いることが好ましい。
細骨材は、速硬性モルタル組成物の硬化に伴う硬化体の収縮(自己収縮)や、硬化後の水分の逸散に伴う収縮(乾燥収縮)を抑える作用がある。細骨材は、砂であることが好ましく、粒子径が150~3000μmの砂であることがより好ましく、200~1500μmの砂であることが更に好ましい。また、粒子径が90~1000μmの砂であってもよく、更に90~200μmの砂であってもよい。砂の粒子径が小さくなりすぎると、速硬性モルタル組成物と水とを混合して調製したモルタルあるいはセメントミルクの撹拌性能及び硬化体の耐摩耗性が低下するとともにすべり抵抗性が低下するおそれがある。一方、砂の粒子径が大きくなりすぎると、モルタルあるいはセメントミルク中に砂が沈降し易くなるとともに、モルタルあるいはセメントミルクのコンクリート構造物への付着性や舗装体への注入性が低下するおそれがある。
一方、舗装用注入材として利用する場合、細骨材の配合量は、速硬性モルタル組成物の全体量に対して10質量%以上67質量%以下の範囲となる量である。細骨材の配合量が少なくなりすぎると、硬化体の収縮低減効果が十分に得られないばかりでなく、セメントミルクの撹拌性能及び耐摩耗性が低下するとともにすべり抵抗性が低下するおそれがある。一方、細骨材の配合量が多くなりすぎると、初期強度の発現性が低下するとともに材料分離が発生してブリーディングが発生しやすくなるおそれがある。
本実施形態の速硬性モルタル組成物では、上述のとおり、速硬性混和材の構成成分として凝結調整剤が平均粒子径5μm以下の微粒子として含まれているが、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲となるように、さらに、凝結調整剤が添加されていてもよい。ここで、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量は、速硬性混和材中に含まれている凝結調整剤(第1の凝結調整剤とも言う)と、速硬性混和材とは別に添加された凝結調整剤(第2の凝結調整剤とも言う)との合計量である。この場合は、速硬性混和材中に含まれている凝結調整剤と、速硬性混和材とは別に添加された凝結調整剤とによって凝結時間を調整できるので、環境温度および長期間の保存による速硬性モルタル組成物の凝結始発時間の変動をさらに確実に小さくすることができる。また、凝結調整剤を別に添加することによって、速硬性モルタル組成物の凝結始発時間を所要の時間に調整することができる。また、本実施形態の速硬性モルタル組成物では、速硬性混和材中に含まれている凝結調整剤は微粒子で水に溶解しやすく、通常は可使時間を十分に確保できるので、別に添加する凝結調整剤の量は少なくできる。
速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%未満であると、凝結時間を調整する作用が不十分となるおそれがある。一方、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が5質量%を超えると、モルタルによる長期強度の発現性が低下するおそれがある。
短繊維は補強材として作用する。このため、短繊維を含む速硬性モルタル組成物を硬化させた硬化体はひび割れ抵抗性が向上して、疲労に対する耐久性が優れたものとなる。
短繊維としては、有機短繊維および炭素短繊維を用いることができる。有機短繊維の例としては、PVA短繊維(ポリビニルアルコール短繊維)、ポリアミド短繊維、アラミド短繊維、ポリプロピレン短繊維、レーヨン短繊維等が挙げられる。これらの短繊維は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
短繊維は、繊維長が1mm以上10mm以下の範囲にあることが好ましい。1mmより短いと十分な繊維補強効果が得られないおそれがある。一方、10mmを超えると繊維の抵抗により流動性が損なわれ、狭隘部や半たわみ性舗装への注入性が低下する等、施工性が阻害されるおそれがある。繊維径は、通常、5μm以上100μm以下の範囲である。
再乳化粉末樹脂は吸水性および透水性が低い樹脂であり、速硬性モルタル組成物を硬化させた硬化体に対して水を浸透しにくくする作用がある。また、再乳化粉末樹脂は、コンクリート構造物に対する速硬性モルタル組成物の付着力を向上させる作用がある。このため、再乳化粉末樹脂を含む速硬性モルタル組成物は、水に浸漬させた後の凍結融解抵抗性に優れ、コンクリート構造物に対する付着力が向上する。
再乳化粉末樹脂の例としては、酢酸ビニル/ベオバ/アクリル酸エステル共重合樹脂、酢酸ビニル共重合樹脂、酢酸ビニル/エチレン共重合、酢酸ビニル/アクリル共重合樹脂、アクリル樹脂などが挙げられる。これらの再乳化粉末樹脂は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
シリカフュームはポラゾン作用を有する。このため、シリカフュームを含む速硬性モルタル組成物は長期強度発現性が向上し、さらにこれを硬化させた硬化体は緻密化して、総細孔量が小さくなり、中性化の進行や塩化物イオンの拡散の進行が抑制される。
合成ポリマー系増粘保水剤は、水と接すると微細な気泡を発生する作用がある。このため、合成ポリマー系増粘保水剤を含む速硬性モルタル組成物を硬化させた硬化体は、疑似的にエントレインドエアが導入されて、凍結融解抵抗性が向上する。
酢酸ナトリウム、酢酸カルシウム、亜硝酸カルシウムは水と反応して発熱して、水が凍結するような極低温の温度環境下において、速硬性モルタル組成物と水の混合物の凍結を防止する防凍剤として作用する。このため、防凍剤を含む速硬性モルタル組成物は、極低温の温度環境下においても、水と混練した速硬性モルタル組成物の凍結を抑制することができ、初期強度発現性が高くなる。
防凍剤は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
例えば、速硬性モルタル組成物は、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤、防水剤、起泡剤、発泡剤、消泡剤、鉄筋コンクリート用防錆剤、水中不分離性混和剤、保水剤、乾燥収縮低減剤、分離低減剤(増粘剤)、防凍・耐寒剤などを含んでいてもよい。
本実施例および比較例にて使用した使用材料の種類、組成及び略号を、下記の表1に示す。
カルシウムアルミネートクリンカー(CA-CL)を100質量部、凝結調整剤として、炭酸ナトリウム(Na-3)を1.0質量部、アルミン酸ナトリウム(Al-3)を0.5質量部、酒石酸(Ta-3)を0.5質量部となる割合にて、混合粉砕機に投入し、ブレーン比表面積が4500cm2/gになるまで混合粉砕した。得られた混合粉砕物に含まれているカルシウムアルミネートの平均粒子径は15μmであり、炭酸ナトリウムの平均粒子径は3.0μmであった。炭酸ナトリウムの平均粒子径は、下記の方法を用いて測定した。
先ず、初めに、得られた混合粉砕物の粒子形状を、SEM(走査型電子顕微鏡)を用いて観察した。図1に、混合粉砕物のSEM画像を示す。図1の(A)は装置倍率1000倍のSEM画像で、(B)は装置倍率3000倍のSEM画像である。
次に、EPMA(電子プローブマイクロアナライザー)を用いてSEM画像に写された粒子の元素分析を行った。図2にその結果を示す。図2の(A)は、図1(B)の丸で囲まれた領域を拡大したSEM画像であり、(B)は、そのSEM画像に写された粒子を、EPMAを用いて元素分析して得た元素のマッピング画像である。図2の(B)において、白色部分はナトリウムを表す。この図2の(A)のSEM画像と(B)のマッピング画像から、炭酸ナトリウムの粒子を特定し、その炭酸ナトリウムとして特定された粒子の最長径を図1(B)のSEM画像を用いて計測した。この操作を繰り返して、100個の炭酸ナトリウムの粒子径を計測し、その平均値を算出した。
カルシウムアルミネートクリンカー(CA-CL)を混合粉砕機に投入し、ブレーン比表面積が4500cm2/gになるまで粉砕して、カルシウムアルミネート粉末を得た。得られたカルシウムアルミネート粉末100質量部に対して、無水石膏(CS)を120質量部の割合にて混合機に投入して、混合した。得られた混合物を速硬性混和材(SA-2)とした。
カルシウムアルミネートクリンカー(CA-CL)を100質量部、凝結調整剤として、炭酸ナトリウム(Na-3)を1.0質量部、アルミン酸ナトリウム(Al-3)を0.5質量部、酒石酸(Ta-3)を0.5質量部、硫酸ナトリウム(NS-3)を1.0質量部となる割合にて、混合粉砕機に投入し、ブレーン比表面積が4560cm2/gになるまで混合粉砕した。得られた混合粉砕物に含まれているカルシウムアルミネートの平均粒子径は14.2μmであり、炭酸ナトリウムの平均粒子径は2.8μmであった。
炭酸ナトリウム(Na-1)、炭酸ナトリウム(Na-2)、炭酸ナトリウム(Na-3)、アルミン酸ナトリウム(Al-1)、アルミン酸ナトリウム(Al-2)、アルミン酸ナトリウム(Al-3)、酒石酸(Ta-1)、酒石酸(Ta-2)、酒石酸(Ta-3)、そして無機粉末として普通ポルトランドセメントNを、質量比で3:6:3:1:2:1:1:2:1:20(=Na-1:Na-2:Na-3:Al-1:Al-2:Al-3:Ta-1:Ta-2:Ta-3:N)の割合にて混合機に投入して、乾式混合した。得られた混合物を凝結調整剤高濃度含有混合物(Set-1)とした。
炭酸ナトリウム(Na-1)、炭酸ナトリウム(Na-2)、炭酸ナトリウム(Na-3)、アルミン酸ナトリウム(Al-1)、アルミン酸ナトリウム(Al-2)、アルミン酸ナトリウム(Al-3)、酒石酸(Ta-1)、酒石酸(Ta-2)、そして酒石酸(Ta-3)を、質量比で3:6:3:1:2:1:1:2:1(=Na-1:Na-2:Na-3:Al-1:Al-2:Al-3:Ta-1:Ta-2:Ta-3)の割合にて混合機に投入して、乾式混合した。得られた混合物を凝結調整剤混合物(Set-2)とした。
炭酸ナトリウム(Na-1)、炭酸ナトリウム(Na-2)、炭酸ナトリウム(Na-3)、アルミン酸ナトリウム(Al-1)、アルミン酸ナトリウム(Al-2)、アルミン酸ナトリウム(Al-3)、酒石酸(Ta-1)、酒石酸(Ta-2)、酒石酸(Ta-3)、硫酸ナトリウム(NS-3)そして無機粉末として普通ポルトランドセメント(N)を、質量比で3:6:3:1:2:1:1:2:1:12:32(=Na-1:Na-2:Na-3:Al-1:Al-2:Al-3:Ta-1:Ta-2:Ta-3:NS-3:N)の割合にて混合機に投入して、乾式混合した。得られた混合物を凝結調整剤高濃度含有混合物(Set-3)とした。
速硬性混和材(SA-1、SA-2、SA-3)、普通ポルトランドセメント(N)、凝結調整剤高濃度含有混合物(Set-1、Set-3)、凝結調整剤混合物(Set-2)、細骨材(S3-6)、減水材(MX)および消泡剤(14HP)を下記の表2に示す割合(質量部)にて混合機に投入し、乾式混合して、速硬性モルタル組成物(充填工法用速硬性断面修復材)を製造した。
JIS静置フローは、JIS R 5201「セメントの物理試験方法」に準拠して、テーブルフローによる落下運動を加えずにフロー値を測定した。
凝結開始時間は、JIS R 5201「セメントの物理試験方法」に準拠して測定した。
圧縮強度は、JIS R 5201「セメントの物理試験方法」に準拠して測定した。
また、速硬性モルタル組成物の保存特性を確認するために、速硬性モルタル組成物をビニール袋(容量:12L)に梱包し、ビニール袋の角部の4カ所にピンホール(孔径:0.5mm)を開け、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の速硬性モルタル組成物について、モルタルを調製し、JIS静置フロー、凝結時間、圧縮強度の各物性を測定した。このときの各物性の測定は20℃の環境温度下で行った。その結果を表4に示す。
また、表4の結果から、実施例1、2の速硬性モルタル組成物は、比較例1の速硬性モルタル組成物と比較して、保存によるJIS静置フロー、凝結時間、圧縮強度の変動が小さく、保存安定性に優れていることが確認された。
速硬性混和材(SA-1、SA-2、SA-3)、早強ポルトランドセメント(H)、凝結調整剤高濃度含有混合物(Set-1、Set-3)、凝結調整剤混合物(Set-2)、細骨材(S3-6)および消泡剤(14HP)を下記の表5に記載の質量部にて、混合機に投入し、乾式混合して、速硬性モルタル組成物(吹付工法用速硬性断面修復材)を製造した。
JIS15打フローは、JIS R 5201「セメントの物理試験方法」に準拠して、テーブルフローによる落下運動を15回加えたときのフロー値を測定した。
凝結時間および圧縮強度は、上記の方法により測定した。なお、圧縮強度試験用の試験体は、吹付け法により作製した。
また、速硬性モルタル組成物の保存特性を確認するために、速硬性モルタル組成物を実施例1と同様にして、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の速硬性モルタル組成物について、モルタルを調製し、JIS15打フロー、凝結時間、圧縮強度の各物性を測定した。このときの各物性の測定は20℃の環境温度下で行った。その結果を表7に示す。
また、表7の結果から、実施例3、4の速硬性モルタル組成物は、比較例2の速硬性モルタル組成物と比較して、保存によるJIS15打フロー、凝結時間、圧縮強度の変動が小さく、保存安定性に優れていることが確認された。
速硬性混和材(SA-1、SA-2、SA-3)、早強ポルトランドセメント(H)、凝結調整剤高濃度含有混合物(Set-1、Set-3)、凝結調整剤混合物(Set-2)、細骨材(S3-6)、減水材(MX)および消泡剤(14HP)を下記の表8に記載の質量部にて、混合機に投入し、乾式混合して、速硬性モルタル組成物(プレパックド工法用速硬性断面修復材)を製造した。
J14ロート流下時間は、土木学会規準JSCE-F 541「充てんモルタルの流動性試験方法」に準拠して測定した。
凝結時間および圧縮強度は、上記の方法により測定した。
また、速硬性モルタル組成物の保存特性を確認するために、速硬性モルタル組成物を実施例1と同様にして、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の速硬性モルタル組成物について、モルタルを調製し、J14ロート流下時間、凝結時間、圧縮強度の各物性を測定した。このときの各物性の測定は20℃の環境温度下で行った。その結果を表10に示す。
また、表10の結果から、実施例5、6の速硬性モルタル組成物は、比較例3の速硬性モルタル組成物と比較して、保存によるJ14ロート流下時間、凝結時間、圧縮強度の変動が小さく、保存安定性に優れていることが確認された。
実施例1の速硬性モルタル組成物に、短繊維としてPVA短繊維(繊維径:26μm、繊維長:3mm)を、速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.05質量%(実施例7)、0.1質量%(実施例8)、0.5質量%(実施例9)、1.0質量%(実施例10)、3.0質量%(実施例11)となる量にてそれぞれ添加し、混合して、実施例7~11の短繊維を含む速硬性モルタル組成物を調製した。
得られた短繊維を含む速硬性モルタル組成物100質量部に水15質量部を加え、実施例1と同様にしてモルタルを調製した。得られたモルタルについて、JIS静置フローを測定した。
また、得られたモルタルを用いて作製した供試体に対して、200万回の繰返し疲労試験を行った。疲労試験は、旧JSTM C 7104:1999「繰返し圧縮応力によるコンクリートの疲労試験方法」に準拠した方法により行った。疲労試験の水準は、静的圧縮強度:50N/mm2、上限応力比:65%、下限応力比:10%、繰返し速度:10Hzとし、供試体の寸法はφ50×100mmとした。その結果を、下記の表11に示す。
実施例3の速硬性モルタル組成物に、再乳化粉末樹脂(P)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.5質量%(実施例12)、1.0質量%(実施例13)、2.0質量%(実施例14)、5.0質量%(実施例15)、10.0質量%(実施例16)、15.0質量%(実施例17)となる量にてそれぞれ添加し、混合して、実施例12~17の再乳化粉末樹脂を含む速硬性モルタル組成物を調製した。
得られた再乳化粉末樹脂を含む速硬性モルタル組成物100質量部に水13質量部を加え、実施例3と同様にしてモルタルを調製した。得られたモルタルについて、JIS15打フローを測定した。
また、得られたモルタルを、ウオータジェットで目粗し処理を施したコンクリート平板の表面に、乾式吹き付け工法に塗布した。塗布したモルタルを、材齢28日まで封かん養生して硬化させた。得られたモルタルの硬化体の圧縮強度、および硬化体とコンクリート平板の付着強度を測定した。その結果を、下記の表12に示す。なお、圧縮強度は上記の方法により測定し、付着強度は建研式付着性試験機を用いて測定した。
実施例5の速硬性モルタル組成物に、シリカフューム(SF)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ1.0質量%(実施例18)、5.0質量%(実施例19)、10.0質量%(実施例20)、15.0質量%(実施例21)となる量にてそれぞれ添加し、混合して実施例18~21のシリカフュームを含む速硬性モルタル組成物を作製した。
得られたシリカフュームを含む速硬性モルタル組成物100質量部に水を22質量部加え、実施例5と同様にしてモルタルを調製した。得られたモルタルを100×100×400mmの型枠に流し込み、試験体を作製した。作製した試験体の中性化深さ、塩化物イオン拡散係数、総細孔量を下記の方法により測定した。その結果を、表13に示す。
JIS A 1153「コンクリートの促進中性化試験方法」に準拠し、CO2濃度5%の促進試験を実施して測定した。
(塩化物イオン拡散係数の測定方法)
土木学会規準 JSCE-G 572「浸漬によるコンクリート中の塩化物イオンの見掛けの拡散係数試験方法」に準拠して測定した。
(総細孔量の測定方法)
水銀圧入式ポロシメーターにより測定した。
実施例1の速硬性モルタル組成物に、合成ポリマー系増粘保水剤(Ad)を速硬性断面修復材の全体量に対する含有量がそれぞれ0.1質量%(実施例22)、0.3質量%(実施例23)となる量にてそれぞれ添加し、混合して実施例22、23の増粘保水剤を含む速硬性モルタル組成物を作製した。
得られた合成ポリマー系増粘保水剤を含む速硬性モルタル組成物100質量部に水を15質量部加え、実施例1と同様にしてモルタルを調製した。得られたモルタルを用いて、凍結融解試験を実施した。試験方法は、JIS A 1145 「コンクリートの凍結融解試験方法」に準拠して300サイクルまで行い、相対動弾性係数を測定した。その結果を、図3に示す。
速硬性混和材(SA-1、SA-2、SA-3)、普通ポルトランドセメント(N)、凝結調整剤高濃度含有混合物(Set-1、Set-3)、凝結調整剤混合物(Set-2)、細骨材(S)、再乳化粉末樹脂(P)および消泡剤(14HP)を下記の表14に示す割合(質量部)にて混合機に投入し、乾式混合して、速硬性モルタル組成物を製造した。
Pロート流下時間は、土木学会規準JSCE-F 521「プレパックドコンクリートの注入モルタルの流動性試験方法(P漏斗による方法)」に準拠して測定した。
また、速硬性モルタル組成物の保存特性を確認するために、速硬性モルタル組成物を実施例1と同様にして、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の速硬性モルタル組成物について、セメントミルクを調製し、Pロート流下時間、凝結時間、圧縮強度の各物性を測定した。なお、このときの各物性の測定は20℃の環境温度下で行った。その結果を表16に示す。
また、表16の結果から、実施例24、25の速硬性モルタル組成物は、比較例2の速硬性モルタル組成物と比較して、保存によるPロート流下時間、凝結時間、圧縮強度の変動が小さく、保存安定性に優れていることが確認された。
実施例24の速硬性モルタル組成物に、再乳化粉末樹脂(P)を、速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.5質量%(実施例26)、1.0質量%(実施例27)、2.0質量%(実施例28)、5.0質量%(実施例29)、10.0質量%(実施例30)、30.0質量%(実施例31)となる量にてそれぞれ添加し、混合して、再乳化粉末樹脂を含む速硬性モルタル組成物を製造した。
また、調製したセメントミルクを空隙率22%の開粒度アスファルト母体(100×200×厚さ100mm)に注入し、20℃の温度で7日間養生して半たわみ性舗装体を作成した。得られた半たわみ舗装体を水に浸漬し、-20℃×6時間と+20℃×6時間の凍結融解サイクルを200サイクル繰返し、舗装体の外観を観察した。その結果を、表17に示す。
実施例24の速硬性モルタル組成物に、防凍剤(CN)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ1.0質量%(実施例32)、2.0質量%(実施例33)、3.0質量%(実施例34)、5.0質量%(実施例35)、10.0質量%(実施例36)となる量にてそれぞれ添加し、混合して、防凍剤を含む速硬性モルタル組成物を製造した。
得られたグラウトを、3個の円筒状容器(内径φ50×高さ100mm)にそれぞれ注入した。この円筒状容器3個を、内寸200mm150×150mmの発泡スチロール製の断熱容器に入れ、-5℃の温度環境下で3時間養生して硬化体を作製した。得られた材齢3時間の硬化体3個の圧縮強度をそれぞれ測定し、その平均を求めた。その結果を表18に示す。
Claims (13)
- 速硬性混和材とセメントと細骨材を含み、
前記速硬性混和材100質量部に対して、前記セメントを100質量部以上2000質量部以下の範囲の量にて含有し、
前記速硬性混和材が、カルシウムアルミネートと、前記カルシウムアルミネート100質量部に対して50質量部以上200質量部以下の範囲の量の無機硫酸塩と、前記カルシウムアルミネート100質量部に対して0.1質量部以上10質量部以下の範囲の量の凝結調整剤とを含む組成物であって、前記カルシウムアルミネートの平均粒子径が8μm以上100μm以下の範囲にあり、前記凝結調整剤の平均粒子径が5μm以下であることを特徴とする速硬性モルタル組成物。 - 速硬性混和材100質量部に対して、細骨材を200質量部以上1000質量部以下の範囲にて含有することを特徴とする請求項1に記載の速硬性モルタル組成物。
- 断面修復材であることを特徴とする請求項2に記載の速硬性モルタル組成物。
- 速硬性モルタル組成物の全体量に対して、細骨材を10質量%以上67質量%以下の範囲にて含有することを特徴とする請求項1に記載の速硬性モルタル組成物。
- 舗装用注入材であることを特徴とする請求項4に記載の速硬性モルタル組成物。
- 前記凝結調整剤が、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの1つ以上を含むことを特徴とする請求項1に記載の速硬性モルタル組成物。
- 速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲となるように、さらに、凝結調整剤が添加されていることを特徴とする請求項1乃至6のいずれか1項に記載の速硬性モルタル組成物。
- 前記凝結調整剤が、無機粉末と、前記無機粉末100質量部に対して50質量部以上300質量部以下の範囲の量の前記凝結調整剤とを含む凝結調整剤高濃度含有混合物として添加されていることを特徴とする請求項7に記載の速硬性モルタル組成物。
- さらに、有機短繊維および炭素短繊維のうちの1つ以上からなる短繊維を、速硬性モルタル組成物の全体量に対して0.1質量%以上0.3質量%以下の範囲にて含むことを特徴とする請求項1乃至8のいずれか1項に記載の速硬性モルタル組成物。
- さらに、再乳化粉末樹脂を、速硬性モルタル組成物の全体量に対して0.5質量%以上30質量%以下の範囲にて含むことを特徴とする請求項1乃至9のいずれか1項に記載の速硬性モルタル組成物。
- さらに、シリカフュームを、速硬性モルタル組成物の全体量に対して1質量%以上15質量%以下の範囲にて含むことを特徴とする請求項1乃至10のいずれか1項に記載の速硬性モルタル組成物。
- さらに、合成ポリマー系増粘保水剤を、速硬性モルタル組成物の全体量に対して0.1質量%以上0.3質量%以下の範囲にて含むことを特徴とする請求項1乃至11のいずれか1項に記載の速硬性モルタル組成物。
- さらに、酢酸ナトリウム、酢酸カルシウム、亜硝酸カルシウムのうちの1つ以上からなる防凍剤を、速硬性モルタル組成物の全体量に対して1質量%以上10質量%以下の範囲にて含むことを特徴とする請求項1乃至12のいずれか1項に記載の速硬性モルタル組成物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187022471A KR102294203B1 (ko) | 2016-03-31 | 2017-03-31 | 속경성 모르타르 조성물 |
SG11201806649RA SG11201806649RA (en) | 2016-03-31 | 2017-03-31 | Rapid-hardening mortar composition |
CN201780009812.4A CN108602722A (zh) | 2016-03-31 | 2017-03-31 | 快速固化砂浆组合物 |
AU2017239900A AU2017239900B2 (en) | 2016-03-31 | 2017-03-31 | Rapid-hardening mortar composition |
US16/078,652 US11117833B2 (en) | 2016-03-31 | 2017-03-31 | Rapid-hardening mortar composition |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016073416 | 2016-03-31 | ||
JP2016-073198 | 2016-03-31 | ||
JP2016073198 | 2016-03-31 | ||
JP2016-073416 | 2016-03-31 | ||
JP2017061311A JP6183571B1 (ja) | 2016-03-31 | 2017-03-27 | 速硬性モルタル組成物 |
JP2017-061311 | 2017-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017171009A1 true WO2017171009A1 (ja) | 2017-10-05 |
Family
ID=59678253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013613 WO2017171009A1 (ja) | 2016-03-31 | 2017-03-31 | 速硬性モルタル組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11117833B2 (ja) |
JP (1) | JP6183571B1 (ja) |
KR (1) | KR102294203B1 (ja) |
CN (1) | CN108602722A (ja) |
AU (1) | AU2017239900B2 (ja) |
SG (1) | SG11201806649RA (ja) |
WO (1) | WO2017171009A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020019658A (ja) * | 2018-07-30 | 2020-02-06 | 太平洋マテリアル株式会社 | グラウトモルタル組成物、グラウトモルタル、コンクリート構造体及びその製造方法 |
JP2021123507A (ja) * | 2020-01-31 | 2021-08-30 | 国立研究開発法人 海上・港湾・航空技術研究所 | 高耐久性裏込めグラウト材 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6965136B2 (ja) * | 2017-12-08 | 2021-11-10 | 太平洋セメント株式会社 | 超速硬セメントを用いるモルタル又はコンクリートの施工方法 |
JP2019157564A (ja) * | 2018-03-15 | 2019-09-19 | 有限会社中部植生 | モルタル又はコンクリート吹付方法、及びその吹付装置 |
JP7145751B2 (ja) * | 2018-12-26 | 2022-10-03 | 鹿島道路株式会社 | 舗装用補修材およびこれを用いた補修工法 |
JP7343284B2 (ja) * | 2019-03-20 | 2023-09-12 | デンカ株式会社 | 急硬性セメント、セメントモルタル、セメントコンクリート、道路補修材料、及び、道路の補修方法 |
JP7093742B2 (ja) * | 2019-03-29 | 2022-06-30 | 大成ロテック株式会社 | ブロック舗装構造及びその構築方法 |
JP7116433B2 (ja) * | 2019-03-29 | 2022-08-10 | 大成ロテック株式会社 | ブロック舗装用充填材 |
EP3805182B1 (en) * | 2019-10-09 | 2023-05-03 | Sika Technology Ag | Process for the waterproofing of porous construction materials |
JP2021155296A (ja) * | 2020-03-27 | 2021-10-07 | 国立大学法人 岡山大学 | モルタルまたはコンクリート用組成物およびその成形品 |
JP7442372B2 (ja) * | 2020-03-31 | 2024-03-04 | Muマテックス株式会社 | 速硬性モルタル組成物 |
JP7554020B2 (ja) | 2020-10-27 | 2024-09-19 | 太平洋セメント株式会社 | 半たわみ性舗装用組成物 |
JP7558625B2 (ja) | 2021-03-16 | 2024-10-01 | 太平洋マテリアル株式会社 | 速硬性グラウト組成物及び速硬性グラウト |
CN113565344A (zh) * | 2021-08-19 | 2021-10-29 | 交通运输部公路科学研究所 | 一种深水建筑物水下渗漏通道快速补漏方法 |
KR102449967B1 (ko) * | 2022-07-08 | 2022-10-05 | 주식회사 포스리젠 | 산업부산물을 이용한 저강도 주면 고정액 조성물 및 이를 이용한 파일 매입 공법 |
EP4397640A1 (en) * | 2022-09-07 | 2024-07-10 | Fibrobeton Yapi Elemanlari Sanayi Insaat Ve Ticaret Anonim Sirketi | Ultra-early strength concrete mix |
KR102547604B1 (ko) * | 2022-09-30 | 2023-06-28 | 정채규 | 속경성 도로 보수용 조성물 및 이를 이용한 도로의 보수 방법 |
KR102565587B1 (ko) | 2023-03-02 | 2023-08-11 | 주식회사 한화 | 방청-방동제 및 이를 포함한 콘크리트 조성물 |
CN117447131A (zh) * | 2023-10-13 | 2024-01-26 | 石家庄市长安育才建材有限公司 | 一种抗疲劳性高强风电灌浆料及其制备方法与应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07215751A (ja) * | 1994-01-31 | 1995-08-15 | Mitsubishi Materials Corp | 膨張性速硬セメント |
JPH08310846A (ja) * | 1995-05-18 | 1996-11-26 | Denki Kagaku Kogyo Kk | セメント混和材、セメント組成物、及びそれを用いた注入材 |
JP2000281410A (ja) * | 1999-03-30 | 2000-10-10 | Denki Kagaku Kogyo Kk | セメント混和材及びセメント組成物 |
JP2008274580A (ja) * | 2007-04-26 | 2008-11-13 | Mitsubishi Materials Corp | 舗装体用注入材及びこれを用いた舗装方法 |
JP2015120624A (ja) * | 2013-12-25 | 2015-07-02 | 太平洋マテリアル株式会社 | 速硬性グラウト組成物 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3215548A (en) * | 1961-12-14 | 1965-11-02 | Sika Chemical Corp | Additives for concrete, mortar and grout |
JPS60108352A (ja) | 1983-11-12 | 1985-06-13 | 電気化学工業株式会社 | 超速硬セメント組成物 |
JPH0341420A (ja) | 1989-07-07 | 1991-02-21 | Seiko Epson Corp | Mim液晶電気光学装置およびその製造方法 |
SE9103075L (sv) * | 1991-10-22 | 1993-04-23 | Delcon Ab Concrete Dev | Foerfarande foer framstaellning av vaermeisolerande konstruktionslaettballastbetong samt vid foerfarandet anvaend betongkomposition |
WO2005042432A1 (ja) * | 2003-10-31 | 2005-05-12 | Denki Kagaku Kogyo Kabushiki Kaisha | セメント用急硬性組成物、及びその製造方法 |
KR100928841B1 (ko) * | 2005-09-02 | 2009-11-30 | 덴끼 가가꾸 고교 가부시키가이샤 | 그라우트용 시멘트 조성물 및 이를 이용한 그라우트 재료 |
JP4382764B2 (ja) * | 2006-03-08 | 2009-12-16 | 住友大阪セメント株式会社 | 保水性硬化体用セメント組成物、セメントミルク、保水性硬化体及び保水性硬化体の製造方法 |
JP2007320835A (ja) | 2006-06-05 | 2007-12-13 | Denki Kagaku Kogyo Kk | 超速硬セメント組成物、超速硬セメントコンクリート組成物、及び超速硬セメントコンクリート |
CN102442794B (zh) | 2006-11-09 | 2016-10-19 | 电化株式会社 | 速凝剂及使用其的喷涂方法 |
CN100408500C (zh) * | 2007-04-25 | 2008-08-06 | 刘文伟 | 高速公路路面基层用粘土固化增强剂及其应用 |
JP4893453B2 (ja) | 2007-04-26 | 2012-03-07 | 三菱マテリアル株式会社 | コンクリート断面修復材 |
JP4965329B2 (ja) | 2007-05-10 | 2012-07-04 | 株式会社トプコン | 測位システム、受信端末機及び測位方法 |
CN101928120B (zh) * | 2009-06-18 | 2012-12-12 | 五冶集团上海有限公司 | 自流速硬型灌浆料及使用方法 |
JP5611795B2 (ja) | 2010-12-08 | 2014-10-22 | 電気化学工業株式会社 | 吹付け用急結剤及びそれを用いた吹付けコンクリート並びに吹付け工法 |
JP6072529B2 (ja) | 2012-12-05 | 2017-02-01 | デンカ株式会社 | セメント急結剤、セメント組成物、吹付け材料、吹付け工法 |
US9328027B2 (en) * | 2012-12-21 | 2016-05-03 | Hanson Aggregates LLC | Fast-curing pervious concrete mix |
JP6207854B2 (ja) | 2013-03-21 | 2017-10-04 | デンカ株式会社 | 急結剤 |
CN103253901B (zh) * | 2013-06-06 | 2016-01-13 | 上海昱喜新材料科技有限公司 | 一种混凝土桥面快速铺装砂浆及其制备方法 |
CN103408273A (zh) * | 2013-08-30 | 2013-11-27 | 南京沪联新型建材有限公司 | 一种渗粘型水泥基密封修复剂及其制备方法 |
CN103771809B (zh) * | 2014-01-01 | 2015-12-30 | 大连理工大学 | 一种混凝土表层微缺陷修补材料 |
CN103922633B (zh) * | 2014-03-13 | 2015-12-09 | 南京瑞迪高新技术有限公司 | 一种具有自修复功能的预应力孔道压浆剂 |
JP6183572B1 (ja) * | 2016-03-31 | 2017-08-23 | 三菱マテリアル株式会社 | 速硬性セメント組成物 |
-
2017
- 2017-03-27 JP JP2017061311A patent/JP6183571B1/ja active Active
- 2017-03-31 CN CN201780009812.4A patent/CN108602722A/zh active Pending
- 2017-03-31 AU AU2017239900A patent/AU2017239900B2/en not_active Ceased
- 2017-03-31 KR KR1020187022471A patent/KR102294203B1/ko active IP Right Grant
- 2017-03-31 US US16/078,652 patent/US11117833B2/en active Active
- 2017-03-31 WO PCT/JP2017/013613 patent/WO2017171009A1/ja active Application Filing
- 2017-03-31 SG SG11201806649RA patent/SG11201806649RA/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07215751A (ja) * | 1994-01-31 | 1995-08-15 | Mitsubishi Materials Corp | 膨張性速硬セメント |
JPH08310846A (ja) * | 1995-05-18 | 1996-11-26 | Denki Kagaku Kogyo Kk | セメント混和材、セメント組成物、及びそれを用いた注入材 |
JP2000281410A (ja) * | 1999-03-30 | 2000-10-10 | Denki Kagaku Kogyo Kk | セメント混和材及びセメント組成物 |
JP2008274580A (ja) * | 2007-04-26 | 2008-11-13 | Mitsubishi Materials Corp | 舗装体用注入材及びこれを用いた舗装方法 |
JP2015120624A (ja) * | 2013-12-25 | 2015-07-02 | 太平洋マテリアル株式会社 | 速硬性グラウト組成物 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020019658A (ja) * | 2018-07-30 | 2020-02-06 | 太平洋マテリアル株式会社 | グラウトモルタル組成物、グラウトモルタル、コンクリート構造体及びその製造方法 |
JP7166827B2 (ja) | 2018-07-30 | 2022-11-08 | 太平洋マテリアル株式会社 | グラウトモルタル組成物、グラウトモルタル、コンクリート構造体及びその製造方法 |
JP2022186934A (ja) * | 2018-07-30 | 2022-12-15 | 太平洋マテリアル株式会社 | グラウトモルタル |
JP7394194B2 (ja) | 2018-07-30 | 2023-12-07 | 太平洋マテリアル株式会社 | グラウトモルタル |
JP2021123507A (ja) * | 2020-01-31 | 2021-08-30 | 国立研究開発法人 海上・港湾・航空技術研究所 | 高耐久性裏込めグラウト材 |
JP7473754B2 (ja) | 2020-01-31 | 2024-04-24 | 国立研究開発法人 海上・港湾・航空技術研究所 | 高耐久性裏込めグラウト材 |
Also Published As
Publication number | Publication date |
---|---|
US20200317576A1 (en) | 2020-10-08 |
US11117833B2 (en) | 2021-09-14 |
AU2017239900A1 (en) | 2018-08-23 |
SG11201806649RA (en) | 2018-09-27 |
AU2017239900B2 (en) | 2020-10-22 |
JP6183571B1 (ja) | 2017-08-23 |
CN108602722A (zh) | 2018-09-28 |
KR102294203B1 (ko) | 2021-08-25 |
KR20180131532A (ko) | 2018-12-10 |
JP2017186238A (ja) | 2017-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6183571B1 (ja) | 速硬性モルタル組成物 | |
JP6183572B1 (ja) | 速硬性セメント組成物 | |
KR101074371B1 (ko) | 내염성 시멘트를 사용한 반강성 도로포장용 시멘트 밀크와 이를 가진 주입 시공한 고내구성 반강성 도로포장 시공방법 | |
CN107686315A (zh) | 抗冻大体积混凝土 | |
CN108558292A (zh) | 一种抗裂混凝土拌合物及其制备方法 | |
JP2008120625A (ja) | セメント系材料 | |
KR101380171B1 (ko) | 내염성 시멘트를 포함하는 반강성 도로포장용 고내구성 시멘트와 이를 가진 주입 시공한 고내구성 반강성 도로포장 시공방법 | |
JP5278265B2 (ja) | 自己修復コンクリート混和材、その製造方法及び該混和材を用いた自己修復コンクリート材料 | |
JP6508789B2 (ja) | ポリマーセメントモルタル、及びポリマーセメントモルタルを用いた工法 | |
Hlail et al. | Sustainable development of highly flowable cementitious grouts for semi-flexible pavement mixture | |
JP3672518B2 (ja) | セメント混和材、セメント組成物及びそれを用いたコンクリート | |
JP7442373B2 (ja) | 速硬性セメント組成物 | |
JP3913717B2 (ja) | アスファルト、コンクリート舗装部の表層部補修用セメントモルタル組成物 | |
JP2015000820A (ja) | ポリマーセメントモルタル、及びポリマーセメントモルタルを用いた工法 | |
JP2006182619A (ja) | セメント混和剤及びセメント組成物 | |
JP7442372B2 (ja) | 速硬性モルタル組成物 | |
JP7437203B2 (ja) | モルタルコンクリート | |
JP6824778B2 (ja) | ポリマーセメントコンクリート及びその施工方法 | |
JP2021155241A (ja) | 強化コンクリート用補修材、そのモルタル及び硬化体、並びに強化コンクリートの補強方法 | |
JP5698774B2 (ja) | 高緻密コンクリート及びその製造方法 | |
BR112022024239B1 (pt) | Método para produção de produtos de concreto pré-moldados carbonatados com durabilidade aumentada | |
TW202317502A (zh) | 複合材料 | |
JP2006182617A (ja) | 急結剤及びこれを用いた吹付材 | |
JP2021187715A (ja) | 勾配面施工用速硬性モルタル組成物及び勾配面施工用速硬性モルタル | |
JP2018171833A (ja) | 高耐久速硬性モルタルまたはコンクリートの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187022471 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201806649R Country of ref document: SG |
|
ENP | Entry into the national phase |
Ref document number: 2017239900 Country of ref document: AU Date of ref document: 20170331 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17775540 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17775540 Country of ref document: EP Kind code of ref document: A1 |