WO2017171009A1 - 速硬性モルタル組成物 - Google Patents

速硬性モルタル組成物 Download PDF

Info

Publication number
WO2017171009A1
WO2017171009A1 PCT/JP2017/013613 JP2017013613W WO2017171009A1 WO 2017171009 A1 WO2017171009 A1 WO 2017171009A1 JP 2017013613 W JP2017013613 W JP 2017013613W WO 2017171009 A1 WO2017171009 A1 WO 2017171009A1
Authority
WO
WIPO (PCT)
Prior art keywords
setting
mass
quick
mortar composition
parts
Prior art date
Application number
PCT/JP2017/013613
Other languages
English (en)
French (fr)
Inventor
神谷 清志
大輔 木元
徳永 健二
田原 英男
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020187022471A priority Critical patent/KR102294203B1/ko
Priority to SG11201806649RA priority patent/SG11201806649RA/en
Priority to CN201780009812.4A priority patent/CN108602722A/zh
Priority to AU2017239900A priority patent/AU2017239900B2/en
Priority to US16/078,652 priority patent/US11117833B2/en
Publication of WO2017171009A1 publication Critical patent/WO2017171009A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0093Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0641Polyvinylalcohols; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/147Alkali-metal sulfates; Ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/10Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
    • C04B2103/465Water-sorbing agents, hygroscopic or hydrophilic agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/601Agents for increasing frost resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00137Injection moldable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/05Materials having an early high strength, e.g. allowing fast demoulding or formless casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a quick-setting mortar composition, and more particularly to a quick-setting mortar composition useful as a cross-section repair material and a pavement injection material.
  • This application is filed in Japanese Patent Application No. 2016-73198 filed in Japan on March 31, 2016, Japanese Patent Application No. 2016-73416 filed in Japan on March 31, 2016, and Japan on March 27, 2017. Priority is claimed based on Japanese Patent Application No. 2017-61311 filed in Japan, the contents of which are incorporated herein by reference.
  • the cross-section repair method is a method of removing a deteriorated portion of concrete with a hook or the like and repairing the removed cross-section portion with a cross-section repair material.
  • a mortar composition containing cement and fine aggregate is used as the cross-sectional repair material used in the present construction method.
  • a cross-section repair material for plastering method, a cross-section repair material for spraying method, a cross-section repair material for filling method, and a cross-section repair material for prepacked method are used.
  • PC pavement and RC pavement are known as methods for constructing pavements such as roads, harbor facilities, and airport runways.
  • the PC pavement is a pavement in which a PC (prestressed concrete) pavement plate is disposed on the roadbed and a backfill grout material is injected into a gap between the PC pavement plate and the roadbed.
  • the RC pavement is a pavement using an RC (steel reinforced concrete) pavement board instead of the PC pavement board.
  • semi-flexible pavement is known as a pavement for heavy traffic roads.
  • Semi-flexible pavement is pavement in which cement milk is injected into an open-graded asphalt mixture having a large porosity.
  • a mortar composition containing cement and fine aggregate is also used as a backfill grout material used in PC and RC pavements and as a pavement injection material used as a raw material for cement milk used in semi-flexible pavements. May be.
  • the mortar composition used as this pavement infusion material is usually fast-curing, which contains a fast-curing admixture to harden the cement early in order to work at night and open traffic the next morning.
  • a mortar composition is usually fast-curing, which contains a fast-curing admixture to harden the cement early in order to work at night and open traffic the next morning.
  • a setting modifier is added to adjust the setting start time of the mortar composition.
  • the setting adjuster inorganic carbonate, oxycarboxylic acid, and sodium aluminate are used.
  • Patent Document 1 includes a quick-hardening cement containing 15-35% by weight of a quick-hardening component in which the weight ratio of calcium aluminate to inorganic sulfate is 1: 0.5 to 3, and includes an internal weight.
  • a super-hard cement composition comprising sodium aluminate 0.2 to 3%, inorganic carbonate 0.2 to 5%, and oxycarboxylic acids 0.1 to 2% is disclosed.
  • Patent Document 2 discloses a concrete cross-section repair material containing a quick-setting admixture, a cement mineral, an aggregate, a re-emulsified powder resin, and a fiber.
  • sodium aluminate, inorganic carbonate and carboxylic acid are used as a setting modifier for a fast-curing admixture, and the particle size composition of these setting modifiers is a first having an average particle size of more than 45 ⁇ m and 90 ⁇ m or less.
  • Patent Document 3 discloses a pavement injection material containing a quick-setting admixture, a cement mineral, sand, and a re-emulsified powder resin.
  • sodium aluminate, inorganic carbonate and carboxylic acids are used as a setting modifier for a fast-curing admixture, and the particle size composition of these setting modifiers is a first having an average particle size of more than 45 ⁇ m and 90 ⁇ m or less.
  • the fast-curing mortar composition containing the fast-curing admixture can ensure the pot life stably and sufficiently, that is, the time from the beginning of the setting is stable and long until the curing reaction proceeds after adding water. Is required to have high fluidity. Moreover, after completion
  • the pot life can be secured as long as about 60 minutes without reducing the compressive strength at the young age (about 3 hours). It was difficult, and spots were found on the hardened body of the cement composition, and this part had a defect that it became a defect and the long-term strength was lowered.
  • the setting time varies greatly depending on the environmental temperature, and the workability at the construction site is inferior.
  • the initial strength is determined by defining the particle size composition of the setting modifier contained in the quick-hardening admixture.
  • the environmental temperature dependence of expression and setting time is improved.
  • the concrete cross-section restoration material and pavement injection material mixed with this quick-setting admixture when stored for a period of about 3 months, the setting time changes greatly compared to immediately after production, and the initial strength development is reduced. There was a thing.
  • the present invention has been made in view of the above-described circumstances, and the variation in the initial setting time due to the environmental temperature is small, the variation in the initial setting time is small even when stored for a long period of time, and the curing reaction occurs after adding water. It is an object of the present invention to provide a quick-setting mortar composition having high fluidity until progress and excellent initial strength development.
  • calcium aluminate, inorganic sulfate, and a setting regulator for example, inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate.
  • the average particle diameter of the calcium aluminate is in the range of 8 ⁇ m to 100 ⁇ m, and the average particle diameter of the setting modifier is 5 ⁇ m or less. It has been found that it is effective to add a fast setting admixture to a predetermined amount of cement and fine aggregate.
  • the fast-setting mortar composition containing a predetermined amount of cement and fine aggregate with respect to the above-mentioned fast-setting admixture has a smaller variation in the initial setting time due to environmental temperature, and the initial setting time even after long-term storage It was found that the fluctuation of the flow rate was small, the fluidity from the addition of water to the progress of the curing reaction was high, and the initial strength was excellent. Moreover, it discovered that the calcium aluminate and setting regulator which have said average particle diameter could be obtained by mixing and crushing the clinker which consists of calcium aluminate, and a setting regulator.
  • the quick-setting mortar composition according to one aspect of the present invention includes a quick-setting admixture, cement, and fine aggregate
  • the quick-setting mortar composition Contains 100 parts by mass or more and 2000 parts by mass or less of the cement with respect to 100 parts by mass of the quick-setting admixture
  • the quick-setting admixture includes calcium aluminate and the calcium aluminate.
  • Inorganic sulfate in an amount ranging from 50 parts by weight to 200 parts by weight with respect to 100 parts by weight, and condensation in an amount ranging from 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the calcium aluminate.
  • the setting modifier contained in the quick-setting admixture has an average particle size of 5 ⁇ m or less, and calcium aluminate (average particle size: 8 ⁇ m to 100 ⁇ m). Compared with the range of (1), it is fine and easily dissolved in water. For this reason, when water is added to the quick-setting mortar composition according to one embodiment of the present invention, the setting modifier is quickly and stably dissolved in water in a wide temperature range, and the setting adjusting action by the setting modifier is early. Since it is exhibited, the fluctuation of the initial setting time due to the environmental temperature is reduced.
  • the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes stable and long, and the fluidity after adding water becomes high. Furthermore, after the setting adjustment action by the setting adjuster is completed, the hardening acceleration action of cement by calcium aluminate and inorganic sulfate is exhibited, so that the initial strength development property of the quick-setting mortar composition can be improved. it can. Furthermore, since the setting modifier is dispersed as fine particles in the fast-curing admixture, the fast-setting mortar composition according to one embodiment of the present invention segregates even when stored for a long period of time. Thus, it is difficult for the content of the setting modifier to become non-uniform. For this reason, even if it preserve
  • the fine aggregate may be contained in the range of 200 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the quick-setting admixture. Good.
  • the initial strength developability is excellent, and the cured body shrinks (self-shrink) accompanying the curing of the fast-curing mortar composition, or after curing. Shrinkage (dry shrinkage) associated with moisture dissipation is suppressed. For this reason, generation
  • the quick-hardening mortar composition which concerns on 1 aspect of this invention, even if it contains fine aggregate in the range of 10 mass% or more and 67 mass% or less with respect to the whole quantity of a quick-hardening mortar composition. Good.
  • the fine aggregate is contained in the above range, the initial strength development is excellent and the fluidity of the special fine aggregate to which water is added is improved. Since fine aggregate serves as a medium even in a fine space such as a void of an open-graded asphalt mixture in semi-flexible pavement, it can be satisfactorily filled. Therefore, this quick-hardening mortar composition is particularly useful as a pavement injection material.
  • the said setting regulator contains 1 or more of inorganic carbonate, oxycarboxylic acid, sodium aluminate, and sodium sulfate.
  • the setting modifier contains one or more of the above-mentioned substances to reliably reduce the fluctuation of the initial setting time of the fast-setting mortar composition due to the environmental temperature. it can.
  • the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes more stable and longer, and the fluidity after adding water becomes higher.
  • the content of the setting modifier with respect to the total amount of the quick-setting mortar composition is in a range of 0.01% by mass or more and 5% by mass or less.
  • a setting regulator may be added.
  • the content of the setting modifier with respect to the total amount of the quick-setting mortar composition is in the range of 0.01% by mass or more and 5% by mass or less, the quick-setting mortar composition by environmental temperature and long-term storage.
  • the fluctuation of the initial setting time can be reliably reduced, and the initial strength development is enhanced.
  • the setting modifier added to the quick-setting mortar composition includes an inorganic powder and the setting adjuster in an amount ranging from 50 parts by mass to 300 parts by mass with respect to 100 parts by mass of the inorganic powder. It is preferable that it is added as a mixture containing a high concentration controller. In this case, by adding the setting modifier as a mixture containing a high concentration of the setting modifier, the setting modifier can be uniformly dispersed in the fast-setting mortar composition. Variations in the initial setting time of the object can be reduced more reliably.
  • the short fiber which consists of 1 or more of an organic short fiber and a carbon short fiber is further 0 with respect to the whole quantity of a quick-hardening mortar composition. It may be contained in the range of 1% by mass to 0.3% by mass. In this case, since the short fibers act as a reinforcing material, the cured product obtained by curing the fast-curing mortar composition has improved crack resistance and excellent durability against fatigue.
  • re-emulsification powder resin is included in 0.5 to 30 mass% with respect to the whole quantity of a quick-hardening mortar composition. May be.
  • the quick-setting mortar composition contains the re-emulsified powder resin, adhesion to the concrete structure is improved.
  • the silica fume may further be contained in 1 to 15 mass% with respect to the whole quantity of a quick-hardening mortar composition.
  • silica fume since silica fume has a polazone action, long-term strength development is improved.
  • the cured product obtained by curing the fast-curing mortar composition is densified, the total pore amount is reduced, and the progress of neutralization and the progress of diffusion of chloride ions are suppressed, so that the durability is improved.
  • the synthetic polymer-based thickening water retaining agent is further added in an amount of 0.1% by mass to 0.3% by mass with respect to the total amount of the quick-setting mortar composition.
  • the synthetic polymer thickening water retention agent is in the form of powder, and fine bubbles are generated when it comes into contact with water. Therefore, the cured product obtained by curing the fast-curing mortar composition is artificially introduced with entrained air. As a result, the resistance to freezing and thawing is improved.
  • an antifreezing agent comprising one or more of sodium acetate, calcium acetate, and calcium nitrite is further added to the total amount of the quick-setting mortar composition. 1 mass% or more and 10 mass% or less may be included. In this case, freezing of the quick-setting mortar composition kneaded with water can be suppressed even under a cryogenic temperature environment in which water freezes, and the initial strength development is enhanced.
  • the fluctuation of the initial setting time due to the environmental temperature is small, the fluctuation of the initial setting time is small even when stored for a long period of time, and the flowability from when water is added until the curing reaction proceeds. It is possible to provide a quick-setting mortar composition having a high initial strength and excellent initial strength.
  • Example 1 It is a scanning electron microscope image of the mixed pulverized product of the calcium aluminate clinker and the coagulation regulator produced in Example 1, (A) is an image at an apparatus magnification of 1000 times, and (B) is an apparatus magnification at 3000 times. It is an image. (A) is a scanning electron microscope image obtained by enlarging a circled region in FIG. 1 (B), and (B) is an EPMA of sodium obtained by elemental analysis of particles imaged in the image. It is a mapping image. It is a graph which shows the measurement result of the freeze-thaw test of the hardening body which hardened the quick-hardening mortar composition of Example 1, Example 22, and Example 23.
  • the quick-setting mortar composition according to this embodiment includes a quick-setting admixture, cement, and fine aggregate.
  • the cement is included in the range of 100 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the quick-setting admixture.
  • the quick-setting admixture is calcium aluminate, an inorganic sulfate in an amount ranging from 50 parts by mass to 200 parts by mass with respect to 100 parts by mass of the calcium aluminate, and 0 with respect to 100 parts by mass of the calcium aluminate.
  • a setting regulator in an amount ranging from 1 part by weight to 10 parts by weight.
  • the average particle diameter of the calcium aluminate in the quick-setting admixture is in the range of 8 ⁇ m to 100 ⁇ m, and the average particle diameter of the setting modifier is 5 ⁇ m or less.
  • the quick-hardening mortar composition of the present embodiment may further contain various admixtures such as a setting modifier, short fibers, re-emulsified powder resin, silica fume, synthetic polymer thickening water retaining agent, antifreeze agent and the like.
  • a setting modifier such as a setting modifier, short fibers, re-emulsified powder resin, silica fume, synthetic polymer thickening water retaining agent, antifreeze agent and the like.
  • the quick-setting admixture is a composition containing calcium aluminate, inorganic sulfate and a setting modifier. Calcium aluminate elutes calcium ions and aluminum ions when they come into contact with water during the use of a quick-setting mortar composition, and reacts these with sulfate ions eluted from inorganic sulfates to form acicular crystals.
  • ettringite by generating (3CaO ⁇ Al 2 O 3 ⁇ 3CaSO 4 ⁇ 32H 2 O) or mono Sulfate (3CaO ⁇ Al 2 O 3 ⁇ CaSO 4 ⁇ 12H 2 O) hydrate, such as the fast curing mortar It has the effect of improving the initial strength development of the composition. If the elution rate of calcium ions and aluminum ions from the calcium aluminate is too small, the reactivity with sulfate ions is deteriorated, and the initial strength development of the fast-curing mortar composition may be lowered.
  • the average particle diameter (average primary particle diameter) of calcium aluminate is set in the range of 8 ⁇ m or more and 100 ⁇ m or less.
  • the average particle size of the calcium aluminate is less than 8 ⁇ m, the elution rate of calcium ions and aluminum ions becomes too high, and it may be difficult to adjust the initial setting time of the fast-curing mortar composition.
  • the average particle diameter of calcium aluminate exceeds 100 ⁇ m, the elution rate of calcium ions and aluminum ions becomes too small, and the initial strength expression of the quick-setting mortar composition may be lowered.
  • the average particle diameter of the calcium aluminate contained in the fast-curing mortar composition can be measured using, for example, SEM (scanning electron microscope) and EPMA (electronic probe microanalyzer). That is, the particles of calcium aluminate contained in the fast-hardening admixture are identified from the SEM image of the quick-hardening admixture and the elements detected by elemental analysis by EPMA, and the particles identified as calcium aluminate are identified. The particle diameter can be measured from the SEM image, and the average value can be obtained. Particles in which only calcium and aluminum are detected by elemental analysis with EPMA can be identified as calcium aluminate particles.
  • the calcium aluminate has one or more compositions selected from the group consisting of 12CaO ⁇ 7Al 2 O 3 , 11CaO ⁇ 7Al 2 O 3 ⁇ CaF 2 and CaO ⁇ Al 2 O 3 , and a vitrification rate of 80 It is preferable to use what is% or more.
  • the vitrification rate is more preferably 80% or more and 98% or less, and particularly preferably 90% or more and 98% or less.
  • Calcium aluminate having the above composition and vitrification rate has a high elution rate of calcium ions and aluminum ions when it comes into contact with water, and the reactivity becomes high. Can be improved.
  • Calcium aluminate is preferably Blaine specific surface area of less 3000 cm 2 / g or more 5500cm 2 / g.
  • Blaine specific surface area is 3000 cm 2 / g or more
  • the Blaine specific surface area is 3000 cm 2 / g or more
  • the elution rate of calcium ions and aluminum ions increases, and the reactivity with sulfate ions eluted from inorganic sulfates is increased. Since it increases, it becomes possible to improve the initial strength development property of a quick-hardening mortar composition more reliably.
  • the Blaine specific surface area is 5500 cm 2 / g or less, it is avoided that the elution rate of calcium ions and aluminum ions is excessively increased when calcium aluminate comes into contact with water, and the reactivity with sulfate ions is avoided. Is suppressed from becoming too high. Even when the Blaine specific surface area is 5500 cm 2 / g or more, the initial strength of the fast-curing mortar composition is flat, which is not economically preferable because the energy required for pulverization is excessively used.
  • the specific surface area of the brane is measured by a specific surface area test using a brane air permeation apparatus described in JIS R 5201 “Cement physical test method”.
  • the inorganic sulfate contained in the quick-setting admixture elutes sulfate ions when it comes into contact with water when using the quick-setting mortar composition, and reacts with calcium ions and aluminum ions eluted from calcium aluminate.
  • by generating hydration such as ettringite or monosulfate of needle-like crystals, it has the effect of improving the initial strength development of the quick-setting mortar composition.
  • the inorganic sulfate has a brane specific surface area of 8000 cm 2 / g or more.
  • the inorganic sulfate having the above-mentioned Blaine specific surface area has a high elution rate of sulfate ions and a high reactivity with calcium ions and aluminum ions eluted from calcium aluminate. It becomes possible to improve it reliably.
  • the specific surface area of the inorganic sulfate salt is preferably 12000 cm 2 / g or less. If the Blaine specific surface area becomes too large, the elution rate of sulfate ions will become too high, and the reactivity between calcium ions and aluminum ions will become excessively high, so the time from the start of setting to hardening will be shortened, adjusting the setting.
  • the inorganic sulfate is preferably anhydrous gypsum, and particularly preferably type II anhydrous gypsum. Since anhydrous gypsum (particularly type II anhydrous gypsum) is highly reactive with calcium aluminate, it is possible to more reliably improve the initial strength development of the quick-setting mortar composition.
  • the setting modifier contained in the quick-setting admixture acts to adjust the time from the addition of water to the quick-setting mortar composition until the setting of the quick-setting mortar composition starts. That is, it has the effect of delaying the curing time of the mortar.
  • the retarding effect of the setting time of the mortar by the setting modifier is that the setting adjuster dissolves in water and chelate reacts with calcium ions and aluminum ions eluted from the quick setting admixture (calcium aluminate).
  • the coagulation adjusting agent contained in the fast-curing admixture is fine particles having an average particle size (average primary particle size) of 5 ⁇ m or less. For this reason, the setting regulator can be quickly dissolved in water in a relatively wide temperature range.
  • the average particle size of the setting modifier is preferably 1 ⁇ m or more. If the average particle size is less than 1 ⁇ m, aggregated particles may be easily formed.
  • the setting modifier includes one or more of an inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate. Since these agents are easily dissolved in water, the setting modifier contains one or more of these agents, so that the setting control action by the setting agent is exerted at an early stage. Time fluctuation can be reliably reduced. Moreover, since the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes more stable and longer, and the fluidity after adding water becomes higher.
  • the inorganic carbonate is preferably an alkali metal carbonate or bicarbonate.
  • Examples of the inorganic carbonate include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium carbonate, and ammonium carbonate.
  • One of these inorganic carbonates may be used alone, or two or more thereof may be used in combination.
  • Examples of oxycarboxylic acids include tartaric acid, citric acid, malic acid, gluconic acid, and maleic acid.
  • One of these oxycarboxylic acids may be used alone, or two or more thereof may be used in combination.
  • the setting modifier is preferably used in combination of two or more of inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate.
  • the combination of two or more is preferably three combinations of inorganic carbonate, oxycarboxylic acid and sodium aluminate, and more preferably four combinations of inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate.
  • the average particle diameter of at least one setting modifier is fine particles of 5 ⁇ m or less.
  • sodium sulfate has a particularly fast dissolution rate in water. For this reason, sodium sulfate is highly effective in improving the fluidity of the quick-setting mortar composition after adding water. Moreover, since sodium sulfate is easy to melt
  • the fine particles of the coagulation adjusting agent are preferably dispersed in the fast-curing admixture as primary particles or aggregate particles close thereto.
  • the coagulation modifier is dispersed as primary particles or aggregate particles close to it, the dissolution rate in water is improved, and the coagulation adjustment action by the coagulation modifier is exerted at an early stage. The fluctuation can be reliably reduced.
  • the fine setting regulator particles adhere to the surface of the calcium aluminate. In this case, the setting adjuster comes into contact with water prior to calcium aluminate, so it is easy to dissolve, and the setting adjusting action by the setting adjuster is exhibited at an early stage. Can be surely small.
  • the average particle size of the setting modifier contained in the fast-curing admixture can be measured using, for example, SEM and EPMA. That is, from the SEM image of the fast-hardening admixture and the results of the elements detected by elemental analysis by EPMA, the particles of the setting modifier contained in the quick-setting admixture are identified, and the particles specified as the setting modifier are identified.
  • the particle diameter can be measured from the SEM image, and the average value can be obtained. For example, particles in which only sodium is detected by elemental analysis by EPMA can be specified as particles of sodium carbonate (inorganic carbonate).
  • the compounding amount of calcium aluminate, inorganic sulfate, and setting modifier contained in the quick-setting admixture is 50 parts by mass or more and 200 parts by mass or less of inorganic sulfate with respect to 100 parts by mass of calcium aluminate.
  • the setting regulator is set in the range of 0.1 parts by mass or more and 10 parts by mass or less. If the amount of inorganic sulfate compounded becomes too small, the amount of reaction products (etringite, monosulfate) produced by inorganic sulfate and calcium aluminate hydrate will decrease, and the initial strength of fast-curing mortar composition will be manifested. May decrease.
  • the amount of the inorganic sulfate compounded is too large, the initial setting time of the fast-curing mortar composition is increased, and it may be difficult to ensure sufficient pot life. Moreover, since the amount of calcium ions and aluminum ions eluted from the calcium aluminate is relatively small with respect to sulfate ions, the amount of ettringite produced is reduced. May decrease. Furthermore, the amount of expansion after curing becomes excessive due to the influence of the remaining inorganic sulfate, which may cause expansion and destruction.
  • the amount of the setting modifier is too small, the action of the setting agent is completed in a short time and the setting time of the fast-curing mortar composition is increased, and it is difficult to ensure sufficient pot life. There is a risk of becoming.
  • the compounding amount of the setting modifier is too large, the action of the setting agent continues for a predetermined time or more, and the initial strength development property of the quick-setting mortar composition may be lowered.
  • the quick-hardening admixture for example, mixes and pulverizes a clinker containing calcium aluminate and a coagulation adjusting agent to prepare a mixed pulverized product, and mixes the obtained mixed pulverized product with an inorganic sulfate. And a mixing step.
  • the clinker used as a raw material for calcium aluminate has a higher hardness than that of the setting modifier. For this reason, by mixing and pulverizing the calcium aluminate clinker and the coagulation modifier, the coagulation modifier selectively becomes fine particles, and fine particles of the coagulation modifier are generated.
  • the fine particles of the setting modifier are likely to adhere to the surface of relatively coarse calcium aluminate particles. Therefore, in the mixing and pulverizing step, it is possible to obtain a mixed pulverized product in which fine particles of the coagulation adjusting agent are dispersed as primary particles or aggregated particles close to the surface of the calcium aluminate.
  • pulverizing apparatuses such as an E-type mill, a saddle type mill, and a tube mill can be used. Can be used.
  • the clinker containing calcium aluminate is preferably a clinker mineral.
  • the calcium aluminate clinker before pulverization preferably has an average particle diameter in the range of 1 mm to 30 mm.
  • the setting modifier before pulverization preferably has a particle diameter in the range of 150 ⁇ m to 500 ⁇ m.
  • the mixing and grinding process, the mixing and grinding, Blaine specific surface area of the ground mixture is preferably performed until a 3000 cm 2 / g or more 5500cm 2 / g or less in the range, 3000 cm 2 / g or more 4500cm 2 / g to the range It is particularly preferable to carry out until By mixing and pulverizing until the Blaine specific surface area is in the above range, the clinker containing calcium aluminate and the coagulation modifier are sufficiently mixed and pulverized, and the fine particles of the coagulation modifier are primary particles or aggregated particles close thereto, A mixed pulverized product dispersed in a state of adhering to the surface of the calcium aluminate can be reliably obtained. Moreover, the average particle diameter of the calcium aluminate in the mixed pulverized product is usually in the range of 8 ⁇ m to 100 ⁇ m, and the average particle diameter of the setting modifier is usually 5 ⁇ m or less.
  • the inorganic sulfate mixed with the mixed pulverized product obtained in the mixing and pulverizing step is preferably anhydrous gypsum having a Blaine specific surface area of 8000 cm 2 / g or more.
  • the mixed pulverized product and the inorganic sulfate are mixed by dry mixing.
  • a dry mixing device a V-type mixer, a ribbon mixer, a pro-shear mixer or the like can be used.
  • the present invention is not limited to this, and various types of commonly used cement material mixing devices can be used. Can be used.
  • the mixing time can be appropriately adjusted according to the capacity of the mixing apparatus and the blending amount of each material.
  • cement As the cement, ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, blast furnace cement, silica cement, fly ash cement, silica fume cement and the like can be used.
  • a cement may be used individually by 1 type and may be used in combination of 2 or more type. It is preferable to use Portland cement, particularly ordinary Portland cement.
  • the blending amount of cement is generally in the range of 100 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the quick-setting admixture.
  • the blending amount of the cement is in the above range, a quick-setting mortar composition excellent in initial strength development by the quick-setting admixture and long-term strength development by the cement can be obtained.
  • the fine aggregate has an effect of suppressing shrinkage of the cured body (self-shrinkage) accompanying the curing of the fast-curing mortar composition and shrinkage (dry shrinkage) accompanying the dissipation of moisture after curing.
  • the fine aggregate is preferably sand, more preferably sand having a particle size of 150 to 3000 ⁇ m, and still more preferably 200 to 1500 ⁇ m. Further, sand having a particle size of 90 to 1000 ⁇ m may be used, and sand having a particle size of 90 to 200 ⁇ m may be used.
  • the stirring performance of the mortar or cement milk prepared by mixing the quick-setting mortar composition and water and the wear resistance of the hardened body may decrease and the slip resistance may decrease. is there.
  • the particle size of the sand becomes too large, the sand tends to settle in the mortar or cement milk, and the adhesion of the mortar or cement milk to the concrete structure and the injectability to the pavement may decrease. is there.
  • the fine aggregate when used as a cross-sectional repair material (cross-sectional repair material), it is in a range of 200 parts by mass or more and 1000 parts by mass or less as an amount with respect to 100 parts by mass of the fast-curing admixture.
  • the amount of the fine aggregate is too small, not only the shrinkage reduction effect of the cured body can not be sufficiently obtained, but also the stirring performance and wear resistance of the mortar may be lowered and the slip resistance may be lowered.
  • the amount of fine aggregate is too large, the initial strength development may be reduced and material separation may occur and bleeding may easily occur.
  • the blending amount of fine aggregate is an amount that is in the range of 10% by mass to 67% by mass with respect to the total amount of the quick-setting mortar composition. If the amount of fine aggregate is too small, not only the shrinkage reduction effect of the cured body can not be sufficiently obtained, but also the stirring performance and wear resistance of cement milk may be lowered and the slip resistance may be reduced. On the other hand, if the amount of fine aggregate is too large, expression of initial strength is reduced and material separation may occur and bleeding may easily occur.
  • the setting modifier is included as fine particles having an average particle diameter of 5 ⁇ m or less as a constituent of the quick-setting admixture, but with respect to the total amount of the quick-setting mortar composition.
  • a coagulation adjusting agent may be added so that the content of the coagulation adjusting agent is in the range of 0.01% by mass to 5% by mass.
  • the content of the setting modifier relative to the total amount of the quick-setting mortar composition is the setting adjuster (also referred to as the first setting adjuster) contained in the quick-setting admixture, the quick-setting admixture, Is the total amount of a coagulation modifier added separately (also referred to as a second coagulation modifier).
  • the setting time can be adjusted by the setting modifier contained in the fast-setting admixture and the setting control agent added separately from the quick-setting admixture. Variations in the initial setting time of the hard mortar composition can be further reliably reduced. Further, by adding a setting modifier separately, the setting start time of the quick-setting mortar composition can be adjusted to a required time.
  • the setting modifier contained in the quick-setting admixture is fine and easily dissolved in water, and usually can be secured sufficiently, so it is added separately.
  • the amount of setting modifier can be reduced.
  • action which adjusts a setting time may become inadequate that content of the setting regulator with respect to the whole quantity of a quick-hardening mortar composition is less than 0.01 mass%.
  • the content of the setting modifier with respect to the total amount of the quick-setting mortar composition exceeds 5% by mass, the expression of long-term strength due to the mortar may be reduced.
  • the setting modifier added separately from the quick-setting admixture may be added alone to the fast-setting mortar composition, but it is preferable to add it as a mixture in which the inorganic powder and the setting control agent are mixed in advance.
  • the mixture of the inorganic powder and the setting modifier is preferably a high-concentration adjusting agent-containing mixture containing the setting modifier in the range of 50 to 300 parts by mass with respect to 100 parts by mass of the inorganic powder.
  • the inorganic powder cement (particularly Portland cement), limestone powder, silica stone powder, blast furnace slag powder, coal ash, fly ash, clay mineral, calcium aluminate powder, and inorganic sulfate powder can be used.
  • the inorganic powder is preferably a fine powder having a Blaine specific surface area in the range of 2500 cm 2 / g to 5000 cm 2 / g. Since the inorganic powder having a Blaine specific surface area in the above range is highly dispersible, the high-concentration adjusting agent-containing mixture using the inorganic powder is easily dispersed uniformly in the fast-curing mortar composition.
  • the particle diameter of the setting modifier contained in the high-concentration adjusting agent-containing mixture is in the range of 1 ⁇ m to 500 ⁇ m.
  • a setting modifier having a particle size in the above range has a high dispersibility in inorganic powder and makes it easy to prepare a high-concentration adjusting agent-containing mixture having a uniform composition.
  • the short fiber acts as a reinforcing material. For this reason, the hardened
  • organic short fibers and carbon short fibers can be used. Examples of the organic short fibers include PVA short fibers (polyvinyl alcohol short fibers), polyamide short fibers, aramid short fibers, polypropylene short fibers, and rayon short fibers. These short fibers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the short fiber preferably has a fiber length in the range of 1 mm to 10 mm.
  • the fiber diameter is usually in the range of 5 ⁇ m to 100 ⁇ m.
  • the blending amount of the short fibers is generally in the range of 0.1% by mass or more and 0.3% by mass or less as the amount with respect to the total amount of the quick-setting mortar composition.
  • the blending amount of the short fiber is too small, the crack resistance of the cured body is improved, and the effect of improving the durability against fatigue may be insufficient.
  • the blending amount of the short fibers is too large, the fluidity of the quick-setting mortar composition and water may be lowered.
  • the re-emulsified powder resin is a resin having low water absorption and water permeability, and has an effect of making it difficult for water to penetrate into a cured product obtained by curing the fast-curing mortar composition.
  • the re-emulsified powder resin has an effect of improving the adhesion of the quick-setting mortar composition to the concrete structure. For this reason, the quick-hardening mortar composition containing the re-emulsified powder resin is excellent in resistance to freezing and thawing after being immersed in water, and adhesion to a concrete structure is improved.
  • re-emulsified powder resin examples include vinyl acetate / veova / acrylic acid ester copolymer resin, vinyl acetate copolymer resin, vinyl acetate / ethylene copolymer, vinyl acetate / acrylic copolymer resin, and acrylic resin. These re-emulsified powder resins may be used alone or in combination of two or more.
  • the blending amount of the re-emulsified powder resin is generally in the range of 0.5% by mass or more and 30% by mass or less as an amount with respect to the total amount of the quick-setting mortar composition. If the blending amount of the re-emulsified powder resin is too small, the action of improving the freeze-thaw resistance of the cured product of the fast-curing mortar composition and the action of improving the adhesion to the concrete structure may be insufficient. On the other hand, if the blending amount of the re-emulsified powder resin is too large, the fluidity of the mixture of the quick-setting mortar composition and water may be lowered.
  • Silica fume has a polazone effect. For this reason, the fast-curing mortar composition containing silica fume has improved long-term strength development, and the cured product obtained by curing this composition is densified to reduce the total amount of pores. The progress of diffusion is suppressed.
  • the blending amount of silica fume is preferably in the range of 0.5% by mass or more and 30% by mass or less as an amount with respect to the total amount of the quick-setting mortar composition. If the amount of silica fume is too small, the long-term strength development by the pozzolanic reaction, the effect of suppressing the neutralization due to the densification of the hardened body structure of the fast-curing mortar composition, and the effect of suppressing the penetration of chloride ions May not be sufficient. On the other hand, if the blending amount of silica fume is too large, the amount of the fast-curing admixture in the fast-curing mortar composition is relatively small, and the initial strength development may be deteriorated.
  • Synthetic polymer thickening water retention agents have the effect of generating fine bubbles when in contact with water. For this reason, in the cured product obtained by curing the fast-curing mortar composition containing the synthetic polymer thickening water retaining agent, the entrained air is artificially introduced and the freeze-thaw resistance is improved.
  • the blending amount of the synthetic polymer thickening water retention agent is preferably in the range of 0.1% by mass to 0.3% by mass with respect to the total amount of the quick-setting mortar composition. If the blending amount of the synthetic polymer thickening water retention agent is too small, the effect of improving the freeze-thaw resistance of the cured product of the fast-curing mortar composition may be insufficient. On the other hand, if the blending amount of the synthetic polymer thickening water retention agent is too large, not only the fluidity of the mixture of the fast-curing mortar composition and water is lowered, but also excessive bubbles may enter and reduce the strength.
  • Anti-freezing agent Sodium acetate, calcium acetate, and calcium nitrite react with water to generate heat, and as an anti-freezing agent that prevents freezing of a mixture of fast-setting mortar composition and water in a cryogenic temperature environment where water freezes. Works. For this reason, the quick-hardening mortar composition containing an anti-freezing agent can suppress freezing of the quick-hardening mortar composition kneaded with water even in an extremely low temperature environment, and the initial strength development is enhanced.
  • One type of antifreeze agent may be used alone, or two or more types may be used in combination.
  • the blending amount of the antifreeze agent is generally in the range of 1% by mass or more and 10% by mass or less as the amount with respect to the total amount of the quick-setting mortar composition. If the blending amount of the antifreeze agent is too small, the action as the antifreeze agent becomes insufficient, and the quick-setting mortar composition may freeze and the strength may not be obtained at all. On the other hand, if the amount of the anti-freezing agent is too large, a salting out effect occurs in the mixture of the quick-setting mortar composition and water, and the fluidity may be lowered.
  • the quick-setting admixture used in the quick-setting mortar composition of the present embodiment configured as described above has an average particle diameter of calcium aluminate in the range of 8 ⁇ m to 100 ⁇ m, and the average particle diameter of the setting modifier. Is set to 5 ⁇ m or less, and the coagulation adjusting agent is finer than calcium aluminate, so it is easily dissolved in water. For this reason, when water is added to the quick-setting mortar composition of this embodiment, the setting modifier is quickly and stably dissolved in water in a wide temperature range, and the setting adjusting action by the setting modifier is exhibited early. Therefore, the fluctuation of the initial setting time due to the environmental temperature is reduced.
  • the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes stable and long, and the fluidity after adding water becomes high. Furthermore, after the setting adjustment action by the setting adjuster is completed, the hardening acceleration action of cement by calcium aluminate and inorganic sulfate is exhibited, so that the initial strength development property of the quick-setting mortar composition can be improved. it can. Furthermore, since the setting modifier is dispersed as fine particles in the fast-setting mortar composition, the setting agent is segregated even when stored for a long period of time. In addition, it is difficult for the content of the setting modifier to become non-uniform. For this reason, even if it preserve
  • the fast-curing mortar composition of the present embodiment has a small variation in the setting start time due to the environmental temperature and is excellent in initial strength development.
  • a plastering method, a spraying method, a filling method, a prepacked method, etc. It can be suitably used as a raw material (cross-section restoration material) for mortar used in repair work for concrete structures constructed by the above. Further, it can be suitably used as a raw material (pavement injecting material) such as a backfill grout material used mainly for PC pavement and RC pavement used outdoors and cement milk used for semi-flexible pavement.
  • the fast-curing mortar composition of the present embodiment has a high initial strength, for example, it is possible to form a pavement having a practical strength capable of opening traffic in two hours.
  • the quick-setting mortar composition of this embodiment when the fine aggregate is contained in the range of 200 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the quick-setting admixture, the initial strength developability is exhibited.
  • the shrinkage of the cured body accompanying the curing of the fast-curing mortar composition and the shrinkage due to the dissipation of moisture after curing can be suppressed. For this reason, generation
  • the fine aggregate may be contained in the range of 10% by mass to 67% by mass with respect to the total amount of the quick-setting mortar composition.
  • the fluidity of the fine aggregate when water is added is improved. For this reason, since the fine aggregate serves as a medium even in a minute space such as a void of an open-graded asphalt mixture in semi-flexible pavement, it can be satisfactorily filled.
  • the quick-setting mortar composition of the present embodiment has a setting modifier containing one or more of inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate, so that the quick-setting mortar composition at ambient temperature The fluctuation of the initial setting time of the can be reliably reduced. Moreover, since the coagulation adjusting action by the coagulation adjusting agent is exhibited at an early stage, the initial setting time of the coagulation becomes more stable and longer, and the fluidity after adding water becomes higher. Since sodium sulfate has a particularly fast dissolution rate in water, it has a high effect of improving the fluidity of the quick-setting mortar composition after adding water.
  • the hardened body of the fast-curing mortar composition containing short fibers has improved resistance to cracking and strength, and has excellent durability against fatigue.
  • the quick-hardening mortar composition containing this short fiber can be used suitably for the cross-sectional repair of the site
  • it can be suitably used as a material for backfill grout materials used in PC pavements and RC pavements on airport runways where heavy loads are applied.
  • the quick-hardening mortar composition containing the re-emulsified powder resin is excellent in resistance to freezing and thawing after being immersed in water, and the adhesion to a concrete structure is improved.
  • the quick-hardening mortar composition containing the re-emulsified powder resin can be suitably used for cross-sectional repair of various concrete structures such as piers, bridges, tunnels, and concrete pavements. Moreover, it can be conveniently used as an injecting material for pavement in cold regions.
  • the quick-hardening mortar composition containing silica fume can be suitably used for repairing a concrete structure damaged by salt damage.
  • the hardened body of the fast-curing mortar composition containing the synthetic polymer thickening water retention agent has improved freeze-thaw resistance.
  • the quick-hardening cross-section restoration material containing a synthetic polymer thickening water retention agent can be suitably used for restoration of a concrete structure in a cold region.
  • a fast-curing mortar composition containing an anti-freezing agent can provide a cured product having a high initial strength even under a very low temperature environment.
  • the quick-hardening mortar composition containing this anti-freezing agent can be suitably used as an injecting material for pavement in cold regions.
  • a quick-setting mortar composition includes a water reducing agent, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, a fluidizing agent, a waterproofing agent, a foaming agent, a foaming agent, an antifoaming agent, and a rust preventive for reinforced concrete. Further, it may contain an underwater non-separable admixture, a water retention agent, a drying shrinkage reducing agent, a separation reducing agent (thickening agent), an anti-freezing / cold-resistant agent, and the like.
  • Table 1 shows the types, compositions and abbreviations of the materials used in the examples and comparative examples.
  • SA-1 fast-curing admixture 100 parts by weight of calcium aluminate clinker (CA-CL), 1.0 parts by weight of sodium carbonate (Na-3), 0.5 parts by weight of sodium aluminate (Al-3), tartaric acid (CA) Ta-3) was added to a mixing and pulverizing machine at a ratio of 0.5 parts by mass, and mixed and pulverized until the Blaine specific surface area reached 4500 cm 2 / g.
  • the average particle diameter of calcium aluminate contained in the obtained mixed pulverized product was 15 ⁇ m, and the average particle diameter of sodium carbonate was 3.0 ⁇ m.
  • the average particle size of sodium carbonate was measured using the following method.
  • FIG. 1 shows an SEM image of the mixed pulverized product.
  • 1A is an SEM image with an apparatus magnification of 1000 times
  • FIG. 1B is an SEM image with an apparatus magnification of 3000 times.
  • elemental analysis of the particles imaged in the SEM image was performed using EPMA (Electron Probe Microanalyzer).
  • EPMA Electro Probe Microanalyzer
  • FIG. 2A is an SEM image obtained by enlarging the circled region in FIG. 1B
  • FIG. 2B is an elemental analysis using EPMA for particles captured in the SEM image.
  • the white part represents sodium.
  • the sodium carbonate particles are identified, and the longest diameter of the particles identified as the sodium carbonate is determined using the SEM image of FIG. Measured. This operation was repeated to measure the particle diameter of 100 sodium carbonates, and the average value was calculated.
  • the anhydrous gypsum (CS) as an inorganic sulfate was added to the mixer at a ratio of 120 parts by mass with respect to 100 parts by mass of the mixed pulverized product obtained as described above, and mixed.
  • the obtained mixture was used as a fast-curing admixture (SA-1).
  • SA-3 fast-curing admixture 100 parts by weight of calcium aluminate clinker (CA-CL), 1.0 parts by weight of sodium carbonate (Na-3), 0.5 parts by weight of sodium aluminate (Al-3), tartaric acid (CA) Ta-3) and sodium sulfate (NS-3) at a ratio of 0.5 parts by mass are charged into a mixing and pulverizing machine and mixed and pulverized until the Blaine specific surface area reaches 4560 cm 2 / g. did.
  • the average particle size of calcium aluminate contained in the obtained mixed pulverized product was 14.2 ⁇ m, and the average particle size of sodium carbonate was 2.8 ⁇ m.
  • the anhydrous gypsum (CS) was added to the mixer at a ratio of 120 parts by mass with respect to 100 parts by mass of the pulverized mixture obtained as described above, and mixed.
  • the obtained mixture was used as a fast-curing admixture (SA-3).
  • the physical properties of JIS stationary flow, setting time, and compressive strength were measured at ambient temperatures of 5 ° C, 20 ° C, and 35 ° C. The results are shown in Table 3.
  • the quick-setting mortar composition is packed in a plastic bag (capacity: 12 L) and pinholes (hole diameter: 0.5 mm) at four corners of the plastic bag. ) And stored in a room at a temperature of 30 ° C. and a humidity of 80% RH for 3 months and 6 months, respectively.
  • the fast-curing mortar compositions of Examples 1 and 2 have smaller variations in JIS static flow, setting time, and compressive strength due to the environmental temperature than the fast-curing mortar composition of Comparative Example 1. It was confirmed that the temperature stability was excellent. In particular, it was confirmed that the quick-setting mortar composition of Example 2 containing sodium sulfate had a large JIS stationary flow and excellent fluidity. Moreover, from the result of Table 4, compared with the quick-hardening mortar composition of Example 1, 2, the quick-hardening mortar composition of Example 1 and 2 has the fluctuation
  • the physical properties of JIS 15 striking flow, setting time, and compressive strength were measured at ambient temperatures of 5 ° C, 20 ° C, and 35 ° C. The results are shown in Table 6. Further, in order to confirm the storage characteristics of the quick-setting mortar composition, the quick-setting mortar composition was stored in a room at a temperature of 30 ° C. and a humidity of 80% RH for 3 months and 6 months, respectively. . And the mortar was prepared about the quick-hardening mortar composition after a preservation
  • the quick-setting mortar compositions of Examples 3 and 4 have less variation in JIS 15 striking flow, setting time, and compressive strength depending on the environmental temperature than the quick-setting mortar composition of Comparative Example 2. It was confirmed that the temperature stability was excellent. In particular, it was confirmed that the quick-setting mortar composition of Example 4 containing sodium sulfate had a large JIS15 striking flow and excellent fluidity. Further, from the results of Table 7, the fast-curing mortar compositions of Examples 3 and 4 are smaller in variation in JIS 15 striking flow, setting time, and compressive strength due to storage than the fast-curing mortar composition of Comparative Example 2. It was confirmed that the storage stability was excellent.
  • J 14 funnel flow time setting time was measured physical properties of compressive strength. J 14 funnel flow time was measured in accordance with JSCE criteria JSCE-F 541 "Test Method of Flowability for Filling Mortar". The setting time and compressive strength were measured by the above methods.
  • the fast-curing mortar compositions of Examples 5 and 6 are different from the fast-curing mortar composition of Comparative Example 3 in terms of J 14 funnel flow time, setting time, and compressive strength due to environmental temperature. It was confirmed to be small and excellent in temperature stability.
  • fast-curing mortar composition of Example 6 containing sodium sulfate, short J 14 funnel flow time it was confirmed that superior flowability.
  • the quick-setting mortar compositions of Examples 5 and 6 were compared with the quick-setting mortar composition of Comparative Example 3 in terms of J 14 funnel flow time, setting time, and compressive strength due to storage. Was small and it was confirmed that it was excellent in storage stability.
  • Example 7 PVA short fibers (fiber diameter: 26 ⁇ m, fiber length: 3 mm) as short fibers were added to the quick-setting mortar composition of Example 1 in an amount of 0.05% by mass with respect to the total amount of the quick-setting mortar composition (implementation).
  • Example 7 0.1% by mass (Example 8), 0.5% by mass (Example 9), 1.0% by mass (Example 10), 3.0% by mass (Example 11)
  • Example 7 0.1% by mass
  • Example 9 0.5% by mass
  • Example 10 1.0% by mass
  • Example 11 Were added and mixed to prepare quick-setting mortar compositions containing the short fibers of Examples 7 to 11. 15 parts by mass of water was added to 100 parts by mass of the quick-setting mortar composition containing the obtained short fibers, and mortar was prepared in the same manner as in Example 1. JIS stationary flow was measured about the obtained mortar.
  • Example 12 The content of the re-emulsified powder resin (P) in the quick-setting mortar composition of Example 3 with respect to the total amount of the quick-setting mortar composition is 0.5 mass% (Example 12) and 1.0 mass% (implementation).
  • Example 13 2.0% by mass (Example 14), 5.0% by mass (Example 15), 10.0% by mass (Example 16), 15.0% by mass (Example 17)
  • Example 13 was prepared in the same manner as in Example 3 by adding 13 parts by mass of water to 100 parts by mass of the quick-setting mortar composition containing the re-emulsified powder resin.
  • the cured product produced using the fast-curing mortar composition containing the re-emulsified powder resin has improved adhesion strength with the concrete flat plate, and the content of the re-emulsified powder resin is 1.0% by mass or more. It was confirmed that the cured body produced using the fast-curing mortar composition containing the re-emulsified powder resin had an adhesion strength with a concrete flat plate of 1.5 N / mm 2 or more.
  • Example 18 In the quick-setting mortar composition of Example 5, the content of silica fume (SF) with respect to the total amount of the quick-setting mortar composition is 1.0 mass% (Example 18) and 5.0 mass% (Example 19), respectively.
  • Fast-hardening mortar compositions containing silica fume of Examples 18 to 21 were prepared by adding and mixing in amounts of 10.0% by mass (Example 20) and 15.0% by mass (Example 21), respectively. did.
  • Mortar was prepared in the same manner as in Example 5 by adding 22 parts by mass of water to 100 parts by mass of the quick-setting mortar composition containing silica fume. The obtained mortar was poured into a 100 ⁇ 100 ⁇ 400 mm mold to prepare a test body. The neutralization depth, chloride ion diffusion coefficient, and total pore amount of the prepared specimen were measured by the following methods. The results are shown in Table 13.
  • Example 22 In the quick-setting mortar composition of Example 1, the content of the synthetic polymer thickening water retaining agent (Ad) is 0.1% by mass (Example 22) and 0.3% by mass, respectively, with respect to the total amount of the quick-curing cross-sectional restoration material. % (Example 23) were added and mixed to prepare quick-setting mortar compositions containing the thickening and water-retaining agents of Examples 22 and 23. 15 parts by mass of water was added to 100 parts by mass of the fast-curing mortar composition containing the resulting synthetic polymer thickening water retention agent, and mortar was prepared in the same manner as in Example 1. Using the obtained mortar, a freeze / thaw test was performed. The test method was performed up to 300 cycles in accordance with JIS A 1145 “Concrete Freezing and Thawing Test Method”, and the relative dynamic elastic modulus was measured. The result is shown in FIG.
  • the concrete produced using the fast-curing mortar composition containing the synthetic polymer thickening water retention agent has a small amount of addition of the thickening water retention agent of 0.1% by mass to 0.3% by mass. Even so, it was confirmed that the resistance to freezing and thawing was remarkably improved and the relative kinematic modulus was maintained at 80% or more even after repeated 300 cycles of freezing and thawing.
  • Cement milk was prepared by adding 50 parts by mass of water to 100 parts by mass of the obtained quick-setting mortar composition and kneading with a hand mixer for 2 minutes. Using the prepared cement milk, the physical properties of P funnel flow time, setting time, and compressive strength were measured. In addition, the measurement of P funnel flow time was performed as follows. The setting time and compressive strength were measured by the above methods. The P funnel flow time was measured in accordance with the Japan Society of Civil Engineers standard JSCE-F 521 “Testing method for fluidity of mortar of prepacked concrete (method using P funnel)”.
  • the physical properties of P funnel flow time, setting time, and compressive strength were measured at ambient temperatures of 5 ° C, 20 ° C, and 35 ° C. The results are shown in Table 15. Further, in order to confirm the storage characteristics of the quick-setting mortar composition, the quick-setting mortar composition was stored in a room at a temperature of 30 ° C. and a humidity of 80% RH for 3 months and 6 months, respectively. . And the cement milk was prepared about the quick-hardening mortar composition after a preservation
  • the fast-curing mortar compositions of Examples 24 and 25 have smaller variations in P funnel flow time, setting time, and compressive strength depending on the environmental temperature than the fast-curing mortar composition of Comparative Example 4. It was confirmed that the temperature stability was excellent. In particular, it was confirmed that the quick-setting mortar composition of Example 25 containing sodium sulfate had a short P funnel flow time and excellent fluidity. In addition, from the results of Table 16, the quick-hardening mortar compositions of Examples 24 and 25 are different from the quick-hardening mortar composition of Comparative Example 2 in the fluctuation of the P funnel flow time, setting time, and compressive strength due to storage. It was confirmed to be small and excellent in storage stability.
  • the re-emulsified powder resin (P) has a content of 0.5% by mass (Example 26) and 1.0% by mass (Example 26) with respect to the total amount of the quick-setting mortar composition, respectively.
  • Example 27 2.0% by mass (Example 28), 5.0% by mass (Example 29), 10.0% by mass (Example 30), and 30.0% by mass (Example 31).
  • Each was added in amounts and mixed to produce a fast-curing mortar composition containing a re-emulsified powder resin.
  • Cement milk was prepared by adding 45 parts by mass of water to 100 parts by mass of the fast-curing mortar composition containing the obtained re-emulsified powder resin and kneading with a hand mixer for 2 minutes. Using the prepared cement milk, the P funnel flow time and the compressive strength at age 7 days were measured. The results are shown in Table 17. Moreover, the prepared cement milk was poured into an open-graded asphalt matrix (100 ⁇ 200 ⁇ 100 mm thick) having a porosity of 22%, and cured at a temperature of 20 ° C. for 7 days to prepare a semi-flexible pavement. The obtained semi-flexible pavement was immersed in water, and a freeze-thaw cycle of ⁇ 20 ° C. ⁇ 6 hours and + 20 ° C. ⁇ 6 hours was repeated 200 times, and the appearance of the pavement was observed. The results are shown in Table 17.
  • Example 32 In the quick-setting mortar composition of Example 24, the content of the antifreezing agent (CN) with respect to the total amount of the quick-setting mortar composition is 1.0 mass% (Example 32) and 2.0 mass% (Example 33), respectively. ), 3.0% by mass (Example 34), 5.0% by mass (Example 35), and 10.0% by mass (Example 36).
  • a quick-setting mortar composition containing was prepared.
  • a grout was prepared by adding 45 parts by mass of water at a water temperature of 5 ° C. to 100 parts by mass of the quick-hardening mortar composition containing the anti-freezing agent, and kneading with a hand mixer for 2 minutes in a temperature environment of ⁇ 5 ° C. .
  • the obtained grout was each injected into three cylindrical containers (inner diameter ⁇ 50 ⁇ height 100 mm).
  • Three of these cylindrical containers were placed in an insulating container made of expanded polystyrene having an inner size of 200 mm 150 ⁇ 150 mm, and cured for 3 hours in a temperature environment of ⁇ 5 ° C. to prepare a cured body.
  • the compression strengths of the three cured bodies obtained at the age of 3 hours were measured, and the average was determined. The results are shown in Table 18.
  • the fast-curing mortar composition of the present embodiment has a small variation in the initial setting time due to the environmental temperature, and even when stored for a long period of time, the initial setting time is small. In addition, the fluidity from the addition of water to the progress of the curing reaction is high, and the initial strength development is excellent. For this reason, the quick-hardening mortar composition of the present embodiment includes a cross-section restoration material used in the cross-section restoration method, a backfill grout material used in PC pavement and RC pavement, and cement milk used in semi-flexible pavement, etc. As a pavement injection material which is a raw material of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Architecture (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Road Paving Structures (AREA)

Abstract

この速硬性モルタル組成物は、速硬性混和材とセメントと細骨材を含み、前記速硬性混和材100質量部に対して、前記セメントを100質量部以上2000質量部以下の範囲の量にて含有し、前記速硬性混和材が、カルシウムアルミネートと、前記カルシウムアルミネート100質量部に対して50質量部以上200質量部以下の範囲の量の無機硫酸塩と、前記カルシウムアルミネート100質量部に対して0.1質量部以上10質量部以下の範囲の量の凝結調整剤とを含む組成物であって、前記カルシウムアルミネートの平均粒子径が8μm以上100μm以下の範囲にあり、前記凝結調整剤の平均粒子径が5μm以下である。

Description

速硬性モルタル組成物
 本発明は、速硬性モルタル組成物、特に断面修復材および舗装用注入材として有用な速硬性モルタル組成物に関する。
 本願は、2016年3月31日に日本に出願された特願2016-73198号、2016年3月31日に日本に出願された特願2016-73416号、及び2017年3月27日に日本に出願された特願2017-61311号に基づき優先権を主張し、その内容をここに援用する。
 各種の原因により劣化したコンクリート構造物を補修する工法として、断面修復工法が広く知られている。断面修復工法は、コンクリートの劣化した部分をはつり等によって取り除き、取り除いた断面部分を断面修復材で修復する工法である。本工法に用いる断面修復材としては、セメントと細骨材とを含むモルタル組成物が使用される。断面修復工法の態様に合わせ、左官工法用の断面修復材、吹付け工法用の断面修復材、充填工法用の断面修復材、プレパックト工法用の断面修復材が使用される。一方、緊急を要する補修工事において使用される断面修復材としては、工事期間を短くするために、モルタル組成物を早期に硬化させるための速硬性混和材が含まれている速硬性モルタル組成物も使用されている。
 また、道路、港湾施設、空港の滑走路などの舗装を構築する方法として、PC舗装やRC舗装が知られている。PC舗装は、路盤の上にPC(プレストレストコンクリート)舗装板を配置して、そのPC舗装板と路盤の間隙に裏込めグラウト材を注入する舗装である。RC舗装は、PC舗装板の代わりに、RC(鉄筋コンクリート)舗装板を用いる舗装である。さらに、重交通道路の舗装として、半たわみ性舗装が知られている。半たわみ性舗装とは、空隙率の大きな開粒度アスファルト混合物に、セメントミルクを注入する舗装である。PC舗装やRC舗装で使用される裏込めグラウト材および半たわみ性舗装で使用されるセメントミルク等の原料として用いられる舗装用注入材としても、セメントと細骨材とを含むモルタル組成物が利用されることがある。この舗装用注入材として用いられるモルタル組成物は、通常、夜間に工事を行って、翌朝には交通開放するために、セメントを早期に硬化させるための速硬性混和材が含まれている速硬性モルタル組成物である。
 速硬性モルタル組成物の速硬性混和材として、カルシウムアルミネートと無機硫酸塩とを組み合わせた混和材が知られている。しかし、このカルシウムアルミネートと無機硫酸塩とを組み合わせた速硬性混和材は、モルタル組成物の硬化を促進する作用が強く、この速硬性混和材を含むモルタル組成物は、水を加えてからモルタル組成物が凝結を開始するまでの時間(凝結開始時間)が短く、可使時間を十分に確保できないという問題があった。このため、カルシウムアルミネートと無機硫酸塩とを組み合わせた速硬性混和材では、モルタル組成物の凝結開始時間を調整するために、凝結調整剤を加えることが行なわれている。凝結調整剤としては、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムが用いられている。
 特許文献1には、カルシウムアルミネート対無機硫酸塩の重量比が1対0.5~3からなる急硬成分を15~35重量%含有してなる急硬セメントを主成分とし、内割重量で、アルミン酸ナトリウム0.2~3%、無機炭酸塩0.2~5%、およびオキシカルボン酸類0.1~2%を含有してなる超速硬セメント組成物が開示されている。
 特許文献2には、速硬性混和材とセメント鉱物と骨材と再乳化粉末樹脂と繊維とを含むコンクリート断面修復材が開示されている。この特許文献2には、速硬性混和材の凝結調整剤としてアルミン酸ナトリウム、無機炭酸塩及びカルボン酸類を用い、これら凝結調整剤の粒度構成を、平均粒径45μmを越えかつ90μm以下の第1粒子10~45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30~70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5~30質量%とを含み、かつ前記第2粒子を前記第1粒子より多く含むとともに前記第3粒子より多く含むようにすることが開示されている。
 特許文献3には、速硬性混和材とセメント鉱物と砂と再乳化粉末樹脂とを含む舗装用注入材が開示されている。この特許文献3には、速硬性混和材の凝結調整剤としてアルミン酸ナトリウム、無機炭酸塩及びカルボン酸類を用い、これら凝結調整剤の粒度構成を、平均粒径45μmを越えかつ90μm以下の第1粒子10~45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30~70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5~30質量%とを含み、かつ前記第2粒子を前記第1粒子より多く含むとともに前記第3粒子より多く含むようにすることが開示されている。
 ところで、速硬性混和材を含む速硬性モルタル組成物は、可使時間を安定して十分に確保できること、すなわち凝結始発時間が安定して長く、水を加えてから硬化反応が進行するまでの間の流動性が高いことが要求される。また、施工作業の終了後は早期に硬化して高い強度(圧縮強度)が発現すること、すなわち初期強度発現性に優れることが要求される。
 しかしながら、特許文献1に開示されている超速硬セメント組成物では、若材齢(材齢3時間程度)での圧縮強度を低下させずに、可使時間を60分程度と長く確保することが難しく、またセメント組成物の硬化体に斑点の発生が認められ、この部分が欠陥となって長期的な強度も低下する不具合があった。また、環境温度により凝結時間が大きく異なり、工事現場での作業性に劣るという課題があった。
 また、特許文献2に開示されたコンクリート断面修復材および特許文献3に開示された舗装用注入材では、速硬性混和材に含まれている凝結調整剤の粒度構成を規定することにより、初期強度発現性と凝結時間の環境温度依存性を改善している。しかしながら、この速硬性混和材を混合したコンクリート断面修復材および舗装用注入材は、3ヶ月程度の期間保存したときに、凝結時間が製造直後に比べ大きく変化し、また初期強度発現性が低下することがあった。
特公平3-41420号公報 特開2008-273762号公報 特開2008-274580号公報
 この発明は、前述した事情に鑑みてなされたものであって、環境温度による凝結始発時間の変動が小さく、長期間保存しても凝結始発時間の変動が小さく、水を加えてから硬化反応が進行するまでの間の流動性が高く、かつ初期強度発現性に優れる速硬性モルタル組成物を提供することを目的とする。
 上記の課題を解決するために、本発明の発明者等は鋭意検討した結果、カルシウムアルミネートと無機硫酸塩と凝結調整剤(例えば、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの1つ以上)とを所定の量の比で含む組成物であって、カルシウムアルミネートの平均粒子径が8μm以上100μm以下の範囲にあり、凝結調整剤の平均粒子径が5μm以下である速硬性混和材を、所定量のセメントおよび細骨材に加えることが有効であることを見出した。すなわち、上記の速硬性混和材に対して所定量のセメントおよび細骨材を含む速硬性モルタル組成物は、環境温度による凝結始発時間の変動がさらに小さく、さらに長期間保存しても凝結始発時間の変動が小さく、水を加えてから硬化反応が進行するまでの間の流動性が高く、かつ初期強度発現性に優れるとの知見を得た。また、上記の平均粒子径を有するカルシウムアルミネートと凝結調整剤は、カルシウムアルミネートからなるクリンカーと凝結調整剤とを混合粉砕することによって得ることができることを見出した。
 本発明は、上述の知見に基づいてなされたものであって、本発明の一態様に係る速硬性モルタル組成物は、速硬性混和材とセメントと細骨材を含み、前記速硬性モルタル組成物は、前記速硬性混和材100質量部に対して、前記セメントを100質量部以上2000質量部以下の範囲の量にて含有し、前記速硬性混和材が、カルシウムアルミネートと、前記カルシウムアルミネート100質量部に対して50質量部以上200質量部以下の範囲の量の無機硫酸塩と、前記カルシウムアルミネート100質量部に対して0.1質量部以上10質量部以下の範囲の量の凝結調整剤とを含む組成物であって、前記カルシウムアルミネートの平均粒子径が8μm以上100μm以下の範囲にあり、前記凝結調整剤の平均粒子径が5μm以下であることを特徴としている。
 本発明の一態様に係る速硬性モルタル組成物によれば、速硬性混和材に含まれている凝結調整剤は平均粒子径が5μm以下であり、カルシウムアルミネート(平均粒子径:8μm以上100μm以下の範囲)と比較して、微細であるため水に溶解しやすい。このため、本発明の一態様に係る速硬性モルタル組成物に水を加えると、広い温度範囲において安定して凝結調整剤が水に速やかに溶解して、凝結調整剤による凝結調整作用が早期に発揮されるので、環境温度による凝結始発時間の変動が小さくなる。また、凝結調整剤による凝結調整作用が早期に発揮されるので、凝結始発時間が安定して長くなり、水を加えた後の流動性が高くなる。さらに、凝結調整剤による凝結調整作用が終了した後は、カルシウムアルミネートと無機硫酸塩とによるセメントの硬化促進作用が発揮されるので、速硬性モルタル組成物の初期強度発現性を向上させることができる。さらにまた、凝結調整剤は微細な粒子として、速硬性混和材中に分散されているので、本発明の一態様に係る速硬性モルタル組成物は、長期間保存しても、凝結調整剤が偏析して、凝結調整剤の含有量が不均一となることが起こりにくい。このため、長期間保存しても凝結時間の変動が小さく、かつ初期強度発現性に優れたものとなる。
 ここで、本発明の一態様に係る速硬性モルタル組成物においては、速硬性混和材100質量部に対して、細骨材を200質量部以上1000質量部以下の範囲にて含有していてもよい。
 この場合、細骨材を上記の範囲にて含有するので、初期強度発現性に優れたものとなると共に、速硬性モルタル組成物の硬化に伴う硬化体の収縮(自己収縮)や、硬化後の水分の逸散に伴う収縮(乾燥収縮)が抑えられる。このため、硬化体のひび割れの発生を抑制することができ、硬化体の強度が高くなる。
 従って、この速硬性モルタル組成物は、断面修復材として特に有用である。
 また、本発明の一態様に係る速硬性モルタル組成物においては、速硬性モルタル組成物の全体量に対して、細骨材を10質量%以上67質量%以下の範囲にて含有していてもよい。
 この場合、細骨材を上記の範囲にて含有するので、初期強度発現性に優れたものとなると共に、水を加えた特の細骨材の流動性が向上する。半たわみ性舗装における開粒度アスファルト混合物の空隙のように微細な空間内に対しても、細骨材が媒体となるので、良好に充填することができる。
 従って、この速硬性モルタル組成物は、舗装用注入材として特に有用である。
 また、本発明の一態様に係る速硬性モルタル組成物においては、前記凝結調整剤が、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの1つ以上を含むことが好ましい。
 この場合、上記の物質は水に溶解しやすいので、凝結調整剤が上記の物質を1つ以上含むことによって、環境温度による速硬性モルタル組成物の凝結始発時間の変動を確実に小さくすることができる。また、凝結調整剤による凝結調整作用が早期に発揮されるので、凝結始発時間がより安定して長くなるとともに、水を加えた後の流動性がより高くなる。
 さらに、本発明の一態様に係る速硬性モルタル組成物においては、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲となるように、さらに、凝結調整剤が添加されていてもよい。
 この場合、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲とされているので、環境温度および長期間の保存による速硬性モルタル組成物の凝結始発時間の変動を確実に小さくすることができ、また初期強度発現性が高くなる。
 上記の速硬性モルタル組成物に添加されている凝結調整剤は、無機粉末と、前記無機粉末100質量部に対して50質量部以上300質量部以下の範囲の量の前記凝結調整剤とを含む凝結調整剤高濃度含有混合物として添加されていることが好ましい。
 この場合、凝結調整剤を凝結調整剤高濃度含有混合物として加えることによって、凝結調整剤を均一に速硬性モルタル組成物中に分散させることができ、環境温度および長期間の保存による速硬性モルタル組成物の凝結始発時間の変動をより確実に小さくすることができる。
 また、本発明の一態様に係る速硬性モルタル組成物においては、さらに、有機短繊維および炭素短繊維のうちの1つ以上からなる短繊維を、速硬性モルタル組成物の全体量に対して0.1質量%以上0.3質量%以下の範囲にて含んでいてもよい。
 この場合、短繊維は補強材として作用するので、速硬性モルタル組成物を硬化させた硬化体はひび割れ抵抗性が向上して、疲労に対する耐久性が優れたものとなる。
 また、本発明の一態様に係る速硬性モルタル組成物においては、再乳化粉末樹脂を、速硬性モルタル組成物の全体量に対して0.5質量%以上30質量%以下の範囲にて含んでいてもよい。
 この場合、速硬性モルタル組成物は再乳化粉末樹脂を含むので、コンクリート構造物に対する付着力が向上する。
 また、本発明の一態様に係る速硬性モルタル組成物においては、さらに、シリカフュームを、速硬性モルタル組成物の全体量に対して1質量%以上15質量%以下の範囲にて含んでいてもよい。
 この場合、シリカフュームはポラゾン作用を有するので長期強度発現性が向上する。さらに速硬性モルタル組成物を硬化させた硬化体は緻密化して、総細孔量が小さくなり、中性化の進行や塩化物イオンの拡散の進行が抑制されるので、耐久性が向上する。
 また、本発明の一態様に係る速硬性モルタル組成物においては、さらに、合成ポリマー系増粘保水剤を、速硬性モルタル組成物の全体量に対して0.1質量%以上0.3質量%以下の範囲にて含んでいてもよい。
 この場合、合成ポリマー系増粘保水剤は、粉末状であり、水と接すると微細な気泡が発生するので、速硬性モルタル組成物を硬化させた硬化体は、疑似的にエントレインドエアが導入されて、凍結融解抵抗性が向上する。
 また、本発明の一態様に係る速硬性モルタル組成物においては、さらに、酢酸ナトリウム、酢酸カルシウム、亜硝酸カルシウムのうちの1つ以上からなる防凍剤を、速硬性モルタル組成物の全体量に対して1質量%以上10質量%以下の範囲にて含んでいてもよい。
 この場合、水が凍結するような極低温の温度環境下においても、水と混練した速硬性モルタル組成物の凍結を抑制することができ、初期強度発現性が高くなる。
 本発明の一態様によれば、環境温度による凝結始発時間の変動が小さく、長期間保存しても凝結始発時間の変動が小さく、水を加えてから硬化反応が進行するまでの間の流動性が高く、かつ初期強度発現性に優れる速硬性モルタル組成物を提供することが可能となる。
実施例1で製造したカルシウムアルミネートクリンカーと凝結調整剤との混合粉砕物の走査型電子顕微鏡画像であり、(A)は装置倍率1000倍の画像であり、(B)は装置倍率3000倍の画像である。 (A)は、図1(B)の丸で囲まれた領域を拡大した走査型電子顕微鏡画像であり、(B)は、その画像に写された粒子を元素分析して得たナトリウムのEPMAマッピング画像である。 実施例1、実施例22、実施例23の速硬性モルタル組成物を硬化させた硬化体の凍結融解試験の測定結果を示すグラフである。
 以下に、本発明の実施形態について説明する。
 本実施形態である速硬性モルタル組成物は、速硬性混和材とセメントと細骨材を含む。速硬性混和材100質量部に対して、セメントを100質量部以上2000質量部以下の範囲にて含む。速硬性混和材は、カルシウムアルミネートと、そのカルシウムアルミネート100質量部に対して50質量部以上200質量部以下の範囲の量の無機硫酸塩と、そのカルシウムアルミネート100質量部に対して0.1質量部以上10質量部以下の範囲の量の凝結調整剤とを含む組成物である。速硬性混和材中のカルシウムアルミネートの平均粒子径は8μm以上100μm以下の範囲とされ、凝結調整剤の平均粒子径は5μm以下とされている。本実施形態の速硬性モルタル組成物は、さらに、凝結調整剤、短繊維、再乳化粉末樹脂、シリカフューム、合成ポリマー系増粘保水剤、防凍剤などの各混和材を含んでいてもよい。
 以下、本実施形態の速硬性モルタル組成物の各成分について説明する。
(速硬性混和材)
 速硬性混和材は、カルシウムアルミネートと無機硫酸塩と凝結調整剤を含む組成物である。
  カルシウムアルミネートは、速硬性モルタル組成物の使用時において水に接したときにカルシウムイオンとアルミニウムイオンを溶出し、これらと無機硫酸塩から溶出される硫酸イオンとを反応させて、針状結晶のエトリンガイト(3CaO・Al・3CaSO・32HO)あるいはモノサルフェイト(3CaO・Al・CaSO・12HO)などの水和物を生成させることによって、その速硬性モルタル組成物の初期強度発現性を向上させる作用を有する。カルシウムアルミネートからのカルシウムイオンとアルミニウムイオンの溶出速度が小さくなりすぎると、硫酸イオンとの反応性が悪くなり、速硬性モルタル組成物の初期強度発現性が低下するおそれがある。一方、カルシウムアルミネートからのカルシウムイオンとアルミニウムイオンの溶出速度が大きくなりすぎると、硫酸イオンとの反応性が高くなり、速硬性モルタル組成物の凝結始発時間が速くなりすぎて、凝結調整剤を使用しても凝結始発時間を調整しにくく、可使時間を十分に確保することが困難となるおそれがある。
 このため、本実施形態では、カルシウムアルミネートの平均粒子径(平均一次粒子径)を8μm以上100μm以下の範囲に設定している。カルシウムアルミネートの平均粒子径が8μm未満であると、カルシウムイオンとアルミニウムイオンの溶出速度が大きくなりすぎて、速硬性モルタル組成物の凝結始発時間を調整しにくくなるおそれがある。一方、カルシウムアルミネートの平均粒子径が100μmを超えると、カルシウムイオンとアルミニウムイオンの溶出速度が小さくなりすぎて、速硬性モルタル組成物の初期強度発現が低下するおそれがある。
 速硬性モルタル組成物中に含まれるカルシウムアルミネートの平均粒子径は、例えば、SEM(走査型電子顕微鏡)とEPMA(電子プローブマイクロアナライザー)とを用いて測定することができる。すなわち、速硬性混和材のSEM画像とEPMAによる元素分析によって検出された元素の結果から、速硬性混和材に含まれているカルシウムアルミネートの粒子を特定し、カルシウムアルミネートとして特定された粒子について、粒子径をSEM画像から計測し、その平均値を求めることによって測定することができる。EPMAによる元素分析によりカルシウムとアルミニウムのみが検出された粒子は、カルシウムアルミネートの粒子として特定できる。
 カルシウムアルミネートとしては、12CaO・7Al、11CaO・7Al・CaF及びCaO・Alからなる群より選択される一つ以上の組成を有し、ガラス化率が80%以上であるものを使用することが好ましい。ガラス化率は、80%以上98%以下であることがより好ましく、90%以上98%以下であることが特に好ましい。上記の組成とガラス化率とを有するカルシウムアルミネートは水と接したときにカルシウムイオンとアルミニウムイオンの溶出速度が大きく、反応性が高くなるので、速硬性モルタル組成物の初期強度発現性を確実に向上させることが可能となる。
 また、カルシウムアルミネートは、ブレーン比表面積が3000cm/g以上5500cm/g以下であることが好ましい。ブレーン比表面積が3000cm/g以上であることにより、カルシウムアルミネートが水と接したときに、カルシウムイオンとアルミニウムイオンの溶出速度が大きくなり、無機硫酸塩から溶出する硫酸イオンとの反応性が高まるので、速硬性モルタル組成物の初期強度発現性をより確実に向上させることが可能となる。一方、ブレーン比表面積が5500cm/g以下であるので、カルシウムアルミネートが水と接したときに、カルシウムイオンとアルミニウムイオンの溶出速度が過度に大きくなることが避けられ、硫酸イオンとの反応性が高くなりすぎることが抑えられる。なお、ブレーン比表面積が5500cm/g以上になっても、速硬性モルタル組成物の初期強度は、横ばいとなるため、粉砕に要するエネルギーを過度に使用するため経済的に好ましくない。なお、ブレーン比表面積は、JIS R 5201「セメントの物理試験方法」に記載のブレーン空気透過装置を用いた比表面積試験で測定するものとする。
 速硬性混和材に含まれる無機硫酸塩は、速硬性モルタル組成物の使用時において、水と接すると硫酸イオンを溶出し、これとカルシウムアルミネートから溶出するカルシウムイオン、アルミニウムイオンとを反応させて、針状結晶のエトリンガイトあるいはモノサルフェイトなどの水和を生成することによって、速硬性モルタル組成物の初期強度発現性を向上させる作用を有する。
 無機硫酸塩からの硫酸イオンの溶出速度が遅いと、カルシウムアルミネートから溶出するカルシウムイオン、アルミニウムイオンとの反応性が悪くなり、凝結開始から硬化するまでの時間が長くなり、速硬性モルタル組成物の初期強度発現性が悪くなる。このため、無機硫酸塩は、ブレーン比表面積が8000cm/g以上であることが好ましい。上記のブレーン比表面積を有する無機硫酸塩は、硫酸イオンの溶出速度が大きく、カルシウムアルミネートから溶出するカルシウムイオン、アルミニウムイオンとの反応性が高いので、速硬性モルタル組成物の初期強度発現性を確実に向上させることが可能となる。また、無機硫酸塩のブレーン比表面積は12000cm/g以下であることが好ましい。ブレーン比表面積が大きくなりすぎると、硫酸イオンの溶出速度が大きくなり過ぎて、カルシウムイオンとアルミニウムイオンとの反応性が過度に高くなるので、凝結開始から硬化するまでの時間が短くなり、凝結調整剤を使用しても可使時間を十分に確保することが困難となるおそれがある。また、水に難溶性の無機硫酸塩の微細な粒子を含むため、所要の流動性を得るために必要な水量が多くなり、速硬性モルタル組成物の硬化体の強度の低下を招くおそれがある。
 無機硫酸塩は、無水石膏であることが好ましく、特にII型無水石膏であることが好ましい。無水石膏(特にII型無水石膏)は、カルシウムアルミネートとの反応性が高いので、速硬性モルタル組成物の初期強度発現性をより確実に向上させることが可能となる。
 速硬性混和材に含まれる凝結調整剤は、速硬性モルタル組成物の使用時において、速硬性モルタル組成物に水を加えてから速硬性モルタル組成物の凝結が開始するまでの時間を調整する作用、すなわちモルタルの硬化時間を遅延させる作用を有する。凝結調整剤によって、モルタルの硬化時間が遅延されることによって、速硬性モルタル組成物に水を加えてからモルタルの硬化反応が進行するまでの間の速硬性モルタル組成物の流動性が向上する。
 凝結調整剤によるモルタルの硬化時間の遅延作用は、凝結調整剤が水に溶解し、速硬性混和材(カルシウムアルミネート)から溶出したカルシウムイオンやアルミニウムイオンとキレート反応して、速硬性混和材の表面に皮膜を形成することによって、速硬性混和材からのカルシウムイオンやアルミニウムイオンの溶出が一時的に抑制されることにより発現すると考えられる。ただし、速硬性混和材の表面に形成される皮膜は、極めて薄いため、比較的短時間で溶解して消失する。そして、この被膜が消失した後は、速硬性混和材からのカルシウムイオン、アルミニウムイオンの再溶出が始まって、モルタルの硬化反応が進行する。
 本実施形態では、速硬性混和材に含まれる凝凝結調整剤は、平均粒子径(平均一次粒子径)が5μm以下の微粒子とされている。このため、比較的に広い温度範囲において、凝結調整剤を水に速やかに溶解させることができる。凝結調整剤の平均粒子径は1μm以上であることが好ましい。平均粒子径が1μm未満であると、凝集粒子を形成し易くなるおそれがある。
 凝結調整剤は、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの1つ以上を含む。これらの薬剤は水に溶解しやすいので、凝結調整剤がこれらの薬剤を1つ以上含むことによって、凝結調整剤による凝結調整作用が早期に発揮され、環境温度による速硬性モルタル組成物の凝結始発時間の変動を確実に小さくすることができる。また、凝結調整剤による凝結調整作用が早期に発揮されるので、凝結始発時間がより安定して長くなるとともに、水を加えた後の流動性がより高くなる。
 無機炭酸塩は、アルカリ金属の炭酸塩あるいは炭酸水素塩であることが好ましい。無機炭酸塩の例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸リチウム、炭酸アンモニウムが挙げられる。これらの無機炭酸塩は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。オキシカルボン酸の例としては酒石酸、クエン酸、リンゴ酸、グルコン酸、マレイン酸を挙げられる。これらのオキシカルボン酸は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。
 凝結調整剤は、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの2つ以上を組合せて使用することが好ましい。2つ以上の組合せは、無機炭酸塩、オキシカルボン酸およびアルミン酸ナトリウムの3つの組合せが好ましく、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムの4つの組合せがより好ましい。なお、凝凝結調整剤を2つ以上の組合せとする場合は、少なくとも一つの凝結調整剤の平均粒子径が5μm以下の微粒子とされていればよい。
 上記の凝結調整剤の中で、硫酸ナトリウムは、水に対する溶解速度が特に速い。このため、硫酸ナトリウムは、水を加えた後の速硬性モルタル組成物の流動性を向上させる効果が高い。また、硫酸ナトリウムは、広い温度範囲で水に溶解し易いので、水を加えた後の速硬性モルタル組成物の凝結始発時間に対する温度依存性を小さくする効果もある。
 凝結調整剤の微粒子は、一次粒子もしくはそれに近い凝集粒子として速硬性混和材中に分散していることが好ましい。凝結調整剤が一次粒子もしくはそれに近い凝集粒子として分散していると、水への溶解速度が向上して、凝結調整剤による凝結調整作用が早期に発揮されるので、環境温度による凝結始発時間の変動を確実に小さくできる。また、微細な凝結調整剤の粒子は、カルシウムアルミネートの表面に付着していることが好ましい。この場合は、凝結調整剤がカルシウムアルミネートよりも先に水と接触するので溶解し易くなり、凝結調整剤による凝結調整作用が早期に発揮されるので、環境温度による凝結始発時間の変動をさらに確実に小さくできる。
 速硬性混和材に含まれる凝結調整剤の平均粒子径は、例えば、SEMとEPMAとを用いて測定することができる。すなわち、速硬性混和材のSEM画像とEPMAによる元素分析によって検出された元素の結果から、速硬性混和材に含まれている凝結調整剤の粒子を特定し、凝結調整剤として特定された粒子について、粒子径をSEM画像から計測し、その平均値を求めることによって測定することができる。例えば、EPMAによる元素分析によりナトリウムのみが検出された粒子は、炭酸ナトリウム(無機炭酸塩)の粒子として特定できる。
 本実施形態では、速硬性混和材に含まれるカルシウムアルミネートと無機硫酸塩と凝結調整剤の配合量は、カルシウムアルミネート100質量部に対して、無機硫酸塩は50質量部以上200質量部以下の範囲に設定され、凝結調整剤は0.1質量部以上10質量部以下の範囲に設定されている。
 無機硫酸塩の配合量が少なくなりすぎると、無機硫酸塩とカルシウムアルミネート水和物との反応生成物(エトリンガイト、モノサルフェイト)の生成量が少なくなり、速硬性モルタル組成物の初期強度発現性が低下するおそれがある。一方、無機硫酸塩の配合量が多くなりすぎると、速硬性モルタル組成物の凝結始発時間が速くなり、可使時間を十分に確保することが困難となるおそれがある。また、カルシウムアルミネートから溶出するカルシウムイオン量とアルミニウムイオン量が、硫酸イオンに対して相対的に少なくなることによって、エトリンガイトの生成量が少なくなるため、速硬性モルタル組成物の初期強度発現性が低下するおそれがある。さらに、残存する無機硫酸塩の影響によって硬化後の膨張量が過剰となり、膨張破壊を起こすおそれがある。
 また、凝結調整剤の配合量が少なくなりすぎると、凝結調整剤の作用が短時間で終了して速硬性モルタル組成物の凝結始発時間が速くなり、可使時間を十分に確保することが困難となるおそれがある。一方、凝結調整剤の配合量が多くなりすぎると、凝結調整剤の作用が所定の時間以上継続し、速硬性モルタル組成物の初期強度発現性が低下するおそれがある。
 速硬性混和材は、例えば、カルシウムアルミネートを含むクリンカーと凝結調整剤とを混合粉砕して混合粉砕物を調製する混合粉砕工程と、得られた混合粉砕物と、無機硫酸塩とを混合する混合工程とを備える方法によって製造することができる。
 上記の速硬性混和材の製造方法において、カルシウムアルミネートの原料として用いるクリンカーは、凝結調整剤と比較して硬度が高い。このため、このカルシウムアルミネートのクリンカーと凝結調整剤とを混合粉砕することによって、凝結調整剤が選択的に微粒子となり、微細な凝結調整剤の粒子が生成する。この凝結調整剤の微粒子は、相対的に粗大なカルシウムアルミネート粒子の表面に付着しやすい。従って、混合粉砕工程では、凝結調整剤の微粒子が一次粒子もしくはそれに近い凝集粒子として、カルシウムアルミネートの表面に付着した状態で分散されている混合粉砕物を得ることができる。混合粉砕装置としては、E型ミル、竪型ミル、チューブミル等の粉砕装置を用いることができるが、これに限定されるものではなく、クリンカーの粉砕装置として通常用いられている各種の粉砕装置を用いることができる。
 カルシウムアルミネートを含むクリンカーは、クリンカー鉱物であることが好ましい。
 粉砕前のカルシウムアルミネートのクリンカーは、平均粒子径が1mm以上30mm以下の範囲にあることが好ましい。また、粉砕前の凝結調整剤は、粒子径が150μm以上500μm以下の範囲にあることが好ましい。
 混合粉砕工程では、混合粉砕を、混合粉砕物のブレーン比表面積が3000cm/g以上5500cm/g以下の範囲となるまで行うことが好ましく、3000cm/g以上4500cm/g以下の範囲になるまで行うことが特に好ましい。ブレーン比表面積が上記の範囲となるまで混合粉砕を行うことによって、カルシウムアルミネートを含むクリンカーと凝結調整剤とが十分に混合粉砕され、凝結調整剤の微粒子が一次粒子もしくはそれに近い凝集粒子として、カルシウムアルミネートの表面に付着した状態で分散されている混合粉砕物を確実に得ることができる。また、混合粉砕物中のカルシウムアルミネートの平均粒子径は、通常、8μm以上100μm以下の範囲に、凝結調整剤の平均粒子径は、通常、5μm以下となる。
 混合工程において、混合粉砕工程にて得られた混合粉砕物と混合する無機硫酸塩は、ブレーン比表面積が8000cm/g以上の無水石膏であることが好ましい。
 混合工程において、混合粉砕物と無機硫酸塩との混合は乾式混合により行われる。乾式混合装置としては、V型混合機、リボンミキサー、プロ-シェアミキサー等の混合機を用いることができるが、これに限定されるものではなく、セメント材料の混合装置として通常用いられている各種の混合装置を用いることができる。混合時間は、混合装置の容量や各材料の配合量に合せて適宜調整することができる。
(セメント)
 セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、シリカフュームセメント等を用いることができる。セメントは、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。セメントはポルトランドセメント、特に普通ポルトランドセメントを用いることが好ましい。
 セメントの配合量は、一般に、速硬性混和材100質量部に対して、セメントを100質量部以上2000質量部以下の範囲である。セメントの配合量が上記の範囲にあると、速硬性混和材による初期強度の発現性とセメントによる長期強度の発現性とに優れた速硬性モルタル組成物を得ることができる。
(細骨材)
 細骨材は、速硬性モルタル組成物の硬化に伴う硬化体の収縮(自己収縮)や、硬化後の水分の逸散に伴う収縮(乾燥収縮)を抑える作用がある。細骨材は、砂であることが好ましく、粒子径が150~3000μmの砂であることがより好ましく、200~1500μmの砂であることが更に好ましい。また、粒子径が90~1000μmの砂であってもよく、更に90~200μmの砂であってもよい。砂の粒子径が小さくなりすぎると、速硬性モルタル組成物と水とを混合して調製したモルタルあるいはセメントミルクの撹拌性能及び硬化体の耐摩耗性が低下するとともにすべり抵抗性が低下するおそれがある。一方、砂の粒子径が大きくなりすぎると、モルタルあるいはセメントミルク中に砂が沈降し易くなるとともに、モルタルあるいはセメントミルクのコンクリート構造物への付着性や舗装体への注入性が低下するおそれがある。
 細骨材の配合量は、例えば、断面補修材(断面修復材)として利用する場合、速硬性混和材100質量部に対する量として、200質量部以上1000質量部以下の範囲である。細骨材の配合量が少なくなりすぎると、硬化体の収縮低減効果が十分に得られないばかりでなく、モルタルの撹拌性能及び耐摩耗性が低下するとともにすべり抵抗性が低下するおそれがある。一方、細骨材の配合量が多くなりすぎると、初期強度発現性が低下するとともに材料分離が発生してブリーディングが発生しやすくなるおそれがある。
 一方、舗装用注入材として利用する場合、細骨材の配合量は、速硬性モルタル組成物の全体量に対して10質量%以上67質量%以下の範囲となる量である。細骨材の配合量が少なくなりすぎると、硬化体の収縮低減効果が十分に得られないばかりでなく、セメントミルクの撹拌性能及び耐摩耗性が低下するとともにすべり抵抗性が低下するおそれがある。一方、細骨材の配合量が多くなりすぎると、初期強度の発現性が低下するとともに材料分離が発生してブリーディングが発生しやすくなるおそれがある。
(凝結調整剤)
 本実施形態の速硬性モルタル組成物では、上述のとおり、速硬性混和材の構成成分として凝結調整剤が平均粒子径5μm以下の微粒子として含まれているが、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲となるように、さらに、凝結調整剤が添加されていてもよい。ここで、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量は、速硬性混和材中に含まれている凝結調整剤(第1の凝結調整剤とも言う)と、速硬性混和材とは別に添加された凝結調整剤(第2の凝結調整剤とも言う)との合計量である。この場合は、速硬性混和材中に含まれている凝結調整剤と、速硬性混和材とは別に添加された凝結調整剤とによって凝結時間を調整できるので、環境温度および長期間の保存による速硬性モルタル組成物の凝結始発時間の変動をさらに確実に小さくすることができる。また、凝結調整剤を別に添加することによって、速硬性モルタル組成物の凝結始発時間を所要の時間に調整することができる。また、本実施形態の速硬性モルタル組成物では、速硬性混和材中に含まれている凝結調整剤は微粒子で水に溶解しやすく、通常は可使時間を十分に確保できるので、別に添加する凝結調整剤の量は少なくできる。
 速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%未満であると、凝結時間を調整する作用が不十分となるおそれがある。一方、速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が5質量%を超えると、モルタルによる長期強度の発現性が低下するおそれがある。
 速硬性混和材とは別に添加する凝結調整剤は、単独で速硬性モルタル組成物に添加してもよいが、無機粉末と凝結調整剤を予め混合した混合物として添加することが好ましい。無機粉末と凝結調整剤の混合物は、無機粉末100質量部に対して凝結調整剤を50質量部以上300質量部以下の範囲で含有する凝結調整剤高濃度含有混合物であることが好ましい。凝結調整剤を凝結調整剤高濃度含有混合物として速硬性モルタル組成物に添加することによって、凝結調整剤を速硬性モルタル組成物中に均一に分散させ易くなる。無機粉末としては、セメント(特に、ポルトランドセメント)、石灰石粉末、珪石粉末、高炉スラグ粉末、石炭灰、フライアッシュ、粘土鉱物、カルシウムアルミネート粉末、無機硫酸塩粉末を用いることができる。無機粉末は、ブレーン比表面積が2500cm/g以上5000cm/g以下の範囲にある微粉末であることが好ましい。ブレーン比表面積が、上記の範囲にある無機粉末は分散性が高いため、この無機粉末を用いた凝結調整剤高濃度含有混合物は、速硬性モルタル組成物に均一に分散させ易くなる。凝結調整剤高濃度含有混合物に含まれている凝結調整剤の粒子径は、1μm以上500μm以下の範囲にあることが好ましい。粒子径が上記の範囲にある凝結調整剤は、無機粉末への分散性が高く、組成が均一な凝結調整剤高濃度含有混合物を調製しやすくなる。
(短繊維)
 短繊維は補強材として作用する。このため、短繊維を含む速硬性モルタル組成物を硬化させた硬化体はひび割れ抵抗性が向上して、疲労に対する耐久性が優れたものとなる。
 短繊維としては、有機短繊維および炭素短繊維を用いることができる。有機短繊維の例としては、PVA短繊維(ポリビニルアルコール短繊維)、ポリアミド短繊維、アラミド短繊維、ポリプロピレン短繊維、レーヨン短繊維等が挙げられる。これらの短繊維は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
 短繊維は、繊維長が1mm以上10mm以下の範囲にあることが好ましい。1mmより短いと十分な繊維補強効果が得られないおそれがある。一方、10mmを超えると繊維の抵抗により流動性が損なわれ、狭隘部や半たわみ性舗装への注入性が低下する等、施工性が阻害されるおそれがある。繊維径は、通常、5μm以上100μm以下の範囲である。
 短繊維の配合量は、一般に、速硬性モルタル組成物の全体量に対する量として、0.1質量%以上0.3質量%以下の範囲である。短繊維の配合量が少なくなりすぎると、硬化体のひび割れ抵抗性が向上して、疲労に対する耐久性を向上させる作用が不十分となるおそれがある。一方、短繊維の配合量が多くなりすぎると、速硬性モルタル組成物と水の混合物の流動性が低下するおそれがある。
(再乳化粉末樹脂)
 再乳化粉末樹脂は吸水性および透水性が低い樹脂であり、速硬性モルタル組成物を硬化させた硬化体に対して水を浸透しにくくする作用がある。また、再乳化粉末樹脂は、コンクリート構造物に対する速硬性モルタル組成物の付着力を向上させる作用がある。このため、再乳化粉末樹脂を含む速硬性モルタル組成物は、水に浸漬させた後の凍結融解抵抗性に優れ、コンクリート構造物に対する付着力が向上する。
 再乳化粉末樹脂の例としては、酢酸ビニル/ベオバ/アクリル酸エステル共重合樹脂、酢酸ビニル共重合樹脂、酢酸ビニル/エチレン共重合、酢酸ビニル/アクリル共重合樹脂、アクリル樹脂などが挙げられる。これらの再乳化粉末樹脂は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
 再乳化粉末樹脂の配合量は、一般に、速硬性モルタル組成物の全体量に対する量として、0.5質量%以上30質量%以下の範囲である。再乳化粉末樹脂の配合量が少なくなりすぎると、速硬性モルタル組成物の硬化体の凍結融解抵抗性を向上させる作用やコンクリート構造物に対する付着力を向上させる作用が不十分となるおそれがある。一方、再乳化粉末樹脂の配合量が多くなりすぎると、速硬性モルタル組成物と水の混合物の流動性が低下するおそれがある。
(シリカフューム)
 シリカフュームはポラゾン作用を有する。このため、シリカフュームを含む速硬性モルタル組成物は長期強度発現性が向上し、さらにこれを硬化させた硬化体は緻密化して、総細孔量が小さくなり、中性化の進行や塩化物イオンの拡散の進行が抑制される。
 シリカフュームの配合量は、速硬性モルタル組成物の全体量に対する量として、0.5質量%以上30質量%以下の範囲であることが好ましい。シリカフュームの配合量が少なくなりすぎると、ポゾラン反応による長期強度発現性や、速硬性モルタル組成物の硬化体組織の緻密化に拠る中性化を抑制する効果や塩化物イオンの浸透を抑制する効果が十分ではなくなるおそれがある。一方、シリカフュームの配合量が多くなりすぎると、速硬性モルタル組成物中の速硬性混和材の分量が相対的に少なくなり、初期強度発現性が悪くなるおそれがある。
(合成ポリマー系増粘保水剤)
 合成ポリマー系増粘保水剤は、水と接すると微細な気泡を発生する作用がある。このため、合成ポリマー系増粘保水剤を含む速硬性モルタル組成物を硬化させた硬化体は、疑似的にエントレインドエアが導入されて、凍結融解抵抗性が向上する。
 合成ポリマー系増粘保水剤の配合量は、速硬性モルタル組成物の全体量に対する量として、0.1質量%以上0.3質量%以下の範囲であることが好ましい。合成ポリマー系増粘保水剤の配合量が少なくなりすぎると、速硬性モルタル組成物の硬化体の凍結融解抵抗性を向上させる作用が不十分となるおそれがある。一方、合成ポリマー系増粘保水剤の配合量が多くなりすぎると、速硬性モルタル組成物と水の混合物の流動性が低下するばかりでなく、過剰な気泡が入り強度を低下させるおそれがある。
(防凍剤)
 酢酸ナトリウム、酢酸カルシウム、亜硝酸カルシウムは水と反応して発熱して、水が凍結するような極低温の温度環境下において、速硬性モルタル組成物と水の混合物の凍結を防止する防凍剤として作用する。このため、防凍剤を含む速硬性モルタル組成物は、極低温の温度環境下においても、水と混練した速硬性モルタル組成物の凍結を抑制することができ、初期強度発現性が高くなる。
 防凍剤は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
 防凍剤の配合量は、一般に、速硬性モルタル組成物の全体量に対する量として、1質量%以上10質量%以下の範囲である。防凍剤の配合量が少なくなりすぎると、防凍剤としての作用が不十分となり、速硬性モルタル組成物が凍結してしまい強度が全く出なくなるおそれがある。一方、防凍剤の配合量が多くなりすぎると、速硬性モルタル組成物と水の混合物において塩析作用が生じ、流動性が低下するおそれがある。
 以上のような構成とされた本実施形態の速硬性モルタル組成物において用いられる速硬性混和材は、カルシウムアルミネートの平均粒子径が8μm以上100μm以下の範囲とされ、凝結調整剤の平均粒子径が5μm以下とされていて、凝結調整剤がカルシウムアルミネートと比較して、微細であるため水に溶解しやすい。このため、本実施形態の速硬性モルタル組成物に水を加えると、広い温度範囲において安定して凝結調整剤が水に速やかに溶解して、凝結調整剤による凝結調整作用が早期に発揮されるので、環境温度による凝結始発時間の変動が小さくなる。また、凝結調整剤による凝結調整作用が早期に発揮されるので、凝結始発時間が安定して長くなり、水を加えた後の流動性が高くなる。さらに、凝結調整剤による凝結調整作用が終了した後は、カルシウムアルミネートと無機硫酸塩とによるセメントの硬化促進作用が発揮されるので、速硬性モルタル組成物の初期強度発現性を向上させることができる。さらにまた、凝結調整剤は微細な粒子として、速硬性モルタル組成物中に分散されているので、本実施形態の速硬性モルタル組成物は、長期間保存しても、凝結調整剤が偏析して、凝結調整剤の含有量が不均一となることが起こりにくい。このため、長期間保存しても凝結始発時間の変動が小さく、かつ初期強度発現性に優れたものとなる。
 上記のように、本実施形態の速硬性モルタル組成物は、環境温度による凝結開始時間の変動が小さく、初期強度発現性に優れるので、左官工法、吹付け工法、充填工法、プレパックト工法などの工法により施工されるコンクリート構造物の補修工事で使用されるモルタルの原料(断面修復材)として好適に使用することができる。また、主として屋外で使用されるPC舗装やRC舗装で使用される裏込めグラウト材および半たわみ性舗装で使用されるセメントミルク等の原料(舗装用注入材)として好適に使用することができる。特に、本実施形態の速硬性モルタル組成物は、初期発生強度が高いので、例えば、2時間で交通開放できる実用強度を有する舗装を形成することができる。
 本実施形態の速硬性モルタル組成物においては、速硬性混和材100質量部に対して、細骨材を200質量部以上1000質量部以下の範囲にて含有している場合は、初期強度発現性に優れたものとなると共に、速硬性モルタル組成物の硬化に伴う硬化体の収縮や、硬化後の水分の逸散に伴う収縮が抑えられる。このため、硬化体のひび割れの発生を抑制することができ、硬化体の強度が高くなる。従って、この速硬性モルタル組成物は、断面修復材として特に有用である。
 一方、本実施形態の速硬性モルタル組成物においては、速硬性モルタル組成物の全体量に対して、細骨材を10質量%以上67質量%以下の範囲にて含有していてもよい場合は、初期強度発現性に優れたものとなると共に、水を加えたときの細骨材の流動性が向上する。このため、半たわみ性舗装における開粒度アスファルト混合物の空隙のように微細な空間内に対しても、細骨材が媒体となるので、良好に充填することができる。
 また、本実施形態の速硬性モルタル組成物は、凝結調整剤が、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの1つ以上を含むので、環境温度による速硬性モルタル組成物の凝結始発時間の変動を確実に小さくすることができる。また、凝結調整剤による凝結調整作用が早期に発揮されるので、凝結始発時間がより安定して長くなるとともに、水を加えた後の流動性がより高くなる。硫酸ナトリウムは、水に対する溶解速度が特に速いため、水を加えた後の速硬性モルタル組成物の流動性を向上させる効果が高い。
 また、短繊維を含む速硬性モルタル組成物の硬化体は、ひび割れ抵抗性や強度が向上して、疲労に対する耐久性に優れたものとなる。このため、この短繊維を含む速硬性モルタル組成物は、コンクリート床版や橋梁の桁のように繰返し疲労荷重が作用するような部位の断面修復用として好適に使用できる。また、大きな負荷がかかる空港の滑走路のPC舗装やRC舗装で使用される裏込めグラウト材の材料として好適に使用できる。
 また、再乳化粉末樹脂を含む速硬性モルタル組成物は、水に浸漬させた後の凍結融解抵抗性に優れ、コンクリート構造物に対する付着力が向上する。このため、再乳化粉末樹脂を含む速硬性モルタル組成物は、各種のコンクリート構造物、例えば桟橋、橋梁、トンネル、コンクリート舗装の断面修復用として好適に使用できる。また、寒冷地での舗装用注入材として好適に使用できる。
 また、シリカフュームを含む速硬性モルタル組成物の硬化体は、中性化の進行や塩化物イオンの拡散の進行が抑制される。このため、シリカフュームを含む速硬性モルタル組成物は、塩害によって損傷したコンクリート構造物の修復用として好適に使用できる。
 また、合成ポリマー系増粘保水剤を含む速硬性モルタル組成物の硬化体は、凍結融解抵抗性が向上する。このため、合成ポリマー系増粘保水剤を含む速硬性断面修復材は、寒冷地でのコンクリート構造物の修復用として好適に使用できる。
 また、防凍剤を含む速硬性モルタル組成物は、極低温の温度環境下においても、初期強度発現性が高い硬化体を得ることができる。このため、この防凍剤を含む速硬性モルタル組成物は、寒冷地での舗装用注入材として好適に使用できる。
 以上、本発明の実施形態である速硬性モルタル組成物について説明したが、本発明はこれに限定されることはなく、その発明の技術的要件を逸脱しない範囲で適宜変更可能である。
 例えば、速硬性モルタル組成物は、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤、防水剤、起泡剤、発泡剤、消泡剤、鉄筋コンクリート用防錆剤、水中不分離性混和剤、保水剤、乾燥収縮低減剤、分離低減剤(増粘剤)、防凍・耐寒剤などを含んでいてもよい。
  次に本発明の実施例を比較例とともに詳しく説明する。
[使用材料]
 本実施例および比較例にて使用した使用材料の種類、組成及び略号を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
[速硬性混和材(SA-1)の調製]
 カルシウムアルミネートクリンカー(CA-CL)を100質量部、凝結調整剤として、炭酸ナトリウム(Na-3)を1.0質量部、アルミン酸ナトリウム(Al-3)を0.5質量部、酒石酸(Ta-3)を0.5質量部となる割合にて、混合粉砕機に投入し、ブレーン比表面積が4500cm/gになるまで混合粉砕した。得られた混合粉砕物に含まれているカルシウムアルミネートの平均粒子径は15μmであり、炭酸ナトリウムの平均粒子径は3.0μmであった。炭酸ナトリウムの平均粒子径は、下記の方法を用いて測定した。
(炭酸ナトリウムの平均粒子径の測定方法)
 先ず、初めに、得られた混合粉砕物の粒子形状を、SEM(走査型電子顕微鏡)を用いて観察した。図1に、混合粉砕物のSEM画像を示す。図1の(A)は装置倍率1000倍のSEM画像で、(B)は装置倍率3000倍のSEM画像である。
 次に、EPMA(電子プローブマイクロアナライザー)を用いてSEM画像に写された粒子の元素分析を行った。図2にその結果を示す。図2の(A)は、図1(B)の丸で囲まれた領域を拡大したSEM画像であり、(B)は、そのSEM画像に写された粒子を、EPMAを用いて元素分析して得た元素のマッピング画像である。図2の(B)において、白色部分はナトリウムを表す。この図2の(A)のSEM画像と(B)のマッピング画像から、炭酸ナトリウムの粒子を特定し、その炭酸ナトリウムとして特定された粒子の最長径を図1(B)のSEM画像を用いて計測した。この操作を繰り返して、100個の炭酸ナトリウムの粒子径を計測し、その平均値を算出した。
 上記のようにして得られた混合粉砕物100質量部に対して、無機硫酸塩として無水石膏(CS)を120質量部の割合で混合機に投入して、混合した。得られた混合物を速硬性混和材(SA-1)とした。
[速硬性混和材(SA-2)の調製]
 カルシウムアルミネートクリンカー(CA-CL)を混合粉砕機に投入し、ブレーン比表面積が4500cm/gになるまで粉砕して、カルシウムアルミネート粉末を得た。得られたカルシウムアルミネート粉末100質量部に対して、無水石膏(CS)を120質量部の割合にて混合機に投入して、混合した。得られた混合物を速硬性混和材(SA-2)とした。
[速硬性混和材(SA-3)の調製]
 カルシウムアルミネートクリンカー(CA-CL)を100質量部、凝結調整剤として、炭酸ナトリウム(Na-3)を1.0質量部、アルミン酸ナトリウム(Al-3)を0.5質量部、酒石酸(Ta-3)を0.5質量部、硫酸ナトリウム(NS-3)を1.0質量部となる割合にて、混合粉砕機に投入し、ブレーン比表面積が4560cm/gになるまで混合粉砕した。得られた混合粉砕物に含まれているカルシウムアルミネートの平均粒子径は14.2μmであり、炭酸ナトリウムの平均粒子径は2.8μmであった。
 上記のようにして得られた粉砕混合物100質量部に対して、無水石膏(CS)を120質量部の割合で混合機に投入して、混合した。得られた混合物を速硬性混和材(SA-3)とした。
[凝結調整剤高濃度含有混合物(Set-1)の調製]
 炭酸ナトリウム(Na-1)、炭酸ナトリウム(Na-2)、炭酸ナトリウム(Na-3)、アルミン酸ナトリウム(Al-1)、アルミン酸ナトリウム(Al-2)、アルミン酸ナトリウム(Al-3)、酒石酸(Ta-1)、酒石酸(Ta-2)、酒石酸(Ta-3)、そして無機粉末として普通ポルトランドセメントNを、質量比で3:6:3:1:2:1:1:2:1:20(=Na-1:Na-2:Na-3:Al-1:Al-2:Al-3:Ta-1:Ta-2:Ta-3:N)の割合にて混合機に投入して、乾式混合した。得られた混合物を凝結調整剤高濃度含有混合物(Set-1)とした。
[凝結調整剤混合物(Set-2)の調製]
 炭酸ナトリウム(Na-1)、炭酸ナトリウム(Na-2)、炭酸ナトリウム(Na-3)、アルミン酸ナトリウム(Al-1)、アルミン酸ナトリウム(Al-2)、アルミン酸ナトリウム(Al-3)、酒石酸(Ta-1)、酒石酸(Ta-2)、そして酒石酸(Ta-3)を、質量比で3:6:3:1:2:1:1:2:1(=Na-1:Na-2:Na-3:Al-1:Al-2:Al-3:Ta-1:Ta-2:Ta-3)の割合にて混合機に投入して、乾式混合した。得られた混合物を凝結調整剤混合物(Set-2)とした。
 [凝結調整剤高濃度含有混合物(Set-3)の調製]
 炭酸ナトリウム(Na-1)、炭酸ナトリウム(Na-2)、炭酸ナトリウム(Na-3)、アルミン酸ナトリウム(Al-1)、アルミン酸ナトリウム(Al-2)、アルミン酸ナトリウム(Al-3)、酒石酸(Ta-1)、酒石酸(Ta-2)、酒石酸(Ta-3)、硫酸ナトリウム(NS-3)そして無機粉末として普通ポルトランドセメント(N)を、質量比で3:6:3:1:2:1:1:2:1:12:32(=Na-1:Na-2:Na-3:Al-1:Al-2:Al-3:Ta-1:Ta-2:Ta-3:NS-3:N)の割合にて混合機に投入して、乾式混合した。得られた混合物を凝結調整剤高濃度含有混合物(Set-3)とした。
[実施例1、2および比較例1]
 速硬性混和材(SA-1、SA-2、SA-3)、普通ポルトランドセメント(N)、凝結調整剤高濃度含有混合物(Set-1、Set-3)、凝結調整剤混合物(Set-2)、細骨材(S3-6)、減水材(MX)および消泡剤(14HP)を下記の表2に示す割合(質量部)にて混合機に投入し、乾式混合して、速硬性モルタル組成物(充填工法用速硬性断面修復材)を製造した。
Figure JPOXMLDOC01-appb-T000002
 得られた速硬性モルタル組成物100質量部に水を15質量部加え、強制練りコンクリートミキサーで2分間練り混ぜてモルタルを調製した。調製したモルタルを用いて、JIS静置フロー、凝結時間、圧縮強度の各物性を測定した。
 JIS静置フローは、JIS R 5201「セメントの物理試験方法」に準拠して、テーブルフローによる落下運動を加えずにフロー値を測定した。
 凝結開始時間は、JIS R 5201「セメントの物理試験方法」に準拠して測定した。
 圧縮強度は、JIS R 5201「セメントの物理試験方法」に準拠して測定した。
 速硬性モルタル組成物の温度特性を確認するために、JIS静置フロー、凝結時間、圧縮強度の各物性の測定を5℃、20℃、35℃の環境温度下で行った。その結果を表3に示す。
 また、速硬性モルタル組成物の保存特性を確認するために、速硬性モルタル組成物をビニール袋(容量:12L)に梱包し、ビニール袋の角部の4カ所にピンホール(孔径:0.5mm)を開け、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の速硬性モルタル組成物について、モルタルを調製し、JIS静置フロー、凝結時間、圧縮強度の各物性を測定した。このときの各物性の測定は20℃の環境温度下で行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3の結果から、実施例1、2の速硬性モルタル組成物は、比較例1の速硬性モルタル組成物と比較して、環境温度によるJIS静置フロー、凝結時間、圧縮強度の変動が小さく、温度安定性に優れていることが確認された。特に、硫酸ナトリウムを含む実施例2の速硬性モルタル組成物は、JIS静置フローが大きく、流動性が優れていることが確認された。
 また、表4の結果から、実施例1、2の速硬性モルタル組成物は、比較例1の速硬性モルタル組成物と比較して、保存によるJIS静置フロー、凝結時間、圧縮強度の変動が小さく、保存安定性に優れていることが確認された。
[実施例3、4および比較例2]
 速硬性混和材(SA-1、SA-2、SA-3)、早強ポルトランドセメント(H)、凝結調整剤高濃度含有混合物(Set-1、Set-3)、凝結調整剤混合物(Set-2)、細骨材(S3-6)および消泡剤(14HP)を下記の表5に記載の質量部にて、混合機に投入し、乾式混合して、速硬性モルタル組成物(吹付工法用速硬性断面修復材)を製造した。
Figure JPOXMLDOC01-appb-T000005
 得られた速硬性モルタル組成物100質量部に水を13質量部加え、強制練りコンクリートミキサーで2分間練り混ぜてモルタルを調製した。調製したモルタルを用いて、JIS15打フロー、凝結時間、圧縮強度の各物性を測定した。
 JIS15打フローは、JIS R 5201「セメントの物理試験方法」に準拠して、テーブルフローによる落下運動を15回加えたときのフロー値を測定した。
 凝結時間および圧縮強度は、上記の方法により測定した。なお、圧縮強度試験用の試験体は、吹付け法により作製した。
 速硬性モルタル組成物の温度特性を確認するために、JIS15打フロー、凝結時間、圧縮強度の各物性の測定を5℃、20℃、35℃の環境温度下で行った。その結果を表6に示す。
 また、速硬性モルタル組成物の保存特性を確認するために、速硬性モルタル組成物を実施例1と同様にして、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の速硬性モルタル組成物について、モルタルを調製し、JIS15打フロー、凝結時間、圧縮強度の各物性を測定した。このときの各物性の測定は20℃の環境温度下で行った。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6の結果から、実施例3、4の速硬性モルタル組成物は、比較例2の速硬性モルタル組成物と比較して、環境温度によるJIS15打フロー、凝結時間、圧縮強度の変動が小さく、温度安定性に優れていることが確認された。特に、硫酸ナトリウムを含む実施例4の速硬性モルタル組成物は、JIS15打フローが大きく、流動性が優れていることが確認された。
 また、表7の結果から、実施例3、4の速硬性モルタル組成物は、比較例2の速硬性モルタル組成物と比較して、保存によるJIS15打フロー、凝結時間、圧縮強度の変動が小さく、保存安定性に優れていることが確認された。
[実施例5、6および比較例3]
 速硬性混和材(SA-1、SA-2、SA-3)、早強ポルトランドセメント(H)、凝結調整剤高濃度含有混合物(Set-1、Set-3)、凝結調整剤混合物(Set-2)、細骨材(S3-6)、減水材(MX)および消泡剤(14HP)を下記の表8に記載の質量部にて、混合機に投入し、乾式混合して、速硬性モルタル組成物(プレパックド工法用速硬性断面修復材)を製造した。
Figure JPOXMLDOC01-appb-T000008
 得られた速硬性モルタル組成物100質量部に水を22質量部加え、強制練りコンクリートミキサーで2分間練り混ぜてモルタルを調製した。調製したモルタルを用いて、J14ロート流下時間、凝結時間、圧縮強度の各物性を測定した。
 J14ロート流下時間は、土木学会規準JSCE-F 541「充てんモルタルの流動性試験方法」に準拠して測定した。
 凝結時間および圧縮強度は、上記の方法により測定した。
 速硬性モルタル組成物の温度特性を確認するために、J14ロート流下時間、凝結時間、圧縮強度の各物性の測定を5℃、20℃、35℃の環境温度下で行った。その結果を表9に示す。
 また、速硬性モルタル組成物の保存特性を確認するために、速硬性モルタル組成物を実施例1と同様にして、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の速硬性モルタル組成物について、モルタルを調製し、J14ロート流下時間、凝結時間、圧縮強度の各物性を測定した。このときの各物性の測定は20℃の環境温度下で行った。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表9の結果から、実施例5、6の速硬性モルタル組成物は、比較例3の速硬性モルタル組成物と比較して、環境温度によるJ14ロート流下時間、凝結時間、圧縮強度の変動が小さく、温度安定性に優れていることが確認された。特に、硫酸ナトリウムを含む実施例6の速硬性モルタル組成物は、J14ロート流下時間が短く、流動性が優れていることが確認された。
 また、表10の結果から、実施例5、6の速硬性モルタル組成物は、比較例3の速硬性モルタル組成物と比較して、保存によるJ14ロート流下時間、凝結時間、圧縮強度の変動が小さく、保存安定性に優れていることが確認された。
[実施例7~11]
 実施例1の速硬性モルタル組成物に、短繊維としてPVA短繊維(繊維径:26μm、繊維長:3mm)を、速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.05質量%(実施例7)、0.1質量%(実施例8)、0.5質量%(実施例9)、1.0質量%(実施例10)、3.0質量%(実施例11)となる量にてそれぞれ添加し、混合して、実施例7~11の短繊維を含む速硬性モルタル組成物を調製した。
 得られた短繊維を含む速硬性モルタル組成物100質量部に水15質量部を加え、実施例1と同様にしてモルタルを調製した。得られたモルタルについて、JIS静置フローを測定した。
 また、得られたモルタルを用いて作製した供試体に対して、200万回の繰返し疲労試験を行った。疲労試験は、旧JSTM C 7104:1999「繰返し圧縮応力によるコンクリートの疲労試験方法」に準拠した方法により行った。疲労試験の水準は、静的圧縮強度:50N/mm、上限応力比:65%、下限応力比:10%、繰返し速度:10Hzとし、供試体の寸法はφ50×100mmとした。その結果を、下記の表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11の結果から、PVA短繊維を含む速硬性モルタル組成物を用いて作製した供試体(硬化体)の圧縮疲労耐久性は、短繊維の添加量が0.05質量%の場合でも大きく向上し、特に短繊維の添加量が0.1質量%以上になると格段に向上して、繰返し回数が200万回でも供試体の状況は健全となることが確認された。
[実施例12~17]
 実施例3の速硬性モルタル組成物に、再乳化粉末樹脂(P)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.5質量%(実施例12)、1.0質量%(実施例13)、2.0質量%(実施例14)、5.0質量%(実施例15)、10.0質量%(実施例16)、15.0質量%(実施例17)となる量にてそれぞれ添加し、混合して、実施例12~17の再乳化粉末樹脂を含む速硬性モルタル組成物を調製した。
 得られた再乳化粉末樹脂を含む速硬性モルタル組成物100質量部に水13質量部を加え、実施例3と同様にしてモルタルを調製した。得られたモルタルについて、JIS15打フローを測定した。
 また、得られたモルタルを、ウオータジェットで目粗し処理を施したコンクリート平板の表面に、乾式吹き付け工法に塗布した。塗布したモルタルを、材齢28日まで封かん養生して硬化させた。得られたモルタルの硬化体の圧縮強度、および硬化体とコンクリート平板の付着強度を測定した。その結果を、下記の表12に示す。なお、圧縮強度は上記の方法により測定し、付着強度は建研式付着性試験機を用いて測定した。
Figure JPOXMLDOC01-appb-T000012
 表12の結果から、再乳化粉末樹脂を含む速硬性モルタル組成物を用いて作製した硬化体はコンクリート平板との付着強度が向上し、特に再乳化粉末樹脂の含有量が1.0質量%以上の再乳化粉末樹脂を含む速硬性モルタル組成物を用いて作製した硬化体はコンクリート平板との付着強度が1.5N/mm以上となることが確認された。
[実施例18~21]
 実施例5の速硬性モルタル組成物に、シリカフューム(SF)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ1.0質量%(実施例18)、5.0質量%(実施例19)、10.0質量%(実施例20)、15.0質量%(実施例21)となる量にてそれぞれ添加し、混合して実施例18~21のシリカフュームを含む速硬性モルタル組成物を作製した。
 得られたシリカフュームを含む速硬性モルタル組成物100質量部に水を22質量部加え、実施例5と同様にしてモルタルを調製した。得られたモルタルを100×100×400mmの型枠に流し込み、試験体を作製した。作製した試験体の中性化深さ、塩化物イオン拡散係数、総細孔量を下記の方法により測定した。その結果を、表13に示す。
(中性化深さの測定方法)
 JIS A 1153「コンクリートの促進中性化試験方法」に準拠し、CO濃度5%の促進試験を実施して測定した。
(塩化物イオン拡散係数の測定方法)
 土木学会規準 JSCE-G 572「浸漬によるコンクリート中の塩化物イオンの見掛けの拡散係数試験方法」に準拠して測定した。
(総細孔量の測定方法)
 水銀圧入式ポロシメーターにより測定した。
Figure JPOXMLDOC01-appb-T000013
 表13の結果から、シリカフュームを含む速硬性モルタル組成物を用いて作製した試験体(硬化体)は総細孔量が減少し、これにより中性化の進行や塩化物イオンの拡散の進行が抑制されることが確認された。
[実施例22、23]
 実施例1の速硬性モルタル組成物に、合成ポリマー系増粘保水剤(Ad)を速硬性断面修復材の全体量に対する含有量がそれぞれ0.1質量%(実施例22)、0.3質量%(実施例23)となる量にてそれぞれ添加し、混合して実施例22、23の増粘保水剤を含む速硬性モルタル組成物を作製した。
 得られた合成ポリマー系増粘保水剤を含む速硬性モルタル組成物100質量部に水を15質量部加え、実施例1と同様にしてモルタルを調製した。得られたモルタルを用いて、凍結融解試験を実施した。試験方法は、JIS A 1145 「コンクリートの凍結融解試験方法」に準拠して300サイクルまで行い、相対動弾性係数を測定した。その結果を、図3に示す。
 図3の結果から、合成ポリマー系増粘保水剤を含む速硬性モルタル組成物を用いて作製したコンクリートは、その増粘保水剤の添加量が0.1質量%~0.3質量%と少量であっても凍結融解抵抗性が格段に向上し、300サイクル凍結融解の繰返した後でも、相対動弾性係数80%以上を維持することが確認された。
[実施例24、25および比較例4]
 速硬性混和材(SA-1、SA-2、SA-3)、普通ポルトランドセメント(N)、凝結調整剤高濃度含有混合物(Set-1、Set-3)、凝結調整剤混合物(Set-2)、細骨材(S)、再乳化粉末樹脂(P)および消泡剤(14HP)を下記の表14に示す割合(質量部)にて混合機に投入し、乾式混合して、速硬性モルタル組成物を製造した。
Figure JPOXMLDOC01-appb-T000014
 得られた速硬性モルタル組成物100質量部に水50質量部を加え、ハンドミキサーで2分間練り混ぜて、セメントミルクを調製した。調製したセメントミルクを用いて、Pロート流下時間、凝結時間、圧縮強度の各物性を測定した。なお、Pロート流下時間の測定は次のようにして行った。凝結時間および圧縮強度は、上記の方法により測定した。
 Pロート流下時間は、土木学会規準JSCE-F 521「プレパックドコンクリートの注入モルタルの流動性試験方法(P漏斗による方法)」に準拠して測定した。
 速硬性モルタル組成物の温度特性を確認するために、Pロート流下時間、凝結時間、圧縮強度の各物性の測定を5℃、20℃、35℃の環境温度下で行った。その結果を表15に示す。
 また、速硬性モルタル組成物の保存特性を確認するために、速硬性モルタル組成物を実施例1と同様にして、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の速硬性モルタル組成物について、セメントミルクを調製し、Pロート流下時間、凝結時間、圧縮強度の各物性を測定した。なお、このときの各物性の測定は20℃の環境温度下で行った。その結果を表16に示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表15の結果から、実施例24、25の速硬性モルタル組成物は、比較例4の速硬性モルタル組成物と比較して、環境温度によるPロート流下時間、凝結時間、圧縮強度の変動が小さく、温度安定性に優れていることが確認された。特に、硫酸ナトリウムを含む実施例25の速硬性モルタル組成物は、Pロート流下時間が短く、流動性が優れていることが確認された。
 また、表16の結果から、実施例24、25の速硬性モルタル組成物は、比較例2の速硬性モルタル組成物と比較して、保存によるPロート流下時間、凝結時間、圧縮強度の変動が小さく、保存安定性に優れていることが確認された。
[実施例26~31]
 実施例24の速硬性モルタル組成物に、再乳化粉末樹脂(P)を、速硬性モルタル組成物の全体量に対する含有量がそれぞれ0.5質量%(実施例26)、1.0質量%(実施例27)、2.0質量%(実施例28)、5.0質量%(実施例29)、10.0質量%(実施例30)、30.0質量%(実施例31)となる量にてそれぞれ添加し、混合して、再乳化粉末樹脂を含む速硬性モルタル組成物を製造した。
 得られた再乳化粉末樹脂を含む速硬性モルタル組成物100質量部に水45質量部を加え、ハンドミキサーで2分間練り混ぜて、セメントミルクを調製した。調製したセメントミルクを用いて、Pロート流下時間、材齢7日の圧縮強度を測定した。その結果を、表17に示す。
 また、調製したセメントミルクを空隙率22%の開粒度アスファルト母体(100×200×厚さ100mm)に注入し、20℃の温度で7日間養生して半たわみ性舗装体を作成した。得られた半たわみ舗装体を水に浸漬し、-20℃×6時間と+20℃×6時間の凍結融解サイクルを200サイクル繰返し、舗装体の外観を観察した。その結果を、表17に示す。
Figure JPOXMLDOC01-appb-T000017
 表17の結果から、再乳化粉末樹脂の添加量が0.5質量%に満たない試験体は、凍結融解繰返しにより硬化体がスケーリングにより脱落する現象が認められた。一方、再乳化粉末樹脂添加量が2.0質量%以上では硬化体の脱落は認められず、再乳化粉末樹脂の添加により硬化体の凍結融解抵抗性が向上することが確認された。
[実施例32~36]
 実施例24の速硬性モルタル組成物に、防凍剤(CN)を速硬性モルタル組成物の全体量に対する含有量がそれぞれ1.0質量%(実施例32)、2.0質量%(実施例33)、3.0質量%(実施例34)、5.0質量%(実施例35)、10.0質量%(実施例36)となる量にてそれぞれ添加し、混合して、防凍剤を含む速硬性モルタル組成物を製造した。
 得られた防凍剤を含む速硬性モルタル組成物100質量部に、水温5℃の水45質量部を加え、-5℃の温度環境下で、ハンドミキサーで2分間練り混ぜて、グラウトを調製した。
得られたグラウトを、3個の円筒状容器(内径φ50×高さ100mm)にそれぞれ注入した。この円筒状容器3個を、内寸200mm150×150mmの発泡スチロール製の断熱容器に入れ、-5℃の温度環境下で3時間養生して硬化体を作製した。得られた材齢3時間の硬化体3個の圧縮強度をそれぞれ測定し、その平均を求めた。その結果を表18に示す。
Figure JPOXMLDOC01-appb-T000018
 表18の結果から、防凍剤を含む速硬性モルタル組成物は、-5℃の温度環境下においても硬化体の生成が可能となることが確認された。
 本実施形態の速硬性モルタル組成物は、環境温度による凝結始発時間の変動が小さく、長期間保存しても凝結始発時間の変動が小さい。また、水を加えてから硬化反応が進行するまでの間の流動性が高く、かつ初期強度発現性に優れる。このため、本実施形態の速硬性モルタル組成物は、断面修復工法で用いられる断面修復材、並びにPC舗装やRC舗装で使用される裏込めグラウト材及び半たわみ性舗装で使用されるセメントミルク等の原料である舗装用注入材として、好適に適用される。

Claims (13)

  1.  速硬性混和材とセメントと細骨材を含み、
     前記速硬性混和材100質量部に対して、前記セメントを100質量部以上2000質量部以下の範囲の量にて含有し、
     前記速硬性混和材が、カルシウムアルミネートと、前記カルシウムアルミネート100質量部に対して50質量部以上200質量部以下の範囲の量の無機硫酸塩と、前記カルシウムアルミネート100質量部に対して0.1質量部以上10質量部以下の範囲の量の凝結調整剤とを含む組成物であって、前記カルシウムアルミネートの平均粒子径が8μm以上100μm以下の範囲にあり、前記凝結調整剤の平均粒子径が5μm以下であることを特徴とする速硬性モルタル組成物。
  2.  速硬性混和材100質量部に対して、細骨材を200質量部以上1000質量部以下の範囲にて含有することを特徴とする請求項1に記載の速硬性モルタル組成物。
  3.  断面修復材であることを特徴とする請求項2に記載の速硬性モルタル組成物。
  4.  速硬性モルタル組成物の全体量に対して、細骨材を10質量%以上67質量%以下の範囲にて含有することを特徴とする請求項1に記載の速硬性モルタル組成物。
  5.  舗装用注入材であることを特徴とする請求項4に記載の速硬性モルタル組成物。
  6.  前記凝結調整剤が、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの1つ以上を含むことを特徴とする請求項1に記載の速硬性モルタル組成物。
  7.  速硬性モルタル組成物の全体量に対する凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲となるように、さらに、凝結調整剤が添加されていることを特徴とする請求項1乃至6のいずれか1項に記載の速硬性モルタル組成物。
  8.  前記凝結調整剤が、無機粉末と、前記無機粉末100質量部に対して50質量部以上300質量部以下の範囲の量の前記凝結調整剤とを含む凝結調整剤高濃度含有混合物として添加されていることを特徴とする請求項7に記載の速硬性モルタル組成物。
  9.  さらに、有機短繊維および炭素短繊維のうちの1つ以上からなる短繊維を、速硬性モルタル組成物の全体量に対して0.1質量%以上0.3質量%以下の範囲にて含むことを特徴とする請求項1乃至8のいずれか1項に記載の速硬性モルタル組成物。
  10.  さらに、再乳化粉末樹脂を、速硬性モルタル組成物の全体量に対して0.5質量%以上30質量%以下の範囲にて含むことを特徴とする請求項1乃至9のいずれか1項に記載の速硬性モルタル組成物。
  11.  さらに、シリカフュームを、速硬性モルタル組成物の全体量に対して1質量%以上15質量%以下の範囲にて含むことを特徴とする請求項1乃至10のいずれか1項に記載の速硬性モルタル組成物。
  12.  さらに、合成ポリマー系増粘保水剤を、速硬性モルタル組成物の全体量に対して0.1質量%以上0.3質量%以下の範囲にて含むことを特徴とする請求項1乃至11のいずれか1項に記載の速硬性モルタル組成物。
  13.  さらに、酢酸ナトリウム、酢酸カルシウム、亜硝酸カルシウムのうちの1つ以上からなる防凍剤を、速硬性モルタル組成物の全体量に対して1質量%以上10質量%以下の範囲にて含むことを特徴とする請求項1乃至12のいずれか1項に記載の速硬性モルタル組成物。
PCT/JP2017/013613 2016-03-31 2017-03-31 速硬性モルタル組成物 WO2017171009A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187022471A KR102294203B1 (ko) 2016-03-31 2017-03-31 속경성 모르타르 조성물
SG11201806649RA SG11201806649RA (en) 2016-03-31 2017-03-31 Rapid-hardening mortar composition
CN201780009812.4A CN108602722A (zh) 2016-03-31 2017-03-31 快速固化砂浆组合物
AU2017239900A AU2017239900B2 (en) 2016-03-31 2017-03-31 Rapid-hardening mortar composition
US16/078,652 US11117833B2 (en) 2016-03-31 2017-03-31 Rapid-hardening mortar composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016073416 2016-03-31
JP2016-073198 2016-03-31
JP2016073198 2016-03-31
JP2016-073416 2016-03-31
JP2017061311A JP6183571B1 (ja) 2016-03-31 2017-03-27 速硬性モルタル組成物
JP2017-061311 2017-03-27

Publications (1)

Publication Number Publication Date
WO2017171009A1 true WO2017171009A1 (ja) 2017-10-05

Family

ID=59678253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013613 WO2017171009A1 (ja) 2016-03-31 2017-03-31 速硬性モルタル組成物

Country Status (7)

Country Link
US (1) US11117833B2 (ja)
JP (1) JP6183571B1 (ja)
KR (1) KR102294203B1 (ja)
CN (1) CN108602722A (ja)
AU (1) AU2017239900B2 (ja)
SG (1) SG11201806649RA (ja)
WO (1) WO2017171009A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019658A (ja) * 2018-07-30 2020-02-06 太平洋マテリアル株式会社 グラウトモルタル組成物、グラウトモルタル、コンクリート構造体及びその製造方法
JP2021123507A (ja) * 2020-01-31 2021-08-30 国立研究開発法人 海上・港湾・航空技術研究所 高耐久性裏込めグラウト材

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965136B2 (ja) * 2017-12-08 2021-11-10 太平洋セメント株式会社 超速硬セメントを用いるモルタル又はコンクリートの施工方法
JP2019157564A (ja) * 2018-03-15 2019-09-19 有限会社中部植生 モルタル又はコンクリート吹付方法、及びその吹付装置
JP7145751B2 (ja) * 2018-12-26 2022-10-03 鹿島道路株式会社 舗装用補修材およびこれを用いた補修工法
JP7343284B2 (ja) * 2019-03-20 2023-09-12 デンカ株式会社 急硬性セメント、セメントモルタル、セメントコンクリート、道路補修材料、及び、道路の補修方法
JP7093742B2 (ja) * 2019-03-29 2022-06-30 大成ロテック株式会社 ブロック舗装構造及びその構築方法
JP7116433B2 (ja) * 2019-03-29 2022-08-10 大成ロテック株式会社 ブロック舗装用充填材
EP3805182B1 (en) * 2019-10-09 2023-05-03 Sika Technology Ag Process for the waterproofing of porous construction materials
JP2021155296A (ja) * 2020-03-27 2021-10-07 国立大学法人 岡山大学 モルタルまたはコンクリート用組成物およびその成形品
JP7442372B2 (ja) * 2020-03-31 2024-03-04 Muマテックス株式会社 速硬性モルタル組成物
JP7554020B2 (ja) 2020-10-27 2024-09-19 太平洋セメント株式会社 半たわみ性舗装用組成物
JP7558625B2 (ja) 2021-03-16 2024-10-01 太平洋マテリアル株式会社 速硬性グラウト組成物及び速硬性グラウト
CN113565344A (zh) * 2021-08-19 2021-10-29 交通运输部公路科学研究所 一种深水建筑物水下渗漏通道快速补漏方法
KR102449967B1 (ko) * 2022-07-08 2022-10-05 주식회사 포스리젠 산업부산물을 이용한 저강도 주면 고정액 조성물 및 이를 이용한 파일 매입 공법
EP4397640A1 (en) * 2022-09-07 2024-07-10 Fibrobeton Yapi Elemanlari Sanayi Insaat Ve Ticaret Anonim Sirketi Ultra-early strength concrete mix
KR102547604B1 (ko) * 2022-09-30 2023-06-28 정채규 속경성 도로 보수용 조성물 및 이를 이용한 도로의 보수 방법
KR102565587B1 (ko) 2023-03-02 2023-08-11 주식회사 한화 방청-방동제 및 이를 포함한 콘크리트 조성물
CN117447131A (zh) * 2023-10-13 2024-01-26 石家庄市长安育才建材有限公司 一种抗疲劳性高强风电灌浆料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215751A (ja) * 1994-01-31 1995-08-15 Mitsubishi Materials Corp 膨張性速硬セメント
JPH08310846A (ja) * 1995-05-18 1996-11-26 Denki Kagaku Kogyo Kk セメント混和材、セメント組成物、及びそれを用いた注入材
JP2000281410A (ja) * 1999-03-30 2000-10-10 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2008274580A (ja) * 2007-04-26 2008-11-13 Mitsubishi Materials Corp 舗装体用注入材及びこれを用いた舗装方法
JP2015120624A (ja) * 2013-12-25 2015-07-02 太平洋マテリアル株式会社 速硬性グラウト組成物

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215548A (en) * 1961-12-14 1965-11-02 Sika Chemical Corp Additives for concrete, mortar and grout
JPS60108352A (ja) 1983-11-12 1985-06-13 電気化学工業株式会社 超速硬セメント組成物
JPH0341420A (ja) 1989-07-07 1991-02-21 Seiko Epson Corp Mim液晶電気光学装置およびその製造方法
SE9103075L (sv) * 1991-10-22 1993-04-23 Delcon Ab Concrete Dev Foerfarande foer framstaellning av vaermeisolerande konstruktionslaettballastbetong samt vid foerfarandet anvaend betongkomposition
WO2005042432A1 (ja) * 2003-10-31 2005-05-12 Denki Kagaku Kogyo Kabushiki Kaisha セメント用急硬性組成物、及びその製造方法
KR100928841B1 (ko) * 2005-09-02 2009-11-30 덴끼 가가꾸 고교 가부시키가이샤 그라우트용 시멘트 조성물 및 이를 이용한 그라우트 재료
JP4382764B2 (ja) * 2006-03-08 2009-12-16 住友大阪セメント株式会社 保水性硬化体用セメント組成物、セメントミルク、保水性硬化体及び保水性硬化体の製造方法
JP2007320835A (ja) 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk 超速硬セメント組成物、超速硬セメントコンクリート組成物、及び超速硬セメントコンクリート
CN102442794B (zh) 2006-11-09 2016-10-19 电化株式会社 速凝剂及使用其的喷涂方法
CN100408500C (zh) * 2007-04-25 2008-08-06 刘文伟 高速公路路面基层用粘土固化增强剂及其应用
JP4893453B2 (ja) 2007-04-26 2012-03-07 三菱マテリアル株式会社 コンクリート断面修復材
JP4965329B2 (ja) 2007-05-10 2012-07-04 株式会社トプコン 測位システム、受信端末機及び測位方法
CN101928120B (zh) * 2009-06-18 2012-12-12 五冶集团上海有限公司 自流速硬型灌浆料及使用方法
JP5611795B2 (ja) 2010-12-08 2014-10-22 電気化学工業株式会社 吹付け用急結剤及びそれを用いた吹付けコンクリート並びに吹付け工法
JP6072529B2 (ja) 2012-12-05 2017-02-01 デンカ株式会社 セメント急結剤、セメント組成物、吹付け材料、吹付け工法
US9328027B2 (en) * 2012-12-21 2016-05-03 Hanson Aggregates LLC Fast-curing pervious concrete mix
JP6207854B2 (ja) 2013-03-21 2017-10-04 デンカ株式会社 急結剤
CN103253901B (zh) * 2013-06-06 2016-01-13 上海昱喜新材料科技有限公司 一种混凝土桥面快速铺装砂浆及其制备方法
CN103408273A (zh) * 2013-08-30 2013-11-27 南京沪联新型建材有限公司 一种渗粘型水泥基密封修复剂及其制备方法
CN103771809B (zh) * 2014-01-01 2015-12-30 大连理工大学 一种混凝土表层微缺陷修补材料
CN103922633B (zh) * 2014-03-13 2015-12-09 南京瑞迪高新技术有限公司 一种具有自修复功能的预应力孔道压浆剂
JP6183572B1 (ja) * 2016-03-31 2017-08-23 三菱マテリアル株式会社 速硬性セメント組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215751A (ja) * 1994-01-31 1995-08-15 Mitsubishi Materials Corp 膨張性速硬セメント
JPH08310846A (ja) * 1995-05-18 1996-11-26 Denki Kagaku Kogyo Kk セメント混和材、セメント組成物、及びそれを用いた注入材
JP2000281410A (ja) * 1999-03-30 2000-10-10 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2008274580A (ja) * 2007-04-26 2008-11-13 Mitsubishi Materials Corp 舗装体用注入材及びこれを用いた舗装方法
JP2015120624A (ja) * 2013-12-25 2015-07-02 太平洋マテリアル株式会社 速硬性グラウト組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019658A (ja) * 2018-07-30 2020-02-06 太平洋マテリアル株式会社 グラウトモルタル組成物、グラウトモルタル、コンクリート構造体及びその製造方法
JP7166827B2 (ja) 2018-07-30 2022-11-08 太平洋マテリアル株式会社 グラウトモルタル組成物、グラウトモルタル、コンクリート構造体及びその製造方法
JP2022186934A (ja) * 2018-07-30 2022-12-15 太平洋マテリアル株式会社 グラウトモルタル
JP7394194B2 (ja) 2018-07-30 2023-12-07 太平洋マテリアル株式会社 グラウトモルタル
JP2021123507A (ja) * 2020-01-31 2021-08-30 国立研究開発法人 海上・港湾・航空技術研究所 高耐久性裏込めグラウト材
JP7473754B2 (ja) 2020-01-31 2024-04-24 国立研究開発法人 海上・港湾・航空技術研究所 高耐久性裏込めグラウト材

Also Published As

Publication number Publication date
US20200317576A1 (en) 2020-10-08
US11117833B2 (en) 2021-09-14
AU2017239900A1 (en) 2018-08-23
SG11201806649RA (en) 2018-09-27
AU2017239900B2 (en) 2020-10-22
JP6183571B1 (ja) 2017-08-23
CN108602722A (zh) 2018-09-28
KR102294203B1 (ko) 2021-08-25
KR20180131532A (ko) 2018-12-10
JP2017186238A (ja) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6183571B1 (ja) 速硬性モルタル組成物
JP6183572B1 (ja) 速硬性セメント組成物
KR101074371B1 (ko) 내염성 시멘트를 사용한 반강성 도로포장용 시멘트 밀크와 이를 가진 주입 시공한 고내구성 반강성 도로포장 시공방법
CN107686315A (zh) 抗冻大体积混凝土
CN108558292A (zh) 一种抗裂混凝土拌合物及其制备方法
JP2008120625A (ja) セメント系材料
KR101380171B1 (ko) 내염성 시멘트를 포함하는 반강성 도로포장용 고내구성 시멘트와 이를 가진 주입 시공한 고내구성 반강성 도로포장 시공방법
JP5278265B2 (ja) 自己修復コンクリート混和材、その製造方法及び該混和材を用いた自己修復コンクリート材料
JP6508789B2 (ja) ポリマーセメントモルタル、及びポリマーセメントモルタルを用いた工法
Hlail et al. Sustainable development of highly flowable cementitious grouts for semi-flexible pavement mixture
JP3672518B2 (ja) セメント混和材、セメント組成物及びそれを用いたコンクリート
JP7442373B2 (ja) 速硬性セメント組成物
JP3913717B2 (ja) アスファルト、コンクリート舗装部の表層部補修用セメントモルタル組成物
JP2015000820A (ja) ポリマーセメントモルタル、及びポリマーセメントモルタルを用いた工法
JP2006182619A (ja) セメント混和剤及びセメント組成物
JP7442372B2 (ja) 速硬性モルタル組成物
JP7437203B2 (ja) モルタルコンクリート
JP6824778B2 (ja) ポリマーセメントコンクリート及びその施工方法
JP2021155241A (ja) 強化コンクリート用補修材、そのモルタル及び硬化体、並びに強化コンクリートの補強方法
JP5698774B2 (ja) 高緻密コンクリート及びその製造方法
BR112022024239B1 (pt) Método para produção de produtos de concreto pré-moldados carbonatados com durabilidade aumentada
TW202317502A (zh) 複合材料
JP2006182617A (ja) 急結剤及びこれを用いた吹付材
JP2021187715A (ja) 勾配面施工用速硬性モルタル組成物及び勾配面施工用速硬性モルタル
JP2018171833A (ja) 高耐久速硬性モルタルまたはコンクリートの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187022471

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201806649R

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017239900

Country of ref document: AU

Date of ref document: 20170331

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775540

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775540

Country of ref document: EP

Kind code of ref document: A1