WO2017170994A1 - 細胞収容チップ - Google Patents

細胞収容チップ Download PDF

Info

Publication number
WO2017170994A1
WO2017170994A1 PCT/JP2017/013561 JP2017013561W WO2017170994A1 WO 2017170994 A1 WO2017170994 A1 WO 2017170994A1 JP 2017013561 W JP2017013561 W JP 2017013561W WO 2017170994 A1 WO2017170994 A1 WO 2017170994A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
chip
cells
well
group
Prior art date
Application number
PCT/JP2017/013561
Other languages
English (en)
French (fr)
Inventor
真理子 松永
健 月井
木村 健一
高橋 亨
杰 徐
孝行 松元
幸太 五十嵐
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2018509650A priority Critical patent/JP6902528B2/ja
Priority to EP17775525.3A priority patent/EP3438238A4/en
Priority to CN201780021248.8A priority patent/CN109072152A/zh
Publication of WO2017170994A1 publication Critical patent/WO2017170994A1/ja
Priority to US16/146,764 priority patent/US12097497B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50855Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using modular assemblies of strips or of individual wells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/04Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings

Definitions

  • the present invention relates to a cell accommodation chip that accommodates a plurality of cells when screening a target specimen, and in particular, based on fluorescence emitted from a substance bound to the cell accommodation chip by irradiating light to wells and cells.
  • the present invention relates to a cell accommodation chip for detecting a cell as a specimen and selectively aspirating and collecting the cell.
  • screening devices are widely used in research and examinations in the medical field as devices for identifying and sorting microscopic specimens such as cells.
  • a microwell array chip having a coating layer formed by binding an anti-immunoglobulin (Ig) antibody to a part of the upper surface of the chip is used, and antibody-secreting cells are dispensed into each well of the microwell array chip.
  • Ig anti-immunoglobulin
  • a low non-specificity fixed on the support is fixed to the plate-like support.
  • the upper surface of the chip must be kept moist until the target specimen is specified after the anti-Ig antibody is bound to a part of the upper surface of the chip. I can't let you.
  • the cells may adhere to the inner surface of the well during the antibody secretion of the cells, it becomes difficult to collect the cells, and even if the cells can be collected, there is a high possibility of damaging the cells that are the target specimen.
  • the target specimen is selectively linked to the functional coating provided on the upper surface of the plate-like support, but the specific cell is not a configuration in which one cell is held in each well. It cannot be said that the accuracy and efficiency of identifying and sorting cells in cell units are high.
  • An object of the present invention is to provide a cell storage chip that can identify and sort a target specimen with high accuracy and high efficiency, is easy to handle, and can be easily recovered without damaging cells. There is to do.
  • the cell accommodation chip of the present invention searches for a predetermined cell based on optical information emitted from a substance on the cell accommodation chip and selectively collects the searched cell.
  • a cell containing chip for accommodating a plurality of cells comprising a substrate made of a light transmissive material, and a plurality of wells capable of accommodating cells on at least one main surface of the substrate;
  • the surface of the cell-containing chip including the plurality of wells has a cross-linked structure, and a structural unit derived from a monomer represented by the following general formula [1] and a monomer represented by the following general formula [2] It is characterized by being coated with a polymer containing a structural unit derived from and a structural unit derived from a monomer represented by the following general formula [3].
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • X represents an alkylene glycol residue having 1 to 10 carbon atoms
  • p is 1 Represents an integer of up to 100. When p is an integer of 2 or more and 100 or less, the repeated Xs may be the same or different.
  • R 3 represents a hydrogen atom or a methyl group
  • Y represents an alkyl group or an alkylene glycol residue having 1 to 10 carbon atoms
  • W represents an active ester group
  • q represents an integer of 1 to 20
  • the repeated Y may be the same or different.
  • R 4 represents a hydrogen atom or a methyl group
  • Z represents an alkyl group having 1 to 20 carbon atoms. At least one of A 1 , A 2 , and A 3 is a hydrolyzable alkoxy group. Yes, others indicate alkyl groups.
  • the structural unit derived from the monomer represented by the general formula [1] is preferably methoxypolyethylene glycol acrylate or methoxypolyethylene glycol methacrylate.
  • the average number of ethylene glycol residues in the methoxypolyethylene glycol acrylate and / or methoxypolyethylene glycol methacrylate is preferably 3 to 100.
  • the active ester group contained in the structural unit derived from the monomer represented by the general formula [2] is preferably a p-nitrophenyl active ester group or an N-hydroxysuccinimide active ester group.
  • the surface of the cell-containing chip including a plurality of wells is coated with a specific polymer.
  • the chip surface has a low cell adhesion and has a binding property to a specific binding material that has a binding property to a produced substance produced by cells contained in the well. Since the conventional chip has a structure in which a substance having binding properties with a product to be produced is previously bonded on the chip, it is difficult to store the chip for a long period of time, and there is a possibility that accuracy may be lowered due to drying or the like.
  • the surface of the cell-containing chip has the binding property to the specific binding material, it is necessary to previously bind the specific binding material having the binding property to the produced substance on the cell-containing chip. Therefore, it is possible to prevent a decrease in accuracy due to drying or the like.
  • the specific binding material binds to the surface of the cell-containing chip including the well, and the produced substance produced from the cells in the well It binds with the specific binding material. For this reason, the well itself can be used as a labeling site for target sample identification, and the target sample can be identified without damaging the cells. Furthermore, since the surface of the cell-containing chip has low cell adhesion, it is possible to prevent the cells in the well from adhering to the cell-containing chip surface, without requiring a coating treatment using a blocking agent, Cells that are the target specimen can be recovered with high efficiency, and further, can be recovered without damaging the cells during cell recovery.
  • FIG. A side view which shows roughly the structure of the screening apparatus using the cell accommodation chip
  • It is a perspective view of the screening apparatus of FIG. It is a perspective view which shows the detail of the moving part and mounting table in FIG.
  • tip It is a fragmentary sectional view which shows the detailed structure of the cell accommodation chip
  • (A)-(d) is a schematic diagram for demonstrating each step of FIG. It is a graph which shows the result of having measured and compared the contact angle of various cell accommodation chip
  • FIG. 1 is a side view schematically showing a configuration of a screening apparatus using the cell-accommodating chip according to the present embodiment
  • FIG. 2 is a perspective view of the screening apparatus of FIG.
  • the screening apparatus of FIG. 1 and FIG. 2 shows an example, and the embodiment of the screening apparatus is not limited to that of FIG. 1 and FIG.
  • the direction perpendicular to the plane of FIG. 1 is the X direction
  • the left and right direction is the Y direction
  • the Z direction is the direction perpendicular to the X and Y directions.
  • the screening apparatus 1 searches for a predetermined cell as a target specimen based on optical information emitted from a plurality of fine particles (for example, living cells) in the cell housing chip 60, and sets the collection conditions.
  • This is a device for selectively aspirating and acquiring cells in a well in which filled cells are accommodated, and collecting them in the accommodating plate 50.
  • the screening apparatus 1 includes a base 11, a support unit 12 (see FIG. 2), a collection unit 13, a measurement unit 14, an image analysis unit 15, and a moving unit 16, and is illustrated in FIG. As shown, each part is covered with a cover 19 in order to prevent light and foreign matter from entering from the outside.
  • the base 11 is a main body frame for holding each element of the screening apparatus 1.
  • the base 11 has plate members 111, 112, and 113 arranged substantially horizontally, and holds the collection unit 13, the measurement unit 14, and the moving unit 16 through these plate materials. .
  • the plate members 111 and 112 are fixed in parallel by a plurality of vertical members 114, and the plate members 112 and 113 are fixed in parallel by a plurality of vertical members 115.
  • the vertical member 114 is made of a material that blocks vibration and is configured to be height adjustable.
  • the support portion 12 and the support base 30 are fixed on the plate member 113 positioned at the top of the plurality of plate materials.
  • the support portion 12 is disposed on the plate member 113 so as to extend vertically along the Z direction.
  • the support base 30 has a leg portion 30a and a support plate 30b.
  • the plate members 111, 112, 113 and the support plate 30b are arranged at a predetermined interval with respect to the Z direction.
  • the moving unit 16 is placed and fixed on the support plate 30 b of the support base 30.
  • a mounting table 40, a storage plate 50, and a cell storage chip 60 are mounted on the moving part 16.
  • the moving unit 16 can position the mounting table 40, that is, the storage plate 50 and the cell storage chip 60 mounted on the mounting table 40, by moving along the X direction and / or the Y direction. ing.
  • FIG. 3 is a perspective view showing details of the moving unit 16 and the mounting table 40 in FIG.
  • the moving unit 16 has a table 161 and a table 162 arranged on the table.
  • the table 161 is fixed to the support base 30, and is mounted so that the table 162 can be positioned by moving along the X direction.
  • the table 162 is mounted so that the mounting table 40 can be moved and moved along the Y direction.
  • Guide rails 163 and 163 and a motor 164 are provided on the upper surface of the table 161.
  • engaging members 165 and 165 having a U-shaped cross section and a nut 166 are provided.
  • the engaging members 165 and 165 are movably engaged with the guide rails 163 and 163, respectively.
  • the feed screw 167 of the motor 164 is screwed with the nut 166.
  • the motor 164 is electrically connected to the control unit 100, and when the motor 164 is operated in response to a command from the control unit 100 to rotate the feed screw 167, the table 162 moves along the X direction and is positioned. Is done.
  • Guide rails 168 and 168 and a motor 169 are provided on the upper surface of the table 162.
  • engagement members 170, 170 having a U-shaped cross section and a nut 171 are provided on the lower surface of the mounting table 40.
  • the engaging members 170 and 170 are movably engaged with the guide rails 168 and 168, respectively.
  • the feed screw 172 of the motor 169 is screwed with the nut 171.
  • the motor 164 is electrically connected to the control unit 100, and the mounting table 40 moves along the Y direction by operating the motor 164 and rotating the feed screw 172 in accordance with a command from the control unit 100. Is positioned.
  • the table 161 has an opening 173, the table 162 has an opening 174, and the mounting table 40 has an opening 175.
  • These openings 173, 174, and 175 have such a size that they always overlap even if the table 162 moves in the X direction and the mounting table 40 moves in the Y direction.
  • the light L from the objective lens 110 side passes through the openings 173, 174, 175, and the mounting table.
  • the cells of the cell containing chip 60 on 40 are irradiated. That is, regardless of the relative positions of the tables 161 and 162 and the mounting table 40, it is possible to generate fluorescence from the cells and / or wells that contain the cells.
  • FIG. 4 is a perspective view showing the configuration of the accommodation plate 50 and the cell accommodation chip 60 on the mounting table 40 of FIG.
  • the mounting table 40 is, for example, a rectangular plate-like member. On the mounting surface 40a of the mounting table 40, the accommodation plate 50 and the cell accommodation chip 60 are detachably arranged in the Y direction.
  • the accommodating plate 50 is a plate-like member, and a large number of wells 51 are arranged in a matrix in the accommodating plate 50 along the X direction and the Y direction at equal intervals. These wells 51 serve as a collection storage unit that can collect and store the cells, which are the target specimen, from the aspiration / discharge capillary 140 in sequence.
  • the well 51 of the accommodation plate 50 is, for example, a substantially U-shaped concave section in the vertical direction or a cup-shaped concave section.
  • the cell containing chip 60 is fixed on the mounting surface 40a of the mounting table 40 by the fixing member 120, and the fixing member 120 is positioned and fixed at a predetermined position of the mounting table 40.
  • FIG. 5 is an enlarged cross-sectional view showing the configuration of the cell containing chip 60 and the fixing member 120.
  • the fixing member 120 is configured to fix and hold the cell containing chip 60 at a position of the reference surface CL having a certain height with respect to the mounting surface 40a of the mounting table 40.
  • the fixing member 120 has frame bodies 121 and 122 arranged so as to surround the end portion of the cell containing chip 60, and the cell containing chip 60 is held in cooperation by these members.
  • the cell containing chip 60 is disposed between the frame bodies 121 and 122 in the Z direction, and is held in pressure contact with the frame bodies 121 and 122 by being sandwiched between the frame bodies 121 and 122, respectively. Thereby, the sealing property between the cell accommodation chip
  • the upper surface 60 b of the cell accommodation chip 60 is positioned on the reference plane CL via the frame body 122. Thereby, it is possible to accurately manage the distance in the Z direction between the upper surface 60b of the cell storage chip 60 and the objective lens 110 and the storage plate 50 of the measurement unit 14. In other words, it is possible to accurately manage the position of the cell M in the well 61 of the cell accommodation chip 60 and the distance between the objective lens 110 and the accommodation plate 50 of the measurement unit 14.
  • the frame 121 has a liquid holding portion 129 that is provided in the center in the planar direction and above the cell storage chip 60 and holds the liquid A.
  • Various types of liquid such as a culture medium, a reagent solution, and a reaction solution can be used. It is configured to be able to hold. That is, the liquid holding part 129 is formed in the internal space of the frame body 121.
  • the frame body 121 can be opened and closed with respect to the frame body 122 using, for example, a hinge mechanism (not shown), whereby the cell storage chip 60 in the fixing member 120 is taken out and a new cell storage chip is obtained. Can be exchanged.
  • the cell accommodation chip 60 is a plate-like member that accommodates a plurality of cells M. The detailed configuration of the cell containing chip 60 will be described later.
  • the collection unit 13 includes a suction / discharge capillary 140 for sorting the identified cells M as a target sample.
  • the suction / discharge capillary 140 is a tapered hollow member having a diameter reduced along the Z2 direction (downward direction), and a pipe line 141 is formed therein.
  • the measurement unit 14 irradiates the region including the plurality of wells 61 of the cell containing chip 60 with the light L, so that the cells 61 and / or the cells in the region are accommodated. Fluorescence is generated from the vicinity thereof, and the fluorescence is received.
  • the image analysis unit 15 analyzes the image of the received cells M and / or fluorescence from the well 61 containing the cells or the vicinity thereof.
  • the measurement unit 14 irradiates the cell accommodation chip 60 and the cells M accommodated in the cell accommodation chip 60 with light guided from at least one light source, thereby transmitting light, reflected light, or fluorescence.
  • the shape and position information and the luminance information such as fluorescence and chemiluminescence are acquired with a resolution finer than the average size of each fine particle, and the shape of the cell housing chip 60 itself and the well 61 arranged on the cell housing chip 60 are obtained. Get information such as position coordinates and size.
  • the measuring unit 14 has an objective lens 110, and the objective lens 110 guides light to the cell housing chip 60.
  • the objective lens 110 is disposed below the cell housing chip 60 and the moving unit 16, and the suction / discharge capillary 140 is disposed above the cell housing chip 60 and the moving unit 16. That is, the cell storage chip 60 and the moving unit 16 are disposed between the objective lens 110 and the suction / discharge capillary 140 in the Z direction.
  • the measurement unit 14 includes an excitation light source 181 as a light source, an optical filter (excitation filter) 184 for selecting only a desired excitation wavelength band from the light emitted from the excitation light source 181, and the cell storage chip 60.
  • Filter unit comprising an optical filter (fluorescence filter) 185 for selecting only a desired wavelength band of the optical information and a dichroic mirror 186 for switching the optical path according to the difference in wavelength band between the excitation light and the optical information 183, an objective lens 110 for guiding the light emitted from the excitation light source 181 to the cell accommodation chip 60 and collecting optical information obtained from the cell accommodation chip 60, and autofocus for moving the objective lens 110 in the optical axis direction
  • a focus unit 187 having a function and optical detection for detecting optical information from the measurement target And a light receiving portion 188 as a part.
  • the fluorescent filter unit 183 and the light receiving unit 188 are fixed to the fluorescent incident unit 190.
  • the excitation light source 181 is composed of, for example, a laser light source or a mercury lamp.
  • the shutter unit 182 is disposed between the excitation light source 181 and the fluorescent filter unit 183. When the shutter unit 182 does not irradiate the light L to the cells M of the cell housing chip 60, the excitation light source 181 is generated. It is possible to block the light L before the fluorescent filter unit 183.
  • the measurement unit 14 has a half mirror (not shown), and by switching between the half mirror and the fluorescence filter unit 183, a part of the light from the excitation light source 181 is irradiated onto the observation target and at the same time from the observation target.
  • the shape and position information of the upper surface 60b of the cell housing chip 60 and the well 61 formed on the upper surface can be measured.
  • the plurality of objective lenses 110a, 110b,... can be positioned at a lower position of the cell containing chip 60 by rotating the objective lenses 110a, 110b,.
  • the focus unit 187 operates the motor 189 in response to a command from the control unit 100 to move and position, for example, the objective lens 110 disposed at a lower position of the cell containing chip 60 along the Z direction.
  • the focus adjustment of the objective lens 110 with respect to the fine particles M of the cell containing chip 60 can be performed.
  • the image analysis unit 15 includes a plurality of cells M in each well 61 and / or a well 61 that accommodates cells, or a well 61 that accommodates cells M and / or cells that emit fluorescence of at least maximum intensity, or the vicinity thereof. The fluorescence intensity in the vicinity is calculated.
  • the image analysis unit 15 analyzes the measured shape information and light information to confirm that at least the well 61 has a cell M that satisfies a luminance condition that can be set by the measurer. Get data for. Then, the image analysis unit 15 collates and collates the position coordinate information of the well 61 with the transmitted light or the reflected light and the light information of the fluorescence / chemiluminescence to check the cell M and / or the well 61 containing the cell or the vicinity thereof. Extract light information from The measuring unit 14 has an autofocus function, performs measurement in a focused state at a predetermined position, and determines the positional relationship between the tip of the suction / discharge capillary 140 and the upper surface of the cell containing chip 60 with respect to both. This can be determined by performing autofocus.
  • the control unit 100 detects the position of the well 61 that emits fluorescence having a luminance that satisfies the collection condition in the XY plane. And the control part 100 can position the well 61 of the cell accommodation chip
  • FIG. 6 is a partial cross-sectional view showing a detailed configuration of the cell housing chip 60 of FIG.
  • the cell accommodation chip 60 is provided on a base 60a made of a light transmissive material and an upper surface 60b (at least one main surface) of the base, and can accommodate a plurality of cells M on a one-to-one basis. It has a plurality of wells 61, 61,.
  • the cell containing chip 60 has a coating layer 62 formed on the inner surface 61a of each well constituting the plurality of wells 61, 61,... And the upper surface 60b of the substrate 60a (the surface of the cell containing chip).
  • the coating layer 62 may be formed only on the inner surface 61a of the well 61, or may be formed on both the inner surface 61a of the well 61 and the upper surface 60b of the base body 60a. That is, in FIG. 6, the coating layer 62 is drawn so as to cover the entire inner surface 61a and the upper surface 60b. However, as long as the effects of the present invention are achieved, the coating layer 62 is not necessarily formed on the inner surface. 61a and the upper surface 60b may not be entirely covered.
  • the cell containing chip 60 is made of, for example, glass, plastic, or a material mainly composed of any of these, and a large number of wells 61 are arranged on the upper surface 60b, for example, in a matrix.
  • Each well 61 is, for example, a substantially trapezoidal or substantially cup-shaped recess in the vertical cross section, and the horizontal cross sectional shape of the well 61 is preferably substantially circular.
  • the well 61 has a size corresponding to the accommodation of one cell M when the cells M are dispensed or collectively injected onto the cell accommodation chip 60.
  • the horizontal cross-sectional shape of the well 61 is circular.
  • the inner diameter and depth of the well are preferably about 20 ⁇ m, which is slightly larger than the diameter of the cell.
  • the well 61 preferably has a size corresponding to one cell M, and more preferably has a size that allows only one cell M to enter.
  • the coating layer 62 has a crosslinked structure and is derived from the monomer represented by the above general formula [1], the structural unit derived from the monomer represented by the above general formula [2], and the above described unit. And a polymer containing a structural unit derived from the monomer represented by the general formula [3] (hereinafter, this polymer is also simply referred to as “polymer”).
  • the crosslinked structure is typically formed by involving a structural unit derived from the monomer represented by the general formula [3]. This will be described in detail later.
  • alkylene glycol residue refers to a condensation reaction of one or both terminal hydroxyl groups of alkylene glycol (HO—R—OH, where R is an alkylene group) with another compound. It means an “alkyleneoxy group” (—R—O—, where R is an alkylene group) which remains afterwards.
  • an “alkylene glycol residue” of methylene glycol (HO—CH 2 —OH) is a methyleneoxy group (—CH 2 —O—)
  • alkylene glycol of ethylene glycol (HO—CH 2 —CH 2 —OH).
  • the “glycol residue” is an ethyleneoxy group (—CH 2 —CH 2 —O—).
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • the alkylene glycol residue X has 1 to 10 carbon atoms, more preferably 1 to 6, more preferably 2 to 4, still more preferably 2 to 3, and most preferably 2. is there.
  • the repeating number p of the alkylene glycol residue is an integer of 1 to 100, preferably an integer of 2 to 100, more preferably an integer of 3 to 100, still more preferably an integer of 2 to 95, Most preferably, it is an integer of 20 to 90.
  • the carbon number of the alkylene glycol residue X repeated in the chain may be the same or different.
  • Examples of the monomer represented by the general formula [1] include methoxypolyethylene glycol (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and the like.
  • the ratio of the structural unit derived from the monomer represented by the general formula [1] is usually 30 to 98 mol%, preferably 50 to 97 mol%, more preferably 60 to 97 mol based on the total constitutional unit of the polymer. %.
  • R 3 is a hydrogen atom or a methyl group
  • the alkylene glycol residue Y has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 2 to 4 carbon atoms. More preferably, it is 2 to 3, and most preferably 2.
  • the repeating number q of the alkylene glycol residue Y is an integer of 1 to 20, more preferably an integer of 2 to 18, still more preferably an integer of 3 to 16, and most preferably an integer of 4 to 14. .
  • the repeating number q is 2 or more and 20 or less, the carbon number of the alkylene glycol residue repeated in the chain may be the same or different.
  • “Active ester group” means an ester group having a highly acidic electron-attracting group at one substituent of the ester group and activated for nucleophilic reaction, that is, an ester group having high reaction activity. As such, it is commonly used in various chemical synthesis fields such as polymer chemistry and peptide synthesis. In practice, phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc. are known as active ester groups having much higher activity than alkyl esters and the like. .
  • active ester groups include p-nitrophenyl active ester group, N-hydroxysuccinimide active ester group, succinimide active ester group, phthalimide active ester group, 5-norbornene-2, 3-dicarboxyl
  • active ester groups include an imide active ester group, and a p-nitrophenyl active ester group or an N-hydroxysuccinimide active ester group is preferable, and a p-nitrophenyl active ester group is most preferable.
  • the ratio of the structural unit derived from the monomer represented by the general formula [2] is usually 1 to 50 mol%, preferably 1 to 30 mol%, most preferably 1 to 20 mol based on the total constitutional unit of the polymer. %.
  • the monomer represented by General formula [2] may be used independently, and may be used in combination of 2 or more type.
  • R 4 is a hydrogen atom or a methyl group
  • Z is an alkyl group having 1 to 20 carbon atoms.
  • a 1 , A 2 and A 3 at least one is a hydrolyzable alkoxy group, and the other is an alkyl group.
  • the functional group that generates a silanol group by hydrolysis is a group that readily undergoes hydrolysis and forms a silanol group when contacted with water. For example, a halogenated silyl group, an alkoxysilyl group, a phenoxysilyl group, an acetoxysilyl group Etc.
  • an alkoxysilyl group, a phenoxysilyl group, and an acetoxysilyl group are preferable because they do not contain halogen, and an alkoxysilyl group is most preferable because a silanol group is easily generated.
  • Examples of the monomer represented by the general formula [3] include 3- (meth) acryloxypropenyltrimethoxysilane, 3- (meth) acryloxypropylbis (trimethylsiloxy) methylsilane, and 3- (meth) acryloxypropyl.
  • 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyldimethylmethoxysilane, or 3-methacryloxypropyldimethylethoxysilane is an ethylenically unsaturated polymerizable compound having an alkylene glycol residue. This is preferable from the viewpoint of excellent copolymerizability with the monomer and easy availability. These may be used alone or in combination of two or more.
  • the ratio of the structural unit derived from the monomer represented by the general formula [3] is usually 1 to 20 mol%, preferably 2 to 15 mol%, more preferably 2 to 10 mol based on the total constitutional unit of the polymer. %.
  • the polymer may contain structural units other than the structural units derived from the monomers represented by the general formulas [1] to [3].
  • a structural unit derived from an ethylenically unsaturated polymerizable monomer (d) having an alkyl group may be copolymerized.
  • Specific examples of such a monomer (d) are preferably n-butyl methacrylate, n-dodecyl methacrylate or n-octyl methacrylate.
  • the content thereof is usually 0 to 60 mol%, preferably 0 to 50 mol%, more preferably 0 to 40 mol%.
  • the polymer synthesis method is not particularly limited. For example, it is preferable to radically polymerize a mixture containing monomers having the structures represented by the general formulas [1] to [3] in a solvent in the presence of a polymerization initiator.
  • the solvent is not particularly limited as long as each ethylenically unsaturated polymerizable monomer can be dissolved, and examples thereof include methanol, ethanol, t-butyl alcohol, benzene, toluene, tetrahydrofuran, dioxane, dichloromethane, chloroform and the like. These solvents are used alone or in combination of two or more. When the polymer compound is applied to a plastic substrate, ethanol and methanol are preferable because they do not denature the substrate.
  • the polymerization initiator may be any ordinary radical initiator, such as 2,2′-azobisisobutyronitrile (hereinafter referred to as “AIBN”), 1,1′-azobis (cyclohexane-1-carbonitrile). And azo compounds such as benzoyl peroxide and organic peroxides such as lauryl peroxide.
  • AIBN 2,2′-azobisisobutyronitrile
  • 1,1′-azobis cyclohexane-1-carbonitrile
  • azo compounds such as benzoyl peroxide and organic peroxides such as lauryl peroxide.
  • the chemical structure of the polymer may take any form such as random, block, and graft as long as it contains structural units derived from the monomers represented by the above general formulas [1] to [3]. Further, the number average molecular weight of the polymer of the present embodiment is preferably 5000 or more and more preferably 10,000 or more because separation and purification of the polymer and the unreacted monomer are facilitated.
  • the polymer By coating the inner surface 61a and the upper surface 60b, the polymer can easily impart the property of suppressing nonspecific adsorption of the physiologically active substance and the property of immobilizing a specific physiologically active substance. Furthermore, since the polymer has a cross-linked structure (that is, polymer chains are cross-linked), it is insoluble, and signal degradation due to washing or sterilization of the cell-containing chip 60 can be reduced.
  • the inner surface 61a and the upper surface 60b For coating the inner surface 61a and the upper surface 60b with a polymer, for example, (i) preparing a solution in which a polymer is dissolved in an organic solvent so as to have a concentration of 0.05 to 10% by weight, and (ii) immersing the solution, After applying to the inner surface 61a and the upper surface 60b by a known method such as spraying, (iii) the applied solution is dried at room temperature or under heating.
  • the solution may contain components other than the polymer and the organic solvent. For example, it may contain a surfactant for uniform application, an adhesion aid for further improving adhesion, and the like.
  • the polymers are cross-linked by an appropriate method.
  • the polymer since the polymer has a functional group that generates a silanol group by hydrolysis, it is one method to use a mixed solution containing water in an organic solvent. That is, the functional group which produces
  • the water content is preferably about 0.01 to 15% by weight.
  • a single solvent such as ethanol, methanol, t-butyl alcohol, benzene, toluene, tetrahydrofuran, dioxane, dichloromethane, chloroform, acetone, methyl ethyl ketone, or a mixed solvent thereof is used.
  • ethanol and methanol are preferable because they do not denature the cell-containing chip 60 and can be easily dried. Further, ethanol and methanol are preferable because they are mixed with water at an arbitrary ratio when the polymer is hydrolyzed.
  • the silanol group in one polymer is dehydrated with the silanol group, hydroxyl group, amino group, etc. in another polymer. Condensate to form a crosslink. Further, when there is a hydroxyl group, a carbonyl group, an amino group or the like on the inner surface 61a and / or the upper surface 60b, it can be similarly dehydrated and condensed and chemically bonded to the substrate surface.
  • the polymer (covering layer 62) coated on the surface of the base material is not easily dissolved or peeled off.
  • the dehydration condensation of silanol groups is promoted by heat treatment. Heat treatment is preferably performed within a temperature range where the polymer is not denatured by heat, for example, at 60 to 120 ° C. for 5 minutes to 24 hours.
  • the material of the cell-containing chip 60 according to the present embodiment may be glass, plastic, metal, or the like, but plastic is preferable and thermoplastic resin is more preferable from the viewpoint of ease of surface treatment and mass productivity.
  • thermoplastic resin is not particularly limited, but in order to ensure transparency, it is preferable to use linear polyolefins such as polyethylene and polypropylene; polystyrene; cyclic polyolefins;
  • the inner surface 61a and / or the upper surface 60b In order to improve the adhesion between the coated polymer (coating layer 62) and the inner surface 61a and the upper surface 60b, it is preferable to activate the inner surface 61a and / or the upper surface 60b.
  • a means for activation there are a plasma treatment method under an oxygen atmosphere, an argon atmosphere, a nitrogen atmosphere, an air atmosphere, and an excimer laser such as ArF or KrF. Among these, a method of performing plasma treatment in an oxygen atmosphere is preferable.
  • the coating layer 62 can be made insoluble because the polymer has a crosslinked structure.
  • various physiologically active substances can be immobilized.
  • the physiologically active substance to be immobilized include nucleic acids, aptamers, proteins, oligopeptides, sugar chains, glycoproteins, and the like.
  • immobilizing a nucleic acid it is preferable to introduce an amino group in order to increase the reactivity with the active ester group.
  • the amino group may be introduced at the end of the polymer chain or at the side chain (also referred to as “branch”), but the amino group is preferably introduced at the end of the molecular chain.
  • the physiologically active substance when the physiologically active substance is immobilized on the biochip substrate, a method of spotting a liquid in which the physiologically active substance is dissolved or dispersed is preferable.
  • the physiologically active substance is immobilized on the surface by standing still.
  • the aminated nucleic acid can be immobilized by allowing it to stand at room temperature to 80 ° C. for 1 hour. A higher processing temperature is preferred.
  • the liquid in which the physiologically active substance is dissolved or dispersed is preferably alkaline.
  • the functional groups on the surface of the substrate other than the portion where the physiologically active substance is immobilized are inactivated.
  • an active ester or an aldehyde group it is preferable to use an alkali compound or a compound having a primary amino group.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, disodium hydrogen phosphate, calcium hydroxide, magnesium hydroxide, sodium borate, lithium hydroxide, potassium phosphate, etc. are preferably used. Can do.
  • Examples of the compound having a primary amino group include methylamine, ethylamine, butylamine, glycine, 9-aminoacazine, aminobutanol, 4-aminobutyric acid, aminocaprylic acid, aminoethanol, 5-amino2,3-dihydro-1,4 -Pentanol, aminoethanethiol hydrochloride, aminoethanethiolsulfuric acid, 2- (2-aminoethylamino) ethanol, 2-aminoethyl dihydrogen phosphate, aminoethyl hydrogensulfate, 4- (2-aminoethyl) morpholine, 5-aminofluorescein, 6-aminohexanoic acid, aminohexylcellulose, p-aminohippuric acid, 2-amino-2-hydroxymethyl-1,3-propanediol, 5-aminoisophthalic acid, aminomethane, aminophenol, 2 -Aminooc
  • FIGS. 7A to 7E are schematic diagrams for explaining a method of using the cell-containing chip 60 configured as described above.
  • a predetermined functional group 62a of the functional group-containing material contained in the coating layer such as an active ester group, is used as a primary antibody or the like. It binds to the specific binding material 81 (FIG. 8B).
  • a fixing solution containing a specific binding material 81 that binds the predetermined functional group 62a and the production substance m produced by the cells M accommodated in the well 61 is used, and the fixing solution is placed on the cell accommodating chip 60.
  • the predetermined functional group 62a and the specific binding material 81 are combined.
  • the fixing solution is preferably alkaline and specifically has a pH of 7 to 10.
  • the fixing solution as described above, a natural state due to a buffering action can be maintained, damage due to alteration or the like of the specific binding material 81 (protein or the like) is prevented, and the predetermined functional group 62a and the produced substance are prevented. A good bond with m can be obtained.
  • the specific binding material 81 is a binding substance that specifically binds to the produced substance.
  • the specific binding material 81 is not limited to a primary antibody, but may be an antigen or a substance other than a protein.
  • the specific binding material 81 used in the present invention is a chemical substance such as a protein including cytokine, immunoglobulin, anti-immunoglobulin and hormone.
  • the culture solution containing the cells M is accommodated in the wells 61, and the cells M are cultured in the wells 61 (FIG. 7 (c)).
  • the cell M produces a production substance m such as a production antibody, and the production substance m binds to the specific binding material 81 in the well 61 (FIG. 7 (d)).
  • the predetermined functional group 62a binds to the substance m to be produced through the specific binding material 81.
  • the present invention can be applied to identification of all cell types, and cell types include, for example, immune cell systems such as B cells, T cells, dendritic cells, cancer cell systems such as CTC cells, iPS cells, ES cells, etc. Stem cell lines, hybridomas, CHO cells, yeast cells, and the like. Produced substances are cytokines, immunoglobulins, anti-immunoglobulins, proteins including hormones, and chemicals such as vitamins.
  • an optical information-carrying substance 83 such as a fluorescent molecule (for example, a secondary antibody with fluorescence) that specifically binds to the product m or the specific binding material 81 is bound (FIG. 7 (e) )).
  • a fluorescent molecule for example, a secondary antibody with fluorescence
  • the product m produced by the cell M is bound to the specific binding material 81 bound on the coating layer 62 in the well 61 in which the cell M is accommodated, and the product m or specific
  • the optical information-carrying substance 83 By binding the optical information-carrying substance 83 to the optical binding material 81 and detecting the optical information of the optical information-carrying substance 83, the cells M and the produced substance m are retained in the well 61 in the wet state.
  • the well 61 as a label, it is possible to accurately identify the target sample.
  • FIG. 8 is a flowchart showing a screening method using the cell containing chip 60 of FIG. 7, and FIGS. 9A to 9D are schematic diagrams for explaining each step of FIG.
  • the cell accommodation chip 60 configured as described above is prepared (step S ⁇ b> 1), and the predetermined functional group 62 a (see FIG. 7) included in the coating layer 62 and the well 61 are accommodated.
  • a specific binding material 81 having binding properties with the production substance m produced by the cell is bound (step S2) (FIG. 9A).
  • the primary antibody-containing fixing solution is dropped or applied onto the coating layer 62 in the well 61 to bind the primary antibody.
  • step S3 may be executed between step S1 and step S2.
  • a liquid for example, a culture solution
  • the plurality of cells M are stored in the plurality of wells 61 in units of cells (step S4) (FIG. 9 (b)).
  • it is allowed to stand for a predetermined time after the introduction of the liquid, and waits for each cell to settle and enter each well one by one. Then, the cells M not accommodated in the well 61 are washed and removed.
  • the cell M accommodated in the well 61 is cultured to promote the production of the produced substance m, and the produced substance m produced from the cell M and the specific binding material 81 are bound (step S5).
  • Cell culture conditions temperature, gas type, concentration, etc.
  • the culture time of the cells M accommodated in the well 61 can be changed as necessary.
  • the product m is bound to the optical information holding substance 83 having optical information such as a fluorescent molecule that specifically binds (step S6) (FIG. 9C).
  • a fluorescent secondary antibody-containing solution is dropped on the cell housing chip 60, and the fluorescent secondary antibody is bound to the product m.
  • the optical information-carrying substance 83 may be a fluorescent dye with a functional group, a biotinylated antibody + avidinated fluorescent dye, a secondary antibody with fluorescent beads, or the like in addition to the fluorescent secondary antibody. Further, the process of step S6 may be performed simultaneously with the process of step S5. Thereafter, the cell containing chip 60 and the inside of the well 61 are washed to remove the optical information-carrying substance 83 that did not bind to the substance m to be produced or the specific binding material 81.
  • step S7 As the arrangement information of the cell accommodation chip 60, information on the reference position of the cell accommodation chip, correction parameters, and the like are acquired (step S7), and image analysis is performed to acquire center position coordinate information of each well (step S7). S8). Thereafter, the cell housing chip 60 is irradiated with light, the optical information of the optical information holding substance 83 is acquired, and luminance analysis is performed (step S9). At this time, the optical information of the optical information holding substance 83 that fluoresces based on the light irradiation in step S9 may be acquired, or the optical information of the optical information holding substance 83 that has been fluorescent in advance may be acquired. As the luminance analysis, the time change of the fluorescence information obtained from the optical information holding substance 83 may be measured.
  • a fine particle collection condition desired by the user for example, a fluorescence whose luminance exceeds a predetermined threshold, or a plurality of fluorescence (for example, different fluorescence colors) is selected.
  • a fluorescence luminance exceeding a predetermined threshold or any combination thereof is used as the collection condition.
  • the center position of the suction / discharge capillary 140 is acquired by image analysis or the like, and the center position or a position shifted by a predetermined distance from the center position is used as the center position (position information) of each well during cell recovery.
  • Set step S12).
  • the center position of the well 61 in which the target sample is accommodated is moved so as to match the center position of the well set in step S12, and the target sample specified in step S11 is sequentially collected (step S13) (FIG. 9).
  • the collected target specimen is stored in a predetermined well 51 on the storage plate 50 set in advance by the user.
  • FIG. 10 is a graph showing the results of measuring and comparing the contact angles between various cell-containing chips and distilled water.
  • a coating layer containing a first material having both hydrophilicity and low protein adsorption, a second material that is a functional group-containing material, and a third material that is a crosslinking component ( 7a)) was used as the inventive sample 1.
  • the coating layer which contains only a functional group containing material as the comparative example sample 1 the coating layer which contains only a hydrophilic material as the comparative example sample 2
  • the material and shape of the substrate and the method for producing the substrate in all samples were the same.
  • the invention example samples are specifically described below.
  • the substrate surface was oxidized by plasma treatment in an oxygen atmosphere.
  • This substrate was immersed in a 0.3 wt% ethanol solution of the polymer compound obtained in the polymer compound synthesis example, and then heated and dried at 60 ° C. for 18 hours, whereby alkylene glycol residues were formed on the substrate surface.
  • a layer containing a polymer compound composed of an ethylenically unsaturated polymerizable monomer having an ethylenically unsaturated polymerizable monomer having an active ester group and an ethylenically unsaturated polymerizable monomer having a crosslinkable functional group was introduced.
  • the contact angle was measured in accordance with JIS R3257 and calculated by the static method as shown below.
  • the contact angle ⁇ (°) was determined from the radius r (mm) and the height h (mm) when 1 ⁇ L of distilled water was dropped onto the cell-containing chip.
  • the radius r is the radius of the surface in contact with the tip surface of the water droplet
  • the height h is the height from the tip surface to the apex of the water droplet.
  • pieces per sample was computed.
  • the coating layer of the present embodiment includes a material having both hydrophilicity and low protein adsorption and a functional group-containing material, and has an average contact angle of 57 ° to 59 °. The value is 59 °, which indicates that the hydrophilicity is greatly improved.
  • the coating layer contains only a hydrophilic material (Comparative Sample 2), the contact angle between the cell-containing chip and the liquid containing cells is 14 ° to 17 ° and the average value is 15 °.
  • the coating layer of the present embodiment can bind a specific binding material having binding properties with a product to be produced, and can suppress protein adsorption and achieve good hydrophilicity.
  • each cell-accommodating chip is set on a fixing member, normal temperature PBS (phosphate buffered saline) is introduced onto the cell-accommodating chip, and air bubbles enter inside any 500 wells on the chip.
  • the ratio of the number of wells present was determined as the bubble rate.
  • the same inventive sample and comparative sample as in the hydrophilicity evaluation were used. The results are shown in Table 2.
  • the bubble ratios (1) to (3) of the wells are 100%, 0%, and 0%, respectively. Although bubbles were found in the wells, the bubbles quickly disappeared, and after a certain period of time, it was found that bubbles were removed from almost all wells.
  • the bubble ratios (1) to (3) of the wells are 100%, 100%, and 96%, respectively. Bubbles entered all the wells, and bubbles remained in almost all wells even after a certain period of time.
  • the bubble ratios (1) to (3) of the wells are all 0%, both immediately after PBS introduction and after a certain period of time, Wells containing bubbles were not found. Further, in the case of an untreated cell-containing chip (Comparative Sample 3), the bubble ratios (1) to (3) of the wells are 100% respectively, and bubbles enter all the wells immediately after PBS introduction, Even after the passage, air bubbles remained in all wells.
  • a cell-containing liquid also referred to as a cell suspension
  • a cell-containing chip When cells are contained in a well, a cell-containing liquid (also referred to as a cell suspension) is introduced onto the cell-containing chip and allowed to settle, so that the cells slowly settle in the liquid and are contained in the well.
  • a cell-containing liquid also referred to as a cell suspension
  • the contact angle of the surface of the cell-containing chip is 60 ° or less, the cell-containing chip has sufficient hydrophilicity to prevent the generation of bubbles in the well, It was confirmed that the cells could be reliably accommodated.
  • the cell adhesion rate to the same coating layer as the sample used in the evaluation shown in FIG. 10 was measured and compared. Measurement and evaluation of the cell adhesion rate were performed as follows. First, as shown in FIG. 8, a primary antibody-containing fixing solution was dropped onto each cell-containing chip to bind the primary antibody. Thereafter, the surface of the cell-containing chip was washed to remove unbound primary antibody and fixative components. After washing, each cell-accommodating chip was set on a fixing member, a culture solution containing a plurality of 293T cells was introduced onto the cell-accommodating chip, and the plurality of cells were accommodated in a plurality of wells in units of cells.
  • the adhesion rate of 293T cells is about 8% (4 cells), and most 293T cells are not adhered to the coating layer. I understand that.
  • the adhesion rate of 293T cells is about 96% (46 cells), indicating that almost all cells adhered to the coating layer.
  • the adhesion rate is about 83% (40 cells), and it can be seen that almost all cells adhered to the coating layer. From this result, according to the coating layer of this embodiment, the cell adhesion rate to the coating layer is remarkably low, the coating layer in the well is difficult to adhere to the cells accommodated in the well, and good cell low adhesion It was found that can be realized.
  • Ethanol was dispensed into some wells of Invention Sample 3, Comparative Sample 5 and Comparative Sample 6 and allowed to stand for 30 minutes, after which ethanol was removed and air-dried at room temperature.
  • a peroxidase-labeled avidin solution prepared to 0.5 ⁇ g / mL with PBS was dispensed to each sample, and allowed to stand at room temperature for 1 hour, so that avidin was adsorbed on the substrate surface. After washing the substrate with PBS containing 0.1% Tween20, each well is colored using a commercially available HRP coloring solution (manufactured by Sumitomo Bakelite), and the absorbance at 450 nm is measured with a commercially available plate reader to adsorb avidin. The amount was measured.
  • Table 5 shows the absorbance of the wells that were washed with ethanol and the wells that were not washed with respect to Invention Sample 3, Comparative Sample 5, and Comparative Sample 6. Absorbance was determined using the absorbance at a wavelength of 670 nm as a reference and the difference from the absorbance at a wavelength of 450 nm. Inventive sample 3 did not have a significant change in absorbance before and after washing, but comparative sample 5 showed an increase in absorbance after washing. From this, it can be seen that the effect of the ethanol cleaning on the coating layer could be avoided by the effect of the crosslinked structure of Invention Example Sample 3. Moreover, in the comparative example sample 6 which does not have a coating layer, a high absorbance is observed regardless of before and after washing, and the low adsorptivity by the first material can be confirmed in comparison with the inventive example sample 3.
  • the surface of the coating layer 62 in the plurality of wells 61 has low cell adhesion, and the produced substance m produced by the cells M accommodated in the wells 61. It has a binding property to the specific binding material 81 having the binding property.
  • the hydrophilic material of the covering layer 62 allows the liquid containing the cells M to easily enter the fine well 61, can improve the accuracy of accommodating a single cell in each well, and can identify and sort the target specimen. And efficiency can be improved.
  • the conventional chip since the conventional chip has a structure in which a substance having binding properties with a product to be produced (Ig antibody or the like) is previously bound on the chip, it is difficult to store the chip for a long period of time, and the accuracy is improved by drying or the like. May be reduced.
  • the surface of the coating layer 62 has the binding property to the specific binding material 81, so that the specific binding material 81 having the binding property to the production substance m is placed on the cell accommodation chip 60. It is not necessary to preliminarily connect to the sensor, and accuracy deterioration due to drying or the like can be prevented.
  • the inside of the well 61 is less likely to be dried than before due to the hydrophilicity of the coating layer 62, the inside of the well 61 can be held in a wet state after the binding of the specific binding material 81. A decrease in accuracy due to drying or the like can be prevented. Further, due to the binding property with the specific binding material 81 on the surface of the coating layer 62, the specific binding material 81 binds to the predetermined functional group 62 a, and the production produced from the cells M in the well 61 of the coating layer 62. Since the substance m binds to the specific binding material 81, the well 61 itself can be used as a labeling site for target sample identification, and the target sample can be identified without damaging the cells M.
  • the surface of the coating layer 62 has low cell adhesion, it is possible to prevent the cells M in the well from adhering to the inner surface of the well 61 or the upper surface 60b of the base body 60a. Therefore, the target sample cell M can be recovered with high efficiency without requiring a coating treatment, and can be recovered without damaging the cell M during cell recovery.
  • the coating layer 62 has a low protein adsorption material, when the produced substance m is a protein, nonspecific adsorption of the produced substance m to the cell-containing chip surface is prevented, and a blocking agent or the like is used. Good detection sensitivity can be maintained without requiring a coating treatment.
  • the surface has a binding property to the specific binding material 81 having a low cell adhesion property and a binding property to the production substance m produced by the cell M accommodated in the well 61.
  • a cell accommodation chip 60 provided with a coating layer 62 is prepared, a specific binding material 81 is bonded to the surface of the coating layer 62, a liquid containing a plurality of cells M is introduced into the cell accommodation chip 60, and a plurality of cells M In a plurality of wells 61 in units of cells, the produced substance m from the cells M contained in the well 61 and the specific binding material 81 are bound, and the produced substance m or the specific binding material 81 is combined. Since the optical information holding substance 83 having optical information is combined, the target specimen can be identified and sorted with high accuracy and high efficiency. In addition, handling is simple, and easy recovery can be realized without damaging the cells M during cell recovery.
  • the cell M accommodated in the well 61 emitting the light having the luminance satisfying the above collection condition is specified as the target specimen (step S11). That is, in FIGS. 8 and 9, the optical information-carrying substance 83 that specifically binds to the production substance m secreted from the cell M (white Y in FIG. 9) is used, and the production produced from the cell M The substance m binds to the well 61 in which the cell M is accommodated. Therefore, as described above, the timing (step S6) for bonding the optical information holding substance 83 to the specific binding material 81 can be performed after step S5 or simultaneously with step S5.
  • a screening method may be used in which the cells M housed in the wells 61 other than the wells that emit light with a luminance equal to or higher than the threshold used in the above collection conditions are specified as the target specimen.
  • description of the same parts as those in the flowchart of FIG. 8 will be omitted, and different parts will be described.
  • step S4 first, after storing a plurality of cells M in a plurality of wells 61 in cell units (step S4), each cell was cultured to promote production of the production substance m and produced from the cells M.
  • the product m and the specific binding material 81 in the well 61 are bound (step S5).
  • the specific binding material 81 in the well 61 in which the target cell M is accommodated is covered with the produced substance m, and the specific binding material in the well 61 in which the target sample M is not accommodated. 81 is not covered by the product m.
  • step S6 ′ another optical information holding substance that does not specifically bind to the substance m to be produced but specifically binds to the specific binding material 81 is used, and the other optical information holding substance is used as the specific binding material. 81 (step S6 ′).
  • step S5 and step S6 ' are not performed simultaneously, and step S6' is performed after step S5.
  • the optical information of the optical information holding substance 83 is acquired and the luminance analysis is performed (step S9).
  • the user selects the desired fine particle collection conditions (step S10), and identifies the cell M as the target sample based on the collection conditions (step S11).
  • the condition that the light is not emitted or the luminance is equal to or lower than a predetermined threshold is set as a collection condition, and the cell M accommodated in the well 61 that satisfies the collection condition is specified as the target specimen. Also by this method, a desired target specimen can be collected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本発明は、特定のスクリーニング装置で使用する細胞収容チップに関する。このチップは、光透過性材料からなる基体と、前記基体の少なくとも一方の主面に、細胞を収容可能な複数のウェルとを有する。そして、前記複数のウェルを含むチップの表面は、架橋構造を有する特定のポリマーで被覆されている。このチップは、細胞低吸着性、および、前記ウェルに収容される細胞が産生する被産生物質との結合性を有する特異的結合材料に対する結合性を有する。

Description

細胞収容チップ
 本発明は、目的検体をスクリーニングする際に複数の細胞を収容する細胞収容チップに関し、特に、ウェルと細胞に対して光を照射し、細胞収容チップ上に結合した物質が発する蛍光に基づいて目的検体となる細胞を検知して、当該細胞を選択的に吸引して回収するための細胞収容チップに関する。
 従来、スクリーニング装置は、細胞などの微小物検体を識別、分取するための装置として、医療分野の研究・検査などで広く使用されている。そして近年、研究・検査機関において、検体破壊を伴わない識別、分取を実現すると共に、これらの処理をより正確に行うことで研究・検査の効率を高めたいとの要望がある。特に、所定分野においては、多数の細胞の中から特定の細胞を一細胞単位で識別・分取したいとの要望が高まっていることから、このような一細胞単位での識別・分取処理においても、正確性の向上や高効率化が求められている。
 非破壊方式で行う細胞の識別・分取処理においては、目的検体と非目的検体とを明確に区別できるように、多数の微細粒子を含む培地を細胞収容チップ上に保持するのが望ましい。そこで従来、例えば、チップ上面の一部に抗免疫グロブリン(Ig)抗体を結合させてなる被覆層を有するマイクロウェルアレイチップを用い、該マイクロウェルアレイチップの各ウェルに抗体分泌細胞を分注し、ウェル中に収容された細胞の少なくとも一部から分泌される抗体と、上記被覆層の抗Ig抗体とを結合させ、当該分泌抗体を蛍光標識抗原で検出することによって目的検体を特定する方法が開示されている(特許文献1)。
 また、所望の目的検体を外部環境から選択的に結びつけるために、或いは非目的検体を表面からまとめて除去するために、プレート状の支持体に、該支持体上に固定された低い非特異的結合性のマトリックスと、非特異的結合性マトリックス内で物理的に絡み合って共有結合している活性成分とを供給してなる機能性コーティングが開示されている(特許文献2)。
特許第4148367号公報 特表2004-531390号公報
 しかしながら、特許文献1の技術では、チップ上面の一部に抗Ig抗体を結合させてから目的検体を特定するまでの間、チップ上面を湿潤状態で保持しなければならず、抗Ig抗体を長持ちさせることができない。また、細胞の抗体分泌中に当該細胞がウェルの内表面に付着する場合があるため、当該細胞を回収し難くなり、回収できたとしても目的検体である細胞にダメージを与える可能性が高い。
 また、特許文献2では、プレート状の支持体上面に設けられた機能性コーティングに目的検体を選択的に結びつける構成ではあるが、各ウェル内に一つの細胞を保持する構成ではなく、特定の細胞を細胞単位で識別・分取する精度や効率が高いとは言えない。
 本発明の目的は、目的検体を高精度且つ高効率で識別・分取することができ、また、取扱が簡単で、細胞にダメージを与えること無く容易な回収を可能とする細胞収容チップを提供することにある。
 上記目的を達成するために、本発明の細胞収容チップは、細胞収容チップ上の物質から発する光情報に基づいて所定の細胞を探索し、探索された細胞を選択的に回収するためのスクリーニング装置で使用される、複数の細胞を収容する細胞収容チップであって、光透過性材料からなる基体と、前記基体の少なくとも一方の主面に、細胞を収容可能な複数のウェルとを有し、前記複数のウェルを含む前記細胞収容チップの表面は、架橋構造を有し、下記一般式[1]で表されるモノマーに由来する構造単位と、下記一般式[2]で表されるモノマーに由来する構造単位と、下記一般式[3]で表されるモノマーに由来する構造単位とを含むポリマーで被覆されていることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子またはメチル基を示し、Rは水素原子または炭素数1~20のアルキル基を示し、Xは炭素数1~10のアルキレングリコール残基を示し、pは1~100の整数を示す。pが2以上100以下の整数の場合、繰り返されるXは、同一であっても、または異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子またはメチル基を示し、Yはアルキル基または炭素数1~10のアルキレングリコール残基を示す。Wは活性エステル基を示す。qは1~20の整数を示す。qが2以上20以下の整数である場合、繰り返されるYは、同一であっても、または異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子またはメチル基を示し、Zは炭素数1~20のアルキル基を示す。A、A、Aの内、少なくとも1個は加水分解可能なアルコキシ基であり、その他はアルキル基を示す。)
 前記一般式[1]で表されるモノマーに由来する構造単位は、メトキシポリエチレングリコールアクリレート又はメトキシポリエチレングリコールメタクリレートであることが好ましい。
 前記メトキシポリエチレングリコールアクリレート及び/又はメトキシポリエチレングリコールメタクリレートのエチレングリコール残基の平均繰り返し数は、3~100であることが好ましい。
 前記一般式[2]で表されるモノマーに由来する構造単位に含まれる活性エステル基は、p-ニトロフェニル活性エステル基又はN-ヒドロキシスクシンイミド活性エステル基であることが好ましい。
 本発明によれば、複数のウェルを含む細胞収容チップの表面が、特定のポリマーで被覆されている。これにより、チップ表面が細胞低接着性を有すると共に、ウェルに収容される細胞が産生する被産生物質との結合性を有する特異的結合材料に対して結合性を有する。従来のチップでは、被産生物質と結合性を有する物質をチップ上に予め結合させた構成であるため、当該チップの長期間の保存が難しく、乾燥等により精度が低下する可能性がある。一方、本発明によれば、細胞収容チップの表面が上記特異的結合材料との結合性を有することにより、被産生物質と結合性を有する特異的結合材料を細胞収容チップ上に予め結合させる必要が無く、乾燥等による精度低下を防止することができる。
 また、細胞収容チップ表面の上記特異的結合材料との結合性により、上記特異的結合材料がウェルを含む細胞収容チップの表面と結合し、また、ウェル内の細胞から産生される被産生物質が当該特異的結合材料と結合する。このため、当該ウェル自体を目的検体識別の際の標識部位とすることができ、細胞にダメージを与えること無く目的検体を識別することができる。更に、細胞収容チップの表面が細胞低接着性を有することにより、ウェル内の細胞が細胞収容チップ表面に接着するのを防止することができ、ブロッキング剤等を用いたコーティング処理を要すること無く、目的検体である細胞を高効率で回収でき、更に細胞回収時に当該細胞にダメージを与えること無く回収することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の実施形態に係る細胞収容チップを用いるスクリーニング装置の構成を概略的に示す側面図である。 図1のスクリーニング装置の斜視図である。 図2における移動部と搭載用テーブルの詳細を示す斜視図である。 図3の搭載用テーブルの構成を示す斜視図である。 細胞収容チップと該細胞収容チップの固定部材の構成を示す拡大断面図である。 図5の細胞収容チップの詳細構成を示す部分断面図である。 (a)~(e)は、図6の細胞収容チップの使用方法を説明するための模式図である。 図7の細胞収容チップを用いたスクリーニング方法を示すフローチャートである。 (a)~(d)は、図8の各ステップを説明するための模式図である。 種々の細胞収容チップと蒸留水との接触角を測定、比較した結果を示すグラフである。 図8のスクリーニング方法の変形例を示すフローチャートである。
 以下、本発明の実施形態を、図面を参照しながら詳細に説明する。
(スクリーニング装置の構成)
 図1は、本実施形態に係る細胞収容チップを用いるスクリーニング装置の構成を概略的に示す側面図であり、図2は、図1のスクリーニング装置の斜視図である。図1及び図2のスクリーニング装置は、その一例を示すものであり、スクリーニング装置の実施形態は、図1及び図2のものに限られない。なお、説明の便宜上、図1の紙面垂直方向をX方向、左右方向をY方向、Z方向を、X方向とY方向に対して垂直な方向とする。
 図1及び図2において、スクリーニング装置1は、細胞収容チップ60内の複数の微細粒子(例えば生体の細胞など)が発する光情報に基づいて目的検体となる所定の細胞を探索し、回収条件を満たした細胞が収容されたウェル内の細胞を選択的に吸引、取得して、収容プレート50に回収する装置である。
 具体的には、スクリーニング装置1は、ベース11と、支持部12(図2参照)と、回収部13と、計測部14と、画像解析部15と、移動部16とを備え、図2に示すように、外部からの光や異物の進入を防止するために、上記の各部がカバー19により覆われている。
 ベース11は、スクリーニング装置1の各要素を保持するための本体フレームである。このベース11は、略水平に配されたプレート部材111,112,113を有しており、これらプレート材を介して、回収部13と、計測部14と、移動部16とを保持している。プレート部材111,112は、複数の垂直部材114により平行に固定されており、プレート部材112,113は、複数の垂直部材115により平行に固定されている。この垂直部材114は、振動を遮断する材質からなり、高さ調整可能に構成されている。
 上記複数のプレート材のうち最上に位置するプレート部材113の上には、支持部12と支持台30が固定されている。支持部12は、プレート部材113の上においてZ方向に沿って垂直に延出して配置されている。支持台30は、脚部30aと支持板30bを有している。プレート部材111,112,113及び支持板30bは、Z方向に関して相互に所定間隔をおいて配置されている。
 支持台30の支持板30b上には、移動部16が載置固定されている。移動部16上には、搭載用テーブル40、収容プレート50および細胞収容チップ60が搭載されている。移動部16は、搭載用テーブル40、すなわち該搭載用テーブル40に搭載された収容プレート50及び細胞収容チップ60を、X方向および/又はY方向に沿って移動して位置決めすることが可能となっている。
 図3は、図2における移動部16と搭載用テーブル40の詳細を示す斜視図である。
 図3に示すように、移動部16は、テーブル161と、該テーブル上に配置されたテーブル162を有している。テーブル161は、支持台30に固定されており、テーブル162をX方向に沿って移動して位置決め可能に搭載している。テーブル162は、搭載用テーブル40をY方向に沿って移動して位置決め可能に搭載している。
 テーブル161の上面には、ガイドレール163,163とモータ164が設けられている。テーブル162の下面には、断面U字型の係合部材165,165とナット166が設けられている。係合部材165,165は、それぞれガイドレール163,163と移動可能に係合している。モータ164の送りねじ167は、ナット166と螺合している。
 モータ164は、制御部100と電気的に接続されており、制御部100からの指令に応じてモータ164を作動して送りねじ167を回転すると、テーブル162がX方向に沿って移動して位置決めされる。
 テーブル162の上面には、ガイドレール168,168とモータ169が設けられている。搭載用テーブル40の下面には、断面U字型の係合部材170,170とナット171が設けられている。係合部材170,170は、それぞれガイドレール168,168と移動可能に係合している。また、モータ169の送りねじ172は、ナット171と螺合している。
 モータ164は制御部100と電気的に接続されており、制御部100からの指令に応じてモータ164を作動して送りねじ172を回転することで、搭載用テーブル40がY方向に沿って移動して位置決めされる。
 また、テーブル161は開口部173を、テーブル162は開口部174をそれぞれ有しており、さらに搭載用テーブル40は開口部175を有している。これら開口部173,174,175は、テーブル162がX方向に移動し、搭載用テーブル40がY方向に移動しても常に重なるような大きさを有している。これら開口部173,174,175を介して、計測部14の対物レンズ110側からの光Lが、搭載用テーブル40上の細胞収容チップ60の細胞に照射される。
 また、テーブル162がX方向に移動しかつ搭載用テーブル40がY方向に移動した場合にも、対物レンズ110側からの光Lは、開口部173,174,175を通過して、搭載用テーブル40上の細胞収容チップ60の細胞に照射される。すなわち、テーブル161,162および搭載用テーブル40がいずれの相対位置にあった場合でも、細胞及び/又は細胞を収容するウェルから蛍光を発生させることが可能となっている。
 図4は、図3の搭載用テーブル40上の収容プレート50と細胞収容チップ60の構成を示す斜視図である。
 搭載用テーブル40は、例えば長方形状の板状部材であり、この搭載用テーブル40の搭載面40a上に、収容プレート50と細胞収容チップ60がそれぞれ着脱可能にY方向に並べて搭載されている。
 収容プレート50は、板状部材であり、収容プレート50には多数のウェル51がX方向とY方向に沿って等間隔でマトリックス状に配列されている。これらのウェル51は、目的検体である細胞が吸引・吐出キャピラリ140から順次排出されてくるときに、当該細胞を別々に回収して格納することができる回収格納部となっている。収容プレート50のウェル51は、例えば鉛直方向断面略U字型の凹部、あるいはカップ型の凹部である。
 細胞収容チップ60は、固定部材120により搭載用テーブル40の搭載面40a上に固定されており、この固定部材120は、搭載用テーブル40の所定位置に位置決めして固定されている。
 図5は、細胞収容チップ60と固定部材120との構成を示す拡大断面図である。同図に示すように、固定部材120は、細胞収容チップ60を搭載用テーブル40の搭載面40aに対して一定の高さの基準面CLの位置で固定して保持できるように構成されている。具体的には、固定部材120は、細胞収容チップ60の端部を囲うように配置された枠体121,122を有しており、これら部材によって細胞収容チップ60を協働して保持する。
 細胞収容チップ60は、Z方向に関して枠体121,122の間に配置されており、枠体121,122に挟持されることで、枠体121,122とそれぞれ圧接している。これにより、細胞収容チップ60と枠体121の間のシール性が確保される。
 そして、細胞収容チップ60と枠体121が圧接した状態で、細胞収容チップ60の上面60bが枠体122を介して基準面CLに位置決めされる。これにより、細胞収容チップ60の上面60bと、計測部14の対物レンズ110および収容プレート50とのZ方向に関する距離を正確に管理することが可能となっている。換言すれば、細胞収容チップ60のウェル61内の細胞Mの位置と、計測部14の対物レンズ110と収容プレート50との距離を正確に管理することが可能となっている。
 また、枠体121は、その平面方向中央部かつ細胞収容チップ60の上方に設けられ、液体Aを保持する液体保持部129を有しており、培地、試薬液、反応液等の各種液体を保持することが可能に構成されている。すなわち液体保持部129は、枠体121の内部空間に形成されている。なお枠体121は、枠体122に対して例えば不図示のヒンジ機構部を用いて開閉することができ、これにより、固定部材120内の細胞収容チップ60を取り出して、新たな細胞収容チップと交換することができる。細胞収容チップ60は、複数の細胞Mを収容する板状部材である。細胞収容チップ60の詳細構成については後述する。
 回収部13は、識別された細胞Mを目的検体として分取する吸引・吐出キャピラリ140を備えている。吸引・吐出キャピラリ140は、Z2方向(下方向)に沿って縮径する先細り状の中空部材であり、その内部には管路141が形成されている。
 図1に戻り、計測部14は、細胞収容チップ60の複数のウェル61が含まれる領域に対して光Lを照射することで、その領域内の細胞M及び/又は細胞を収容するウェル61或いはその近傍から蛍光を発生させて、その蛍光を受光する。受光した細胞M及び/又は細胞を収容するウェル61或いはその近傍からの蛍光は、画像解析部15により画像解析される。
 具体的には、計測部14は、細胞収容チップ60および細胞収容チップ60に収容された細胞Mに少なくとも1つ以上の光源より導かれる光を照射することによって、透過光、反射光もしくは蛍光による形状および位置情報、並びに蛍光・化学発光等の輝度情報を個々の微細粒子の平均サイズより細かい分解能で取得すると共に、細胞収容チップ60自体の形状や、細胞収容チップ60上に配置されたウェル61の位置座標や大きさ等の情報を取得する。
 また、計測部14は、対物レンズ110を有しており、対物レンズ110は細胞収容チップ60に対して光を導く。対物レンズ110は、細胞収容チップ60と移動部16の下方に配置されており、吸引・吐出キャピラリ140は、細胞収容チップ60と移動部16の上方に配置されている。すなわち、細胞収容チップ60及び移動部16が、Z方向に関して対物レンズ110と吸引・吐出キャピラリ140の間に配置される。
 また、計測部14は、光源としての励起光源181と、励起光源181より照射される光のうち所望の励起波長帯域のみを選択するための光学フィルタ(励起フィルタ)184と、細胞収容チップ60からの光情報の所望の波長帯域のみを選択するための光学フィルタ(蛍光フィルタ)185と、励起光と光情報との波長帯域の差によって光路を切り替えるためのダイクロイックミラー186から構成される蛍光フィルタユニット183と、励起光源181から出射された光を細胞収容チップ60に導くとともに細胞収容チップ60から得られる光情報を収集するための対物レンズ110と、対物レンズ110を光軸方向に可動させるオートフォーカス機能を持つフォーカスユニット187と、計測対象からの光情報を検出するための光検出部としての受光部188とを有している。蛍光フィルタユニット183と受光部188は、蛍光落射ユニット190に固定されている。
 励起光源181は、例えばレーザ光源や水銀ランプで構成される。シャッターユニット182は、励起光源181と蛍光フィルタユニット183の間に配置されており、シャッターユニット182は細胞収容チップ60の細胞Mに対して光Lを照射しない場合には、励起光源181の発生する光Lを蛍光フィルタユニット183の手前で遮断することが可能となっている。
 さらに、計測部14は不図示のハーフミラーを有しており、ハーフミラーと蛍光フィルタユニット183とを切り替えることで、励起光源181からの光の一部を観察対象に照射すると同時に、観察対象からの反射光の一部を受光部188に導くことによって、細胞収容チップ60の上面60bおよび該上面に形成されたウェル61の形状および位置情報を計測することができる。
 また、この計測部14では、複数の対物レンズ110a,110b・・・が、例えばレボルバー式で回転することで、必要な倍率の対物レンズを細胞収容チップ60の下方位置に位置決めすることができる。フォーカスユニット187は、例えば制御部100からの指令によりモータ189を作動することで、細胞収容チップ60の下方位置に配置された例えば対物レンズ110をZ方向に沿って移動して位置決めすることで、細胞収容チップ60の微細粒子Mに対する対物レンズ110のフォーカス調整を行うことができる。
 画像解析部15は、各ウェル61内の複数の細胞M及び/又は細胞を収容するウェル61内或いはその近傍の、少なくとも最大強度の蛍光を発する細胞M及び/又は細胞を収容するウェル61或いはその近傍の蛍光輝度を算出する。
 具体的には、画像解析部15は、計測された形状情報および光情報を解析することで、少なくとも各ウェル61内に、測定者によって設定できる輝度条件を満たす細胞Mが存在することを確認するためのデータを取得する。そして、画像解析部15は、透過光もしくは反射光によるウェル61の位置座標情報と蛍光・化学発光の光情報とを合わせ照合することにより細胞M及び/又は細胞を収容するウェル61内或いはその近傍からの光情報を抽出する。また、計測部14はオートフォーカス機能を有しており、所定位置で合焦した状態で計測を行なうとともに、吸引・吐出キャピラリ140の先端部と細胞収容チップ60上面との位置関係を、両者に対するオートフォーカスの実施により判断することができる。
 制御部100は、X-Y平面内において、回収条件を満たした輝度の蛍光を発するウェル61の位置を検知する。そして制御部100は、図3のモータ164,169に対して制御駆動信号を与えることで、移動部16上の細胞収容チップ60のウェル61を、吸引・吐出キャピラリ140の真下に位置させることができる。すなわち、吸引・吐出キャピラリ140は、特定のウェルをターゲットとして、当該ウェル内の細胞を吸引することが可能に構成されている。また、吸引・吐出キャピラリ140は、複数のウェルの内の選択されたウェル、すなわち所定の回収条件を満たした細胞の入っているウェル内から一又は複数の細胞を吸引することが可能となっている。さらに、吸引・吐出キャピラリ140は、上記吸引された一又は複数の細胞を、収容プレート50の所定のウェル51に吐出することが可能となっている。
(細胞収容チップの構成)
 図6は、図5の細胞収容チップ60の詳細構成を示す部分断面図である。同図に示すように、細胞収容チップ60は、光透過性材料からなる基体60aと、該基体の上面60b(少なくとも一方の主面)に設けられ、複数の細胞Mを一対一で収容可能な複数のウェル61,61,・・・とを有する。
 細胞収容チップ60は、該複数のウェル61,61,・・・を構成する各ウェルの内表面61a及び基体60aの上面60b(細胞収容チップの表面)に形成された被覆層62を有する。被覆層62は、ウェル61の内表面61aのみに形成されてもよいし、ウェル61の内表面61a及び基体60aの上面60bの双方に形成されてもよい。つまり、図6では、被覆層62は、内表面61aと上面60bとを全面的に被覆しているように描かれているが、本発明の効果を奏する限りにおいて、被覆層62は必ずしも内表面61aと上面60bとを全面的に被覆していなくてもよい。
 細胞収容チップ60は、例えばガラス、プラスチック、或いはこれらのいずれかを主成分とする材料からなり、その上面60bには、多数のウェル61が例えばマトリックス状に配列されている。各ウェル61は、例えば鉛直方向断面略台形、あるいは略カップ型の凹部であり、ウェル61の水平方向断面形状は、好ましくは略円形である。ウェル61は、細胞収容チップ60上に細胞Mが分注もしくは一括注入されたとき、1つの細胞Mの収容に相当する大きさを有しており、例えば、ウェル61の水平方向断面形状が円形である場合、細胞Mの直径が15μmであるとき、ウェルの内径及び深さは、細胞の直径よりも若干大きい20μm程度が好ましい。また、ウェル61は、1つの細胞Mに相当する大きさを有するのが好ましく、1つの細胞Mのみが入る大きさを有することがより好ましい。
 被覆層62は、架橋構造を有し、上述の一般式[1]で表されるモノマーに由来する構造単位と、上述の一般式[2]で表されるモノマーに由来する構造単位と、上述の一般式[3]で表されるモノマーに由来する構造単位とを含むポリマーからなる(以下、このポリマーを、単に「ポリマー」とも表記する)。ここで、架橋構造は、典型的には、一般式[3]で表されるモノマーに由来する構造単位が関与して形成される。これについてより詳しくは後述する。
 上述の一般式[1]において、「アルキレングリコール残基」とは、アルキレングリコール(HO-R-OH、ここでRはアルキレン基)の片側端末又は両端末の水酸基が他の化合物と縮合反応した後に残る「アルキレンオキシ基」(-R-O-、ここでRはアルキレン基)を意味する。例えば、メチレングリコール(HO-CH-OH)の「アルキレングリコール残基」はメチレンオキシ基(-CH-O-)であり、エチレングリコール(HO-CH-CH-OH)の「アルキレングリコール残基」はエチレンオキシ基(-CH-CH-O-)である。
 一般式[1]において、Rは水素原子またはメチル基であり、Rは水素原子または炭素数1~20のアルキル基である。また、アルキレングリコール残基Xの炭素数は1~10であり、より好ましくは1~6であり、更に好ましくは2~4であり、より更に好ましくは2~3であり、最も好ましくは2である。アルキレングリコール残基の繰り返し数pは、1~100の整数であり、好ましくは2~100の整数であり、より好ましくは3~100の整数であり、更に好ましくは2~95の整数であり、最も好ましくは20~90の整数である。繰り返し数pが2以上100以下の場合は、鎖中で繰り返されるアルキレングリコール残基Xの炭素数は同一であっても、異なっていてもよい。
 一般式[1]で表されるモノマーとしては、例えば、メトキシポリエチレングリコール(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等の水酸基の一置換エステルの(メタ)アクリレート類;グリセロールモノ(メタ)アクリレート;ポリプロピレングリコールを側鎖とする(メタ)アクリレート;2-メトキシエチル(メタ)アクリレート;2-エトキシエチル(メタ)アクリレート;メトキシジエチレングリコール(メタ)アクリレート;エトキシジエチレングリコール(メタ)アクリレート;エトキシポリエチレングリコール(メタ)アクリレート等が挙げられるが、入手性からメトキシポリエチレングリコールメタクリレートが好ましい。「(メタ)アクリレート」とは、メタクリレート又はアクリレートを意味する。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ポリマー中、一般式[1]で表されるモノマーに由来する構造単位の比率は、ポリマーの全構成単位を基準として、通常30~98mol%、好ましくは50~97mol%、より好ましくは60~97mol%である。
 前述の一般式[2]において、Rは水素原子またはメチル基であり、アルキレングリコール残基Yの炭素数は1~10であり、より好ましくは1~6であり、更に好ましくは2~4であり、より更に好ましくは2~3であり、最も好ましくは2である。アルキレングリコール残基Yの繰り返し数qは1~20の整数であり、より好ましくは2~18の整数であり、更に好ましくは3~16の整数であり、最も好ましくは4~14の整数である。繰り返し数qが2以上20以下の場合は、鎖中繰り返されるアルキレングリコール残基の炭素数は同一であっても、異なっていてもよい。
 「活性エステル基」は、エステル基の片方の置換基に酸性度の高い電子求引性基を有して求核反応に対して活性化されたエステル群、すなわち反応活性の高いエステル基を意味するものとして、各種の化学合成、たとえば高分子化学、ペプチド合成等の分野で慣用されているものである。実際的には、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等がアルキルエステル等に比べてはるかに高い活性を有する活性エステル基として知られている。
 このような活性エステル基としては、たとえばp-ニトロフェニル活性エステル基、N-ヒドロキシスクシンイミド活性エステル基、コハク酸イミド活性エステル基、フタル酸イミド活性エステル基、5-ノルボルネン-2、3-ジカルボキシイミド活性エステル基等が挙げられるが、p-ニトロフェニル活性エステル基又はN-ヒドロキシスクシンイミド活性エステル基が好ましく、p-ニトロフェニル活性エステル基が最も好ましい。
 ポリマー中、一般式[2]で表されるモノマーに由来する構造単位の比率は、ポリマーの全構成単位を基準として、通常1~50mol%、好ましくは1~30mol%、最も好ましくは1~20mol%である。また、一般式[2]で表されるモノマーは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 一般式[3]において、Rは水素原子またはメチル基であり、Zは炭素数1~20のアルキル基である。また、A、A、Aの内、少なくとも1個は加水分解可能なアルコキシ基であり、その他はアルキル基である。加水分解によりシラノール基を生成する官能基とは、水と接触すると容易に加水分解を受けシラノール基を生成する基であり、例えば、ハロゲン化シリル基、アルコキシシリル基、フェノキシシリル基、アセトキシシリル基等を挙げることができる。中でも、ハロゲンを含まないことからアルコキシシリル基、フェノキシシリル基、アセトキシシリル基が好ましく、中でもシラノール基を生成し易い点からアルコキシシリル基が最も好ましい。
 一般式[3]で表されるモノマーとしては、例えば、3-(メタ)アクリロキシプロペニルトリメトキシシラン、3-(メタ)アクリロキシプロピルビス(トリメチルシロキシ)メチルシラン、3-(メタ)アクリロキシプロピルジメチルメトキシシラン、3-(メタ)アクリロキシプロピルジメチルエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリス(メトキシエトキシ)シラン、8-(メタ)アクリロキシオクタニルトリメトキシシラン、11-(メタ)アクリロキシウンデニルトリメトキシシラン等の(メタ)アクリロキシアルキルシラン化合物等を挙げることができる。中でも3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルジメチルメトキシシラン或いは3-メタクリロキシプロピルジメチルエトキシシランが、アルキレングリコール残基を有するエチレン系不飽和重合性モノマーとの共重合性が優れている点、入手が容易である点等から好ましい。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ポリマー中、一般式[3]で表されるモノマーに由来する構造単位の比率は、ポリマーの全構成単位を基準として、通常1~20mol%、好ましくは2~15mol%、より好ましくは2~10mol%である。
 ポリマーは、上述の一般式[1]~[3]のモノマーに由来する構造単位以外の構造単位を含んでいてもよい。例えば、アルキル基を有するエチレン系不飽和重合性モノマー(d)に由来する構造単位が共重合されていてもよい。このようなモノマー(d)の具体例としては、n―ブチルメタクリレート、n-ドデシルメタクリレート又はn-オクチルメタクリレートが好ましく挙げられる。ポリマーが、モノマー(d)に由来する構造単位を含む場合、その含有量は、通常0~60mol%、好ましくは0~50mol%、より好ましくは0~40mol%である。
 ポリマーの合成方法は、特に限定されない。例えば、前述の一般式[1]~[3]で表される構造のモノマーを含む混合物を、重合開始剤存在下、溶媒中でラジカル重合することが好ましい。
 溶媒としてはそれぞれのエチレン系不飽和重合性モノマーが溶解するものであればよく、例えば、メタノール、エタノール、t-ブチルアルコール、ベンゼン、トルエン、テトラヒドロフラン、ジオキサン、ジクロロメタン、クロロホルム等を挙げることができる。これらの溶媒は、単独または2種以上の組み合わせで用いられる。プラスチック基材に該高分子化合物を塗布する場合は、エタノール、メタノールが基材を変性させないため好ましい。
 重合開始剤としては通常のラジカル開始剤ならいずれでもよく、例えば、2,2’-アゾビスイソブチロニトリル(以下「AIBN」という)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ化合物、過酸化ベンゾイル、過酸化ラウリル等の有機過酸化物等を挙げることができる。
 ポリマーの化学構造は、上述の一般式[1]~[3]で表されるモノマーに由来する構造単位を含む限り、ランダム、ブロック、グラフト等いずれの形態をなしていてもよい。また、本実施形態のポリマーの数平均分子量は、ポリマーと未反応モノマーの分離精製が容易になることから、5000以上が好ましく、10000以上がより好ましい。
 ポリマーは、内表面61aと上面60bとを被覆することにより、生理活性物質の非特異的吸着を抑制する性質、特定の生理活性物質を固定化する性質を容易に付与することが可能である。さらに、ポリマーは架橋構造を有している(つまり、ポリマー鎖同士が架橋している)から、不溶性であり、細胞収容チップ60の洗浄や滅菌処理による信号低下を低減することができる。
 内表面61aおよび上面60bへのポリマーの被覆は、例えば、(i)有機溶剤にポリマーを0.05~10重量%濃度になるように溶解した溶液を調製し、(ii)その溶液を浸漬、吹き付け等の公知の方法で内表面61aおよび上面60bに塗布した後、(iii)塗布した溶液を室温下または加温下にて乾燥させることにより行われる。なお、(i)の溶液の調製において、溶液は、ポリマーと有機溶剤以外の成分を含んでいてもよい。例えば、均一に塗布するための界面活性剤、密着性をさらに高めるための密着助剤、等を含んでいてもよい。
 その後、適当な方法でポリマー同士を架橋させる。特に本実施形態においては、ポリマーが、加水分解によりシラノール基を生成する官能基を有しているため、有機溶剤中に水を含有させた混合溶液を用いることが一法である。すなわち、含有される水により、加水分解によりシラノール基を生成する官能基が加水分解し、ポリマー中にシラノール基が生成する。その後、加熱等により、シラノール基同士、またはシラノール基と他の官能基とが脱水反応し、ポリマー同士が結合する。結果、ポリマーが不溶になる。溶液の調製の容易さを考えると、含水量は0.01~15重量%程度とすることが好ましい。
 有機溶剤としては、エタノール、メタノール、t-ブチルアルコール、ベンゼン、トルエン、テトラヒドロフラン、ジオキサン、ジクロロメタン、クロロホルム、アセトン、メチルエチルケトン等の単独溶媒またはこれらの混合溶剤が使用される。中でも、エタノール、メタノールは、細胞収容チップ60を変性させず、乾燥させやすいため好ましい。また、エタノール、メタノールは、ポリマーを加水分解させる場合にも、水と任意の割合で混ざるので好ましい。
 本実施形態のポリマーを溶解した溶液を、内表面61aおよび上面60bに塗布した後、乾燥させる工程において、あるポリマー中のシラノール基は、別のポリマー中のシラノール基、水酸基、アミノ基等と脱水縮合して架橋を形成する。さらに内表面61aおよび/または上面60bに水酸基、カルボニル基、アミノ基などがある場合も同様に脱水縮合し、基材表面と化学的に結合することができる。シラノール基の脱水縮合により形成される共有結合は加水分解されにくい性質があるので、基材表面に被覆されたポリマー(被覆層62)は容易に溶解したり剥がれたりすることはない。シラノール基の脱水縮合は加熱処理により促進される。ポリマーが熱により変成されない温度範囲内、例えば、60~120℃で5分間~24時間加熱処理するのが好ましい。
 本実施形態に係る細胞収容チップ60の素材は、ガラス、プラスチック、金属その他を用いることができるが、表面処理の容易性、量産性の観点から、プラスチックが好ましく、熱可塑性樹脂がより好ましい。
 熱可塑性樹脂としては、特に限定はされないが、透明性を確保するために、ポリエチレン、ポリプロピレン等の直鎖状ポリオレフィン;ポリスチレン;環状ポリオレフィン;含フッ素樹脂等を用いることが好ましい。
 被覆されたポリマー(被覆層62)と、内表面61aおよび上面60bとの密着性を高めるために、内表面61aおよび/または上面60bを活性化することが好ましい。活性化する手段としては、酸素雰囲気下、アルゴン雰囲気下、窒素雰囲気下、空気雰囲気下などの条件下でプラズマ処理する方法、ArF、KrFなどのエキシマレーザーで処理する方法がある。これらの中では、酸素雰囲気下でプラズマ処理する方法が好ましい。
 ポリマーを内表面61aおよび/または上面60bに塗布することで、容易に生理活性物質の非特異的吸着が抑制されたバイオチップ基板を作製できる。さらに、ポリマーが架橋構造を有することで、被覆層62を不溶性とすることができる。
 本実施形態に係る細胞収容チップを使用すると、各種の生理活性物質を固定化することができる。固定化する生理活性物質は核酸、アプタマー、蛋白質、オリゴペプチド、糖鎖、糖蛋白質などがある。例えば核酸を固定化する場合は、活性エステル基との反応性を高めるため、アミノ基を導入することが好ましい。アミノ基の導入位置はポリマー鎖末端あるいは側鎖(「ブランチ」ともいう)であってもよいが、分子鎖末端にアミノ基が導入されていることが好ましい。
 本実施形態において生理活性物質をバイオチップ基板上に固定化する際には、生理活性物質を溶解又は分散した液体を点着する方法が好ましい。
 点着後、静置することにより、生理活性物質が表面に固定化される。例えばアミノ化された核酸を用いた場合は、室温から80℃において1時間静置することにより、アミノ化された核酸の固定化が可能である。処理温度は高いほうが好ましい。生理活性物質を溶解または分散させる液体としてはアルカリ性であることが好ましい。
 洗浄後は生理活性物質を固定化した部分以外の基板表面の部分の官能基を不活性化処理する。活性エステルやアルデヒド基の場合はアルカリ化合物、あるいは一級アミノ基を有する化合物で行うことが好ましい。
 アルカリ化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸水素二ナトリウム、水酸化カルシウム、水酸化マグネシウム、ホウ酸ナトリウム、水酸化リチウム、リン酸カリウムなどを好ましく用いることができる。
 一級アミノ基を有する化合物としては、メチルアミン、エチルアミン、ブチルアミン、グリシン、9-アミノアクアジン、アミノブタノール、4-アミノ酪酸、アミノカプリル酸、アミノエタノール、5-アミノ2,3-ジヒドロー1,4-ペンタノール、アミノエタンチオール塩酸塩、アミノエタンチオール硫酸、2-(2-アミノエチルアミノ)エタノール、リン酸二水素2-アミノエチル、硫酸水素アミノエチル、4-(2-アミノエチル)モルホリン、5-アミノフルオレセイン、6-アミノヘキサン酸、アミノヘキシルセルロース、p-アミノ馬尿酸、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール、5-アミノイソフタル酸、アミノメタン、アミノフェノール、2-アミノオクタン、2-アミノオクタン酸、1-アミノ2-プロパノール、3-アミノ-1-プロパノール、3-アミノプロペン、3-アミノプロピオニトリル、アミノピリジン、11-アミノウンデカン酸、アミノサリチル酸、アミノキノリン、4-アミノフタロニトリル、3-アミノフタルイミド、p-アミノプロピオフェノン、アミノフェニル酢酸、アミノナフタレンなどを好ましく用いることができ、アミノエタノール、グリシンが最も好ましい。
(細胞収容チップの使用方法)
 図7(a)~(e)は、上記のように構成される細胞収容チップ60の使用方法を説明するための模式図である。
 先ず、ウェル61の内表面61aに形成された被覆層62において(図8(a))、該被覆層に含有される官能基含有材料の所定官能基62a、例えば活性エステル基を、一次抗体などの特異的結合材料81と結合する(図8(b))。このとき、所定官能基62aとウェル61に収容される細胞Mが産生する被産生物質mとを結合する特異的結合材料81を含有する固定液を用い、該固定液を細胞収容チップ60上に導入することで、所定官能基62aと特異的結合材料81とが結合される。
 所定官能基62aとして活性エステル又はその誘導体を使用した場合、上記固定液は、アルカリ性が好ましく、具体的にはpH7~10であることが好ましい。上記のような固定液を使用することにより、緩衝作用による自然状態を保持することができ、特異的結合材料81(タンパクなど)の変質等によるダメージを防止し、所定官能基62aと被産生物質mとの良好な結合を得ることができる。
 また、特異的結合材料81は、被産生物質と特異的に結合する結合性物質である。この特異的結合材料81は、一次抗体に限らず、抗原であってもよく、また、タンパク以外の物質でもよい。本発明で使用される特異的結合材料81は、例えば、サイトカイン、免疫グロブリン、抗免疫グロブリン、ホルモンを含むタンパクの様な化学物資である。
 ウェル61内を洗浄後、細胞Mを含む培養液をウェル61に収容し、細胞Mをウェル61内で培養する(図7(c))。本培養により、細胞Mが被産生抗体などの被産生物質mを産生し、被産生物質mがウェル61内で特異的結合材料81と結合する(図7(d))。その結果、所定官能基62aが、特異的結合材料81を介して被産生物質mと結合する。本発明は全細胞種の識別に適用することができ、細胞種は、例えばB細胞、T細胞、樹状細胞等の免疫細胞系、CTC細胞等の癌細胞系、iPS細胞、ES細胞などの幹細胞系、ハイブリドーマ、CHO細胞、酵母細胞等であり、被産生物質は、サイトカイン、免疫グロブリン、抗免疫グロブリン、ホルモンを含むタンパクや、ビタミンの様な化学物資である。
 そして、ウェル61内を洗浄後、被産生物質mまたは特異的結合材料81に特異的に結合する蛍光分子(例えば蛍光付き二次抗体)などの光情報保有物質83を結合する(図7(e))。このように、細胞Mが産生する被産生物質mを当該細胞Mが収容されたウェル61内の被覆層62上に結合させた特異的結合材料81に結合し、また、被産生物質m又は特異的結合材料81に光情報保有物質83を結合して、その光情報保有物質83の光情報を検出することで、湿潤状態のウェル61内に細胞M及び被産生物質mを保持したまま、当該ウェル61を標識として、目的検体の正確な識別を行うことが可能となっている。
(スクリーニング方法)
 上記のように構成されるスクリーニング装置1は、上記の細胞収容チップ60を用いて、以下のように目的検体を回収する。
 図8は、図7の細胞収容チップ60を用いたスクリーニング方法を示すフローチャートであり、図9(a)~(d)は、図8の各ステップを説明するための模式図である。
 図8に示すように、上記のように構成される細胞収容チップ60を準備して(ステップS1)、被覆層62に含まれる所定官能基62a(図7参照)と、ウェル61に収容される細胞が産生する被産生物質mとの結合性を有する特異的結合材料81を結合する(ステップS2)(図9(a))。例えば、ウェル61内の被覆層62上に一次抗体含有固定液を滴下或いは塗布し、一次抗体を結合させる。
 その後、細胞収容チップ60上及びウェル61内を洗浄して、被覆層62と結合しなかった特異的結合材料を除去する。洗浄後、細胞収容チップ60をスクリーニング装置1の固定部材120に装着する(ステップS3)。また、ステップS3を上記ステップS1とステップS2の間に実行してもよい。
 次に、複数の細胞Mを含む液体(例えば、培養液)を細胞収容チップ60上のウェル61に導入し、複数の細胞Mを細胞単位で複数のウェル61に収容する(ステップS4)(図9(b))。このとき、液体導入後に所定時間放置して、各細胞が沈降して1つずつ各ウェル内に入るのを待つ。そして、ウェル61に収容されなかった細胞Mを洗浄して除去する。
 洗浄後、ウェル61に収容された細胞Mを培養して被産生物質mの産生を促し、細胞Mから産生した被産生物質mと特異的結合材料81を結合する(ステップS5)。細胞培養条件(温度、ガス種、濃度等)は、細胞種や用途等に応じて選択し得る。このとき、必要に応じて、ウェル61に収容された細胞Mの培養時間を変更することができる。その後、被産生物質mと、特異的に結合する蛍光分子などの光情報を有する光情報保有物質83を結合する(ステップS6)(図9(c))。例えば、蛍光付き二次抗体含有溶液を細胞収容チップ60上に滴下し、この蛍光付き二次抗体を被産生物質mに結合する。光情報保有物質83は、上記蛍光付き二次抗体の他に、官能基付蛍光色素、ビオチン化抗体+アビジン化蛍光色素、蛍光ビーズ付二次抗体などであってもよい。また、ステップS6の処理は、ステップS5の処理と同時に行ってもよい。その後、細胞収容チップ60上及びウェル61内を洗浄して、被産生物質m又は特異的結合材料81と結合しなかった光情報保有物質83を除去する。
 次に、細胞収容チップ60の配置情報として、該細胞収容チップの基準位置の情報や補正パラメータ等を取得し(ステップS7)、画像解析を行って各ウェルの中心位置座標情報を取得する(ステップS8)。
 その後、細胞収容チップ60に光を照射し、光情報保有物質83の光情報を取得して、輝度解析を行う(ステップS9)。このとき、ステップS9における光照射に基づいて蛍光する光情報保有物質83の光情報を取得してもよいし、予め蛍光した光情報保有物質83の光情報を取得してもよい。輝度解析としては、光情報保有物質83から得られる蛍光情報の時間変化を測定してもよい。
 次いで、取得された輝度情報に基づいて、ユーザが所望する微細粒子の回収条件、例えばある蛍光の輝度が所定の閾値を超えたもの、あるいは、複数の蛍光(例えば、蛍光の色が異なる)を使用した場合に、少なくとも一つの蛍光の輝度が所定の閾値を越えたものや、これらの任意の組み合わせを回収条件とする。また、任意の蛍光の輝度につき、回収から除外したもの(閾値より低いもの)を組み合わせてもよい。このようにして決定された幾つかの条件を入力し(ステップS10)、上記回収条件に基づいて細胞Mを目的検体として特定する(ステップS11)。例えば、上記回収条件を満たした輝度の光を放っているウェル61に収容されている細胞Mを目的検体として特定する。
 その後、吸引・吐出キャピラリ140の中心位置を画像解析等により取得し、その中心位置あるいは該中心位置に対して所定距離ずらした位置を、細胞回収の際の各ウェルの中心位置(位置情報)として設定する(ステップS12)。そして目的検体が収容されたウェル61の中心位置を、ステップS12で設定されたウェルの中心位置に合わせるように移動し、ステップS11で特定された目的検体を順次回収する(ステップS13)(図9(d))。回収された目的検体は、ユーザが予め設定した収容プレート50上の所定のウェル51に収容される。
(細胞収容チップの親水性の評価)
 図10は、種々の細胞収容チップと蒸留水との接触角を測定、比較した結果を示すグラフである。
本評価では、発明例サンプル1として、親水性及びタンパク低吸着性の双方を有する第1材料と、官能基含有材料である第2材料と、架橋成分である第3材料とを含む被覆層(図7a)参照)を用いた。また、比較例サンプル1として官能基含有材料のみを含む被覆層、比較例サンプル2として親水性材料のみを含む被覆層、及び比較例サンプル3として被覆層を有さない未処理の細胞収容チップを用いた。また、全てのサンプルにおける基体の材質及び形状、並びに基体の製法を同一とした。以下に、発明例サンプルについて具体的に記載する。
(発明例サンプルに用いた高分子化合物の合成例)
 第1材料としてポリエチレングリコールメチルエーテルメタクリレート(PEGMA、数平均分子量Mn=468、新中村化学株式会社製)、第2材料としてp-ニトロフェニルオキシカルボニル-ポリエチレングリコールメタクリレート(MEONP、株式会社ナード研究所製)、第3材料として3-メタクリロキシプロピルジメチルメトキシシラン(MPDMS、GELEST,INC.製)をそれぞれ順に0.90mol/L、0.05mol/L、0.05mol/L、になるように脱水エタノールに溶解させ、モノマー混合溶液を作製した。そこにさらに0.002mol/Lになるように2,2-アゾビスイソブチロニトリル(AIBN、和光純薬工業株式会社製)を添加し、均一になるまで該モノマー混合溶液を撹拌した。その後、アルゴンガス雰囲気下、60℃で4時間反応させた後、反応溶液をジエチルエーテル中に滴下し、沈殿を収集した。得られた高分子化合物を重エタノール溶媒中1H―NMRで測定し、0.7ppm付近に現れるMPDMSのSiに結合したメチレンに帰属されるピーク、3.4ppm付近に現れるPEGMAの末端メトキシ基に帰属されるピーク、7.4ppmおよび8.3ppm付近に現れるMEONPのベンゼン環に帰属されるピーク、それぞれの積分値より、この高分子化合物の組成比を算出した。表1に結果を示す。
Figure JPOXMLDOC01-appb-T000007
(発明例サンプルの作製方法)
 基体に対し、酸素雰囲気下のプラズマ処理によって基体表面に酸化処理を施した。この基体を高分子化合物の合成例にて得られた高分子化合物の0.3重量%エタノール溶液に浸漬した後に、60℃にて18時間加熱乾燥することにより、基体表面にアルキレングリコール残基を有するエチレン系不飽和重合性モノマー、活性エステル基を有するエチレン系不飽和重合性モノマー及び架橋可能な官能基を有するエチレン系不飽和重合性モノマーからなる高分子化合物を含む層を導入した。
 接触角の測定は、JIS R3257に準拠し、以下に示すような静的法で算出した。1μLの蒸留水を細胞収容チップ上に滴下した際の、半径r(mm)及び高さh(mm)から接触角θ(°)を求めた。ここで、半径rは、水滴のチップ表面に接している面の半径、高さhは、チップ表面から水滴の頂点までの高さである。そして、1試料につき6点測定した際の平均値を算出した。
 図10に示すように、被覆層が官能基含有材料のみを含む場合(比較例サンプル1)、被覆層と蒸留水との接触角は69°~75°で平均値が72°である。これに対し、本実施形態の被覆層(発明例サンプル1)は、親水性及びタンパク低吸着性の双方を有する材料と官能基含有材料を含んでおり、接触角が57°~59°で平均値が59°であり、親水性が大きく改善されていることが分かる。被覆層が親水性材料のみを含む場合には(比較例サンプル2)、細胞収容チップと細胞を含む液体との接触角は14°~17°で平均値が15°であるが、被産生物質と結合性を有する特異的結合材料を結合することが困難であり、かつ、ウェル内に収容された細胞や被産生物質等のタンパクが被覆層に吸着する懸念がある。また、未処理の細胞収容チップの場合(比較例サンプル3)、接触角が78°~86°で平均値が83°であり、明らかに濡れ性が悪い。これらの測定結果から、本実施形態の被覆層は、被産生物質と結合性を有する特異的結合材料を結合可能としつつ、タンパクの吸着を抑制し、良好な親水性を実現できることが分かる。
(ウェルの気泡率に基づく親水性の評価)
 細胞収容チップに形成されたウェルは微細であるため、ウェルを含む細胞収容チップの親水性は、細胞を含む液体のウェル内への流入に大きな影響を及ぼす。そこで、親水性の指標である細胞収容チップの接触角が、ウェルに発生する気泡率に与える影響を確認、評価するため、以下のような試験を行った。
 先ず、各細胞収容チップを固定部材にセットし、該細胞収容チップ上に、常温のPBS(リン酸緩衝生理食塩水)を導入し、チップ上の任意の500ウェル中、内部に気泡が入っているウェルの個数の割合を気泡率として求めた。気泡率は、緩衝液の導入直後(気泡率(1))、緩衝液の導入から時間t(t=5分)経過後(気泡率(2))、及び緩衝液の導入から時間2t(10分)経過後(気泡率(3))、のそれぞれについて求めた。本評価では、上記親水性の評価と同じ発明例サンプル及び比較例サンプルを用いた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 表2の結果から、本実施形態の被覆層(発明例サンプル1)の場合、ウェルの気泡率(1)~(3)はそれぞれ100%、0%、0%であり、PBS導入直後に多くのウェル内に気泡が発見されたものの、速やかに気泡が抜け、一定時間後にはほぼ全てのウェルから気泡が抜けていることが分かる。一方、官能基含有材料のみを含む被覆層の場合(比較例サンプル1)、ウェルの気泡率(1)~(3)は、それぞれ100%、100%、96%であり、PBS導入直後にほぼ全てのウェルに気泡が入り、一定時間経過後でもほぼ全てのウェルに気泡が残留した。また、親水性材料のみを含む被覆層の場合(比較例サンプル2)、ウェルの気泡率(1)~(3)はいずれも0%であり、PBS導入直後及び一定時間経過後のいずれでも、気泡が入っているウェルは発見されなかった。また、未処理の細胞収容チップの場合(比較例サンプル3)、ウェルの気泡率(1)~(3)は、それぞれ100%であり、PBS導入直後に全てのウェルに気泡が入り、一定時間経過後でも全てのウェルに気泡が残留した。
 細胞をウェルに収容する場合、細胞を含む液体(細胞懸濁液ともいう)を細胞収容チップ上に導入し、静置することで、細胞が液体中でゆっくりと沈降し、ウェル内に収容される。しかし、細胞収容チップの表面やウェルの表面の濡れ性が悪いと、ウェル内に気泡が発生し、細胞が沈降する際にウェル内の気泡によってその進行が妨げられ、ウェル内に細胞を収容することができない。よって、細胞が液体中で沈降する前にウェル内の気泡が抜けるだけの親水性が細胞収容チップの表面に必要である。本実施形態によれば、細胞収容チップの表面の接触角が60°以下であれば、ウェル内での気泡の発生を防止するのに十分な親水性を有しており、微細なウェル内に細胞を確実に収容できることが確認された。
(細胞収容チップの細胞低接着性の評価)
 次に、図10に示す評価で使用したサンプルと同様の被覆層に対する細胞の接着率を測定、比較した。
 細胞の接着率の測定と評価には、以下のように実施した。まず図8に示すように、各細胞収容チップ上に一次抗体含有固定液を滴下し、一次抗体を結合させた。その後、該細胞収容チップ表面を洗浄して、結合しなかった一次抗体及び固定液の成分を除去した。洗浄後、各細胞収容チップを固定部材にセットし、複数の293T細胞を含む培養液を該細胞収容チップ上に導入し、複数の該細胞を細胞単位で複数のウェルに収容した。その後、ウェルに収容されなかった該細胞を洗浄して除去した。洗浄後、該細胞収容チップとウェルに収容された該細胞を60分培養し、回収機構を含む細胞のスクリーニング装置で、該細胞収容チップ上のウェルに格納された該細胞を48個回収しようとした際に、該細胞収容チップ表面に接着して回収できなかった該細胞の割合を接着率とした。測定点数n=48とした。
 本評価では、上記親水性の評価と同じ発明例サンプル1及び比較例サンプル1、2を用いた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000009
 表3に示すように、本実施形態の被覆層(発明例サンプル1)の場合、293T細胞の接着率は約8%(4個)であり、大半の293T細胞が被覆層に接着していないことが分かる。一方、官能基含有材料のみを含む被覆層の場合(比較例サンプル1)、293T細胞の接着率は約96%(46個)であり、ほぼ全ての細胞が被覆層に接着したことが分かる。また、親水性材料のみを含む被覆層の場合(比較例サンプル2)、接着率は約83%(40個)であり、ほぼ全ての細胞が被覆層に接着したことが分かる。この結果から、本実施形態の被覆層によれば、被覆層に対する細胞の接着率が格段に低く、ウェル内の被覆層が当該ウェルに収容される細胞と接着し難く、良好な細胞低接着性を実現できることが分かった。
(特異的結合材料に対する結合性評価)
 細胞が産生する被産生物質との結合性を有する特異的結合材料に対する活性エステル基の結合性を評価する為に、基体表面に固定化したビオチンと、アビジンとの相互作用解析を行った。発明例サンプル2として、上記「(発明例サンプルに用いた高分子化合物の合成例)」で合成した高分子からなる被覆層を有する環状ポリオレフィン基板を作製した。比較例サンプル4として、被覆層を有さない環状ポリオレフィン基板を用いた。
(ビオチンの固定化とアビジンとの相互作用)
 発明例サンプル2、比較例サンプル4に対し、pH9.0の炭酸バッファーで1mMに調製したビオチンヒドラジド溶液を点着し、37℃で1時間静置する事で、基板表面にビオチン分子を固定化した。基板を純水で洗浄後、0.1% Tween20を含むPBSで2μg/mLに調製したCy3標識Streptavidin溶液に基板を浸漬し、室温で1時間反応させる事で、ビオチンとアビジンとを結合させた。
(ビオチンとアビジンとの相互作用解析)
 0.1% Tween20を含むPBSで基板を洗浄後、市販のマイクロアレイ用スキャナで、ビオチンヒドラジド溶液を点着した部分のCy3色素の蛍光シグナル(S)と、点着しなかった部分のCy3色素の蛍光シグナル(N)を検出し、S/N比として記載した結果を表4に示す。発明例サンプル2と比較例サンプル4とのS/N比の比較により、細胞が産生する被産生物質に見立てたアビジン分子との結合性を有するビオチン分子を、活性エステル基を有する発明例サンプル2を用いることで簡便に基板表面に固定化することが可能であることが示された。
Figure JPOXMLDOC01-appb-T000010
(架橋による効果の確認)
 次に、ポリマーの架橋が洗浄によるシグナル低減を防止する効果を示す目的で、エタノールによる洗浄前後でのタンパク質の吸着量変化を確認した。発明例サンプル3として、上記「(発明例サンプルに用いた高分子化合物の合成例)」で合成した高分子からなる被覆層を有するポリスチレン基板を作製した。比較例5として、親水性及びタンパク低吸着性の双方を有する第1材料と、官能基含有材料である第2材料のみで構成された被覆層を有するポリスチレン基板を作製した。比較例サンプル6として、被覆層を有さないポリスチレン基板を用いた。ポリスチレン基板として、96ウェルプレートを用いた。
(タンパク質の吸着)
 発明例サンプル3、比較例サンプル5、比較例サンプル6の一部のウェルにエタノールを分注して30分静置した後、エタノールを除いて室温で風乾した。PBSで0.5μg/mLに調製したペルオキシダーゼ標識アビジン溶液を各サンプルに分注し、室温で1時間静置し、基板表面にアビジンを吸着させた。0.1% Tween20を含むPBSで基板を洗浄後、市販のHRP用発色液(住友ベークライト社製)を用いて各ウェルを発色させ、市販のプレートリーダーで450nmの吸光度を測定する事で、アビジンの吸着量を測定した。
(タンパク質の吸着量変化の測定)
 発明例サンプル3、比較例サンプル5、比較例サンプル6について、エタノールで洗浄したウェルと洗浄しなかったウェルとの吸光度を表5に示す。吸光度は、波長670nmの吸光度をリファレンスとし、波長450nmの吸光度との差を求めた。発明例サンプル3では洗浄前後で吸光度に大きな変化はないが、比較例サンプル5では洗浄後に吸光度の上昇が見られた。このことから、発明例サンプル3の架橋構造の効果により、エタノール洗浄による被覆層への影響を回避できたことが分かる。また被覆層を持たない比較例サンプル6では、洗浄前後に関係なく高い吸光度が観測されており、発明例サンプル3との比較において第1材料による低吸着性が確認できる。
Figure JPOXMLDOC01-appb-T000011
 上述したように、本実施形態によれば、複数のウェル61内の被覆層62の表面が、細胞低接着性を有すると共に、ウェル61に収容される細胞Mが産生する被産生物質mとの結合性を有する特異的結合材料81に対して結合性を有する。この被覆層62の親水性材料により、細胞Mを含む液体が微細なウェル61内に入り易く、各ウェルに単一細胞を収容する精度を高めることができ、目的検体を識別・分取する精度や効率を向上することができる。また、従来のチップでは、被産生物質との結合性を有する物質(Ig抗体など)をチップ上に予め結合させた構成であるため、当該チップの長期間の保存が難しく、乾燥等により精度が低下する可能性がある。一方、本実施形態によれば、被覆層62の表面が特異的結合材料81との結合性を有することにより、被産生物質mとの結合性を有する特異的結合材料81を細胞収容チップ60上に予め結合させる必要が無く、乾燥等による精度低下を防止することができる。また、被覆層62の親水性によってウェル61内が従来よりも乾燥し難くなるため、特異的結合材料81の結合後もウェル61内を湿潤状態で保持することができ、特異的結合材料81の乾燥等による精度の低下を防止することができる。また、被覆層62表面の特異的結合材料81との結合性により、特異的結合材料81が所定官能基62aと結合し、また、被覆層62のウェル61内の細胞Mから産生される被産生物質mが特異的結合材料81と結合するため、当該ウェル61自体を目的検体識別の際の標識部位とすることができ、細胞Mにダメージを与えること無く目的検体を識別することができる。更に、被覆層62の表面が細胞低接着性を有することにより、ウェル内の細胞Mがウェル61の内表面や基体60aの上面60bに接着するのを防止することができ、ブロッキング剤等を用いたコーティング処理を要すること無く、目的検体である細胞Mを高効率で回収でき、更に細胞回収時に当該細胞Mにダメージを与えること無く回収することができる。また、被覆層62がタンパク低吸着性材料を有するため、被産生物質mがタンパクである場合、細胞収容チップ表面への被産生物質mの非特異的な吸着を防止し、ブロッキング剤等を用いたコーティング処理を要すること無く良好な検出感度を維持することができる。
 また、本実施形態によれば、細胞低接着性及びウェル61に収容される細胞Mが産生する被産生物質mとの結合性を有する特異的結合材料81に対して結合性を持つ表面を有する被覆層62を備えた細胞収容チップ60を準備し、被覆層62の表面に特異的結合材料81を結合し、複数の細胞Mを含む液体を細胞収容チップ60に導入して、複数の細胞Mを細胞単位で複数のウェル61に収容し、ウェル61に収容された細胞Mからの被産生物質mと、上記特異的結合材料81を結合し、被産生物質m又は特異的結合材料81と、光情報を有する光情報保有物質83を結合するので、目的検体を高精度且つ高効率で識別・分取することができる。また、取扱が簡単で、細胞回収時に細胞Mにダメージを与えること無く容易な回収を実現することができる。
 以上、本実施形態に係る細胞収容チップ、及び該細胞収容チップを用いたスクリーニング方法について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 例えば、図8、9では、上記回収条件を満たした輝度の光を放っているウェル61に収容されている細胞Mを目的検体として特定している(ステップS11)。すなわち、図8、9では、細胞Mから分泌される被産生物質m(図9の白色のY)と特異的に結合する光情報保有物質83を用いており、細胞Mから産生される被産生物質mは、当該細胞Mが収容されたウェル61に結合する。よって、上述のように、光情報保有物質83を特異的結合材料81に結合させるタイミング(ステップS6)は、ステップS5の後か、或いはステップS5と同時に行うことができる。
 これに対し、上記回収条件で用いた閾値以上の輝度の光を放っているウェル以外のウェル61に収容されている細胞Mを、目的検体として特定するスクリーニング方法を用いてもよい。以下、図8のフローチャートと同一の部分については説明を省略し、異なる部分を説明する。
 図11に示すように、先ず、複数の細胞Mを細胞単位で複数のウェル61に収容した後(ステップS4)、各細胞を培養して被産生物質mの産生を促し、細胞Mから産生した被産生物質mとウェル61内の特異的結合材料81を結合する(ステップS5)。これにより、目的検体となる細胞Mが収容されたウェル61内の特異的結合材料81が被産生物質mによって覆われ、目的検体となる細胞Mが収容されていないウェル61内の特異的結合材料81は被産生物質mによって覆われない。そして本変形例では、被産生物質mと特異的に結合せず、特異的結合材料81と特異的に結合する他の光情報保有物質を用い、当該他の光情報保有物質を特異的結合材料81と結合させる(ステップS6’)。これにより、被産生物質mを産生した細胞Mが収容されたウェル61は光を放たず、被産生物質mを産生していない細胞Mが収容されたウェル61が光を放つ。よって本方法では、ステップS5とステップS6’を同時に行わず、ステップS5の後にステップS6’を行う。
 その後、光情報保有物質83の光情報を取得して、輝度解析を行い(ステップS9)。取得された輝度情報に基づいて、ユーザが所望する微細粒子の回収条件を入力し(ステップS10)、上記回収条件に基づいて細胞Mを目的検体として特定する(ステップS11)。このとき、光を放っていないこと、或いは輝度が所定の閾値以下であることを回収条件とし、該回収条件を満たしたウェル61に収容されている細胞Mを目的検体として特定する。本方法によっても、所望の目的検体を回収することができる。
 この出願は、2016年3月31日に出願された特願2016-070969号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (4)

  1.  細胞収容チップ上の物質から発する光情報に基づいて所定の細胞を探索し、探索された細胞を選択的に回収するためのスクリーニング装置で使用される、複数の細胞を収容する細胞収容チップであって、
     光透過性材料からなる基体と、
     前記基体の少なくとも一方の主面に、細胞を収容可能な複数のウェルとを有し、
    前記複数のウェルを含む前記細胞収容チップの表面は、架橋構造を有し、下記一般式[1]で表されるモノマーに由来する構造単位と、下記一般式[2]で表されるモノマーに由来する構造単位と、下記一般式[3]で表されるモノマーに由来する構造単位とを含むポリマーで被覆されていることを特徴とする細胞収容チップ。
    (式中、Rは水素原子またはメチル基を示し、Rは水素原子または炭素数1~20のアルキル基を示し、Xは炭素数1~10のアルキレングリコール残基を示し、pは1~100の整数を示す。pが2以上100以下の整数の場合、繰り返されるXは、同一であっても、または異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子またはメチル基を示し、Yはアルキル基または炭素数1~10のアルキレングリコール残基を示す。Wは活性エステル基を示す。qは1~20の整数を示す。qが2以上20以下の整数である場合、繰り返されるYは、同一であっても、または異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは水素原子またはメチル基を示し、Zは炭素数1~20のアルキル基を示す。A、A、Aの内、少なくとも1個は加水分解可能なアルコキシ基であり、その他はアルキル基を示す。)
  2.  前記一般式[1]で表されるモノマーに由来する構造単位は、メトキシポリエチレングリコールアクリレート又はメトキシポリエチレングリコールメタクリレートである、請求項1に記載の細胞収容チップ。
  3.  前記メトキシポリエチレングリコールアクリレート及び/又はメトキシポリエチレングリコールメタクリレートのエチレングリコール残基の平均繰り返し数が3~100である、請求項2に記載の細胞収容チップ。
  4.  前記一般式[2]で表されるモノマーに由来する構造単位に含まれる活性エステル基が、p-ニトロフェニル活性エステル基又はN-ヒドロキシスクシンイミド活性エステル基である、請求項1~3のいずれか1項に記載の細胞収容チップ。
PCT/JP2017/013561 2016-03-31 2017-03-31 細胞収容チップ WO2017170994A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018509650A JP6902528B2 (ja) 2016-03-31 2017-03-31 細胞収容チップ
EP17775525.3A EP3438238A4 (en) 2016-03-31 2017-03-31 CELL-CONTAINING CHIP
CN201780021248.8A CN109072152A (zh) 2016-03-31 2017-03-31 细胞收纳芯片
US16/146,764 US12097497B2 (en) 2016-03-31 2018-09-28 Cell accommodating chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070969 2016-03-31
JP2016-070969 2016-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/146,764 Continuation US12097497B2 (en) 2016-03-31 2018-09-28 Cell accommodating chip

Publications (1)

Publication Number Publication Date
WO2017170994A1 true WO2017170994A1 (ja) 2017-10-05

Family

ID=59966049

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/013560 WO2017170993A1 (ja) 2016-03-31 2017-03-31 細胞収容チップ及び該細胞収容チップを用いたスクリーニング方法
PCT/JP2017/013561 WO2017170994A1 (ja) 2016-03-31 2017-03-31 細胞収容チップ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013560 WO2017170993A1 (ja) 2016-03-31 2017-03-31 細胞収容チップ及び該細胞収容チップを用いたスクリーニング方法

Country Status (5)

Country Link
US (1) US11975326B2 (ja)
EP (2) EP3438238A4 (ja)
JP (2) JP6902528B2 (ja)
CN (2) CN108885211A (ja)
WO (2) WO2017170993A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129462A1 (ja) * 2018-12-21 2020-06-25 ソニー株式会社 粒子確認方法、粒子捕捉用チップ、及び粒子分析システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11688596B2 (en) * 2021-02-12 2023-06-27 Lawrence Livermore National Security, Llc Systems and methods lattice spray substrates for mass spectrometry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176720A (ja) * 2004-12-24 2006-07-06 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物およびそれを用いた高分子溶液
JP2006299045A (ja) * 2005-04-19 2006-11-02 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP2012052843A (ja) * 2010-08-31 2012-03-15 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物および該高分子化合物を用いたバイオチップ用基板
JP2012093290A (ja) * 2010-10-28 2012-05-17 Sumitomo Bakelite Co Ltd 医療用粒子および生理活性物質の捕捉方法
WO2015133337A1 (ja) * 2014-03-07 2015-09-11 古河電気工業株式会社 スクリーニング装置およびスクリーニング方法
WO2015151881A1 (ja) * 2014-03-31 2015-10-08 住友ベークライト株式会社 コート剤組成物及びその利用

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495289A (en) 1981-03-17 1985-01-22 Data Packaging Corporation Tissue culture cluster dish
US5776748A (en) * 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
DE19724787A1 (de) * 1997-06-06 1998-12-10 Biotez Berlin Buch Gmbh Bioche Streptavidin/Avidin beschichtete Oberflächen
US20030219816A1 (en) 2001-07-02 2003-11-27 Keith Solomon Composite microarray slides
US6844028B2 (en) * 2001-06-26 2005-01-18 Accelr8 Technology Corporation Functional surface coating
US20050014201A1 (en) 2001-10-25 2005-01-20 Mordechai Deuthsch Interactive transparent individual cells biochip processor
CN1553188A (zh) * 2003-06-06 2004-12-08 克 宋 微阵列信号放大方法
JP4632400B2 (ja) 2003-12-16 2011-02-16 キヤノン株式会社 細胞培養用基板、その製造方法、それを用いた細胞スクリーニング法
KR100766752B1 (ko) * 2004-06-24 2007-10-17 주식회사 엘지생명과학 에폭시기를 갖는 중합체가 코팅된 플라스틱 기판을 이용한pna 칩
JP2006258458A (ja) 2005-03-15 2006-09-28 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
CN101529251B (zh) * 2006-11-01 2014-04-02 贝克曼考尔特公司 用于亲合分析的结合性表面
WO2008086228A2 (en) * 2007-01-04 2008-07-17 University Of Washington Arrays and methods for guided cell patterning
JP4148367B1 (ja) * 2007-08-02 2008-09-10 富山県 細胞のスクリーニング方法
CA2714010C (en) 2008-01-30 2020-06-16 Corning Incorporated Synthetic surfaces for culturing stem cell derived oligodendrocyte progenitor cells
US9244080B2 (en) 2008-12-04 2016-01-26 Massachussetts Institute Of Technology Method for diagnosing allergic reactions
WO2011101433A1 (en) 2010-02-18 2011-08-25 Probiodrug Ag Methods of diagnosing inflammatory diseases by determining pyroglutamate-modified mcp-1 and screening methods for inhibitors of glutaminyl cyclase
US8541498B2 (en) 2010-09-08 2013-09-24 Biointeractions Ltd. Lubricious coatings for medical devices
JP2012210158A (ja) 2011-03-30 2012-11-01 Univ Of Tokyo 細胞接着性光制御基材
EP2594632A1 (en) * 2011-11-18 2013-05-22 Miltenyi Biotec GmbH Method and device for cell modification
CN104039949B (zh) * 2011-12-28 2020-09-08 Jsr株式会社 细胞粘附抑制剂
JP6019771B2 (ja) * 2012-06-01 2016-11-02 大日本印刷株式会社 細胞培養方法及び細胞培養容器
US9901922B2 (en) 2014-07-25 2018-02-27 General Electric Company Sample collection and transfer device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176720A (ja) * 2004-12-24 2006-07-06 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物およびそれを用いた高分子溶液
JP2006299045A (ja) * 2005-04-19 2006-11-02 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP2012052843A (ja) * 2010-08-31 2012-03-15 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物および該高分子化合物を用いたバイオチップ用基板
JP2012093290A (ja) * 2010-10-28 2012-05-17 Sumitomo Bakelite Co Ltd 医療用粒子および生理活性物質の捕捉方法
WO2015133337A1 (ja) * 2014-03-07 2015-09-11 古河電気工業株式会社 スクリーニング装置およびスクリーニング方法
WO2015151881A1 (ja) * 2014-03-31 2015-10-08 住友ベークライト株式会社 コート剤組成物及びその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438238A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129462A1 (ja) * 2018-12-21 2020-06-25 ソニー株式会社 粒子確認方法、粒子捕捉用チップ、及び粒子分析システム
JPWO2020129462A1 (ja) * 2018-12-21 2021-11-11 ソニーグループ株式会社 粒子確認方法、粒子捕捉用チップ、及び粒子分析システム
JP7435450B2 (ja) 2018-12-21 2024-02-21 ソニーグループ株式会社 粒子確認方法、粒子捕捉用チップ、及び粒子分析システム

Also Published As

Publication number Publication date
EP3438238A1 (en) 2019-02-06
JPWO2017170994A1 (ja) 2019-02-14
JP6902528B2 (ja) 2021-07-14
EP3438662A1 (en) 2019-02-06
EP3438662A4 (en) 2020-01-22
US11975326B2 (en) 2024-05-07
JPWO2017170993A1 (ja) 2019-02-14
CN109072152A (zh) 2018-12-21
WO2017170993A1 (ja) 2017-10-05
JP6989490B2 (ja) 2022-01-05
EP3438238A4 (en) 2019-11-13
US20190031993A1 (en) 2019-01-31
CN108885211A (zh) 2018-11-23
US20190039070A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP5552474B2 (ja) 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP5365623B2 (ja) 生理活性物質の固定化方法
JP2010117189A (ja) 生理活性物質固定化用基板
JP2006322709A (ja) 物質固定化基板
WO2017170994A1 (ja) 細胞収容チップ
JP4640150B2 (ja) バイオチップおよびその使用方法
JP5167811B2 (ja) 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP2006176720A (ja) 医療材料用高分子化合物およびそれを用いた高分子溶液
US12097497B2 (en) Cell accommodating chip
JP6299862B2 (ja) コート剤組成物及びその利用
JP5614179B2 (ja) 医療材料用高分子化合物および該高分子化合物を用いたバイオチップ用基板
JP2016173237A (ja) 生体分子固定基材および生体分子固定基材の製造方法
JP2013148484A (ja) バイオチップの製造方法及びバイオチップ
JP2007155387A (ja) バイオチップおよびその使用方法
WO2009119082A1 (ja) 物質固定用基板、物質固定化基板および分析方法
JP5364973B2 (ja) 生理活性物質の固定化方法
JP2009128093A (ja) 生理活性物質の検出方法
JP2016114410A (ja) タンパク質アレイの製造方法及びタンパク質アレイ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509650

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775525

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775525

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775525

Country of ref document: EP

Kind code of ref document: A1