WO2017169952A1 - 二軸延伸積層ポリプロピレンフィルム - Google Patents

二軸延伸積層ポリプロピレンフィルム Download PDF

Info

Publication number
WO2017169952A1
WO2017169952A1 PCT/JP2017/011109 JP2017011109W WO2017169952A1 WO 2017169952 A1 WO2017169952 A1 WO 2017169952A1 JP 2017011109 W JP2017011109 W JP 2017011109W WO 2017169952 A1 WO2017169952 A1 WO 2017169952A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
polypropylene
biaxially stretched
stretched laminated
Prior art date
Application number
PCT/JP2017/011109
Other languages
English (en)
French (fr)
Inventor
理 木下
山田 浩司
多賀 敦
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201780020590.6A priority Critical patent/CN109070568B/zh
Priority to JP2018509073A priority patent/JP7437115B2/ja
Priority to KR1020187030711A priority patent/KR102434652B1/ko
Publication of WO2017169952A1 publication Critical patent/WO2017169952A1/ja
Priority to JP2022200015A priority patent/JP7459919B2/ja
Priority to JP2023218411A priority patent/JP2024041794A/ja
Priority to JP2023218410A priority patent/JP2024041793A/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene

Definitions

  • the present invention relates to a biaxially stretched laminated polypropylene film. More specifically, the present invention relates to a biaxially stretched polypropylene film having excellent heat resistance and rigidity, and excellent antistatic properties.
  • stretched polypropylene films have been widely used in a wide range of applications such as packaging for food and various products, electrical insulation, and surface protection films.
  • the conventional polypropylene film has a shrinkage rate of several tens of percent at 150 ° C., and has low heat resistance and low rigidity as compared with a polyethylene terephthalate (PET) film or the like.
  • PET polyethylene terephthalate
  • Patent Document 2 described above has room for improvement in antistatic properties.
  • an object of the present invention is to provide a biaxially stretched laminated polypropylene film having high rigidity, excellent heat resistance, and excellent antistatic properties.
  • the configuration of the present invention is as follows. 1. A laminated film comprising at least two or more layers of polypropylene-based resin compositions having different crystallinity, When the melting endothermic peak area measured at a heating rate of 20 ° C./min using a differential scanning calorimeter is ⁇ H, A layer composed of a polypropylene resin composition having ⁇ H of 78.0 J / g or more, and ⁇ H having ⁇ H of less than 82.0 J / g and 2.0 to 40.0 J / g lower than ⁇ H of the A layer Having a B layer made of a polypropylene resin composition having The biaxially stretched laminated polypropylene film, wherein the B layer is present on at least one outermost surface side. 2.
  • the ratio of the total thickness of the B layer to the total thickness of the A layer is 0.01 to 0.5, and the total thickness of the B layer is 0.5 to 4 ⁇ m.
  • the biaxially stretched laminated polypropylene film according to 1 above. 3.
  • the above 2 or 2 further comprising another layer made of a polypropylene resin composition having a thickness of 0.01 to 1.0 ⁇ m and a ⁇ H exceeding 76.0 J / g on the outermost surface side of the B layer.
  • Axial stretched laminated polypropylene film 4.
  • the polypropylene film of the present invention has at least two layers of a highly crystalline A layer and a low crystalline B layer, and has a laminated structure in which the B layer is disposed on the outermost surface side.
  • the antistatic agent kneaded in this layer bleeds out to the surface of the low crystalline B layer disposed on the outermost surface side. As a result, good antistatic properties can be exhibited while maintaining the excellent heat resistance and rigidity of the highly crystalline A layer.
  • the polypropylene film of the present invention is a laminated film containing at least two layers of polypropylene resin compositions having different crystallinity, and is measured at a temperature rising rate of 20 ° C./min using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • ⁇ H is a value that serves as an index of crystallinity.
  • a DSC curve was measured at a temperature rising rate of 20 ° C./min to obtain ⁇ H.
  • ⁇ H must be 78.0 J / g or more, more preferably 80.0 J / g or more. More preferably, it is 81.0 J / g or more, further 82.0 J / g or more.
  • ⁇ H of the A layer is small, rigidity such as tensile elastic modulus becomes small, which is not preferable.
  • ⁇ H of the A layer is preferably 104.0 J / g or less, more preferably 102.0 J / g or less, and further preferably 100.0 J / g or less. If ⁇ H of the A layer is too large, production at a high temperature for a long time is required, and there is a possibility that realistic industrial production becomes difficult.
  • the B layer is a low crystalline layer located on the outermost surface side of the A layer, and the anticrystalline agent kneaded into the low crystalline B layer (skin layer) as well as the highly crystalline A layer.
  • the antistatic agent kneaded into the layer (core layer) bleeds out to the surface of the outermost layer B layer, and plays a role of imparting excellent antistatic properties.
  • the ⁇ H of the B layer must be less than 82.0 J / g and have a ⁇ H that is 2.0-40.0 J / g lower than the ⁇ H of the A layer.
  • the ⁇ H of the preferred B layer is 81.0 J / g or less, more preferably 80.0 J / g or less, and particularly preferably less than 78.0 J / g.
  • the lower limit of ⁇ H of the B layer is not particularly limited, but ⁇ H is preferably 60.0 J / g or more.
  • the difference between ⁇ H of the A layer and ⁇ H of the B layer is 2.0 to 40.0 J / g. If this difference is less than 2.0 J / g, there is a risk that the effect of the present invention for achieving both the desired heat resistance and antistatic properties by laminating the high crystalline layer and the low crystalline layer will be insufficient. is there. On the other hand, if this difference is larger than 40.0 J / g, there is a problem that the low crystalline layer is heat-defeated and whitened by heat during stretching.
  • a preferable range of the difference of ⁇ H is 3.0 to 25 J / g, and more preferably 4.0 to 15 J / g.
  • the molecular weight of the A layer is decreased, the copolymerization monomer in the polypropylene resin is reduced,
  • the laminated film of the present invention is characterized in that ⁇ H (total heat of fusion) of the A layer and B layer as described above and the difference between these are defined, but the melting endothermic peak temperature in the DSC curve is also a measure of crystallinity. It becomes.
  • the endothermic peak temperature of layer A is preferably 160 ° C. or higher, and more preferably 163 ° C. or higher. Moreover, 176 degrees C or less is preferable, 173 degrees C or less is more preferable, and 170 degrees C or less is further more preferable.
  • the melting endothermic peak temperature is preferably 166 ° C. or lower, and more preferably 164 ° C. or lower. Moreover, 120 degreeC or more is preferable and 130 degreeC or more is more preferable.
  • a layer As the polypropylene resin used in the A layer of the present invention, not only a polypropylene homopolymer but also a polypropylene obtained by copolymerizing ethylene and / or an ⁇ -olefin having 4 or more carbon atoms at 0.5 mol% or less can be used. Such copolymerized polypropylene is also included in the polypropylene resin of the present invention (hereinafter sometimes simply referred to as polypropylene).
  • Examples of the ⁇ -olefin having 4 or more carbon atoms include 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene and the like.
  • the layer A it is preferable to increase ⁇ H by reducing the copolymerization monomer in the polypropylene-based resin as described above, so that the above-mentioned ethylene, ⁇ -olefin having 4 or more carbon atoms, and other copolymerization components are 0 0.3 mol% or less is preferable, 0.1 mol% or less is more preferable, and complete homopolypropylene (polypropylene homopolymer) containing no copolymerization component is most preferable.
  • ⁇ H decreases, crystallinity and rigidity decrease excessively, and heat shrinkage at high temperatures increases.
  • a resin satisfying the above requirements for example, completely homopolypropylene and copolymer polypropylene may be blended and used.
  • the mesopentad fraction ([mmmm]%) measured by 13 C-NMR, which is an index of the stereoregularity of the polypropylene constituting the A layer of the present invention, is preferably 98 to 99.5%. More preferably, it is 98.1% or more, More preferably, it is 98.2% or more. If the mesopentad ratio of the polypropylene of the A layer is small, the elastic modulus is low and the heat resistance may be insufficient. 99.5% is a realistic upper limit.
  • the mass average molecular weight (Mw) of the polypropylene constituting the A layer of the present invention is preferably 180,000 to 500,000. If it is less than 180,000, the melt viscosity is low, so that it is not stable at the time of casting, and the film-forming property may deteriorate. If Mw exceeds 500,000, extrusion may be difficult, and film forming properties are inferior. Moreover, when Mw is high, the amount of low molecular weight components having a molecular weight of 100,000 or less in the gel permeation chromatography (GPC) integration curve decreases, and the heat shrinkage rate may increase.
  • GPC gel permeation chromatography
  • a more preferable lower limit of Mw is 190,000, further preferably 200,000, and a more preferable upper limit of Mw is 450,000, more preferably 420,000, and particularly preferably 410,000.
  • the content ratio of the low molecular weight component in the layer A is preferably 35% by weight or more, More preferably, it is 38 weight% or more, More preferably, it is 42 weight% or more.
  • the number average molecular weight (Mn) of the polypropylene constituting the A layer of the present invention is preferably 20,000 to 200,000. If it is less than 20,000, the melt viscosity is low, so that it is not stable at the time of casting, and the film-forming property may deteriorate. Exceeding 200,000 is not preferable because extrusion may be difficult and the film forming property is poor. Further, when Mn is high, the thermal shrinkage rate may be high.
  • a more preferable lower limit of Mn is 30,000, further preferably 40,000, particularly preferably 50,000, and a more preferable upper limit of Mn is 170,000, further preferably 160,000, particularly preferably 150,000. is there.
  • Mw / Mn which is an index of molecular weight distribution, is preferably 2.8 to 30 in the case of the polypropylene of the A layer. More preferably, it is 3 to 15, more preferably 3.2 to 10, particularly preferably 3.5 to 6.
  • Mw / Mn can be increased by mixing a low molecular weight component and a small amount of high molecular weight component as described above. That is, a low molecular weight component having a molecular weight of about 100,000 or less has a large effect of increasing the crystallization speed, but if a high molecular weight component having a molecular weight of about 1 million or more is added, it acts as a crystal nucleating agent, and the effect of adding a low molecular weight component is Promoted.
  • Mw / Mn When a low molecular weight component and a small amount of a high molecular weight component are mixed, Mw / Mn increases. When the low molecular weight component increases, the entanglement between the molecules becomes strong, and the thermal shrinkage tends to increase even if the crystallinity is high. When Mw / Mn is too large, the high molecular weight component increases and the thermal shrinkage rate may increase, which is not preferable. In this case, Mw / Mn is preferably 8 to 30, and more preferably 8 to 15. The MFR at this time is preferably 2 to 6 g / 10 min.
  • the molecular weight distribution of polypropylene is such that components with different molecular weights are polymerized in a series of plants in multiple stages, components with different molecular weights are blended offline in a kneader, or catalysts with different performances are blended and polymerized. Or by using a catalyst capable of realizing a desired molecular weight distribution.
  • the melt flow rate (MFR; 230 ° C., 2.16 kgf) of the polypropylene in the A layer is preferably 0.5 to 20 g / 10 minutes.
  • the lower limit of MFR is more preferably 2 g / 10 minutes, further preferably 4 g / 10 minutes, particularly preferably 5 g / 10 minutes, and most preferably 6 g / 10 minutes.
  • the upper limit of the MFR of the polypropylene of the A layer is more preferably 15 g / 10 minutes, further preferably 12 g / 10 minutes, particularly preferably 10 g / 10 minutes, and 9.5 g / 10 minutes. Most preferably it is. Within this range, the adhesion to the cooling roll is good, the film forming property is excellent, and the heat shrinkage rate at high temperatures can be kept small.
  • B layer As the polypropylene resin used in the B layer of the present invention, not only a polypropylene homopolymer but also a polypropylene copolymerized with ethylene and / or an ⁇ -olefin having 4 or more carbon atoms can be used.
  • the ⁇ -olefin having 4 or more carbon atoms include 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene and the like.
  • the total amount of ethylene, ⁇ -olefin having 4 or more carbon atoms, and other copolymerization components is preferably 8.0 mol% or less. 6.0 mol% or less is more preferable.
  • the copolymerization exceeds 8.0 mol%, the film may be whitened to have a poor appearance, or may become sticky and film formation may be difficult.
  • a resin satisfying the above requirements for example, completely homopolypropylene and copolymer polypropylene
  • individual resins may be copolymerized in excess of 8.0 mol%, but the blend is preferably monomer units and monomers other than propylene at 8.0 mol% or less. .
  • the B layer polypropylene of the present invention preferably has an MFR of 0.5 to 10 g / 10 min.
  • the lower limit of the MFR of the polypropylene of the B layer is more preferably 2 g / 10 minutes, and further preferably 3 g / 10 minutes.
  • the upper limit of the MFR of the polypropylene in the B layer is more preferably 8 g / 10 minutes, and further preferably 5.5 g / 10 minutes. Within this range, the film-forming property is good and the heat shrinkage rate at high temperatures can be kept small.
  • the MFR of the B layer polypropylene is less than 0.5 g / 10 min, the difference in viscosity between the A layer and the B layer increases when the MFR of the A layer polypropylene is large. (Original fabric unevenness) is likely to occur. If the MFR of the B layer exceeds 10 g / 10 min, the adhesion to the cooling roll will be poor, air will be involved, the smoothness will be poor, and there may be many disadvantages starting from it.
  • the B layer polypropylene preferably has a mesopentad ratio of 98.2% or less. More preferably, it is 98.0% or less, More preferably, it is 97.8% or less.
  • the mesopentad ratio of the polypropylene of the B layer is not particularly limited from the above viewpoint, but it is preferably 90% or more in consideration of the film appearance and film forming property.
  • the mass average molecular weight (Mw) of the polypropylene constituting the B layer of the present invention is preferably 200,000 to 500,000. If it is smaller than 200,000, the adhesion to the cooling roll will be poor, air will be involved, the smoothness will be poor, and there will be many disadvantages starting from it. When Mw exceeds 500,000, extrusion may be difficult, and unevenness (raw material unevenness) is likely to occur during film formation, which is not preferable.
  • the more preferable lower limit of Mw is 220,000, more preferably 240,000, and the more preferable upper limit of Mw is 450,000, more preferably 420,000, and particularly preferably 410,000.
  • the number average molecular weight (Mn) of the polypropylene constituting the B layer of the present invention is preferably 50,000 to 200,000. If it is less than 50,000, the melt viscosity is low, so that it is not stable at the time of casting, the adhesion to the cooling roll is deteriorated, air is involved, the smoothness is poor, and there is a possibility that there are many drawbacks starting from it. is there. Exceeding 200,000 is not preferable because extrusion may be difficult and the film forming property is poor.
  • the lower limit of Mn is more preferably 60,000, still more preferably 70,000, and the upper limit of Mn is more preferably 170,000, still more preferably 160,000, particularly preferably 150,000.
  • Mw / Mn is preferably 3.5 to 30, more preferably 3.7 to 20, and still more preferably 3.7 to 15.
  • the biaxially stretched laminated polypropylene film of the present invention has the A layer and the B layer described above, and is arranged so that the B layer is at least one outermost surface side.
  • the B layer is present on at least one outermost surface side means that the B layer is closer than the A layer when viewed from at least one side.
  • the “outermost surface side” means that the B layer is located on the outermost surface of the A film in the relationship between the A layer and the B layer constituting the laminated film.
  • other layers are arranged on the outermost surface (top) on the B layer. That is, the laminated film of the present invention can have a multilayer structure of not only two layers but also three or more layers.
  • the laminated film of the present invention when the laminated film of the present invention comprises only the A layer and the B layer described above as the resin component, it has one A layer (core layer) and one B layer (skin layer) (that is, the A layer).
  • the film may have a two-layered two-layer structure (having a B layer on one side), or both layers of the A layer (core layer) have both layers of the B layer (that is, both of the A layers have the B layer). 2 type and 3 layer sandwich structure (B layer / A layer / B layer).
  • a sandwich structure of two types and five layers (B layer / A layer / B layer / A layer / B layer) may be used, or a multilayer structure having more than that may be used.
  • the present invention is not limited to these, and various modes in which the B layer is on the outermost surface side can be provided, and examples include A layer / A layer / B layer, A layer / B layer / B layer, and the like. Of these, the B layer / A layer / B layer type 2 layer 3 layer structure is preferred. In addition, when a laminated film has a some A layer and B layer, each layer may be the same kind of resin and may differ.
  • the biaxially stretched laminated polypropylene film of the present invention further has a polypropylene resin layer other than the A layer and the B layer (for convenience, the layers other than the above are collectively referred to as a C layer). May be.
  • a polypropylene resin layer other than the A layer and the B layer for convenience, the layers other than the above are collectively referred to as a C layer.
  • the C layer has a ⁇ H exceeding 76.0 J / g and is not classified into any of the A layer and the B layer described above.
  • the C layer can be disposed at any position, and can be disposed between the A layer and the B layer, on the core side with respect to the A layer and on the outermost surface side with respect to the B layer.
  • the C layer is preferably disposed on the outermost surface side than the B layer.
  • the C layer, the B layer, and the A layer may be a three-layer / three-layer film in order from the outermost surface side.
  • the raw material used for C layer can use what was described in A layer and B layer suitably.
  • the polypropylene resin composition for the C layer may be a polypropylene resin composition used for the A layer or may be different.
  • the thickness of the entire film is preferably 9 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, further preferably 12 to 100 ⁇ m, and particularly preferably 12 to 80 ⁇ m.
  • the total B layer (the total thickness when there are a plurality of B layers) / the total A layer (the total thickness when there are a plurality of A layers) is 0. It is preferably from 01 to 0.5, more preferably from 0.03 to 0.4, and even more preferably from 0.05 to 0.3.
  • the thickness of all A layers is preferably 50 to 99%, more preferably 60 to 97%, and particularly preferably 70 to 95% with respect to the total film thickness.
  • the remaining part is the B layer or the C layer other than the A layer and the B layer.
  • the substantial thickness of all the A layers is preferably 5 to 50 ⁇ m, more preferably 10 to 45 ⁇ m, and further preferably 15 to 40 ⁇ m.
  • the substantial thickness of all B layers is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more, and even more preferably 1.5 ⁇ m or more; preferably 4 ⁇ m or less, more preferably Is 3.5 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 2 ⁇ m or less.
  • the thickness of the C layer is preferably 0.01 to 1.0 ⁇ m, more preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the thickness of the C layer is preferably thinner than the B layer described above, and is preferably less than 0.5 ⁇ m.
  • the MFR of the entire film is preferably 2.0 to 10.5 g / 10 minutes. If it is less than 2.0 g / 10 min, the film forming property is poor, and the thermal shrinkage rate of the resulting film tends to increase. A more preferred lower limit of MFR is 3.0 g / 10 minutes. On the other hand, when it exceeds 10.5 g / 10 minutes, the adhesiveness to the cooling roll is lowered, and the film-forming stability tends to be inferior, and defects such as foreign matters tend to increase.
  • the polypropylene used in the present invention can be obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • a polymerization method of propylene a known method may be employed.
  • a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene, a method of polymerizing in a liquid monomer, a catalyst for a gas monomer And a method of polymerizing in a gas phase state, or a method of polymerizing these in combination.
  • the biaxially stretched laminated polypropylene film of the present invention contains an antistatic agent.
  • the content of the antistatic agent contained in the whole film is preferably 0.01 to 3.0% by mass, more preferably 0.05 to 2.8% by mass, and 0.10 to 2. More preferably, it is 5 mass%.
  • an antistatic agent An amine surfactant and mono-fatty acid glyceride are mentioned as a preferable thing.
  • amine surfactants include myristyl diethanolamine, palmityl diethanolamine, stearyl diethanolamine, oleyl diethanolamine, arachidyl diethanolamine, and beherdiethanolamine, and palmityl diethanolamine, stearyl diethanolamine, and oleyl diethanolamine are more preferable. Two or more of these may be selected and used as a mixture.
  • the mono-fatty acid glyceride examples include glycerin monolaurate, glycerin monomyristate, glycerin monopalmitylate, glycerin monostearate, glycerin monoarachidylate, and glycerin monobeherate. Are more preferable, and two or more of these may be selected and used as a mixture.
  • the amount of the antistatic agent is less than 0.01% by mass, the film tends to be inferior in antistatic properties. If the amount exceeds 3% by mass, the roller may become dirty or the film surface may become sticky during film formation or processing. It is not preferable. If a large amount of an antistatic agent is added to the B layer during production, the above problem is likely to occur. Therefore, during the production, the antistatic agent is not added to the polypropylene resin composition for the B layer, or the addition amount is reduced.
  • the antistatic agent is preferably added to the A layer in the above amount range. Even in this case, the antistatic agent contained in the A layer can diffuse and migrate to the B layer, and further bleed out to the surface of the laminated film through the B layer.
  • the ⁇ H of the B layer less than 82.0 J / g and the difference between the ⁇ H of the A layer and the ⁇ H of the B layer ( ⁇ H of the A layer ⁇ H of the B layer) of 2.0 to 40.0 J / g, Diffusion / migration and bleeding out of the antistatic agent to the B layer are promoted, and sufficient antistatic properties can be obtained.
  • an antiblocking agent may be added.
  • an inorganic anti-blocking agent such as silica, calcium carbonate, kaolin, or zeolite, an aliphatic fatty acid ester, an organic anti-blocking agent such as ethylene bisamide, acrylic, or polystyrene is appropriately selected. You can select and use.
  • the average particle diameter of the antiblocking agent is preferably 0.5 to 5.0 ⁇ m, more preferably 1.0 to 3.0 ⁇ m. If the average particle size is less than 0.5 ⁇ m, a large amount of anti-blocking agent is required to obtain good slipperiness. On the contrary, if it exceeds 5.0 ⁇ m, the surface roughness of the film increases.
  • the antiblocking agent is preferably 0.01 to 0.3% by mass in the B layer. If the amount is less than 0.01% by mass, the film is difficult to slip. If the amount exceeds 0.3% by mass, the film may be whitened, which is not preferable.
  • additives and other resins may be contained in the A layer and / or B layer of the present invention (and other layers other than these).
  • other additives include antioxidants, ultraviolet absorbers, nucleating agents, pressure-sensitive adhesives, antifogging agents, flame retardants, and inorganic or organic fillers.
  • the other resin include polypropylene resins other than the polypropylene resin used in the present invention, random copolymers that are copolymers of propylene and ethylene and / or ⁇ -olefins having 4 or more carbon atoms, and various elastomers.
  • the biaxially stretched laminated polypropylene film of the present invention comprises a polypropylene raw material for layer A (polypropylene resin composition for layer A), a polypropylene material for layer B (polypropylene resin composition for layer B), and, if necessary, other layer raw materials (
  • the resin composition for the C layer can be melt-extruded by an extruder to form an unstretched sheet, and the unstretched sheet can be stretched and heat-treated by a predetermined method.
  • An unstretched laminated film can be obtained by using a plurality of extruders, feed blocks, and multi-manifolds.
  • the melt extrusion temperature is preferably about 200 to 280 ° C.
  • the viscosity difference (MFR difference) between the polypropylene raw material for layer A and the polypropylene raw material for layer B ) Is preferably 6 g / 10 min or less.
  • MFR difference the viscosity difference
  • the layer is disturbed and the appearance is liable to be poor. More preferably, it is 5.5 g / 10 minutes or less, More preferably, it is 5 g / 10 minutes or less.
  • the chill roll surface temperature is preferably 25 to 35 ° C, more preferably 27 to 33 ° C.
  • the film is preferably stretched 3 to 8 times (more preferably 3 to 7 times) in the length (MD) direction, preferably with a stretching roll at 120 to 165 ° C., and then preferably 155 in the width (TD) direction.
  • the stretching is performed at ⁇ 175 ° C., more preferably at 160 ° C. to 163 ° C., preferably 4 to 20 times, more preferably 6 to 12 times.
  • the heat setting is preferably performed at a temperature of 165 to 176 ° C., more preferably 170 to 176 ° C., still more preferably 172 to 175 ° C., and preferably 2 to 10%.
  • the biaxially stretched laminated polypropylene film thus obtained can be subjected to corona discharge, plasma treatment, flame treatment, etc., if necessary, and then wound with a winder to obtain a film roll.
  • the lower limit of the MD draw ratio is preferably 3 times, more preferably 3.5 times. If it is less than the above, film thickness unevenness may occur.
  • the upper limit of the MD draw ratio is preferably 8 times, more preferably 7 times. When the above is exceeded, it may be difficult to carry out TD stretching continuously.
  • the lower limit of the MD stretching temperature is preferably 120 ° C, more preferably 125 ° C, and even more preferably 130 ° C. If it is less than the above, the mechanical load may increase, the thickness unevenness may increase, or the film surface may be roughened.
  • the upper limit of the MD stretching temperature is preferably 165 ° C, more preferably 160 ° C, still more preferably 155 ° C, and even more preferably 150 ° C. A higher temperature is preferable for lowering the thermal shrinkage, but it may adhere to the roll and cannot be stretched, or surface roughness may occur.
  • the lower limit of the stretching ratio of TD is preferably 4 times, more preferably 5 times, and further preferably 6 times. If it is less than the above, thickness unevenness may occur.
  • the upper limit of the TD stretch ratio is preferably 20 times, more preferably 17 times, still more preferably 15 times, and particularly preferably 12 times. If the above is exceeded, the thermal shrinkage rate may be increased or the film may be broken during stretching.
  • the preheating temperature in TD stretching is preferably set to 5 to 15 ° C. higher than the stretching temperature in order to quickly raise the film temperature in the vicinity of the stretching temperature. The TD stretching is performed at a higher temperature than the conventional stretched polypropylene film.
  • the lower limit of the TD stretching temperature is preferably 155 ° C, more preferably 157 ° C, still more preferably 158 ° C, and particularly preferably 160 ° C. If it is less than the above, it may break without being sufficiently softened, or the thermal shrinkage rate may be increased.
  • the upper limit of the TD stretching temperature is preferably 175 ° C, more preferably 170 ° C, still more preferably 168 ° C, and even more preferably 163 ° C. In order to lower the thermal shrinkage rate, it is preferable that the temperature is higher. However, if the temperature is higher than the above, the low molecular component is melted and recrystallized to lower the orientation, and the surface may be roughened or the film may be whitened.
  • the stretched film is heat-set.
  • the heat setting can be performed at a higher temperature than the conventional stretched polypropylene film.
  • the lower limit of the heat setting temperature is preferably 165 ° C, more preferably 166 ° C. If it is less than the above, the thermal shrinkage rate may increase. In addition, a long time treatment is required to lower the heat shrinkage rate, and productivity may be inferior.
  • the upper limit of the heat setting temperature is preferably 176 ° C, more preferably 175 ° C. When the above is exceeded, the low molecular component may melt and recrystallize, and the surface roughness or the film may be whitened.
  • the lower limit of relaxation is preferably 2%, more preferably 3%. If it is less than the above, the thermal shrinkage rate may increase.
  • the upper limit of relaxation is preferably 10%, more preferably 8%. When the above is exceeded, the thickness unevenness may increase.
  • the film produced in the above process can be once wound into a roll and then annealed offline.
  • the lower limit of the offline annealing temperature is preferably 160 ° C, more preferably 162 ° C, and even more preferably 163 ° C. If it is less than the above, the effect of annealing may not be obtained.
  • the upper limit of the offline annealing temperature is preferably 175 ° C., more preferably 174 ° C., and further preferably 173 ° C. When the above is exceeded, the transparency may decrease, or the thickness unevenness may increase.
  • the lower limit of the offline annealing time is preferably 0.1 minutes, more preferably 0.5 minutes, and even more preferably 1 minute. If it is less than the above, the effect of annealing may not be obtained.
  • the upper limit of the offline annealing time is preferably 30 minutes, more preferably 25 minutes, and further preferably 20 minutes. When the above is exceeded, productivity may be reduced.
  • the thermal shrinkage in the MD direction at 150 ° C. is preferably 0.2 to 10%, more preferably 0.3 to 9%, and more preferably 0.5 to 8%. % Is more preferable, 0.7 to 7% is particularly preferable, and 1 to 5% is most preferable.
  • the surface resistivity is preferably 9.5 to 13.5 (Log ⁇ ), more preferably 10 to 13 (Log ⁇ ), and 10.5 to More preferably, it is 12.5 (Log ⁇ ). If the surface resistivity exceeds 13.5 (Log ⁇ ), the antistatic ability may be insufficient.
  • the haze of the biaxially stretched laminated polypropylene film of the present invention is preferably 0.1 to 6%, more preferably 0.2 to 5%, further preferably 0.3 to 4.5%, and 0.4 to 4%. Is particularly preferred, with 0.4 to 3.5% being most preferred. If it is within the above range, it may be easy to use in applications requiring transparency. For example, when the stretching temperature and heat setting temperature are too high, the haze tends to be worse when the cooling roll (CR) temperature is high and the stretching speed of the stretched raw sheet is slow, or when there are too many low molecular weight components. By doing so, it can be within the above range.
  • the lower limit of the plane orientation coefficient of the biaxially stretched laminated polypropylene film of the present invention is preferably 0.013, more preferably 0.014, and still more preferably 0.015.
  • the stretched laminated polypropylene film generally has a crystal orientation, and its direction and degree greatly affect the physical properties of the film. The degree of crystal orientation tends to vary depending on the molecular structure of the polypropylene used, the process and conditions in film production, and can be adjusted to the above range by adjusting these.
  • the tensile modulus in the MD direction of the biaxially stretched laminated polypropylene film of the present invention is preferably 2.0 to 4 GPa, more preferably 2.1 to 3.7 GPa, and 2.2 to 3.5 GPa. Is more preferable, 2.3 to 3.4 GPa is particularly preferable, and 2.4 to 3.3 GPa is most preferable.
  • the tensile modulus in the TD direction is preferably 3.8 to 8 GPa, more preferably 4 to 7.5 GPa, still more preferably 4.1 to 7 GPa, and 4.2 to 6.5 GPa. Is particularly preferred.
  • the dynamic friction coefficient of the biaxially stretched laminated polypropylene film of the present invention is preferably 0.2 to 0.4, more preferably 0.22 to 0.38, and further preferably 0.24 to 0.36. Thereby, the workability of a film improves.
  • the biaxially stretched laminated polypropylene film of the present invention is a base film for use in sealant films, insulating films such as capacitors and motors, solar cell backsheets, inorganic oxide barrier films, and transparent conductive films such as ITO. It can be used as a base material layer).
  • the laminate strength in the MD direction of the laminate film laminated with the above film is preferably 1.2 to 2.5 N / 15 mm, more preferably 1.3 to 2.3 N / mm, and 1.4 to 2.1 N / mm. Is more preferable. A method for measuring the laminate strength will be described later.
  • the measuring method of the film physical property obtained by the Example and the comparative example is as follows.
  • the mesopentad fraction ([mmmm]%) was measured using 13 C-NMR.
  • the mesopentad fraction was calculated according to the method described in “Zambelli et al., Macromolecules, Vol. 6, 925 (1973)”.
  • 13 C-NMR measurement was performed at 110 ° C. using “AVANCE 500” manufactured by BRUKER, and dissolving 200 mg of a sample in an 8: 2 (volume ratio) mixture of o-dichlorobenzene and heavy benzene at 135 ° C.
  • the number average molecular weight (Mn), the mass average molecular weight (Mw), and the molecular weight distribution are respectively expressed by the following formulas depending on the molecular number (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained through the molecular weight calibration curve. Defined.
  • DSC Differential scanning calorimetry
  • Thickness The thicknesses of the A layer and the B layer were measured by cutting a cross section of a biaxially stretched laminated polypropylene film solidified with a modified urethane resin with a microtome and observing it with a differential interference microscope.
  • Refractive index and plane orientation coefficient Measured using an Atago Abbe refractometer according to JIS K7142-1996 5.1 (Method A).
  • the refractive indexes along the MD and TD directions were Nx and Ny, respectively, and the refractive index in the thickness direction was Nz.
  • the plane orientation coefficient ( ⁇ P) was determined by (Nx + Ny) / 2 ⁇ Nz.
  • Appearance of the surface The appearance of the surface is determined by the camera on the opposite side where light is transmitted from one side of the film surface and light is blocked by the defects of the film in the evaluation target area (width 1000 mm, length 4000 mm). Observed as a sunspot. When the total number of defects having an area exceeding 25 mm 2 was measured, the total number of defects was evaluated as ⁇ when the number was less than 200 and ⁇ when 200 or more.
  • Laminate strength in MD direction Laminate strength was measured by the following procedure.
  • (A) Lamination with sealant film A continuous dry laminating machine was used as follows. The corona surface of the biaxially stretched laminated polypropylene film obtained in Examples and Comparative Examples was gravure coated with an adhesive so that the coating amount upon drying was 3.0 g / m 2, and then led to a drying zone at 80 ° C., 5 ° C. Dried in seconds. Subsequently, it was bonded to a sealant film between rolls provided on the downstream side (roll pressure 0.2 MP, roll temperature: 60 ° C.). The obtained laminate film was subjected to an aging treatment at 40 ° C. for 3 days while being wound up.
  • the adhesive was obtained by mixing 17.9% by mass of a main agent (manufactured by Toyo Morton, TM329), 17.9% by mass of a curing agent (CAT8B, manufactured by Toyo Morton) and 64.2% by mass of ethyl acetate.
  • An ether adhesive was used, and a non-stretched polypropylene film (Pyrene (registered trademark) CTP1128, thickness 30 ⁇ m) manufactured by Toyobo Co., Ltd. was used as the sealant film.
  • Example 1 The polypropylene homopolymer PP-1 shown in Table 1 was used for the A layer, and the polypropylene homopolymer PP-2 shown in Table 1 was used for the B layer.
  • 0.5 mass% of stearyl diethanolamine was mix
  • 0.15 mass% of silica was mix
  • Using a 60 mm extruder for the A layer and a 65 mm extruder for the B layer it was extruded into a sheet form from a T die at 250 ° C., cooled and solidified with a chill roll at 30 ° C., and then stretched 4.5 times in the MD direction at 135 ° C.
  • Examples 2 to 10, Comparative Examples 1 to 3 A biaxially stretched laminated polypropylene film was obtained in the same manner as in Example 1 except that the polypropylenes shown in Tables 1 and 3 were used and the production conditions shown in Tables 2 and 3 were used.
  • Examples 9 and 10 are examples of two-type three-layer films using a feed block and having an A layer as a core layer and a B layer as both skin layers. Comparative Example 3 is an example in which the B layer was not stacked. Table 3 shows the film properties.
  • the biaxially stretched laminated polypropylene films obtained in Examples 1 to 10 had low heat shrinkage and high Young's modulus (rigidity). Furthermore, the surface resistivity was small, the antistatic ability was excellent, the dynamic friction coefficient was small, the bag making processability was excellent, and the laminate strength was also high.
  • the film of Comparative Example 1 was produced by using the A layer having a smaller ⁇ H than the B layer as the core layer and the heat setting temperature was lower than the preferred temperature, the Young's modulus was reduced.
  • the film of Comparative Example 2 was a film having a large surface resistivity and dynamic friction coefficient because the B layer having a larger ⁇ H than the A layer was used as the outermost layer (skin layer).
  • the film of Comparative Example 3 is an example of a single-layer film having only the A layer.
  • the biaxially stretched laminated polypropylene film of the present invention is excellent in heat resistance and antistatic properties. In addition, since it has high rigidity, it can be thinned when used as a packaging film, and cost reduction and weight reduction can be achieved. In addition, since processing at a high temperature can be performed during coating and printing, not only production efficiency can be achieved, but also coating agents, inks, laminating adhesives, and the like that have been difficult to use conventionally can be used.
  • the biaxially stretched laminated polypropylene film of the present invention can be used for insulating films such as capacitors and motors, back sheets for solar cells, barrier films for inorganic oxides, base films for transparent conductive films such as ITO, and the like.

Landscapes

  • Laminated Bodies (AREA)

Abstract

高い剛性を有し、耐熱性に優れ、しかも帯電防止性にも優れる二軸延伸積層ポリプロピレンフィルムを提供する。本発明の二軸延伸積層ポリプロピレンフィルムは、少なくとも2層以上の結晶性の異なるポリプロピレン系樹脂組成物を含む積層フィルムであって、示差走査熱量計を用いて昇温速度20℃/分で測定される融解吸熱ピーク面積をΔHとしたとき、ΔHが78.0J/g以上のポリプロピレン系樹脂組成物からなるA層、およびΔHが82.0J/g未満であり、かつ前記A層のΔHよりも2.0~40.0J/g低いΔHを有するポリプロピレン系樹脂組成物からなるB層を有し、かつ前記B層が少なくとも一方の最表面側に存在することを特徴とする。

Description

二軸延伸積層ポリプロピレンフィルム
 本発明は、二軸延伸積層ポリプロピレンフィルムに関する。詳細には、耐熱性、剛性に優れ、かつ帯電防止性にも優れる二軸延伸ポリプロピレンフィルムに関する。
 従来、ポリプロピレンの延伸フィルムは、食品や様々な商品の包装用、電気絶縁用、表面保護フィルム等、広範囲な用途で汎用的に用いられていた。しかし、従来のポリプロピレンフィルムは、150℃での収縮率が数十%あり、ポリエチレンテレフタレート(PET)フィルム等と比べると、耐熱性が低く、また、剛性も低いため、用途が制限されていた。
 ポリプロピレンフィルムの物性を改良する技術は種々提案されている。例えば、高分子量成分と低分子量成分をほぼ同量含み(もしくは低分子量成分が少ない)、分子量分布が広く、デカリン可溶分の少ないポリプロピレンを用いてフィルムとすることにより、剛性と加工性とのバランスを取るという技術が知られている(特許文献1)。しかしながら、この技術では、未だに150℃を超えるような高温での耐熱性は充分なものとはいえず、高い耐熱性を持ち、耐衝撃性、透明性に優れたポリプロピレンフィルムは知られていなかった。
 本願出願人は、上記の従来技術を踏まえて鋭意検討した結果、フィルムを構成するポリプロピレン樹脂の立体規則性の指標である13C-NMRで測定されるメソペンタッド分率が96%以上のポリプロピレン系重合体を用いることで、高剛性で、耐熱性の高い延伸ポリプロピレンフィルムを提供することに成功した(特許文献2)。
特表2008-540815号公報 WO2015/012324号パンフレット
 しかしながら、前述した特許文献2では帯電防止性に改善の余地があった。
 本発明は、上記の事情に鑑み、高い剛性を有し、耐熱性に優れ、しかも帯電防止性にも優れる二軸延伸積層ポリプロピレンフィルムの提供を課題として掲げた。
 本発明の構成は以下のとおりである。
1.少なくとも2層以上の結晶性の異なるポリプロピレン系樹脂組成物を含む積層フィルムであって、
 示差走査熱量計を用いて昇温速度20℃/分で測定される融解吸熱ピーク面積をΔHとしたとき、
 ΔHが78.0J/g以上のポリプロピレン系樹脂組成物からなるA層、および
 ΔHが82.0J/g未満であり、かつ前記A層のΔHよりも2.0~40.0J/g低いΔHを有するポリプロピレン系樹脂組成物からなるB層を有し、且つ、
 前記B層が少なくとも一方の最表面側に存在することを特徴とする二軸延伸積層ポリプロピレンフィルム。
 2.前記A層の全厚みに対する前記B層の全厚みの比(全B層/全A層)は0.01~0.5であり、かつ、前記B層の全厚みは0.5~4μmである上記1に記載の二軸延伸積層ポリプロピレンフィルム。
 3.前記B層の最表面側に、厚み0.01~1.0μmであり、ΔHが76.0J/gを超えるポリプロピレン系樹脂組成物からなる他の層を更に有する上記1または2に記載の二軸延伸積層ポリプロピレンフィルム。
 4.フィルム全体のメルトフローレート(MFR)が2.0~10.5g/10分である上記1~3のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
 5.フィルム全体の表面固有抵抗値(LogΩ)が13.5以下である上記1~4のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
 6.フィルム全体の動摩擦係数が0.4以下である上記1~5のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
 7.150℃での熱収縮率が、MD方向、TD方向いずれにおいても10.0%以下であり、MD方向の引張弾性率が2.0GPa以上、TD方向の引張弾性率が3.8GPa以上である上記1~6のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
 8.ラミネート後のMD方向のラミネート強度が1.2N/15mm以上である上記1~7のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
 本発明のポリプロピレンフィルムは、高結晶性のA層と低結晶性のB層との少なくとも2層を有し、B層が最表面側に配置される積層構造を有しているので、少なくとも一方の層に練り込んだ帯電防止剤が最表面側に配置される低結晶性のB層の表面にブリードアウトしてくる。その結果、高結晶性のA層の有する優れた耐熱性や剛性を維持したまま、良好な帯電防止性も発揮することができるようになった。
 本発明のポリプロピレンフィルムは、少なくとも2層以上の結晶性の異なるポリプロピレン系樹脂組成物を含む積層フィルムであって、示差走査熱量計(DSC)を用いて昇温速度20℃/分で測定される融解吸熱ピーク面積(全融解熱)をΔHとしたとき、ΔHが78.0J/g以上のポリプロピレン系樹脂組成物からなるA層、およびΔHが82.0J/g未満であり、かつ前記A層のΔHよりも2.0~40.0J/g低いΔHを有するポリプロピレン系樹脂組成物からなるB層を有し、かつ前記B層が少なくとも一方の最表面側に存在することを特徴とする二軸延伸積層ポリプロピレンフィルムである。
 ここで、上記ΔHは結晶性の指標になる値である。結晶性が高いほど、その結晶が融解するのに必要なエネルギーが大きくなるので、ΔHが大きいほど高結晶性であることを表す。なお、本発明では、フィルム製膜に使用する原料のそれぞれについて、昇温速度20℃/分でDSC曲線を測定してΔHを求めた。
 まず本発明を最も特徴付けるA層、B層のΔHについて説明する。
 A層は、耐熱性、剛性、ラミネート後の機械的強度等を担う高結晶性の層であるので、ΔHは78.0J/g以上でなければならず、より好ましくは80.0J/g以上、さらに好ましくは81.0J/g以上、さらには82.0J/g以上である。A層のΔHが小さいと、引張弾性率等の剛性が小さくなるため好ましくない。また、A層のΔHは104.0J/g以下であることが好ましく、102.0J/g以下がより好ましく、100.0J/g以下がさらに好ましい。A層のΔHが大きすぎると、高温長時間の製造が必要となり、現実的な工業的製造が困難となるおそれがある。
 一方、B層はA層よりも最表面側に位置する低結晶性の層であり、低結晶性のB層(スキン層)に練り込んだ帯電防止剤は勿論のこと、高結晶性のA層(コア層)に練り込んだ帯電防止剤を、最表面側のB層表面にブリードアウトさせて、優れた帯電防止性を付与する役割を担う。そのためにはB層のΔHは82.0J/g未満であり、かつ、A層のΔHよりも2.0~40.0J/g低いΔHを有していなければならない。B層のΔHが82.0J/g以上では、帯電防止剤のブリードアウト量が少なくなって、帯電防止性が不充分となる。また、フィルムの滑り性が劣る傾向にあり、安定した製膜ができなくなるおそれがある。さらに、後述するラミネート強度が小さくなることがある。好ましいB層のΔHは81.0J/g以下であり、より好ましくは80.0J/g以下、特に好ましくは78.0J/g未満である。B層のΔHの下限は特に限定されないが、ΔHは60.0J/g以上が好ましい。ΔHが60.0J/gよりも小さいと、引張弾性率が小さくなったり、熱収縮率が大きくなったり、透明性が低下したり、ロールに付着してしまうことがある。
 また、A層のΔHとB層のΔHの差(A層のΔH-B層のΔH)は、2.0~40.0J/gである。この差が2.0J/gより小さいと、高結晶性層と低結晶性層を積層して、目的とする耐熱性と帯電防止性の両立を図る本発明の効果が不充分となるおそれがある。一方、この差が40.0J/gより大きいと、低結晶性層が延伸時の熱によって熱負けし、白化する等の問題がある。ΔHの差の好ましい範囲は3.0~25J/gであり、より好ましくは4.0~15J/gである。
 本発明の二軸延伸積層ポリプロピレンフィルムにおいて、A層のポリプロピレン系樹脂の結晶性(ΔH)を大きくするには、A層の分子量を下げる、ポリプロピレン系樹脂中の共重合モノマーを少なくする、樹脂の立体規則性の指標であるメソペンタッド分率を上げる、分子量が約10万以下の低分子量成分の量を多くする等の手段がある。分子量が約10万以下の低分子量成分は結晶化速度を速くする作用が大きいためである。また、分子量が約100万以上の高分子量成分は結晶核剤として作用し、低分子量成分の結晶化速度を促進する作用があるため、低分子量成分と少量の高分子量成分を混合して分子量分布(Mw/Mn)を大きくすることも有効な手段である。
 一方、B層のポリプロピレン系樹脂の結晶性(ΔH)を小さくするには、B層の分子量を大きくする、ポリプロピレン系樹脂中の共重合成分を多くする、メソペンタッド分率を下げる等の手段がある。
 本発明の積層フィルムは上記のとおりA層、B層のΔH(全融解熱)、およびこれらの差を規定した点に特徴があるが、DSC曲線における融解吸熱ピーク温度も結晶性の一つの目安となる。A層の融解吸熱ピーク温度は、160℃以上が好ましく、163℃以上がより好ましい。また、176℃以下が好ましく、173℃以下がより好ましく、170℃以下がさらに好ましい。
 一方、B層の場合、融解吸熱ピーク温度は、166℃以下が好ましく、164℃以下がより好ましい。また、120℃以上が好ましく、130℃以上がより好ましい。
 以下、本発明の積層フィルムを構成するA層、B層について、より詳しく説明する。
 (A層)
 本発明のA層に用いるポリプロピレン系樹脂は、ポリプロピレン単独重合体のみならず、エチレンおよび/または炭素数4以上のα-オレフィンを0.5モル%以下で共重合したポリプロピレンも用いることができる。このような共重合ポリプロピレンも本発明のポリプロピレン系樹脂(以下、単にポリプロピレンと略記する場合がある。)に含まれるものとする。炭素数4以上のα-オレフィンとしては、1-ブテン、1-ヘキセン、4-メチル・1-ペンテン、1-オクテンなどが挙げられる。A層の場合は前述したようにポリプロピレン系樹脂中の共重合モノマーを少なくしてΔHを大きくすることが好ましいため、上述したエチレンや炭素数4以上のα-オレフィン、その他の共重合成分は0.3モル%以下が好ましく、0.1モル%以下がより好ましく、共重合成分を含まない完全ホモポリプロピレン(ポリプロピレン単独重合体)が最も好ましい。エチレンおよび/または炭素数4以上のα-オレフィンは、0.5モル%を超えて共重合すると、ΔHが小さくなって結晶性や剛性が低下し過ぎて、高温での熱収縮率が大きくなることがある。また、上記要件を満足する樹脂(例えば完全ホモポリプロピレンと、共重合ポリプロピレン)をブレンドして用いても良い。
 本発明のA層を構成するポリプロピレンの立体規則性の指標である13C-NMRで測定されるメソペンタッド分率([mmmm]%)は、98~99.5%であることが好ましい。より好ましくは、98.1%以上であり、さらに好ましくは98.2%以上である。A層のポリプロピレンのメソペンタッド率が小さいと、弾性率が低くなり、耐熱性が不充分となるおそれがある。99.5%が現実的な上限である。
 本発明のA層を構成するポリプロピレンの質量平均分子量(Mw)は、180,000~500,000が好ましい。180,000より小さいと、溶融粘度が低いため、キャスト時に安定せず、製膜性が悪くなることがある。Mwが500,000を超えると、押し出しが困難になることがあって、製膜性が劣るため、好ましくない。また、Mwが高いと、ゲルパーミュレーションクロマトグラフィー(GPC)積算カーブでの分子量が10万以下の低分子量成分の量が少なくなり、熱収縮率が高くなることがある。より好ましいMwの下限は190,000、さらに好ましくは200,000であり、より好ましいMwの上限は450,000、さらに好ましくは420,000、特に好ましくは410,000である。
 なお、所望とする高温での低い熱収縮率を得られ易くしたり、厚み斑を小さくするためには、A層に占める上記低分子量成分の含有比率を35重量%以上とすることが好ましく、より好ましくは38重量%以上であり、さらに好ましくは42重量%以上である。
 本発明のA層を構成するポリプロピレンの数平均分子量(Mn)は、20,000~200,000が好ましい。20,000より小さいと、溶融粘度が低いため、キャスト時に安定せず、製膜性が悪くなることがある。200,000を超えると、押し出しが困難になることがあって、製膜性が劣るため、好ましくない。また、Mnが高いと熱収縮率が高くなりことがある。より好ましいMnの下限は30,000、さらに好ましくは40,000、特に好ましくは50,000であり、より好ましいMnの上限は170,000、さらに好ましくは160,000、特に好ましくは150,000である。
 また、分子量分布の指標であるMw/Mnは、A層のポリプロピレンでは2.8~30が好ましい。より好ましくは3~15、さらに好ましくは3.2~10、特に好ましくは3.5~6である。
 ここでMw/Mnは、前述したように低分子量成分と少量の高分子量成分を混合することにより大きくすることができる。すなわち分子量が約10万以下の低分子量成分は結晶化速度を速くする作用が大きいが、分子量が約100万以上の高分子量成分を添加すると結晶核剤として作用し、低分子量成分添加の作用が促進される。低分子量成分と少量の高分子量成分を混合するとMw/Mnが大きくなる。低分子量成分が多くなると分子同士の絡み合いが強くなり、結晶性が高くても熱収縮率が大きくなる傾向がある。Mw/Mnが大きくなりすぎると高分子量成分が多くなり熱収縮率が大きくなる場合があり、好ましくない。このときMw/Mnは8~30が好ましく、8~15がより好ましい。このときのMFRは2~6g/10分が好ましい。
 なお、ポリプロピレンの分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混錬機でブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。
 A層のポリプロピレンのメルトフローレート(MFR;230℃、2.16kgf)は0.5~20g/10分であることが好ましい。MFRの下限は、2g/10分であることがより好ましく、4g/10分であることがさらに好ましく、5g/10分であることが特に好ましく、6g/10分であることが最も好ましい。A層のポリプロピレンのMFRの上限は、15g/10分であることがより好ましく、12g/10分であることがさらに好ましく、10g/10分であることが特に好ましく、9.5g/10分であることが最も好ましい。この範囲であると、冷却ロールへの密着性も良好で製膜性に優れ、高温での熱収縮率も小さく保つことができる。
 (B層)
 本発明のB層に用いるポリプロピレン系樹脂は、ポリプロピレン単独重合体のみならず、エチレンおよび/または炭素数4以上のα-オレフィンを共重合したポリプロピレンも用いることができる。炭素数4以上のα-オレフィンとしては、1-ブテン、1-ヘキセン、4-メチル・1-ペンテン、1-オクテンなどが挙げられる。また、その他の共重合成分として極性を有するマレイン酸等を使用しても良い。B層の場合は、エチレンや炭素数4以上のα-オレフィン、その他の共重合成分(以下、共重合成分で代表させる場合がある。)は合計で8.0モル%以下であることが好ましく、6.0モル%以下がより好ましい。8.0モル%を超えて共重合すると、フィルムが白化して外観不良となったり、粘着性が生じて製膜が困難となったりする場合がある。また、上記要件を満足する樹脂(例えば完全ホモポリプロピレンと、共重合ポリプロピレン)をブレンドして用いても良い。ブレンドする場合、個々の樹脂は8.0モル%を超えて共重合されたものであっても良いが、ブレンド物はモノマー単位でプロピレン以外のモノマーは8.0モル%以下であることが好ましい。
 また、本発明のB層のポリプロピレンは、MFRが0.5~10g/10分であることが好ましい。B層のポリプロピレンのMFRの下限は、2g/10分であることがより好ましく、3g/10分であることがさらに好ましい。B層のポリプロピレンのMFRの上限は、8g/10分であることがより好ましく、5.5g/10分であることがさらに好ましい。この範囲であると製膜性も良好で、高温での熱収縮率も小さく保つことができる。これに対し、B層のポリプロピレンのMFRが0.5g/10分より小さいと、A層のポリプロピレンのMFRが大きい場合にA層とB層の粘度差が大きくなるので、製膜の際にムラ(原反ムラ)が発生しやすくなる。B層のMFRが10g/10分を超えると、冷却ロールへの密着性が悪くなって、空気を巻き込み、平滑性が悪く、それが起点となる欠点が多くなるおそれがある。
 B層のポリプロピレンのメソペンタッド率は98.2%以下が好ましい。より好ましくは、98.0%以下、さらに好ましくは97.8%以下である。B層のポリプロピレンのメソペンタッド率が大きいと、結晶性が高くなりすぎて、帯電防止剤のブリードアウトが起こりにくくなり、帯電防止性が低下するおそれがある。また、滑り性、ラミネート強度も低下する傾向にある。なお、B層のポリプロピレンのメソペンタッド率は上記観点からは特に限定されないが、フィルム外観や製膜性などを考慮すると、90%以上が好ましい。
 本発明のB層を構成するポリプロピレンの質量平均分子量(Mw)は、200,000~500,000が好ましい。200,000より小さいと、冷却ロールへの密着性が悪くなって、空気を巻き込み、平滑性が悪く、それが起点となる欠点が多くなるおそれがある。Mwが500,000を超えると、押し出しが困難になることがあって、製膜の際にムラ(原反ムラ)が発生しやすくなるため、好ましくない。より好ましいMwの下限は220,000、さらに好ましくは240,000であり、より好ましいMwの上限は450,000、さらに好ましくは420,000、特に好ましくは410,000である。
 本発明のB層を構成するポリプロピレンの数平均分子量(Mn)は、50,000~200,000が好ましい。50,000より小さいと、溶融粘度が低いため、キャスト時に安定せず、冷却ロールへの密着性が悪くなって、空気を巻き込み、平滑性が悪く、それが起点となる欠点が多くなるおそれがある。200,000を超えると、押し出しが困難になることがあって、製膜性が劣るため、好ましくない。より好ましいMnの下限は60,000、さらに好ましくは70,000であり、より好ましいMnの上限は170,000、さらに好ましくは160,000、特に好ましくは150,000である。
 B層においては、Mw/Mnは3.5~30が好ましく、3.7~20がより好ましく、3.7~15がさらに好ましい。
 (積層フィルム)
 本発明の二軸延伸積層ポリプロピレンフィルムは、前述したA層およびB層を有し、B層が少なくとも一方の最表面側になるように配置されたものである。ここで「B層が少なくとも一方の最表面側」に存在するとは、少なくとも一方の側から見ればA層よりもB層の方が近いことを意味する。また「最表面側」とは、積層フィルムを構成するA層とB層の関係において、A層よりもB層が最表面に位置するという意味であり、B層が積層フィルムの最表面(トップ)に配置される場合の他、B層の上に、(A層、B層以外の)他の層が最表面(トップ)に配置される場合も含む趣旨である。すなわち本発明の積層フィルムは、2層のみならず3層以上の多層構造を有し得る。
 具体的には本発明の積層フィルムが樹脂成分として上述したA層とB層とのみからなる場合、A層(コア層)とB層(スキン層)とを1層ずつ有する(すなわちA層の一方にB層を有する)2種2層構造のフィルムであってもよいし、或は、A層(コア層)の両方にB層を両スキン層とした(すなわちA層の両方にB層を有する)2種3層のサンドイッチ構造(B層/A層/B層)であっても良い。或は、例えば2種5層のサンドイッチ構造(B層/A層/B層/A層/B層)などであっても良く、それ以上の多層構造であっても良い。勿論、これらに限定されず、B層が最表面側になる種々の態様を有し得、例えばA層/A層/B層、A層/B層/B層などの態様が例示される。これらのうち好ましいのはB層/A層/B層の2種3層構造である。なお積層フィルムが複数のA層、B層を有する場合、各層は同一種類の樹脂であっても良いし種類が異なっていても良い。
 或は、本発明の二軸延伸積層ポリプロピレンフィルムは、上記A層、B層以外の他のポリプロピレン系樹脂層(便宜上、上記以外の層を総括してC層と呼ぶ。)を更に有していても良い。このようなC層を最表層に設けることにより、帯電防止剤のブリードアウトを実質上妨げること無く、最表層の耐熱性をより一層確保することも可能である。ここでC層は、ΔHが76.0J/gを超え、且つ、上述したA層、B層のいずれにも分類されないものである。C層は任意の位置に配置することができ、A層とB層の間、A層よりもコア側、B層よりも最表面側のいずれも配置可能である。C層はB層よりも最表面側に配置されていることが好ましく、例えば最表面側から順にC層、B層、A層の3種3層構造のフィルムであってもよい。なお、C層に使用する原材料はA層およびB層で述べたものを適宜用いることができる。例えばC層のポリプロピレン系樹脂組成物はA層に用いるポリプロピレン系樹脂組成物を用いても良いし、異なるものであっても良い。
 フィルム全体の厚みは9~200μmが好ましく、10~150μmがより好ましく、12~100μmがさらに好ましく、12~80μmが特に好ましい。
 B層とA層の厚みの比率としては、全B層(B層を複数有する場合はこれらの合計の厚み)/全A層(A層を複数有する場合はこれらの合計の厚み)が0.01~0.5であることが好ましく、0.03~0.4であることがより好ましく、0.05~0.3であることがさらに好ましい。全B層/全A層が0.5を超えると、弾性率が下がる傾向を示す。また、フィルム全体の厚みに対する全A層の厚みは50~99%であることが好ましく、さらに好ましくは60~97%、特に好ましくは70~95%である。残部は、B層、またはA層およびB層以外のC層となる。
 全A層の実質的な厚みは、5~50μmが好ましく、10~45μmがより好ましく、15~40μmがさらに好ましい。
 また全B層の実質的な厚みは、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上、更により好ましくは1.5μm以上であり;好ましくは4μm以下、より好ましくは3.5μm以下、更に好ましくは3μm以下、更により好ましくは2μm以下である。
 更にC層が存在する場合、C層の厚みは0.01~1.0μmであることが好ましく、0.05μm以上であることが好ましく、0.1μm以上がより好ましい。C層の厚みは前述したB層よりも薄いことが好ましく、0.5μm未満であることが好ましい。
 フィルム全体としてのMFRは、2.0~10.5g/10分であることが好ましい。2.0g/10分より小さいと、製膜性が悪く、得られるフィルムの熱収縮率が大きくなる傾向がある。より好ましいMFRの下限は3.0g/10分である。一方、10.5g/10分を超えると、冷却ロールへの密着性が低下して、製膜安定性が劣ったり異物などの欠点が多くなる傾向がある。
 本発明で用いるポリプロピレンは、チーグラー・ナッタ触媒やメタロセン触媒等の公知の触媒を用いて、原料のプロピレンを重合させることにより得られる。中でも、異種結合をなくすためにはチーグラー・ナッタ触媒を用い、立体規則性の高い重合が可能な触媒を用いることが好ましい。
 プロピレンの重合方法としては、公知の方法を採用すればよく、例えば、ヘキサン、ヘプタン、トルエン、キシレン等の不活性溶剤中で重合する方法、液状のモノマー中で重合する方法、気体のモノマーに触媒を添加し、気相状態で重合する方法、または、これらを組み合わせて重合する方法等が挙げられる。
 本発明の二軸延伸積層ポリプロピレンフィルムは帯電防止剤を含む。上記フィルム全体に含まれる帯電防止剤の含有量は0.01~3.0質量%であることが好ましく、0.05~2.8質量%であることがより好ましく、0.10~2.5質量%であることがさらに好ましい。帯電防止剤としては、特に限定されないが、アミン系界面活性剤やモノ脂肪酸グリセリドが好ましいものとして挙げられる。
 アミン系界面活性剤としては、具体的には、ミリスチルジエタノールアミン、パルミチルジエタノールアミン、ステアリルジエタノールアミン、オレイルジエタノールアミン、アラキジルジエタノールアミン、ベヘルジエタノールアミンが挙げられ、パルミチルジエタノールアミン、ステアリルジエタノールアミン、オレイルジエタノールアミンがより好ましく、これらの中から2種以上を選択して混合物として使用してもよい。
 モノ脂肪酸グリセリドとしては、具体的には、グリセリンモノラウレート、グリセリンモノミリスチレート、グリセリンモノパルミチレート、グリセリンモノステアレート、グリセリンモノアラキジレート、グリセリンモノベヘレートが挙げられ、グリセリンモノステアレートがより好ましく、これらの中から2種以上を選択して混合物として使用してもよい。
 帯電防止剤が0.01質量%より少ないと、帯電防止性が劣るフィルムとなりやすく、3質量%を超えて添加すると、製膜時や加工時に、ローラーが汚れたり、フィルム表面がべとつくことがあり、好ましくない。なお、製造時にB層に帯電防止剤を多量に添加すると、上記問題が起こりやすいため、製造時はB層用のポリプロピレン系樹脂組成物へ帯電防止剤を添加しないか、もしくは添加量を少なくし、A層に帯電防止剤を上記の量範囲で添加することが好ましい。この場合であっても、A層に含まれている帯電防止剤がB層に拡散・移行し、さらにB層を通って積層フィルムの表面にブリードアウトすることができる。B層のΔHを82.0J/g未満とし、A層のΔHとB層のΔHの差(A層のΔH-B層のΔH)を2.0~40.0J/gとすることにより、B層への帯電防止剤の拡散・移行、ブリードアウトが促進され、充分な帯電防止性を得ることができる。
 B層には、アンチブロッキング剤を添加してもよい。アンチブロッキング剤としては、シリカ、炭酸カルシウム、カオリン、ゼオライト等の無機系のアンチブロッキング剤、脂肪族脂肪酸エステルや、エチレンビスアミド、アクリル系、ポリスチレン系等の有機系アンチブロッキング剤等の中から、適宜選択して使用することができる。アンチブロッキング剤の好ましい平均粒子径は0.5~5.0μmであり、より好ましくは1.0~3.0μmである。平均粒子径が0.5μm未満であると、良好な滑り性を得るのに多量のアンチブロッキング剤が必要となるため好ましくなく、反対に5.0μmを超えると、フィルムの表面粗さが大きくなりすぎて実用特性を満たさなくなるおそれがあるので好ましくない。アンチブロッキング剤は、B層中0.01~0.3質量%とすることが好ましい。0.01質量%より少ないと、フィルムが滑りにくくなり、0.3質量%を超えて添加すると、フィルムが白化するおそれがあるため、好ましくない。
 本発明のA層および/またはB層(更に、これら以外の他の層を有する場合は当該他の層)には、他の添加剤やその他の樹脂を含有させてもよい。他の添加剤としては、例えば、酸化防止剤、紫外線吸収剤、造核剤、粘着剤、防曇剤、難燃剤、無機または有機の充填剤等が挙げられる。その他の樹脂としては、本発明で用いられるポリプロピレン樹脂以外のポリプロピレン樹脂、プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体であるランダムコポリマーや、各種エラストマー等が挙げられる。これらは、多段の反応器を用いて逐次重合するか、ポリプロピレン樹脂とヘンシェルミキサーでブレンドするか、事前に溶融混錬機を用いて作製したマスターペレットを所定の濃度になるようにポリプロピレンで希釈するか、予め全量を溶融混練して使用してもよい。
 (フィルムの製造方法)
 本発明の二軸延伸積層ポリプロピレンフィルムは、A層用ポリプロピレン原料(A層用ポリプロピレン系樹脂組成物)とB層ポリプロピレン原料(B層用ポリプロピレン系樹脂組成物)、必要によりその他の層用原料(C層用樹脂組成物)を押出機により溶融押し出しして未延伸シートを形成し、その未延伸シートを所定の方法により、延伸して熱処理することによって得ることができる。未延伸の積層フィルムは、複数の押出機やフィードブロック、マルチマニホールドを用いることで得られる。溶融押出し温度は200~280℃程度が好ましく、この温度範囲内で層を乱さずに良好な外観の積層フィルムを得るには、A層用ポリプロピレン原料とB層用ポリプロピレン原料の粘度差(MFR差)が6g/10分以下となるようにすることが好ましい。粘度差が6g/10分より大きいと、層が乱れて外観不良となりやすい。より好ましくは5.5g/10分以下、さらに好ましくは5g/10分以下である。
 チルロール表面温度は25~35℃が好ましく、27~33℃がより好ましい。次いで、好ましくは120~165℃の延伸ロールでフィルムを長さ(MD)方向に好ましくは3~8倍(より好ましくは3~7倍)に延伸し、引き続き幅(TD)方向に好ましくは155~175℃、より好ましくは160~163℃で、好ましくは4~20倍、より好ましくは6~12倍延伸を行う。
 さらに、好ましくは165~176℃、より好ましくは170~176℃、さらに好ましくは172~175℃で、好ましくは2~10%のリラックスを施しながら、熱固定を行う。こうして得られた二軸延伸積層ポリプロピレンフィルムに、必要に応じて、コロナ放電、プラズマ処理、火炎処理等を施した後、ワインダーで巻き取ることによりフィルムロールを得ることができる。
 上述したようにMDの延伸倍率の下限は、好ましくは3倍であり、より好ましくは3.5倍である。上記未満であると膜厚ムラとなることがある。MDの延伸倍率の上限は好ましくは8倍であり、より好ましくは7倍である。上記を超えると引き続き行うTD延伸がしにくくなることがある。MDの延伸温度の下限は好ましくは120℃であり、より好ましくは125℃であり、さらに好ましくは130℃である。上記未満であると機械的負荷が大きくなったり、厚みムラが大きくなったり、フィルムの表面荒れが起こることがある。MDの延伸温度の上限は好ましくは165℃であり、より好ましくは160℃であり、さらに好ましくは155℃であり、さらにより好ましくは150℃である。温度が高い方が熱収縮率の低下には好ましいが、ロールに付着し延伸できなくなったり、表面荒れが起こることがある。
 TDの延伸倍率の下限は好ましくは4倍であり、より好ましくは5倍であり、さらに好ましくは6倍である。上記未満であると厚みムラとなることがある。TD延伸倍率の上限は好ましくは20倍であり、より好ましくは17倍であり、さらに好ましくは15倍であり、特に好ましくは12倍である。上記を超えると熱収縮率が高くなったり、延伸時に破断することがある。TD延伸での予熱温度は速やかに延伸温度付近にフィルム温度を上げるため、好ましくは延伸温度より5~15℃高く設定する。TDの延伸では従来の延伸ポリプロピレンフィルムより高温で行う。TDの延伸温度の下限は好ましくは155℃であり、より好ましくは157℃であり、さらに好ましくは158℃、特に好ましくは160℃である。上記未満であると充分に軟化せずに破断したり、熱収縮率が高くなることがある。TD延伸温度の上限は好ましくは175℃であり、より好ましくは170℃であり、さらに好ましくは168℃であり、さらにより好ましくは163℃である。熱収縮率を低くするためには温度は高い方が好ましいが、上記を超えると低分子成分が融解、再結晶化して配向が低下するだけでなく、表面荒れやフィルムが白化することがある。
 延伸後のフィルムは熱固定される。熱固定は従来の延伸ポリプロピレンフィルムより高温で行うことが可能である。熱固定温度の下限は好ましくは165℃であり、より好ましくは166℃である。上記未満であると熱収縮率が高くなることがある。また、熱収縮率を低くするために長時間の処理が必要になり、生産性が劣ることがある。熱固定温度の上限は好ましくは176℃であり、より好ましくは175℃である。上記を超えると低分子成分が融解、再結晶化して表面荒れやフィルムが白化することがある。
 熱固定時にはリラックス(緩和)させることが好ましい。リラックスの下限は好ましくは2%であり、より好ましくは3%である。上記未満であると熱収縮率が高くなることがある。リラックスの上限は好ましくは10%であり、より好ましくは8%である。上記を超えると厚みムラが大きくなることがある。
 さらに、熱収縮率を低下させるために、上記の工程で製造されたフィルムを一旦ロール状に巻き取った後、オフラインでアニールさせることもできる。オフラインアニールの温度の下限は好ましくは160℃であり、より好ましくは162℃であり、さらに好ましくは163℃である。上記未満であるとアニールの効果が得られないことがある。オフラインアニール温度の上限は好ましくは175℃であり、より好ましくは174℃であり、さらに好ましくは173℃である。上記を超えると透明性が低下したり、厚みムラが大きくなったりすることがある。
 オフラインアニール時間の下限は好ましくは0.1分であり、より好ましくは0.5分であり、さらに好ましくは1分である。上記未満であるとアニールの効果が得られないことがある。オフラインアニール時間の上限は好ましくは30分であり、より好ましくは25分であり、さらに好ましくは20分である。上記を超えると生産性が低下することがある。
 (フィルムの物性)
 本発明の二軸延伸積層ポリプロピレンフィルムにおいては、150℃でのMD方向の熱収縮率は0.2~10%であることが好ましく、0.3~9%がより好ましく、0.5~8%であることがさらに好ましく、0.7~7%が特に好ましく、1~5%であることが最も好ましい。150℃のTD方向における熱収縮率も同様である。熱収縮率が上記範囲であれば、耐熱性に優れたフィルムということができ、高温にさらされる可能性のある用途でも使用できる。なお、150℃熱収縮率は1.5%程度までなら、例えば低分子量成分を多くする、延伸条件、熱固定条件を調整することで可能であるが、それ以下に下げるには、オフラインでアニール処理をすること等が好ましい。
 本発明の二軸延伸積層ポリプロピレンフィルムにおいては、表面固有抵抗値が9.5~13.5(LogΩ)であることが好ましく、10~13(LogΩ)であることがより好ましく、10.5~12.5(LogΩ)であることがさらに好ましい。表面固有抵抗値が13.5(LogΩ)を超えると、帯電防止能が不充分になることがある。
 本発明の二軸延伸積層ポリプロピレンフィルムのヘイズは、0.1~6%が好ましく、0.2~5%がより好ましく、0.3~4.5%がさらに好ましく、0.4~4%が特に好ましく、0.4~3.5%が最も好ましい。上記範囲であると透明が要求される用途で使いやすくなることがある。ヘイズは例えば延伸温度、熱固定温度が高すぎる場合、冷却ロール(CR)温度が高く延伸原反シートの冷却速度が遅い場合、低分子量成分が多すぎる場合に悪くなる傾向があり、これらを調節することで上記の範囲内とすることが出来る。
 本発明の二軸延伸積層ポリプロピレンフィルムの面配向係数の下限は、0.013が好ましく、0.014がより好ましく、0.015がさらに好ましい。上記範囲よりも低い値であると、フィルムの耐熱性、剛性が低くなり、加工性の低下、外観不良になり、本発明の効果が十分に得られない。
 延伸された積層ポリプロピレンフィルムは、一般的に結晶配向を有し、その方向や程度がフィルム物性に大きな影響を及ぼす。結晶配向の程度は、用いられるポリプロピレンの分子構造や、フィルム製造におけるプロセスや条件によって変化する傾向であり、これらを調節することで上記の範囲内とすることが出来る。
 本発明の二軸延伸積層ポリプロピレンフィルムのMD方向の引張弾性率は、2.0~4GPaであることが好ましく、2.1~3.7GPaであることがより好ましく、2.2~3.5GPaであることがさらに好ましく、2.3~3.4GPaが特に好ましく、2.4~3.3GPaが最も好ましい。TD方向の引張弾性率は、3.8~8GPaであることが好ましく、4~7.5GPaであることがより好ましく、4.1~7GPaであることがさらに好ましく、4.2~6.5GPaが特に好ましい。
 本発明の二軸延伸積層ポリプロピレンフィルムの動摩擦係数は、0.2~0.4が好ましく、0.22~0.38がより好ましく、0.24~0.36がさらに好ましい。これにより、フィルムの加工性が向上する。
 本発明の二軸延伸積層ポリプロピレンフィルムは、シーラントフィルム、コンデンサーやモーター等の絶縁フィルム、太陽電池のバックシート、無機酸化物のバリアフィルム、ITO等の透明導電フィルムなどに使用するためのベースフィルム(基材層)として使用可能である。上記フィルムとラミネートされたラミネートフィルムのMD方向のラミネート強度は、1.2~2.5N/15mmが好ましく、1.3~2.3N/mmがより好ましく、1.4~2.1N/mmがさらに好ましい。ラミネート強度の測定方法は後述する。
 本願は、2016年3月28日に出願された日本国特許出願第2016-064051号に基づく優先権の利益を主張するものである。2016年3月28日に出願された日本国特許出願第2016-064051の明細書の全内容が、本願に参考のため援用される。
 以下、実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施する場合は、本発明に含まれる。なお、実施例および比較例で得られたフィルム物性の測定方法は、以下の通りである。
1)立体規則性
 メソペンタッド分率([mmmm]%)の測定は、13C-NMRを用いて行った。メソペンタッド分率は、「Zambelliら、Macromolecules,第6巻,925頁(1973)」に記載の方法に従って算出した。13C-NMR測定は、BRUKER社製「AVANCE500」を用い、試料200mgをo-ジクロロベンゼンと重ベンゼンの8:2(体積比)の混合液に135℃で溶解し、110℃で行った。
2)メルトフローレート(MFR;g/10分)
 JIS K7210に準拠し、温度230℃、荷重2.16kgfで測定した。
 樹脂はペレット(パウダー)をそのまま必要量量り取り用いた。
 フィルムは必要量切り出した後、約5mm角にカットしたサンプルを用いた。
3)分子量および分子量分布
 分子量および分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて単分散ポリスチレン基準により求めた。GPC測定での使用カラム、溶媒等の測定条件は以下のとおりである。
溶媒:1,2,4-トリクロロベンゼン
カラム:TSKgel GMHHR-H(20)HT×3
流量:1.0ml/min
検出器:RI
測定温度:140℃
 数平均分子量(Mn)、質量平均分子量(Mw)、分子量分布は、それぞれ、分子量校正曲線を介して得られたGPC曲線の各溶出位置の分子量(Mi)の分子数(Ni)により次式で定義される。
数平均分子量:Mn=Σ(Ni・Mi)/ΣNi
質量平均分子量:Mw=Σ(Ni・Mi2)/Σ(Ni・Mi)
分子量分布:Mw/Mn
 ベースラインが明確でないときは、標準物質の溶出ピークに最も近い高分子量側の溶出ピークの高分子量側のすそ野の最も低い位置までの範囲でベースラインを設定することとした。
4)示差走査熱量分析(DSC)
 示差走査熱量計(島津製作所社製「DSC-60」)を用いて熱測定を行った。試料フィルムの原料約5mgを測定用のアルミパンに封入した。A層用原料、B層用原料それぞれについて、20℃/分の速度で室温から230℃まで昇温し、5分間保持した。その後、20℃/分の速度で室温まで降温し、再度、20℃/分の速度で室温から230℃まで昇温した際の試料の融解吸熱ピーク温度(℃)、融解吸熱ピーク面積(ΔH(J/g)、全融解熱)を測定した。ここでベースラインは、吸熱ピークの開始からピーク終了まで、融解前後の温度でカーブがスムーズにつながるように設定した。
5)厚み
 A層とB層各層の厚みは、二軸延伸積層ポリプロピレンフィルムを変性ウレタン樹脂で固めたものの断面をミクロトームで切り出し、微分干渉顕微鏡で観察して、測定した。
6)150℃の熱収縮率(%)
 JIS Z1712に準拠して、以下の方法で測定した。フィルムを、MD方向とTD方向のそれぞれにおいて、幅20mm、長さ200mmにカットし、150℃の熱風オーブン中に吊して5分間加熱した。加熱後の長さを測定し、元の長さに対する収縮した長さの割合で熱収縮率を求めた。
7)引張弾性率(ヤング率(単位:GPa))
 JIS K7127に準拠してフィルムのMD方向およびTD方向のヤング率を23℃にて測定した。ヤング率の測定には、フィルムをMD方向とTD方向のそれぞれにおいて、幅15mm、長さ200mmにカットした試験片を用いた。
8)表面固有抵抗値(LogΩ)
 JIS K6911に準拠し、フィルムを23℃、24時間エージング後、フィルムのコロナ処理面を測定した。
9)ヘイズ(単位:%)
 JIS K7105に従って測定した。
10)動摩擦係数
 JIS K7125に準拠して、フィルムのコロナ処理を実施した面同士を重ね合わせ、23℃で測定した。
11)フィルム密度(g/cm3
  フィルムの密度は、JIS K7112に従って密度勾配管法により測定した。
12)屈折率、面配向係数
 JIS K7142-1996 5.1(A法)により、アタゴ製アッベ屈折計を用いて測定した。MD、TD方向に沿った屈折率をそれぞれNx、Nyとし、厚み方向の屈折率をNzとした。面配向係数(ΔP)は、(Nx+Ny)/2-Nzで求めた。
13)表面の外観
 表面の外観は、評価対象領域(幅1000mm、長さ4000mm)において、フィルム面の片側から光を透過させ、フィルムの欠点により光が遮断された部分を、反対側のカメラにより黒点として観察した。面積が25mm2を超える欠点の総数を測定したとき、欠点の総数が200個未満を〇、200個以上を×と評価した。
14)MD方向のラミネート強度
 ラミネート強度は以下のような手順により測定した。
(a)シーラントフィルムとのラミネート
 連続式のドライラミネート機を用いて以下の様に行った。
 実施例、比較例で得られた二軸延伸積層ポリプロピレンフィルムのコロナ面に接着剤を乾燥時塗布量が3.0g/m2となるようにグラビアコートした後、乾燥ゾーンに導き80℃、5秒で乾燥した。引き続き下流側に設けられたロール間でシーラントフィルムと貼り合わせた(ロール圧力0.2MP、ロール温度:60℃)。得られたラミネートフィルムは巻き取った状態で40℃、3日間のエージング処理を行った。
 なお、接着剤は主剤(東洋モートン社製、TM329)17.9質量%、硬化剤(東洋モートン社製、CAT8B)17.9質量%および酢酸エチル64.2質量%を混合して得られたエーテル系接着剤を使用し、シーラントフィルムは東洋紡社製無延伸ポリプロピレンフィルム(パイレン(登録商標)CT P1128、厚み30μm)を使用した。
(b)ラミネート強度の測定
 上記で得られたラミネートフィルムをMD方向に長辺を持つ短冊状(長さ200mm、幅15mm)に切り出し、ピンセットを用いて、ラミネートフィルムフィルムとシーラントフィルムの間を剥離し、引張試験機(テンシロン、オリエンテック社製)を用いて、23℃の環境下200mm/分の引張速度でT字剥離した際の剥離強度(N/15mm)を測定した。測定は3回行い、その平均値をラミネート強度とした。
 (実施例1)
 A層には、表1に示すポリプロピレン単独重合体PP-1を用い、B層には、表1に示すポリプロピレン単独重合体PP-2を用いた。なおA層原料には、帯電防止剤としてステアリルジエタノールアミンを0.5質量%配合した。また、B層には、アンチブロッキング剤として、シリカを0.15質量%配合した。A層は60mm押出機、B層は65mm押出機を用いて、250℃でTダイからシート状に押し出し、30℃のチルロールで冷却固化した後、135℃でMD方向に4.5倍に延伸した。次いでテンター内で、フィルム幅方向両端をクリップで挟み、175℃で予熱後、160℃で幅方向に8.2倍に延伸し、リラックスを6.7%させながら170℃で熱固定した。A層とB層が1層ずつ積層された二軸延伸積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムのB層側にコロナ処理を施し、ワインダーで巻き取った。得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりである。
(実施例2~10,比較例1~3)
 表1および表3に示したポリプロピレンを用い、表2と表3に示した製造条件を用いた以外は、実施例1と同様にして二軸延伸積層ポリプロピレンフィルムを得た。実施例9、10は、フィードブロックを用いてA層をコア層に、B層を両スキン層とした2種3層のフィルムの例である。比較例3は、B層を積層しなかった例である。フィルム物性を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~10で得られた二軸延伸積層ポリプロピレンフィルムは、熱収縮率が低く、ヤング率(剛性)は高かった。さらに、表面固有抵抗が小さくて帯電防止能に優れ、動摩擦係数が小さくて製袋加工性に優れると共に、ラミネート強度も高いものであった。
 これに対して、比較例1のフィルムは、ΔHがB層よりも小さいA層をコア層として用い、且つ、熱固定温度が好ましい温度を下回って製造したため、ヤング率が小さくなった。
 比較例2のフィルムは、ΔHがA層よりも大きいB層を最表層(スキン層)に用いたため、表面固有抵抗および動摩擦係数が大きいフィルムであった。
 比較例3のフィルムは、A層のみ有する単層フィルムの例であり、表面固有抵抗および動摩擦係数が大きくなると共に、ラミネート強度も低下した
 比較例4のフィルムは、B層のΔHがA層のΔHと同じでΔHの差=0の例である。そのため、表面固有抵抗が大きくなった。
 本発明の二軸延伸積層ポリプロピレンフィルムは、耐熱性に優れる上、帯電防止性にも優れる。また、剛性も高いため、包装フィルムとして用いた場合には薄肉化が可能であり、コストダウン、軽量化が達成できる。また、コートや印刷時に高温での処理ができるため、生産の効率化を達成できるだけでなく、従来用いられにくかったコート剤やインキ、ラミネート接着剤等を用いることができるようになった。本発明の二軸延伸積層ポリプロピレンフィルムは、コンデンサーやモーター等の絶縁フィルム、太陽電池のバックシート、無機酸化物のバリアフィルム、ITO等の透明導電フィルムのベースフィルム等にも使用可能である。

Claims (8)

  1.  少なくとも2層以上の結晶性の異なるポリプロピレン系樹脂組成物を含む積層フィルムであって、
     示差走査熱量計を用いて昇温速度20℃/分で測定される融解吸熱ピーク面積をΔHとしたとき、
     ΔHが78.0J/g以上のポリプロピレン系樹脂組成物からなるA層、および
     ΔHが82.0J/g未満であり、かつ前記A層のΔHよりも2.0~40.0J/g低いΔHを有するポリプロピレン系樹脂組成物からなるB層を有し、且つ、
     前記B層が少なくとも一方の最表面側に存在することを特徴とする二軸延伸積層ポリプロピレンフィルム。
  2.  前記A層の全厚みに対する前記B層の全厚みの比(全B層/全A層)は0.01~0.5であり、かつ、前記B層の全厚みは0.5~4μmである請求項1に記載の二軸延伸積層ポリプロピレンフィルム。
  3.  前記B層の最表面側に、厚み0.01~1.0μmであり、ΔHが76.0J/gを超えるポリプロピレン系樹脂組成物からなる他の層を更に有する請求項1または2に記載の二軸延伸積層ポリプロピレンフィルム。
  4.  フィルム全体のメルトフローレート(MFR)が2.0~10.5g/10分である請求項1~3のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
  5.  フィルム全体の表面固有抵抗値(LogΩ)が13.5以下である請求項1~4のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
  6.  フィルム全体の動摩擦係数が0.4以下である請求項1~5のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
  7.  150℃での熱収縮率が、MD方向、TD方向いずれにおいても10.0%以下であり、MD方向の引張弾性率が2.0GPa以上、TD方向の引張弾性率が3.8GPa以上である請求項1~6のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
  8.  ラミネート後のMD方向のラミネート強度が1.2N/15mm以上である請求項1~7のいずれかに記載の二軸延伸積層ポリプロピレンフィルム。
     
PCT/JP2017/011109 2016-03-28 2017-03-21 二軸延伸積層ポリプロピレンフィルム WO2017169952A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780020590.6A CN109070568B (zh) 2016-03-28 2017-03-21 双轴拉伸层叠聚丙烯薄膜
JP2018509073A JP7437115B2 (ja) 2016-03-28 2017-03-21 二軸延伸積層ポリプロピレンフィルム
KR1020187030711A KR102434652B1 (ko) 2016-03-28 2017-03-21 2축 연신 적층 폴리프로필렌 필름
JP2022200015A JP7459919B2 (ja) 2016-03-28 2022-12-15 二軸延伸積層ポリプロピレンフィルム
JP2023218411A JP2024041794A (ja) 2016-03-28 2023-12-25 二軸延伸積層ポリプロピレンフィルム
JP2023218410A JP2024041793A (ja) 2016-03-28 2023-12-25 二軸延伸積層ポリプロピレンフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-064051 2016-03-28
JP2016064051 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017169952A1 true WO2017169952A1 (ja) 2017-10-05

Family

ID=59965240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011109 WO2017169952A1 (ja) 2016-03-28 2017-03-21 二軸延伸積層ポリプロピレンフィルム

Country Status (5)

Country Link
JP (4) JP7437115B2 (ja)
KR (1) KR102434652B1 (ja)
CN (1) CN109070568B (ja)
TW (1) TWI711539B (ja)
WO (1) WO2017169952A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007441A (ja) * 2018-07-06 2020-01-16 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP2020007445A (ja) * 2018-07-06 2020-01-16 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP2020072204A (ja) * 2017-10-31 2020-05-07 王子ホールディングス株式会社 樹脂フィルム、金属層一体型樹脂フィルム、及び、フィルムコンデンサ
WO2021261312A1 (ja) * 2020-06-25 2021-12-30 東洋紡株式会社 二軸配向ポリプロピレンフィルム
JPWO2021261311A1 (ja) * 2020-06-25 2021-12-30
WO2022004340A1 (ja) * 2020-07-03 2022-01-06 東洋紡株式会社 二軸配向ポリプロピレン系フィルム
WO2022153906A1 (ja) * 2021-01-12 2022-07-21 東洋紡株式会社 積層フィルム
JP2022163042A (ja) * 2019-01-29 2022-10-25 東洋紡株式会社 ポリプロピレン系樹脂多層フィルム
WO2023286541A1 (ja) 2021-07-16 2023-01-19 東洋紡株式会社 二軸配向積層ポリプロピレンフィルム
WO2023013768A1 (ja) * 2021-08-05 2023-02-09 大日本印刷株式会社 バリア性積層体、蓋材及び包装容器
EP3998158A4 (en) * 2019-07-10 2023-06-28 Toyobo Co., Ltd. Title of the invention biaxially oriented polypropylene-based resin film and package using same
WO2023127534A1 (ja) * 2021-12-28 2023-07-06 東洋紡株式会社 二軸配向ポリプロピレンフィルム
WO2023234417A1 (ja) * 2022-06-02 2023-12-07 東洋紡株式会社 離型フィルム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210109570A (ko) * 2018-12-28 2021-09-06 도요보 가부시키가이샤 2축 배향 폴리프로필렌 필름
CN115698148B (zh) * 2020-06-17 2024-05-24 东洋纺株式会社 双轴取向聚丙烯薄膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297659A (ja) * 1993-04-13 1994-10-25 Chisso Corp 二軸延伸複層フィルム
JPH11115124A (ja) * 1997-10-20 1999-04-27 Toray Ind Inc 積層ポリプロピレンフィルム
JPH11179800A (ja) * 1997-12-25 1999-07-06 Tokuyama Corp ポリプロピレンフィルム
JPH11245352A (ja) * 1997-12-26 1999-09-14 Toray Ind Inc 金属化用二軸配向ポリプロピレンフィルムおよびその製造方法
JPH11254587A (ja) * 1998-01-09 1999-09-21 Toray Ind Inc 金属化二軸配向ポリプロピレンフィルムおよびそれを用いた積層体
JP2008114514A (ja) * 2006-11-07 2008-05-22 Toyobo Co Ltd 包装用フィルム及び包装体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725155B2 (ja) * 1988-12-06 1995-03-22 本州製紙株式会社 複合2軸延伸ポリプロピレン系樹脂フィルム
TW431968B (en) * 1997-12-26 2001-05-01 Toray Industries A biaxially oriented polypropylene film to be metallized, a metallized biaxially oriented polypropylene film, and a laminate formed by using it
JPH11192680A (ja) * 1998-01-06 1999-07-21 Toray Ind Inc ポリプロピレンフィルムおよびその製造方法
ATE369386T1 (de) * 2003-10-07 2007-08-15 Dow Global Technologies Inc Polypropylenzusammensetzung für luftgekühlte blasfolien
WO2006118030A1 (ja) * 2005-04-28 2006-11-09 Toyo Boseki Kabushiki Kaisha ヒートシール性積層ポリプロピレン系樹脂フイルム及び包装体
EP1726602A1 (en) 2005-05-27 2006-11-29 Borealis Technology Oy Propylene polymer with high crystallinity
US20100247887A1 (en) * 2009-03-26 2010-09-30 Fina Technology, Inc. Polyolefin films for in-mold labels
CN102501501A (zh) * 2011-10-10 2012-06-20 上海金浦塑料包装材料有限公司 一种bopp隔离膜
JP6554765B2 (ja) * 2013-07-23 2019-08-07 東洋紡株式会社 ポリプロピレン積層延伸フィルム
JP6443334B2 (ja) * 2013-07-23 2018-12-26 東洋紡株式会社 ヒートシール性ポリプロピレン積層延伸フィルム
KR102352439B1 (ko) 2013-07-23 2022-01-18 도요보 가부시키가이샤 연신 폴리프로필렌 필름

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297659A (ja) * 1993-04-13 1994-10-25 Chisso Corp 二軸延伸複層フィルム
JPH11115124A (ja) * 1997-10-20 1999-04-27 Toray Ind Inc 積層ポリプロピレンフィルム
JPH11179800A (ja) * 1997-12-25 1999-07-06 Tokuyama Corp ポリプロピレンフィルム
JPH11245352A (ja) * 1997-12-26 1999-09-14 Toray Ind Inc 金属化用二軸配向ポリプロピレンフィルムおよびその製造方法
JPH11254587A (ja) * 1998-01-09 1999-09-21 Toray Ind Inc 金属化二軸配向ポリプロピレンフィルムおよびそれを用いた積層体
JP2008114514A (ja) * 2006-11-07 2008-05-22 Toyobo Co Ltd 包装用フィルム及び包装体

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020072204A (ja) * 2017-10-31 2020-05-07 王子ホールディングス株式会社 樹脂フィルム、金属層一体型樹脂フィルム、及び、フィルムコンデンサ
JP7245026B2 (ja) 2017-10-31 2023-03-23 王子ホールディングス株式会社 樹脂フィルム、金属層一体型樹脂フィルム、及び、フィルムコンデンサ
JP7153487B2 (ja) 2018-07-06 2022-10-14 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP2020007445A (ja) * 2018-07-06 2020-01-16 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP7301504B2 (ja) 2018-07-06 2023-07-03 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP2022186744A (ja) * 2018-07-06 2022-12-15 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP2020007441A (ja) * 2018-07-06 2020-01-16 三井化学東セロ株式会社 食品用包装フィルムおよび食品用包装体
JP2022163042A (ja) * 2019-01-29 2022-10-25 東洋紡株式会社 ポリプロピレン系樹脂多層フィルム
JP7416137B2 (ja) 2019-01-29 2024-01-17 東洋紡株式会社 ポリプロピレン系樹脂多層フィルム
EP3998158A4 (en) * 2019-07-10 2023-06-28 Toyobo Co., Ltd. Title of the invention biaxially oriented polypropylene-based resin film and package using same
JPWO2021261312A1 (ja) * 2020-06-25 2021-12-30
JP7255733B2 (ja) 2020-06-25 2023-04-11 東洋紡株式会社 二軸配向ポリプロピレンフィルム
WO2021261312A1 (ja) * 2020-06-25 2021-12-30 東洋紡株式会社 二軸配向ポリプロピレンフィルム
JP7164053B2 (ja) 2020-06-25 2022-11-01 東洋紡株式会社 二軸配向ポリプロピレンフィルム
JP7164054B2 (ja) 2020-06-25 2022-11-01 東洋紡株式会社 二軸配向ポリプロピレンフィルム
WO2021261311A1 (ja) * 2020-06-25 2021-12-30 東洋紡株式会社 二軸配向ポリプロピレンフィルム
JP2022122963A (ja) * 2020-06-25 2022-08-23 東洋紡株式会社 二軸配向ポリプロピレンフィルム
JPWO2021261311A1 (ja) * 2020-06-25 2021-12-30
WO2022004340A1 (ja) * 2020-07-03 2022-01-06 東洋紡株式会社 二軸配向ポリプロピレン系フィルム
JPWO2022004340A1 (ja) * 2020-07-03 2022-01-06
JP7380916B2 (ja) 2021-01-12 2023-11-15 東洋紡株式会社 積層フィルム
WO2022153906A1 (ja) * 2021-01-12 2022-07-21 東洋紡株式会社 積層フィルム
WO2023286541A1 (ja) 2021-07-16 2023-01-19 東洋紡株式会社 二軸配向積層ポリプロピレンフィルム
KR20240032740A (ko) 2021-07-16 2024-03-12 도요보 가부시키가이샤 2축 배향 적층 폴리프로필렌 필름
WO2023013768A1 (ja) * 2021-08-05 2023-02-09 大日本印刷株式会社 バリア性積層体、蓋材及び包装容器
WO2023127534A1 (ja) * 2021-12-28 2023-07-06 東洋紡株式会社 二軸配向ポリプロピレンフィルム
WO2023234417A1 (ja) * 2022-06-02 2023-12-07 東洋紡株式会社 離型フィルム

Also Published As

Publication number Publication date
KR102434652B1 (ko) 2022-08-22
CN109070568B (zh) 2021-08-27
KR20180122459A (ko) 2018-11-12
TWI711539B (zh) 2020-12-01
JP2024041793A (ja) 2024-03-27
JP7459919B2 (ja) 2024-04-02
JPWO2017169952A1 (ja) 2019-02-07
JP7437115B2 (ja) 2024-02-22
JP2023040009A (ja) 2023-03-22
JP2024041794A (ja) 2024-03-27
CN109070568A (zh) 2018-12-21
TW201801927A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
JP7459919B2 (ja) 二軸延伸積層ポリプロピレンフィルム
WO2017170244A1 (ja) 二軸配向ポリプロピレンフィルム
JP2018141122A (ja) 二軸配向ポリプロピレンフィルム
JP6443334B2 (ja) ヒートシール性ポリプロピレン積層延伸フィルム
JP7298751B2 (ja) 二軸配向ポリプロピレンフィルム
JP6554765B2 (ja) ポリプロピレン積層延伸フィルム
JP7409459B2 (ja) ポリプロピレン系積層フィルム
KR20150035736A (ko) 연신 폴리프로필렌 필름
WO2018142983A1 (ja) 二軸配向ポリプロピレン系フィルム
WO2019244708A1 (ja) ポリプロピレン系積層フィルム
US20230212361A1 (en) Biaxially oriented polypropylene film
JP6414378B2 (ja) インモールドラベル用ポリプロピレンフィルム
JP6477471B2 (ja) 空洞含有ポリプロピレンフィルム
US20230212362A1 (en) Biaxially oriented polypropylene film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030711

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774493

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774493

Country of ref document: EP

Kind code of ref document: A1