WO2022004340A1 - 二軸配向ポリプロピレン系フィルム - Google Patents

二軸配向ポリプロピレン系フィルム Download PDF

Info

Publication number
WO2022004340A1
WO2022004340A1 PCT/JP2021/022513 JP2021022513W WO2022004340A1 WO 2022004340 A1 WO2022004340 A1 WO 2022004340A1 JP 2021022513 W JP2021022513 W JP 2021022513W WO 2022004340 A1 WO2022004340 A1 WO 2022004340A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
less
biaxially oriented
surface layer
oriented polypropylene
Prior art date
Application number
PCT/JP2021/022513
Other languages
English (en)
French (fr)
Inventor
麻洋 中野
徹 今井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to EP21834058.6A priority Critical patent/EP4177055A4/en
Priority to JP2022533803A priority patent/JPWO2022004340A1/ja
Priority to CN202180044789.9A priority patent/CN115916537A/zh
Priority to US18/003,230 priority patent/US20230330977A1/en
Priority to KR1020237001013A priority patent/KR20230033705A/ko
Publication of WO2022004340A1 publication Critical patent/WO2022004340A1/ja
Priority to JP2023064183A priority patent/JP2023086787A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/021Treatment by energy or chemical effects using electrical effects
    • B32B2310/022Electrical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2519/00Labels, badges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present invention relates to a biaxially oriented polypropylene film. Specifically, it is suitable for processing such as vapor deposition of inorganic and organic substances, coating, and laminating with other member films, which has excellent adhesion to vapor-deposited films, coating films, and adhesives, and has less wrinkles and blocking on rolls.
  • the present invention relates to a biaxially stretched polypropylene film.
  • biaxially oriented polypropylene films have been widely used as packaging materials for various articles such as foods and textile products because they are extremely excellent in transparency and mechanical properties.
  • the problem with polypropylene films is that, for example, polypropylene resins have low surface energy because they are non-polar, which is why they are used for vapor deposition with inorganic or organic substances, coating, and laminating with other member films. It has been pointed out that the adhesion is not sufficient.
  • the barrier property is poor.
  • the biaxially oriented polypropylene-based film has poor slipperiness due to its excellent flexibility and flatness, and blocking that sticks to each other occurs. Therefore, an anti-blocking agent is generally added to form surface irregularities. Therefore, the formed surface irregularities make the thin film formation by thin film deposition or coating insufficient, leading to defects such as barrier properties.
  • biaxially oriented polypropylene films are used for various food packaging, an antistatic agent is contained in the film to prevent powders and dry matter from sticking due to static electricity, and antistatic properties are obtained by bleeding to the surface. It is common to increase. However, the presence of this antistatic agent on the surface of the film causes the coating to repel the solution, resulting in defects.
  • Patent Document 2 there is disclosed a method of eliminating antistatic agents as much as possible, forming irregularities on the film surface layer, and improving adhesion in laminating with ink or other member films (see, for example, Patent Document 2).
  • Patent Document 2 there are higher demands for barrier properties and processability after thin film formation by thin film deposition or coating.
  • the present invention has excellent adhesion to an adhesive in laminating with a vapor-deposited film, a coating film, and other member films without impairing the excellent transparency and mechanical properties inherent in the biaxially oriented polypropylene film. It is an object of the present invention to provide a biaxially oriented polypropylene film having excellent film slipperiness and winding quality in processing.
  • the present invention which has solved the above problems, has a base layer (A) containing a polypropylene-based resin as a main component, and a surface layer (B) on one surface of the base layer (A).
  • the surface layer (C) is provided on the surface opposite to the surface layer (B) of A), the surface layer (B) fills the following (1) to (5), and the surface layer (C) is the following (C).
  • 6) A biaxially oriented polypropylene film satisfying (7).
  • (1) The wetting tension is 38 mN or more.
  • the surface resistance value is 14.0 Log ⁇ or more.
  • Arithmetic mean roughness (Ra) is 3.0 or more and 5.5 nm or less.
  • Martens hardness is 248 N / mm 2 or less.
  • the central surface average roughness (SRa) is 0.010 or more and 0.026 ⁇ m or less.
  • the central surface average roughness (SRa) is 0.020 ⁇ m or more.
  • Martens hardness is 270 N / mm 2 or more.
  • the dynamic friction coefficient of the biaxially oriented polypropylene film is 0.6 or less.
  • the haze value of the biaxially oriented polypropylene film is 5% or less.
  • the maximum mountain height Rp + maximum valley depth Rv of the surface layer (B) is 30 or more and 50 nm or less.
  • the air release time of the biaxially oriented polypropylene film is 10 seconds or less.
  • the thickness of the biaxially oriented polypropylene film is 9 ⁇ m or more and 200 ⁇ m or less.
  • a laminate of the biaxially oriented polypropylene film and the unstretched polyethylene film is suitable.
  • the laminate strength of the laminate is 2.0 g / 15 mm or more.
  • the biaxially oriented polypropylene film of the present invention can be used with thin films, coating layers, and other films after vapor deposition, coating, and lamination with other films. It showed excellent adhesion, slipperiness and blocking resistance, and was suitable for processed raw fabric.
  • the biaxially oriented polypropylene film of the present invention has a base layer (A) containing a polypropylene resin as a main component and a surface layer (B) on one surface of the base layer (A).
  • the surface layer (C) is provided on the surface opposite to the surface layer (B) of A), the surface layer (B) fills the following (1) to (5), and the surface layer (C) is the following (C). 6) It satisfies (7).
  • the wetting tension is 38 mN or more.
  • the surface resistance value is 14.0 Log ⁇ or more.
  • Arithmetic mean roughness (Ra) is 3.0 or more and 5.5 nm or less.
  • Martens hardness is 248 N / mm 2 or less.
  • the central surface average roughness (SRa) is 0.010 or more and 0.026 ⁇ m or less.
  • the central surface average roughness (SRa) is 0.020 ⁇ m or more.
  • the Martens hardness is 270 N / mm 2 or more.
  • the wetting tension of the surface layer (B) represents a numerical value of the surface tension (mN / m) of the mixed liquid reagent determined to wet the film surface, and is related to the wettability of the printing ink or the adhesive. be.
  • the surface resistance value of the surface of the surface layer (B) differs depending on the amount of the antistatic agent present on the surface, and the smaller the amount of the antistatic agent present on the surface, the larger the surface resistance value. ..
  • the arithmetic mean roughness (Ra) of the surface of the surface layer (B) is measured by using a scanning probe microscope (AFM) in a dynamic mode with a measurement length of 2 ⁇ m in both the X and Y directions. After correcting the obtained image (tilt, line fit, noise line removal), it was obtained according to the definition of arithmetic mean roughness described in JIS-B0601 (1994).
  • the Arithmetic Mean Roughness (Ra) in the 2 ⁇ m square range by AFM is an index showing the unevenness of the resin itself other than the relatively large peaks and valleys formed by the anti-blocking agent and lubricant, and is an index showing the unevenness of the resin itself, which is deposited or coated by processing.
  • the Martens hardness of the surfaces of the surface layer (B) and the surface layer (C) is the same as that of the resin when the surface is pushed in by about 0.1 ⁇ m with a needle tip having a radius of curvature of 0.1 ⁇ m or less using a dynamic ultrafine hardness tester. It shows the hardness.
  • the small Martens hardness of the surface layer (B) indicates that the surface is soft, the resin surface has high followability in processing, and the adhesion is improved.
  • the large Martens hardness of the surface layer (C) indicates that the surface is hard, the subduction of the convex portion formed by the antiblocking agent or the lubricant is small, and the slipperiness and blocking resistance are maintained while the contact area is small. improves.
  • the central surface average roughness (SRa) of the surfaces of the surface layer (B) and the surface layer (C) is measured using a three-dimensional roughness meter at a stylus pressure of 20 mg, a measurement length of 1 mm in the X direction, and Y.
  • the measurement was performed with a feed pitch of 2 ⁇ m in the direction, 99 recording lines, a magnification of 20000 times in the height direction, and a cutoff of 80 ⁇ m, and was obtained according to the definition of the arithmetic mean roughness described in JIS-B0601 (1994). ..
  • SRa Central surface average roughness
  • SRa Central surface average roughness
  • the polypropylene-based resin constituting the base material layer (A) of the biaxially oriented polypropylene-based film of the present invention contains 0 polypropylene homopolymers containing no copolymerization component and ethylene and / or ⁇ -olefin having 4 or more carbon atoms.
  • a polypropylene resin copolymerized at 1.5 mol% or less can be used.
  • the copolymerization component is preferably 0.3 mol% or less, more preferably 0.1 mol% or less, and most preferably a polypropylene homopolymer containing no copolymerization component.
  • the copolymerization amount of ethylene and / or ⁇ -olefin having 4 or more carbon atoms is 0.5 mol% or less, the crystallinity and rigidity are unlikely to decrease, and the heat shrinkage rate at high temperature is unlikely to increase.
  • These resins may be blended and used.
  • the mesopentad fraction ([mm mm]%) measured by 13 C-NMR which is an index of the stereoregularity of the polypropylene resin constituting the base material layer (A) of the biaxially oriented polypropylene film of the present invention, is 98. % Or more, preferably 99.5% or less. More preferably, it is 98.1% or more, and even more preferably 98.2% or more. If the mesopentad ratio of the polypropylene resin is small, the elastic modulus may be low and the heat resistance may be insufficient. 99.5% is a realistic upper limit.
  • the mass average molecular weight (Mw) of the polypropylene-based resin constituting the base material layer (A) of the biaxially oriented polypropylene-based film of the present invention is preferably 180,000 or more and 500,000 or less. If it is smaller than 180,000, the melt viscosity is low, so that it is not stable at the time of casting and the film forming property may be deteriorated. When Mw exceeds 500,000, the amount of the component having a molecular weight of 100,000 or less becomes 35% by mass, and the heat shrinkage rate at high temperature is reduced.
  • the lower limit of the more preferable Mw is 190,000, more preferably 200,000, and the upper limit of the more preferable Mw is 320,000, still more preferably 300,000, and particularly preferably 250,000.
  • the number average molecular weight (Mn) of the polypropylene-based resin constituting the base material layer (A) of the biaxially oriented polypropylene-based film of the present invention is preferably 20,000 or more and 200,000 or less. If it is less than 20,000, the melt viscosity is low, so that it is not stable at the time of casting and the film forming property may be deteriorated. If it exceeds 200,000, the heat shrinkage rate at high temperature is reduced.
  • the lower limit of Mn is more preferably 30,000, still more preferably 40,000, particularly preferably 50,000, and the upper limit of more preferred Mn is 80,000, even more preferably 70,000, particularly preferably 60,000. be.
  • the Mw / Mn which is an index of the molecular weight distribution, is preferably 2.8 or more and 10 or less for the polypropylene-based resin constituting the base material layer (A). It is more preferably 2.8 or more and 8 or less, still more preferably 2.8 or more and 6 or less, and particularly preferably 2.8 or more and 5.4 or less. Further, the lower limit is preferably 3 or more, and more preferably 3.3 or more.
  • components of different molecular weights can be polymerized in a series of plants in multiple stages, components of different molecular weights can be blended offline with a kneader, or catalysts with different performances can be blended. It can be adjusted by polymerization or by using a catalyst capable of achieving a desired molecular weight distribution.
  • the polypropylene-based resin constituting the base material layer (A) of the biaxially oriented polypropylene-based film of the present invention has a melt flow rate (MFR; 230) when Mw / Mn is in the range of 2.8 or more and 5.4 or less. ° C., 2.16 kgf) is preferably 2 g / 10 minutes or more and 20 g / 10 minutes or less.
  • the lower limit of the MFR of the polypropylene-based resin of the base material layer (A) is more preferably 3 g / 10 minutes, further preferably 4 g / 10 minutes, and particularly preferably 5 g / 10 minutes.
  • the upper limit of the MFR of the polypropylene-based resin of the base material layer (A) is more preferably 15 g / 10 minutes, further preferably 12 g / 10 minutes.
  • the Mw / Mn and MFR of the polypropylene-based resin constituting the base material layer (A) are in this range, the heat shrinkage rate at high temperature can be kept small, and the adhesion to the cooling roll is also good. Excellent film-forming property.
  • the arithmetic average roughness (Ra) of the surface of the surface layer (B) of the biaxially oriented polypropylene film of the present invention is 3.0 or more and 5.5 nm or less.
  • the arithmetic average roughness (Ra) is less than 3.0 nm, the surface area of the surface layer (B) is small, and there arises a problem that the adhesion is lowered in processing such as thin film deposition, coating, and laminating.
  • the arithmetic average roughness (Ra) exceeds 5.5 nm, the surface unevenness is large, omission occurs in vapor deposition or coating, and the barrier property becomes poor.
  • the arithmetic average roughness (Ra) of the surface of the surface layer (B) is more preferably 3.2 nm or more, further preferably 3.3 nm or more, particularly preferably 3.5 nm or more, and most preferably 4.0 nm or more.
  • a melt flow rate (melt flow rate) is used as the polypropylene-based resin composition forming the surface layer (B). It is preferable to use a mixture of two or more kinds of polypropylene-based resins having different MFRs).
  • the difference in MFR is preferably 3 g / 10 minutes or more, and more preferably 3.5 g / 10 minutes or more.
  • MFR melt flow rate
  • the crystallization rate and crystallinity of each polypropylene-based resin are different. It is presumed that unevenness is likely to occur.
  • the degree of crystallinity of the polypropylene resin is high or the cooling rate of the unstretched sheet is slow during the production of the film, the surface unevenness due to spherulites becomes large, and the stretching temperature is too high during longitudinal stretching or transverse stretching.
  • the polypropylene-based resin having the smaller MFR polypropylene obtained by copolymerizing ethylene and / or an ⁇ -olefin having 4 or more carbon atoms can also be used.
  • the ⁇ -olefin having 4 or more carbon atoms include 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene and the like. Further, maleic acid having polarity may be used as another copolymerization component.
  • the total amount of ethylene and / or ⁇ -olefin having 4 or more carbon atoms and other copolymerization components is preferably 8.0 mol% or less. If the copolymerization exceeds 8.0 mol%, the film may be whitened and the appearance may be poor, or the film may become sticky and the film formation may be difficult. Further, these resins may be used by blending two or more kinds. In the case of blending, the individual resins may be copolymerized in an amount of more than 8.0 mol%, but it is preferable that the blended product has a monomer unit and the monomer other than propylene is 8.0 mol% or less. ..
  • the polypropylene-based resin having the larger MFR the above-mentioned copolymerized polypropylene can be used, or a homopolypropylene resin can be used.
  • the mixing ratio of the polypropylene-based resin having the smaller MFR and the polypropylene-based resin having the larger MFR is preferably in the range of 1% by weight / 99% by weight to 49% by weight / 51% by weight, and 1% by weight / 99% by weight to 30% by weight.
  • the range of% by weight / 70% by weight is more preferable, and the range of 1% by weight / 99% by weight to 10% by weight / 90% by weight is further preferable.
  • the polypropylene-based resin composition constituting the surface layer (B) of the biaxially oriented polypropylene-based film of the present invention preferably has an MFR of 1.0 g / 10 minutes or more and 10.0 g / 10 minutes or less.
  • the lower limit of the MFR of the polypropylene-based resin composition of the surface layer (B) is more preferably 2.0 g / 10 minutes, further preferably 3.0 g / 10 minutes, and 4.0 g / 10 minutes. It is particularly preferable to have.
  • the upper limit of the MFR of the polypropylene-based resin composition constituting the surface layer (B) is more preferably 9.0 g / 10 minutes, further preferably 8.0 g / 10 minutes, and 5.5 g / 10 minutes.
  • the film-forming property is good and the appearance is also excellent.
  • the MFR of the polypropylene-based resin composition constituting the surface layer (B) is smaller than 1.0 g / 10 minutes, the substrate layer (the substrate layer (A)) has a large MFR of the polypropylene-based resin composition. Since the difference in viscosity between A) and the surface layer (B) becomes large, unevenness (unevenness of the original fabric) is likely to occur during film formation.
  • the MFR of the polypropylene-based resin composition constituting the surface layer (B) exceeds 10 g / 10 minutes, the adhesion to the cooling roll is deteriorated, air is entrained, and the smoothness is poor, which is a drawback as a starting point. May increase.
  • the central surface average roughness (SRa) of the surface of the surface layer (B) of the biaxially oriented polypropylene-based film by a three-dimensional roughness meter is 0.010 ⁇ m or more and 0.026 ⁇ m or less.
  • the average roughness (SRa) of the surface of the surface of the surface layer (B) is more preferably 0.012 ⁇ m or more and 0.025 ⁇ m or less, further preferably 0.015 ⁇ m or more and 0.025 ⁇ m or less, 0.020 ⁇ m or more and 0. It is particularly preferably .024 ⁇ m or less.
  • the average roughness (SRa) of the surface of the surface of the surface layer (B) is less than 0.010 ⁇ m, the surface unevenness is small, and the slipperiness of the films, the air bleeding time between the films, and the blocking resistance are deteriorated.
  • the central surface average roughness (SRa) of the surface of the surface layer (B) exceeds 0.026 ⁇ m, the thin film is penetrated by an anti-blocking agent when the thin film layer is applied such as aluminum vapor deposition or coating, or the thin film is formed on the side surface of the convex portion. May not be formed, resulting in poor barrier properties and poor adhesion.
  • the average roughness (SRa) of the surface of the surface of the surface layer (B) there are several methods for keeping the average roughness (SRa) of the surface of the surface of the surface layer (B) within the specified range, but it can be adjusted by the average particle size and the amount of the antiblocking agent added.
  • the anti-blocking agent it can be appropriately selected and used from inorganic particles such as silica, calcium carbonate, kaolin and zeolite, and organic particles such as acrylic, polymethacrylic and polystyrene. Among these, it is particularly preferable to use silica or polymethacrylic particles.
  • the average particle size of the antiblocking agent is preferably 1.0 ⁇ m or more and 3.0 ⁇ m or less, and more preferably 1.0 ⁇ m or more and 2.7 ⁇ m or less.
  • the method for measuring the average particle size referred to here is a method in which a photograph is taken with a scanning electron microscope, the ferret diameter in the horizontal direction is measured using an image analyzer device, and the average value is displayed.
  • the amount of the anti-blocking agent added is the amount added to the surface layer (B) and the surface layer (C) so that the haze, the dynamic friction coefficient, the average roughness of the central surface (SRa), and the air bleeding time are within the predetermined ranges. There are no particular restrictions if you adjust.
  • the surface resistance value of the surface of the surface layer (B) of the biaxially oriented polypropylene film of the present invention is preferably 14 Log ⁇ or more.
  • the surface resistance value is more preferably 14.5 Log ⁇ or more, and further preferably 15 Log ⁇ or more.
  • the surface resistance value is less than 14 Log ⁇ , not only the adhesion is lowered, but also the antistatic agent bleeding on the surface layer (B) repels the coat, resulting in poor coating.
  • additives such as antistatic agents and anti-fog agents as much as possible. Further, it should be noted that the additive contained in the base material layer (A) may bleed on the surface of the surface layer (B).
  • the wetting tension of the surface of the surface layer (B) of the biaxially oriented polypropylene film of the present invention is 38 mN / m or more.
  • the wetting tension is 38 mN / m or more, the adhesiveness with the adhesive used for laminating with the thin-film deposition film, the coating film, and other member films is improved.
  • additives such as antistatic agents and surfactants, but these methods have the effect of lowering the surface resistance value.
  • It is preferable to perform physicochemical surface treatment such as corona treatment and flame treatment. For example, in the corona treatment, it is preferable to use a preheating roll and a treatment roll to perform discharge in the air.
  • Martens hardness is less than 248N / mm 2 of the surface layer of the biaxially oriented polypropylene film of the present invention (B), more preferably not more than 245 N / mm 2, further preferably 240 N / mm 2 or less , still more preferably not more than 235N / mm 2, and most preferably not more than 230N / mm 2.
  • Martens hardness exceeds 248 N / mm 2 , the surface is hard, the followability of the resin surface in processing is deteriorated, and the adhesion is lowered.
  • the Martens hardness of the surface layer (B) of the biaxially oriented polypropylene film of the present invention is preferably 200 N / mm 2 or more, more preferably 210 N / mm 2 or more.
  • the maximum peak height Rp + maximum valley depth Rv by AFM on the surface of the surface layer (B) of the biaxially oriented polypropylene film of the present invention is 30 or more and 50 nm or less.
  • the lower limit of the maximum mountain height Rp + maximum valley depth Rv on the surface of the surface layer (B) is more preferably 32 nm, further preferably 35 nm, and particularly preferably 38 nm.
  • the upper limit of the maximum mountain height Rp + maximum valley depth Rv on the surface of the surface layer (B) is more preferably 48 nm, and particularly preferably 45 nm.
  • the maximum mountain height Rp and the maximum valley depth Rv are not due to the anti-blocking agent, but due to the unevenness of the resin itself.
  • the central surface average roughness (SRa) of the surface of the surface layer (C) of the biaxially oriented polypropylene film of the present invention by a three-dimensional roughness meter is 0.020 ⁇ m or more.
  • the average roughness (SRa) of the surface of the surface of the surface layer (C) is more preferably 0.022 ⁇ m or more, further preferably 0.025 ⁇ m, and particularly preferably 0.028 ⁇ m.
  • the central surface average roughness (SRa) of the surface of the surface layer (C) of the biaxially oriented polypropylene film of the present invention by a three-dimensional roughness meter is preferably 0.040 ⁇ m or less.
  • the Martens hardness of the surface layer (C) of the biaxially oriented polypropylene film is preferably 270 N / mm 2 or more. More preferably 275 N / mm 2 or more, more preferably 280N / mm 2 or more, and particularly preferably 285N / mm 2 or more.
  • the Martens hardness is less than 270 N / mm 2 , the surface is soft and the added anti-blocking agent sinks into the resin, resulting in poor slipperiness and blocking resistance.
  • the martens hardness 270 N / mm 2 or more it is preferable to use polypropylene obtained by copolymerizing ethylene and / or an ⁇ -olefin having 4 or more carbon atoms at 0.5 mol% or less, but 0.1 mol. % Or less is more preferable, and completely homopolypropylene containing no copolymerization component is most preferable. Further, it is possible to increase the Martens hardness by increasing the crystallinity by setting the mesopentad fraction ([mm mm]%) of the constituent polypropylene to 98% or more.
  • the Martens hardness of the surface layer (C) of the biaxially oriented polypropylene film is preferably 350 N / mm 2 or less.
  • the polypropylene resin used in the present invention can be obtained by polymerizing the raw material propylene using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Above all, in order to eliminate heterologous bonds, it is preferable to use a Ziegler-Natta catalyst and a catalyst capable of polymerization with high stereoregularity.
  • a known method may be adopted, for example, a method of polymerizing in an inert solvent such as hexane, heptane, toluene or xylene, a method of polymerizing in a liquid monomer, or a gas. Examples thereof include a method of adding a catalyst to the monomer and polymerizing in a gas phase state, a method of polymerizing in combination of these, and the like.
  • the base layer (A) and / or the surface layer (B) and / or the surface layer (C) of the biaxially oriented polypropylene film of the present invention of the present invention may contain an additive or other resin.
  • the additive include an antioxidant, an ultraviolet absorber, a nucleating agent, a pressure-sensitive adhesive, an anti-fog agent, a flame retardant, an inorganic or organic filler, and the like.
  • other resins include polypropylene resins other than the polypropylene resin used in the present invention, random copolymers which are copolymers of propylene with ethylene and / or ⁇ -olefins having 4 or more carbon atoms, and various elastomers.
  • the biaxially oriented polypropylene-based film of the present invention has a three-layer structure of a surface layer (B) / base layer (A) / surface layer (C), and a surface layer (B) / intermediate.
  • a surface layer (B) / base layer (A) / surface layer (C) has a structure or a multi-layer structure having more than that.
  • the thickness of the entire biaxially oriented polypropylene film of the present invention is preferably 9 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 150 ⁇ m or less, further preferably 12 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 15 ⁇ m or more and 80 ⁇ m or less.
  • the ratio of the thickness of the surface layer (B) to the thickness of the base material layer (A) in the biaxially oriented polypropylene-based film of the present invention is as follows: the thickness of the total surface layer (B) / the thickness of the total base material layer (A). , 0.01 or more and 0.50 or less, more preferably 0.02 or more and 0.40 or less, further preferably 0.03 or more and 0.30 or less, and 0. It is particularly preferable that it is 04 or more and 0.20 or less.
  • the thickness of the entire surface layer (B) / the thickness of the entire substrate layer (A) exceeds 0.50, the shrinkage rate tends to increase.
  • the thickness of the total surface layer (C) / the thickness of the total base material layer (A) is 0. It is preferably 0.01 or more and 0.50 or less, more preferably 0.02 or more and 0.40 or less, further preferably 0.03 or more and 0.30 or less, and 0.04 or more. , 0.20 or less is particularly preferable.
  • the thickness of the entire surface layer (C) / the thickness of the entire substrate layer (thickness of A) exceeds 0.50, the haze becomes high and the transparency deteriorates depending on the amount of the antiblocking agent added.
  • the thickness of the base material layer (A) or the total thickness of the base material layer (A) and the intermediate layer (D) is preferably 50% or more and 99% or less with respect to the thickness of the entire film, more preferably. It is 60% or more and 97% or less, particularly preferably 70% or more and 90% or less, and most preferably 80% or more and 92% or less.
  • the haze of the biaxially oriented polypropylene film of the present invention is preferably 5% or less, more preferably 0.2% or more and 5.0% or less, further preferably 0.3 or more and 4.5%, and 0.4%. % Or more, 4.0% is particularly preferable.
  • the longitudinal tensile elastic modulus of the biaxially oriented polypropylene film of the present invention is preferably 1.8 or more and 4.0 GPa or less, more preferably 2.0 GPa or more and 3.7 GPa or less. It is more preferably 1.1 GPa or more and 3.5 GPa or less, and particularly preferably 2.2 or more and 3.4 GPa or less.
  • the lateral tensile elastic modulus of the biaxially oriented polypropylene film of the present invention is preferably 3.8 GPa or more and 8.0 GPa or more, more preferably 4.0 GPa or more and 7.5 GPa or less, 4 It is more preferably 0.1 GPa or more and 7.0 GPa or less, and particularly preferably 4.2 GPa or more and 6.5 GPa or less. If the tensile elastic modulus is within the above range, the film becomes stiff and can be used even if the film thickness is small, so that the amount of film used can be reduced. The method for measuring the tensile elastic modulus will be described later.
  • the heat shrinkage in the vertical direction at 150 ° C. is preferably 0.2 or more and 15.0% or less, preferably 0.3% or more and 13.0% or less. Is more preferable, 0.5% or more and 11.0% or less are further preferable, and 0.5% or more and 9.0% or less are particularly preferable. If the heat shrinkage is within the above range, it can be said that the film has excellent heat resistance, and it can be used in applications that may be exposed to high temperatures. If the heat shrinkage rate at 150 ° C. is up to about 1.5%, it is possible by adjusting, for example, increasing the number of low molecular weight components, stretching conditions, and heat fixing conditions, but to lower it below that, it is annealed offline.
  • the lateral heat shrinkage at 150 ° C. is preferably 0.5 or more and 30.0% or less, preferably 0.5% or more and 25.0% or less. Is more preferable, 0.5% or more and 20.0% or less are further preferable, and 0.5% or more and 18.0% or less are particularly preferable. If the heat shrinkage is within the above range, it can be said that the film has excellent heat resistance, and it can be used in applications that may be exposed to high temperatures. If the heat shrinkage rate at 150 ° C.
  • the dynamic friction coefficient of the biaxially oriented polypropylene film of the present invention is preferably 0.6 or less, more preferably 0.55 or less, and particularly preferably 0.50 or less.
  • the coefficient of dynamic friction may be 0.1 or more. The method for measuring the coefficient of dynamic friction will be described later.
  • the air bleeding time of the biaxially oriented polypropylene film of the present invention is preferably 10 seconds or less, more preferably 8 seconds or less, still more preferably 5 seconds or less, and particularly preferably 3 seconds or less. If the air release time exceeds 10 seconds, the air will be released slowly when rolled, and wrinkles are likely to occur. The air release time may be 1 second or longer. The method for measuring the air release time will be described later.
  • the biaxially oriented polypropylene-based film of the present invention is preferably a film roll wound with a width of 300 mm and a winding length of 800 m or more, which is preferable for transportation, vapor deposition processing, coating processing, and bag making processing.
  • the biaxially oriented polypropylene film of the present invention was wound with a width of 500 mm and a winding length of 1000 m and the wrinkles on the roll surface were visually evaluated according to the following criteria, there were weak wrinkles, but the drawn film had a tension of 20 N / m. It is preferable that the wrinkles disappear with a certain amount, and it is more preferable that there are no wrinkles.
  • a layer made of aluminum, polyvinylidene chloride, nylon, an ethylene-vinyl alcohol copolymer, and polyvinyl alcohol, particularly a thin film layer is provided and used. Is preferable. It is preferable that the aluminum thin film layer is partially peeled off from the aluminum thin film provided on the surface of the biaxially oriented polypropylene film of the present invention, and it is more preferable that the aluminum thin film layer is not partially peeled off.
  • the biaxially oriented polypropylene film of the present invention or a film provided with a thin film layer thereof, an unstretched film made of low-density polyethylene, linear low-density polyethylene, an ethylene-vinyl acetate copolymer, polypropylene, and polyester, and uniaxially stretched. It is preferable to process it into a packaging bag using a laminate with a film and a biaxially stretched film.
  • the laminate strength of the laminate of the biaxially oriented polypropylene film and the unstretched polyethylene film of the present invention is preferably 2.0 N / 15 mm or more, more preferably 2.3 N / mm or more, and further preferably 2.5 N / mm or more. It is preferable, and 2.8 N / mm or more is particularly preferable.
  • the lamination strength may be 5 N / mm or less. The method for measuring the laminate strength will be described later.
  • the biaxially oriented polypropylene-based film of the present invention has a polypropylene-based resin composition constituting the base material layer (A), a polypropylene-based resin composition constituting the surface layer (B), and a surface layer (C).
  • Polypropylene resin composition of It can be obtained by stretching to (TD) and then heat-fixing treatment. It is preferable to extrude the surface layer (B) so as to come into contact with the cooling roll.
  • the polypropylene resin is slowly cooled to increase the crystallinity, and the surface unevenness due to spherulites causes the arithmetic average roughness of the surface of the surface layer (B) ( Ra) may be too large.
  • the melt extrusion temperature is preferably about 200 to 280 ° C., and in order to obtain a laminated film having a good appearance without disturbing the layer within this temperature range, the polypropylene-based resin composition and the surface layer constituting the base material layer (A) are formed.
  • the viscosity difference (MFR difference) of the polypropylene-based resin composition constituting (B) is 6.0 g / 10 minutes or less. If the viscosity difference is larger than 6 g / 10 minutes, the layer is disturbed and the appearance tends to be poor. It is more preferably 5.5 g / 10 minutes or less, and even more preferably 5.0 g / 10 minutes or less.
  • the surface temperature of the cooling roll is preferably 25 ° C. or higher and 35 ° C. or lower, more preferably 27 ° C. or higher and 33 ° C. or lower.
  • the cooling roll temperature exceeds 35 ° C., the crystallinity of the polypropylene-based resin becomes high, and the arithmetic average roughness (Ra) of the surface of the surface layer (B) may become too large due to the surface irregularities of the formed spherulites. be.
  • the lower limit of the stretching ratio in the vertical direction (MD) is preferably 3 times, more preferably 3.5 times. If it is less than the above, the film thickness may be uneven.
  • the upper limit of the draw ratio of MD is preferably 8 times, more preferably 7 times. If it exceeds the above, it may be difficult to continue TD stretching.
  • the lower limit of the stretching temperature of the MD is preferably 120 ° C., more preferably 125 ° C., and even more preferably 130 ° C. If it is less than the above, the mechanical load may increase, the thickness unevenness may increase, and the surface of the film may be roughened.
  • the upper limit of the stretching temperature of the MD is preferably 160 ° C, more preferably 155 ° C, and even more preferably 150 ° C. A higher temperature is preferable for lowering the heat shrinkage rate, but it may adhere to the roll and cannot be stretched, or the surface may be roughened.
  • the lower limit of the draw ratio in the width direction (TD) is preferably 4 times, more preferably 5 times, and further preferably 6 times. If it is less than the above, the thickness may be uneven.
  • the upper limit of the TD stretch ratio is preferably 20 times, more preferably 17 times, still more preferably 15 times, and particularly preferably 12 times. If it exceeds the above, the heat shrinkage rate may increase or it may break during stretching.
  • the preheating temperature in TD stretching is preferably set to 5 to 15 ° C. higher than the stretching temperature in order to rapidly raise the film temperature to the vicinity of the stretching temperature.
  • the lower limit of the stretching temperature of TD is preferably 150 ° C., more preferably 155 ° C., still more preferably 158 ° C., and particularly preferably 160 ° C. If it is less than the above, it may break without being sufficiently softened or the heat shrinkage rate may increase.
  • the upper limit of the TD stretching temperature is preferably 170 ° C, more preferably 168 ° C, and even more preferably 165 ° C. It is preferable that the temperature is high in order to reduce the heat shrinkage rate, but if it exceeds the above temperature, not only the small molecule component melts and recrystallizes and the orientation is lowered, but also the surface roughness and the film may be whitened.
  • the stretched film is heat-fixed.
  • the lower limit of the heat fixing temperature is preferably 163 ° C, more preferably 165 ° C. If it is less than the above, the heat shrinkage rate may increase. In addition, long-term treatment is required to reduce the heat shrinkage rate, which may result in inferior productivity.
  • the upper limit of the heat fixing temperature is preferably 176 ° C, more preferably 175 ° C. If it exceeds the above, the small molecule component may be melted and recrystallized, resulting in surface roughness and whitening of the film.
  • the lower limit of the relaxation rate is preferably 2%, more preferably 3%. If it is less than the above, the heat shrinkage rate may increase.
  • the upper limit of the relaxation rate is preferably 10%, more preferably 8%. If it exceeds the above, the thickness unevenness may increase.
  • the film produced in the above process can be once wound into a roll and then annealed offline.
  • the biaxially oriented polypropylene film roll of the present invention can be obtained by subjecting the thus obtained biaxially oriented polypropylene film to corona discharge, plasma treatment, flame treatment, etc., if necessary, and then winding it with a winder. can.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Thickness The thickness of each layer of the base material layer (A) and the surface layer (B) was measured by cutting out a cross section of a biaxially stretched laminated polypropylene film hardened with a modified urethane resin with a microtome and observing it with a differential interference microscope.
  • Haze (%) It was measured at 23 ° C. according to JIS K 7105. The measurement was performed using a haze meter (manufactured by Nippon Denshoku Kogyo Co., Ltd., 300A). The measurement was performed twice, and the average value was obtained.
  • Tensile modulus (GPa) It was measured according to JIS K 7127. A sample having a width of 10 mm and a length of 180 mm in the longitudinal direction and the width direction of the film was cut out using a razor to obtain a sample. After leaving for 12 hours in an atmosphere of 23 ° C. and 65% RH, the measurement was performed under the conditions of an atmosphere of 23 ° C. and 65% RH, a distance between chucks of 100 mm and a tensile speed of 200 mm / min, and the average of the results of 5 measurements. The value was used. As a measuring device, an Autograph AG5000A manufactured by Shimadzu Corporation was used.
  • Heat shrinkage rate (%) It was measured by the following method according to JIS Z1712. The film was cut into a width of 20 mm and a length of 200 mm in each of the MD direction and the TD direction, hung in a hot air oven at 150 ° C., and heated for 5 minutes. The length before and after heating was measured, and the ratio (%) of the length obtained by subtracting the length after heating from the length before heating was determined, and the heat shrinkage rate was determined.
  • Step 1) Measurements are performed in a standard laboratory atmosphere (see JIS K 7100) with a temperature of 23 ° C and a relative humidity of 50%.
  • Step 2) Place the test piece on the substrate of the hand coater (4.1), drop a few drops of the test mixture onto the test piece, and immediately pull the wire bar to spread it. If the test mixture is spread using a cotton swab or brush, the liquid should be spread quickly over an area of at least 6 cm 2.
  • the amount of liquid should be such that a thin layer is formed without forming a puddle.
  • the wet tension is determined by observing the liquid film of the test mixture in a bright place and in the state of the liquid film after 3 seconds. It is wet that the liquid film does not break and keeps the state when it is applied for 3 seconds or more. If the wetting is maintained for 3 seconds or longer, the process proceeds to the next mixture having a higher surface tension, and conversely, if the liquid film breaks in 3 seconds or less, the process proceeds to the next mixture having a lower surface tension. Repeat this operation to select a mixed solution that can accurately wet the surface of the test piece in 3 seconds. Step 3) A new cotton swab is used for each test.
  • Step 4) Perform the operation of selecting a mixture that can wet the surface of the test piece in 3 seconds at least 3 times. The surface tension of the mixture thus selected is reported as the wetting tension of the film.
  • Air release time (seconds) As shown in FIG. 1, a biaxially oriented polyprilopylene-based film is placed on the pedestal 1 as a film 4 so that the surface layer (B) faces the upper surface. Next, the film retainer 2 is placed on the film 4 and fixed to fix the film 4 while applying tension. Next, a biaxially oriented polyprilopylene-based film as the film 5 is placed on the film retainer 2 with the surface layer (C) facing down. Next, the film retainer 8 is placed on the film 5, and the film retainers 8, 2 and the pedestal 1 are further fixed using the screws 3. Next, the cavity 2a provided in the film retainer 2 and the vacuum pump 6 are connected via the pores 2c provided in the film retainer 2 and the pipe 7.
  • the time (seconds) from the occurrence of the interference fringes on the outer peripheral portions of the overlapping surfaces of the film 4 and the film 5 until the interference fringes spread on the front surface of the overlapping surfaces and the movement stops is measured, and this time (seconds) is measured.
  • Arithmetic mean roughness ([Ra] nm), maximum peak height ([Rp] nm), maximum valley depth ([Rv] nm) Arithmetic mean roughness (Ra), maximum peak height (Rp), maximum valley depth (Rv) of the obtained film was measured using a scanning probe microscope (“SPM-9700” manufactured by Shimadzu Corporation). In the dynamic mode, the measurement lengths in the X and Y directions are both measured in the range of 2 ⁇ m, and the obtained image is corrected (tilt, line fit, noise line removal), and then the arithmetic mean described in JIS-B0601 (1994). It was calculated according to the definition of roughness.
  • Laminate strength (N / 15mm) The laminate strength was measured by the following procedure.
  • Procedure 1) Preparation of a laminate of biaxially oriented polyprilopylene-based film and unstretched polyethylene film The following was performed using a continuous dry laminating machine. After gravure-coating the surface layer (B) surface of the biaxially oriented polypropylene film obtained in Examples and Comparative Examples with an adhesive so that the coating amount at the time of drying is 2.8 g / m 2 , the adhesive is guided to a drying zone. It was dried at 80 ° C. for 5 seconds. Subsequently, the sealant film was bonded between the rolls provided on the downstream side (roll pressure 0.2 MPa, roll temperature: 50 ° C.).
  • the obtained laminated film was aged at 40 ° C. for 3 days in a wound state.
  • the adhesive was obtained by mixing 28.9% by mass of the main agent (TM569, manufactured by Toyo Morton), 4.00% by mass of the curing agent (CAT10L, manufactured by Toyo Morton) and 67.1% by mass of ethyl acetate.
  • a urethane-based adhesive was used, and a non-stretched polyethylene film (Rix (registered trademark) L4102, thickness 40 ⁇ m) manufactured by Toyobo Co., Ltd. was used as the sealant film.
  • Step 2) Measurement of Laminate Strength The laminate film obtained above is cut into strips (length 200 mm, width 15 mm) having long sides in the vertical direction of the biaxially oriented polypropylene film, and a tensile tester (Tencilon, Orientec). The peel strength (N / 15 mm) at the time of T-shaped peeling was measured at a tensile speed of 200 mm / min in an environment of 23 ° C. The measurement was performed three times, and the average value was taken as the laminate strength.
  • Tables 1 to 3 show the details of the polypropylene-based resin raw materials used in the following Examples and Comparative Examples, and the film forming conditions.
  • Example 1 As the base material layer (A), the polypropylene homopolymer PP-1 shown in Table 1 was used. Further, on the surface layer (B), the polypropylene homopolymer PP-1 shown in Table 1 was 43.2% by weight, the ethylene copolymer polypropylene polymer PP-3 shown in Table 1 was 52.0% by weight, and Table 2 was used. The masterbatch A shown in the above was blended at a ratio of 4.8% by weight. At this time, the melt flow rate (g / 10 minutes) of the polypropylene-based resin composition constituting the surface layer (B) was 5.1.
  • a polypropylene homopolymer PP-1 shown in Table 1 was blended at a ratio of 93.6% by weight, and Masterbatch A shown in Table 2 was blended at a ratio of 6.4% by weight.
  • the base layer (A) is a 45 mm extruder
  • the surface layer (B) is a 25 mm extruder
  • the surface layer (C) is a 20 mm extruder. It was extruded together and cooled and solidified so that the surface layer (B) was in contact with the cooling roll at 30 ° C., and then stretched 4.5 times in the vertical direction (MD) at 125 ° C.
  • both ends in the width direction (TD) of the film are clipped, preheated at 168 ° C, stretched 8.2 times in the width direction (TD) at 155 ° C, and 6.7% in the width direction (TD). It was heat-fixed at 165 ° C. while relaxing.
  • the film forming condition at this time was defined as the film forming condition a.
  • a biaxially oriented polypropylene-based film having a structure of a surface layer (B) / a base layer (A) / a surface layer (C) was obtained.
  • the surface of the surface layer (B) of the biaxially oriented polypropylene film was subjected to corona treatment under the condition of an applied current value of 0.75 A using a corona treatment machine manufactured by Sophthal Corona & Plasma GmbH. After that, it was wound up with a winder.
  • the thickness of the obtained film was 20 ⁇ m (the thickness of the surface layer (B) / base layer (A) / surface layer (C) was 1.3 ⁇ m / 17.7 ⁇ m / 1.0 ⁇ m).
  • Example 2 The conditions were the same as in Example 1 except that the amount of resin discharged from the extruder was adjusted so that the thickness of the base material layer (A) was 15.1 ⁇ m and the thickness of the surface layer (B) was 3.9 ⁇ m, and the conditions were 20 ⁇ m. A biaxially oriented polypropylene film was obtained.
  • Example 3 On the surface layer (B), 45.0% by weight of the polypropylene homopolymer PP-1 shown in Table 1 and 52.0% by weight of the ethylene copolymer polypropylene polymer PP-3 shown in Table 1 are shown in Table 2. Under the same conditions as in Example 1 except that the master batch A was blended at a ratio of 3.0% by weight, a 20 ⁇ m biaxially oriented polypropylene film was obtained.
  • Example 4 In the surface layer (B), 1.2% by weight of the polypropylene homopolymer PP-1 shown in Table 1 and 94.0% by weight of the ethylene copolymer polypropylene polymer PP-3 shown in Table 1 are shown in Table 2. Under the same conditions as in Example 1 except that the master batch A was blended at a ratio of 4.8% by weight, a 20 ⁇ m biaxially oriented polypropylene film was obtained.
  • Example 5 (Example 5) Implemented except that the polypropylene homopolymer PP-1 used in the base layer (A) and the surface layer (C) was changed to PP-2 shown in Table 1 and the film forming conditions were changed to b shown in Table 3. Under the same conditions as in Example 1, a 20 ⁇ m biaxially oriented polypropylene film was obtained.
  • the surface layer (A) contains 60.0% by weight of the polypropylene homopolymer PP-1 shown in Table 1, and PP-4 contains 40.0% by weight, and the surface layer (B) contains the polypropylene shown in Table 1.
  • Example 2 Under the same conditions as in Example 1 except that the surface layer (B) was not subjected to corona treatment, a 20 ⁇ m biaxially oriented polypropylene film was obtained.
  • Example 3 On the surface layer (B), 45.0% by weight of the polypropylene homopolymer PP-1 shown in Table 1 and 52.0% by weight of the ethylene copolymer polypropylene polymer PP-3 shown in Table 1 are shown in Table 2. The same conditions as in Example 1 were used except that the master batch A was blended at a ratio of 3.0% by weight and only the polypropylene homopolymer PP-1 shown in Table 1 was used for the surface layer (C). A 20 ⁇ m biaxially oriented polypropylene film was obtained.
  • Example 6 The same conditions as in Example 1 were used except that the film forming conditions were changed to c in Table 3, and a 20 ⁇ m biaxially oriented polypropylene-based film was obtained.
  • Tables 4 and 5 show the raw materials, manufacturing methods, and physical properties of the films used in the above Examples and Comparative Examples.
  • the biaxially oriented polypropylene films obtained in Examples 1 to 5 had high lamination strength, did not peel off the aluminum vapor deposition, and had excellent adhesion without repellency of the coating liquid. In addition, the roll had no wrinkles and had excellent blocking resistance. On the other hand, the films of Comparative Examples 1 to 6 were inferior in adhesion and roll winding state.
  • the biaxially oriented polypropylene-based film of the present invention exhibits excellent adhesion in vapor deposition, coating, and laminating with other films, has good slipperiness and blocking resistance, and is suitable for processed raw fabrics. It can be used for food packaging and labels used for confectionery, etc., and it is industrially useful because it can produce films at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】 二軸配向ポリプロピレン系フィルムが本来有している優れた透明性や機械的特性を損なうことなく、蒸着やコーティング、他のフィルムとのラミネートにおいて優れた密着性を示し、滑り性、耐ブロッキング性も良好な加工原反として適した二軸配向ポリプロピレン系フィルムを提供すること。 【解決手段】 ポリプロピレン系樹脂を主成分とする基材層(A)と、前記基材層(A)の一方の面に表面層(B)を、基材層(A)の表面層(B)とは反対の面に表面層(C)を有し、表面層(B)が以下の(1)~(5)を満たし、表面層(C)が以下の(6)(7)を満たす二軸配向ポリプロピレン系フィルム。 (1)濡れ張力が38mN以上である。 (2)表面抵抗値が14.0LogΩ以上である。 (3)算術平均粗さ(Ra)が3.0以上、5.5nm以下である。 (4)マルテンス硬さが248N/mm以下である。 (5)中心面平均粗さ(SRa)が0.010以上、0.026μm以下である。 (6)中心面平均粗さ(SRa)が0.020μm以上である。 (7)マルテンス硬さが270N/mm以上である。

Description

二軸配向ポリプロピレン系フィルム
 本発明は、二軸配向ポリプロピレン系フィルムに関する。詳細には、無機物や有機物の蒸着、コーティング、他部材フィルムとのラミネートなどの加工において、蒸着膜や塗布膜、接着剤との密着性に優れ、ロールでのシワやブロッキングが少ない加工に適した二軸延伸ポリプロピレン系フィルムに関する。
 従来、二軸配向ポリプロピレン系フィルムは、その透明性や機械的特性において非常に優れたものであるところから、食品や繊維製品などを始めとする様々の物品の包装材料として広く用いられている。しかしながら、ポリプロピレン系フィルムの問題点としては、例えば、ポリプロピレン系樹脂が無極性であることから表面エネルギーが小さく、そのために無機物や有機物での蒸着や、コーティング、他部材フィルムとのラミネートなどの加工で密着力が十分ではないことが指摘されている。
 特に、蒸着やコーティングによる薄膜層形成では密着力だけでなく、表面凹凸による突起部分で薄膜形成が出来ず、バリア性などが不良となる問題もある。一方で二軸配向ポリプロピレン系フィルムはその優れた柔軟性と平面性により滑り性が乏しく、フィルム同士で貼りつくブロッキングが発生するため、一般的にアンチブロッキング剤を添加し、表面凹凸を形成させる。そのため、形成した表面凹凸で蒸着やコーティングによる薄膜形成が不十分となり、バリア性などの不良につながる。
 更に、二軸配向ポリプロピレン系フィルムは様々な食品包装用として用いられているため、粉末や乾物などが静電気で貼り付かないよう帯電防止剤をフィルム中に含有させ、表面へのブリードにより帯電防止性を高めることが一般的である。しかしながら、この帯電防止剤がフィルム表面にあることで、コーティングで溶液がはじかれ、不良となる。
 このような問題点に対する対策として様々の方法が提案されており、例えば、プロピレン樹脂に分岐鎖状ポリプロピレンを混ぜ、ポリプロピレンのβ晶をα晶に結晶変態させることでフィルム表面に凹凸を形成させ、実質的に無機物や有機物によるアンチブロッキング剤を用いずに滑り性を良好とする方法(例えば、特許文献1等参照)が開示されている。しかしながら、立体規則性の高いホモポリプロピレンのみを用いていることから、表面は硬く、蒸着やコーティング、ラミネートなどの加工後の薄膜やコーティング層との密着性は考慮されていない。
 一方で、帯電防止剤を極力なくし、フィルム表面層に凹凸を形成させ、インキや他部材フィルムとのラミネートでの密着性を上げる方法(例えば、特許文献2等参照)が開示されている。
 しかしながら、蒸着やコーティングによる薄膜形成後のバリア性や加工性について、より高度な要求がなされている。
国際公開第2007/094072号 国際公開第2018/142983号
 本発明は、二軸配向ポリプロピレン系フィルムが本来有している優れた透明性や機械的特性を損なうことなく、蒸着膜や塗布膜、他部材フィルムとのラミネートにおける接着剤との密着性に優れ、加工におけるフィルムの滑り性や巻き品位に優れた二軸配向ポリプリロピレンフィルムを提供することを目的とする。
 上記課題を解決し得た本発明は、ポリプロピレン系樹脂を主成分とする基材層(A)と、前記基材層(A)の一方の面に表面層(B)を、基材層(A)の表面層(B)とは反対の面に表面層(C)を有し、表面層(B)が以下の(1)~(5)を満たし、表面層(C)が以下の(6)(7)を満たす二軸配向ポリプロピレン系フィルムである。
(1)濡れ張力が38mN以上である。
(2)表面抵抗値が14.0LogΩ以上である。
(3)算術平均粗さ(Ra)が3.0以上、5.5nm以下である。
(4)マルテンス硬さが248N/mm以下である。
(5)中心面平均粗さ(SRa)が0.010以上、0.026μm以下である。
(6)中心面平均粗さ(SRa)が0.020μm以上である。
(7)マルテンス硬さが270N/mm以上である。
 この場合において、前記二軸配向ポリプロピレンフィルムの動摩擦係数が0.6以下であることが好適である。
 また、この場合において、前記二軸配向ポリプロピレンフィルムのヘイズ値が5%以下であることが好適である。
 さらにまた、この場合において、前記表面層(B)の最大山高さRp+最大谷深さRvが30以上、50nm以下であることが好適である。
 さらにまた、この場合において、前記二軸配向ポリプロピレンフィルムの空気抜け時間が10秒以下であることが好適である。
 さらにまた、この場合において、前記二軸配向ポリプロピレンフィルムの厚みが9μm以上、200μm以下であることが好適である。
 さらにまた、この場合において、前記二軸配向ポリプロピレン系フィルムと無延伸ポリエチレンフィルムとの積層体が好適である。
 さらにまた、この場合において、前記積層体のラミネート強度が2.0g/15mm以上であることが好適である。
 本発明の二軸配向ポリプロピレン系フィルムが本来有している優れた透明性や機械的特性を損なうことなく、蒸着やコーティング、他のフィルムとのラミネート後の薄膜やコーティング層、他のフィルムとの優れた密着性を示し、滑り性、耐ブロッキング性も良好であり、加工原反に適したものであった。
空気抜け時間(秒)を測定するのに使用する装置、試料フィルムの設置の説明図である。
 本発明の二軸配向ポリプロピレン系フィルムは、ポリプロピレン系樹脂を主成分とする基材層(A)と、前記基材層(A)の一方の面に表面層(B)を、基材層(A)の表面層(B)とは反対の面に表面層(C)を有し、表面層(B)が以下の(1)~(5)を満たし、表面層(C)が以下の(6)(7)を満たすものである。
(1)濡れ張力が38mN以上である。
(2)表面抵抗値が14.0LogΩ以上である。
(3)算術平均粗さ(Ra)が3.0以上、5.5nm以下である。
(4)マルテンス硬さが248N/mm以下である。
(5)中心面平均粗さ(SRa)が0.010以上、0.026μm以下である。
(6)中心面平均粗さ(SRa)が0.020μm以上である。
(7)マルテンス硬さが270N/mm以上であることが好適である。
 ここで、表面層(B)の濡れ張力は、フィルム表面をぬらすと判定された混合液試薬の表面張力(mN/m)の数値を表わし、印刷インキや接着剤の濡れやすさと関係するものである。
 また、表面層(B)の表面の表面抵抗値は、表面に存在する帯電防止剤の量を羽異するものであり、表面に存在する帯電防止剤の量が少ないほど表面抵抗値は大きくなる。
 表面層(B)の表面の算術平均粗さ(Ra)とは、走査型プローブ顕微鏡(AFM)を使用し、ダイナミックモードにてX、Y方向の測定長さが共に2μmの範囲で測定し、得られた画像を補正(傾き、ラインフィット、ノイズライン除去)後、JIS-B0601(1994)に記載の算術平均粗さの定義に準じて求めたものである。
 AFMによる2μm角範囲の算術平均粗さ(Ra)は、アンチブロッキング剤や滑剤により形成された比較的大きな山や谷の部分以外の樹脂自体の凹凸を表す指標であり、加工で行う蒸着やコーティング、ラミネートなどでの樹脂との密着性に関係する。Raが大きいことは表面の凹凸が大きく、加工で密着する樹脂の表面積が大きいことを示し、密着力が向上する。これは、後述する最大山高さRp+最大谷深さRvとは異なる。
 表面層(B)、表面層(C)の表面のマルテンス硬さは、ダイナミック超微小硬度計を使用し、曲率半径0.1μm以下の針先で表面0.1μm程押し込んだ時の樹脂の硬さを示すものである。表面層(B)のマルテンス硬さが小さいことは、表面が柔らかいことを示し、加工において樹脂表面の追従性が高く、密着力が向上する。表面層(C)のマルテンス硬さが大きいことは、表面が硬いことを示し、アンチブロッキング剤や滑剤により形成された凸部の沈み込みが小さく、接触面積が小さいまま滑り性や耐ブロッキング性が向上する。
 表面層(B)、表面層(C)の表面の中心面平均粗さ(SRa)とは、3次元粗さ計を使用し、触針圧20mgにて、X方向の測定長さ1mm、Y方向の送りピッチ2μmで収録ライン数99本、高さ方向倍率20000倍、カットオフ80μmの測定を行い、JIS-B0601(1994)に記載の算術平均粗さの定義に準じて求めたものである。
 中心面平均粗さ(SRa)は、アンチブロッキング剤や滑剤により形成された比較的大きな山や谷の部分を含めた表面凹凸を示す指標であり、フィルムの滑り性やロールでのシワ、フィルム同士のブロッキングに関係する。SRaが大きいことは、表面の凹凸が大きく、フィルム同士でのブロッキングや金属などとの滑りにおいて、表面での接触面積が小さくなり、滑り性や耐ブロッキング性が向上する。
(1)基材層(A)
 本発明の二軸配向ポリプロピレン系フィルムの基材層(A)を構成するポリプロピレン系樹脂は、共重合成分を含まないポリプロピレン単独重合体、及びエチレンおよび/または炭素数4以上のα-オレフィンを0.5モル%以下で共重合したポリプロピレン樹脂を用いることができる。共重合成分は0.3モル%以下が好ましく、0.1モル%以下がより好ましく、共重合成分を含まないポリプロピレン単独重合体が最も好ましい。
 エチレンおよび/または炭素数4以上のα-オレフィンの共重合量が、0.5モル%以下であると、結晶性や剛性が低下しにくく、高温での熱収縮率が大きくなりにくい。これらの樹脂をブレンドして用いても良い。
 本発明の二軸配向ポリプロピレン系フィルムの基材層(A)を構成するポリプロピレン系樹脂の立体規則性の指標である13C-NMRで測定されるメソペンタッド分率([mmmm]%)は、98%以上、99.5%以下であることが好ましい。より好ましくは、98.1%以上であり、さらに好ましくは98.2%以上である。ポリプロピレン系樹脂のメソペンタッド率が小さいと、弾性率が低くなり、耐熱性が不充分となるおそれがある。99.5%が現実的な上限である。
 本発明の二軸配向ポリプロピレン系フィルムの基材層(A)を構成するポリプロピレン系樹脂の質量平均分子量(Mw)は、180,000以上、500,000以下が好ましい。
 180,000より小さいと、溶融粘度が低いため、キャスト時に安定せず、製膜性が悪くなることがある。Mwが500,000を超えると、分子量10万以下の成分の量が35質量%となり、高温での熱収縮率が低減する。
 より好ましいMwの下限は190,000、さらに好ましくは200,000であり、より好ましいMwの上限は320,000、さらに好ましくは300,000、特に好ましくは250,000である。
 本発明の二軸配向ポリプロピレン系フィルムの基材層(A)を構成するポリプロピレン系樹脂の数平均分子量(Mn)は、20,000以上、200,000以下が好ましい。
 20,000より小さいと、溶融粘度が低いため、キャスト時に安定せず、製膜性が悪くなることがある。200,000を超えると、高温での熱収縮率が低減する。
 より好ましいMnの下限は30,000、さらに好ましくは40,000、特に好ましくは50,000であり、より好ましいMnの上限は80,000、さらに好ましくは70,000、特に好ましくは60,000である。
 また、分子量分布の指標であるMw/Mnは、基材層(A)を構成するポリプロピレン系樹脂では2.8以上、10以下が好ましい。より好ましくは2.8以上、8以下、さらに好ましくは2.8以上、6以下であり、特に好ましくは2.8以上、5.4以下である。また、下限は3以上が好ましく、3.3以上がより好ましい。
 なお、ポリプロピレン系樹脂の分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混錬機でブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。
 本発明の二軸配向ポリプロピレン系フィルムの基材層(A)を構成するポリプロピレン系樹脂は、Mw/Mnが2.8以上、5.4以下の範囲の場合は、メルトフローレート(MFR;230℃、2.16kgf)が2g/10分以上、20g/10分以下であることが好ましい。
 基材層(A)のポリプロピレン系樹脂のMFRの下限は、3g/10分であることがより好ましく、4g/10分であることがさらに好ましく、5g/10分であることが特に好ましい。基材層(A)のポリプロピレン系樹脂のMFRの上限は、15g/10分であることがより好ましく、12g/10分であることがさらに好ましい。
 基材層(A)を構成するポリプロピレン系樹脂のMw/Mn及びMFRが、この範囲であると、高温での熱収縮率も小さく保つことができる、また、冷却ロールへの密着性も良好で製膜性に優れる。
(2)表面層(B)
 本発明の二軸配向ポリプロピレン系フィルムの表面層(B)の表面の算術平均粗さ(Ra)が3.0以上、5.5nm以下であることが好適である。算術平均粗さ(Ra)が3.0nm未満であると、表面層(B)の表面積が小さく、蒸着やコーティング、ラミネートなどでの加工において、密着力が低下する問題が生じる。算術平均粗さ(Ra)が5.5nmを超える場合、表面凹凸が大きく、蒸着やコーティングで抜けが発生し、バリア性などが不良となる。
 表面層(B)の表面の算術平均粗さ(Ra)は3.2nm以上がより好ましく、3.3nm以上がさらに好ましく、3.5nm以上が特に好ましく、4.0nm以上が最も好ましい。
 表面層(B)の表面の算術平均粗さ(Ra)が3.0以上、5.5nm以下とするためには、表面層(B)を形成するポリプロピレン系樹脂組成物として、メルトフローレート(MFR)が異なる2種以上のポリプロピレン系樹脂の混合物を使用することが好ましい。この場合、のMFRの差は3g/10分以上であることが好ましく、3.5g/10分以上であることがより好ましい。
 上記のように、ポリプロピレン系樹脂の混合物中の2種以上のポリプロピレン系樹脂のメルトフローレート(MFR)の差が異なると、それぞれのポリプロピレン系樹脂の結晶化速度や結晶化度が異なるため、表面に凹凸が生成しやすいものと推測している。但し、ポリプロピレン系樹脂の結晶化度が高かったり、フィルムの製造時に未延伸シートの冷却速度が遅かったりすると、球晶による表面凹凸が大きくなること、縦延伸あるいは横延伸時に延伸温度が高すぎて表面凹凸が大きくなると、算術平均粗さ(Ra)が5.5nmを超えることがあるため、注意が必要である。
 MFRが小さい方のポリプロピレン系樹脂としては、エチレンおよび/または炭素数4以上のα-オレフィンを共重合したポリプロピレンも用いることができる。炭素数4以上のα-オレフィンとしては、1-ブテン、1-ヘキセン、4-メチル・1-ペンテン、1-オクテンなどが挙げられる。また、その他の共重合成分として極性を有するマレイン酸等を使用しても良い。
 エチレンおよび/または炭素数4以上のα-オレフィン、その他の共重合成分は合計で8.0モル%以下であることが好ましい。8.0モル%を超えて共重合すると、フィルムが白化して外観不良となったり、粘着性が生じて製膜が困難となったりする場合がある。
 また、これらの樹脂は2種以上をブレンドして用いても良い。ブレンドする場合、個々の樹脂は8.0モル%を超えて共重合されたものであっても良いが、ブレンド物はモノマー単位でプロピレン以外のモノマーは8.0モル%以下であることが好ましい。
 また、MFRが大きい方のポリプロピレン系樹脂としては、上記共重合ポリプロピレンを用いることも出来るし、ホモポリプロピレン樹脂を使用することも出来る。
 MFRが小さい方のポリプロピレン系樹脂とMFRが大きい方のポリプロピレン系樹脂の混合比率は1重量%/99重量%~49重量%/51重量%の範囲が好ましく、1重量%/99重量%~30重量%/70重量%の範囲がより好ましく、1重量%/99重量%~10重量%/90重量%の範囲がさらに好ましい。
 また、本発明の二軸配向ポリプロピレン系フィルムの表面層(B)を構成するポリプロピレン系樹脂組成物は、MFRが1.0g/10分以上、10.0g/10分以下であることが好ましい。表面層(B)のポリプロピレン系樹脂組成物のMFRの下限は、2.0g/10分であることがより好ましく、3.0g/10分であることがさらに好ましく、4.0g/10分であることが特に好ましい。表面層(B)を構成するポリプロピレン系樹脂組成物のMFRの上限は、9.0g/10分であることがより好ましく、8.0g/10分であることがさらに好ましく、5.5g/10分であることが特に好ましい。この範囲であると製膜性も良好で、外観にも優れる。表面層(B)を構成するポリプロピレン系樹脂組成物のMFRが1.0g/10分より小さいと、基材層(A)を構成するポリプロピレン系樹脂組成物のMFRが大きい場合に基材層(A)と表面層(B)の粘度差が大きくなるので、製膜の際にムラ(原反ムラ)が発生しやすくなる。表面層(B)を構成するポリプロピレン系樹脂組成物のMFRが10g/10分を超えると、冷却ロールへの密着性が悪くなって、空気を巻き込み、平滑性が悪く、それが起点となる欠点が多くなるおそれがある。
 また、二軸配向ポリプロピレン系フィルムの表面層(B)の表面の3次元粗さ計による中心面平均粗さ(SRa)が0.010μm以上、0.026μm以下であることが好ましい。表面層(B)の表面の中心面平均粗さ(SRa)は0.012μm以上、0.025μm以下がより好ましく、0.015μm以上、0.025μm以下がさらに好ましいく、0.020μm以上、0.024μm以下が特に好ましい。表面層(B)の表面の中心面平均粗さ(SRa)が0.010μm未満では、表面凹凸が小さく、フィルムの滑り性やフィルム同士での空気抜け時間、耐ブロッキング性が悪くなる。表面層(B)の表面の中心面平均粗さ(SRa)が0.026μmを超える場合、アルミ蒸着やコーティングなど薄膜層を施す際にアンチブロッキング剤による薄膜層の貫通や、凸部分側面に薄膜が形成されないことがあり、バリア性低下や密着不良となる。表面層(B)の表面の中心面平均粗さ(SRa)を規定の範囲内とする方法はいくつかあるが、アンチブロッキング剤の平均粒径や添加量で調整することが可能である。
 アンチブロッキング剤としては、シリカ、炭酸カルシウム、カオリン、ゼオライト等の無機系の粒子やアクリル系、ポリメタクリル系、ポリスチレン系等の有機系の粒子の中から、適宜選択して使用することができる。これらの中でも、シリカやポリメタクリル系の粒子を用いるのが特に好ましい。アンチブロッキング剤の好ましい平均粒子径は1.0μm以上、3.0μm以下であり、より好ましくは1.0μm以上、2.7μm以下である。ここでいう平均粒径の測定法は、走査電子顕微鏡で写真撮影し、イメージアナライザー装置を用いて水平方向のフェレ径を測定し、その平均値で表示したものである。
 アンチブロッキング剤の添加量は、ヘイズ、動摩擦係数、中心面平均粗さ(SRa)、空気抜け時間が既定の範囲内になるように、表面層(B)、表面層(C)への添加量を調整すれば、特に制限はない。
 本発明の二軸配向ポリプロピレン系フィルムの表面層(B)の表面の表面抵抗値は14LogΩ以上であることが好ましい。表面抵抗値は14LogΩ以上であると、蒸着膜やコーティング膜、接着剤との密着性が向上する。表面抵抗値は14.5LogΩ以上であるのがより好ましく、15LogΩ以上であることがさらに好ましい。表面抵抗値が14LogΩ未満の場合、密着力が低下するだけでなく、表面層(B)にブリードした帯電防止剤がコートをハジキ、コート不良となる。表面抵抗値を14LogΩ以上とするには、帯電防止剤、防曇剤などの添加剤を極力使用しないことが挙げられる。また、基材層(A)に含まれる添加剤が表面層(B)の表面にブリードしてくることもあるので、注意が必要である。
 本発明の二軸配向ポリプロピレン系フィルムの表面層(B)の表面の濡れ張力が38mN/m以上であることが好ましい。濡れ張力は38mN/m以上であると、蒸着膜やコーティング膜、他部材フィルムとのラミネートに使用する接着剤との密着性が向上する。濡れ張力を38mN/m以上とするには、帯電防止剤や界面活性剤などの添加剤を使用することが通常行われているが、これらの方法では、表面抵抗値を下げる効果があるため、コロナ処理、火炎処理などの物理化学的な表面処理を行うことが好ましい。
 例えば、コロナ処理では、予熱ロール、処理ロールを用い、空中で放電を行うことが好ましい。
 本発明の二軸配向ポリプロピレン系フィルムの表面層(B)のマルテンス硬さは248N/mm以下であることが好ましく、より好ましくは245N/mm以下であり、さらに好ましくは240N/mm以下であり、特に好ましくは235N/mm以下であり、最も好ましくは230N/mm以下である。
 マルテンス硬さが248N/mmを超える場合、表面が硬く、加工において樹脂表面の追従性が悪くなり、密着力が低下する。マルテンス硬さを248N/mm以下にするためには、エチレンおよび/または炭素数4以上のα-オレフィン、その他の共重合成分を添加することで可能である。また、フィルムの延伸倍率を低くし、分子鎖の配向を下げることでもマルテンス硬さを下げることが可能である。
 本発明の二軸配向ポリプロピレン系フィルムの表面層(B)のマルテンス硬さは200N/mm以上であることが好ましく、より好ましくは210N/mm以上である。
 本発明の二軸配向ポリプロピレン系フィルムの表面層(B)の表面のAFMによる最大山高さRp+最大谷深さRvが30以上、50nm以下であることが好ましい。表面層(B)の表面の最大山高さRp+最大谷深さRvの下限は32nmがより好ましく、35nmがさらに好ましく、38nmが特に好ましい。表面層(B)の表面の最大山高さRp+最大谷深さRvの上限は48nmがさらに好ましく、45nmが特に好ましい。最大山高さRpと最大谷深さRvはアンチブロッキング剤によるものではなく、樹脂自体の凹凸によるものである。最大山高さRp+最大谷深さRvが30nm以上であると、ロール状態での表面層(C)との接触による空気抜けや耐ブロッキング性が向上する。また、表面層(B)の表面積が大きくなり、蒸着層やコーティング層との密着性が向上する。
 但し、空気抜けや耐ブロッキング性は、後述する3次元粗さ計での中心面粗さ(SRa)にも大きく関係するため、最大山高さRpと最大谷深さRvが30nm未満でも表面層(B)、表面層(C)の中心面粗さ(SRa)が大きければ空気抜けや耐ブロッキング性が良好であることもあり得える。最大山高さRp+最大谷深さRvが50nmを以下の場合、表面凹凸が大きくなりすぎず、蒸着層やコーティング層の抜けが発生しにくく、バリア性などが向上する。
(3)表面層(C)
本発明の二軸配向ポリプロピレン系フィルムの表面層(C)の表面の3次元粗さ計による中心面平均粗さ(SRa)が0.020μm以上であることが好ましい。表面層(C)の表面の中心面平均粗さ(SRa)は0.022μm以上がより好ましく、0.025μmがさらに好ましく、0.028μmが特に好ましい。
 表面層(C)の表面の中心面平均粗さ(SRa)が0.020μm未満では、表面凹凸が小さく、フィルムの滑り性やフィルム同士での空気抜け時間、耐ブロッキング性が悪くなる。表面層(C)の表面の中心面平均粗さ(SRa)を規定の範囲内とする方法はいくつかあるが、アンチブロッキング剤の平均粒径や添加量で調整することが可能である。
 本発明の二軸配向ポリプロピレン系フィルムの表面層(C)の表面の3次元粗さ計による中心面平均粗さ(SRa)がは0.040μm以下であることが好ましい
 また、二軸配向ポリプロピレン系フィルムの表面層(C)のマルテンス硬さは270N/mm以上であることが好ましく。より好ましくは275N/mm以上、さらに好ましくは280N/mm以上、特に好ましくは285N/mm以上である。
 マルテンス硬さが270N/mm未満の場合、表面が柔らかく、添加したアンチブロッキング剤が樹脂内部に沈み込み、滑り性や耐ブロッキング性が悪くなる。マルテンス硬さを270N/mm以上とするためには、エチレンおよび/または炭素数4以上のα-オレフィンを0.5モル%以下で共重合したポリプロピレンも用いることが好ましいが、0.1モル%以下がより好ましく、共重合成分を含まない完全ホモポリプロピレンが最も好ましい。また、構成するポリプロピレンのメソペンタッド分率([mmmm]%)が98%以上とし、結晶化度を高めることでもマルテンス硬さを上げることが可能である。
 二軸配向ポリプロピレン系フィルムの表面層(C)のマルテンス硬さは350N/mm以下であることが好ましい。
 本発明で用いるポリプロピレン樹脂は、チーグラー・ナッタ触媒やメタロセン触媒等の公知の触媒を用いて、原料のプロピレンを重合させることにより得られる。中でも、異種結合をなくすためにはチーグラー・ナッタ触媒を用い、立体規則性の高い重合が可能な触媒を用いることが好ましい。
 原料のプロピレンを重合する方法としては、公知の方法を採用すればよく、例えば、ヘキサン、ヘプタン、トルエン、キシレン等の不活性溶剤中で重合する方法、液状のモノマー中で重合する方法、気体のモノマーに触媒を添加し、気相状態で重合する方法、または、これらを組み合わせて重合する方法等が挙げられる。
 本発明の本発明の二軸配向ポリプロピレン系フィルムの基材層(A)および/または表面層(B)および/または表面層(C)には、添加剤やその他の樹脂を含有させてもよい。添加剤としては、例えば、酸化防止剤、紫外線吸収剤、造核剤、粘着剤、防曇剤、難燃剤、無機または有機の充填剤等が挙げられる。その他の樹脂としては、本発明で用いられるポリプロピレン樹脂以外のポリプロピレン樹脂、プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体であるランダムコポリマーや、各種エラストマー等が挙げられる。これらは、多段の反応器を用いて逐次重合するか、ポリプロピレン樹脂とヘンシェルミキサーでブレンドするか、事前に溶融混錬機を用いて作製したマスターペレットを所定の濃度になるようにポリプロピレンで希釈するか、予め全量を溶融混練して使用してもよい。
(3)二軸配向ポリプロピレン系フィルム
 本発明の二軸配向ポリプロピレン系フィルムは、表面層(B)/基材層(A)/表面層(C)の3層構造、表面層(B)/中間層(D/基材層(A)/中間層(D)/表面層(C)、表面層(B)/基材層(A)/中間層(D)/表面層(C)の4層構造、それ以上の多層構造であってもよい。
 本発明の二軸配向ポリプロピレン系フィルム全体の厚みは9μm以上、200μm以下が好ましく、10μm以上、150μm以下がより好ましく、12μm以上、100μm以下がさらに好ましく、15μm以上、80μm以下が特に好ましい。
 本発明の二軸配向ポリプロピレン系フィルムにおける表面層(B)の厚みと基材層(A)の厚みの比率としては、全表面層(B)の厚み/全基材層(A)の厚みが、0.01以上、0.50以下であることが好ましく、0.02以上、0.40以下であることがより好ましく、0.03以上、0.30以下であることがさらに好ましく、0.04以上、0.20以下であることが特に好ましい。全表面層(B)の厚み/全基材層(A)の厚みが0.50を超えると、収縮率が大きくなる傾向を示す。
 また、二軸配向ポリプロピレン系フィルムにおける表面層(C)の厚みと基材層(A)の厚みの比率としては、全表面層(C)の厚み/全基材層(A)の厚みが0.01以上、0.50以下であることが好ましく、0.02以上、0.40以下であることがより好ましく、0.03以上、0.30以下であることがさらに好ましく、0.04以上、0.20以下であることが特に好ましい。全表面層(C)の厚み/全基材層(Aの厚み)が0.50を超えると、アンチブロッキング剤の添加量によってはヘイズが高くなり、透明性が悪化する。
 また、フィルム全体の厚みに対する、基材層(A)の厚み、あるいは基材層(A)及び中間層(D)の合計厚みは50%以上、99%以下であることが好ましく、さらに好ましくは60%以上、97%以下、特に好ましくは70%以上、90%以下、最も好ましくは80%以上、92%以下である。
 本発明の二軸配向ポリプロピレン系フィルムのヘイズは、5%以下が好ましく、0.2%以上、5.0%以下がより好ましく、0.3以上、4.5%がさらに好ましく、0.4%以上、4.0%が特に好ましい。上記範囲であると透明が要求される用途で使いやすくなることがある。ヘイズは例えば延伸温度、熱固定温度が高すぎる場合、冷却ロール温度が高く未延伸(原反)シートの冷却速度が遅い場合、低分子量成分が多すぎる場合に悪くなる傾向があり、これらを調節することで上記の範囲内とすることが出来る。ヘイズの測定方法は後述する。
 本発明の二軸配向ポリプロピレン系フィルムの縦方向の引張弾性率は、1.8以上、4.0GPa以下であることが好ましく、2.0GPa以上、3.7GPa以下であることがより好ましく、2.1GPa以上、3.5GPa以下であることがさらに好ましく、2.2以上、3.4GPa以下が特に好ましい。
 本発明の二軸配向ポリプロピレン系フィルムの横方向の引張弾性率は、3.8GPa以上、8.0GPa以上であることが好ましく、4.0GPa以上、7.5GPa以下であることがより好ましく、4.1GPa以上、7.0GPa以下であることがさらに好ましく、4.2GPa以上、6.5GPa以下であることが特に好ましい。引張弾性率が上記範囲であれば、腰が強くなり、フィルム厚みが小さくても使用できるため、フィルムの使用量を減らすことが可能となる。引張弾性率の測定方法は後述する。
 本発明の二軸配向ポリプロピレン系フィルムにおいては、150℃での縦方向の熱収縮率は0.2以上、15.0%以下であることが好ましく、0.3%以上、13.0%以下がより好ましく、0.5%以上、11.0%以下であることがさらに好ましく、0.5%以上、9.0%以下であることが特に好ましい。熱収縮率が上記範囲であれば、耐熱性に優れたフィルムということができ、高温にさらされる可能性のある用途でも使用できる。なお、150℃熱収縮率は1.5%程度までなら、例えば低分子量成分を多くする、延伸条件、熱固定条件を調整することで可能であるが、それ以下に下げるには、オフラインでアニール処理をすること等が好ましい。
 本発明の二軸配向ポリプロピレン系フィルムにおいては、150℃での横方向の熱収縮率は0.5以上、30.0%以下であることが好ましく、0.5%以上、25.0%以下がより好ましく、0.5%以上、20.0%以下であることがさらに好ましく、0.5%以上、18.0%以下であることが特に好ましい。熱収縮率が上記範囲であれば、耐熱性に優れたフィルムということができ、高温にさらされる可能性のある用途でも使用できる。なお、150℃熱収縮率は1.5%程度までなら、例えば低分子量成分を多くする、延伸条件、熱固定条件を調整することで可能であるが、それ以下に下げるには、オフラインでアニール処理をすること等が好ましい。熱収縮率の測定方法は後述する。
 本発明の二軸配向ポリプロピレン系フィルムの動摩擦係数は、0.6以下であることが好ましく、0.55以下であるのがより好ましく、0.50以下が特にこのましい。動摩擦係数は、0.6以下であるとロールフィルムからのフィルムの巻き出しがスムーズに行え、印刷加工しやすい。動摩擦係数は、0.1以上で良い。動摩擦係数の測定方法は後述する。
 本発明の二軸配向ポリプロピレン系フィルムの空気抜け時間は、好ましくは10秒以下であり、より好ましくは8秒以下であり、更に好ましくは5秒以下であり、特に好ましくは3秒以下である。空気抜け時間が10秒を超える場合、ロールにした際空気が抜けるのが遅く、シワが入りやすい。空気抜け時間は、1秒以上で良い。空気抜け時間の測定方法は後述する。
 本発明の二軸配向ポリプロピレン系フィルムは、幅300mm、巻長800m以上のサイズで巻き取ったフィルムロールとすると、運搬や蒸着加工・コーティング加工・製袋加工に好ましい。
 発明の二軸配向ポリプロピレン系フィルムを幅500mm、巻長1000mで巻き取り、下記基準でロール表層にあるシワの評価を目視で行ったとき、弱いシワがあるが、引き出したフィルムに張力20N/m程度をかけるとシワが消えるのが好ましく、シワがないのがより好ましい。
 発明の二軸配向ポリプロピレン系フィルムのガスバリア性や意匠性を高めたいときはアルミニウムやポリ塩化ビニリデン、ナイロン、エチレンービニルアルコール共重合体、ポリビニルアルコールからなる層、特に薄膜層を設けて、使用するのが好ましい。
 発明の二軸配向ポリプロピレン系フィルムの表面に設けたアルミニウム薄膜から部分的にしかアルミニウム薄膜層の剥がれがないのが好ましく、部分的にもアルミニウム薄膜層の剥がれがないのがより好ましい
 また、発明の二軸配向ポリプロピレン系フィルムの表面にコート層を設けた場合に、僅かにしか微小なコート層のハジキがないのが好ましく、コート層のハジキがないのがより好ましい。
 また、本発明の二軸配向ポリプロピレンフィルム又はそれに薄膜層を設けてたものと、低密度ポリエチレン、線状低密度ポリエチレン、エチレン-酢酸ビニル共重合体、ポリプロピレン、ポリエステルからなる未延伸フィルム、一軸延伸フィルム、二軸延伸フィルムとの積層体を使用して、包装袋に加工するのが好ましい。
 本発明の二軸配向ポリプロピレン系フィルムと未延伸ポリエチレンフィルムとの積層体のラミネート強度は、2.0N/15mm以上が好ましく、2.3N/mm以上がより好ましく、2.5N/mm以上がさらに好ましく、2.8N/mm以上が特に好ましい。ラミネート強度が5N/mm以下で良い。ラミネート強度の測定方法は後述する。
(4)製造方法
 本発明の二軸配向ポリプロピレン系フィルムは、基材層(A)を構成するポリプロピレン系樹脂組成物と表面層(B)を構成するポリプロピレン系樹脂組成物、表面層(C)のポリプロピレン系樹脂組成物を別々の押出機により溶融押し出しし、ダイスから共押出しして、冷却ロールで冷却して、未延伸シートを形成し、その未延伸シートを縦方向(MD)及び幅方向(TD)に延伸した後、熱固定処理することによって得ることができる。尚、表面層(B)が冷却ロールに接触するように押し出すことが好ましい。表面層(B)が冷却ロールに接触する反対の面になると、ポリプロピレン樹脂が徐冷され、結晶化度が高くなり、球晶による表面凹凸で表面層(B)の表面の算術平均粗さ(Ra)が大きくなりすぎることがある。
 溶融押出し温度は200~280℃程度が好ましく、この温度範囲内で層を乱さずに良好な外観の積層フィルムを得るには、基材層(A)を構成するポリプロピレン系樹脂組成物と表面層(B)を構成するポリプロピレン系樹脂組成物の粘度差(MFR差)が6.0g/10分以下となるようにすることが好ましい。粘度差が6g/10分より大きいと、層が乱れて外観不良となりやすい。より好ましくは5.5g/10分以下、さらに好ましくは5.0g/10分以下である。
 冷却ロール表面温度は25℃以上、35℃以下が好ましく、27℃以上、33℃以下がより好ましい。冷却ロール温度が35℃を超えると、ポリプロピレン系樹脂の結晶化度が高くなり、形成した球晶に表面凹凸で表面層(B)の表面の算術平均粗さ(Ra)が大きくなりすぎることがある。
 縦方向(MD)の延伸倍率の下限は、好ましくは3倍であり、より好ましくは3.5倍である。上記未満であると膜厚ムラとなることがある。MDの延伸倍率の上限は好ましくは8倍であり、より好ましくは7倍である。上記を超えると引き続き行うTD延伸がしにくくなることがある。MDの延伸温度の下限は好ましくは120℃であり、より好ましくは125℃であり、さらに好ましくは130℃である。上記未満であると機械的負荷が大きくなったり、厚みムラが大きくなったり、フィルムの表面荒れが起こることがある。MDの延伸温度の上限は好ましくは160℃であり、より好ましくは155℃であり、さらに好ましくは150℃である。温度が高い方が熱収縮率の低下には好ましいが、ロールに付着し延伸できなくなることや、表面荒れが起こることがある。
 幅方向(TD)の延伸倍率の下限は好ましくは4倍であり、より好ましくは5倍であり、さらに好ましくは6倍である。上記未満であると厚みムラとなることがある。TD延伸倍率の上限は好ましくは20倍であり、より好ましくは17倍であり、さらに好ましくは15倍であり、特に好ましくは12倍である。上記を超えると熱収縮率が高くなったり、延伸時に破断することがある。TD延伸での予熱温度は速やかに延伸温度付近にフィルム温度を上げるため、好ましくは延伸温度より5~15℃高く設定する。TDの延伸温度の下限は好ましくは150℃であり、より好ましくは155℃であり、さらに好ましくは158℃、特に好ましくは160℃である。上記未満であると充分に軟化せずに破断したり、熱収縮率が高くなることがある。TD延伸温度の上限は好ましくは170℃であり、より好ましくは168℃であり、さらに好ましくは165℃である。熱収縮率を低くするためには温度は高い方が好ましいが、上記を超えると低分子成分が融解、再結晶化して配向が低下するだけでなく、表面荒れやフィルムが白化することがある。
 延伸後のフィルムは熱固定される。熱固定温度の下限は好ましくは163℃であり、より好ましくは165℃である。上記未満であると熱収縮率が高くなることがある。また、熱収縮率を低くするために長時間の処理が必要になり、生産性が劣ることがある。熱固定温度の上限は好ましくは176℃であり、より好ましくは175℃である。上記を超えると低分子成分が融解、再結晶化して表面荒れやフィルムが白化することがある。
 熱固定時には緩和(リラックス)させることが好ましい。リラックス率の下限は好ましくは2%であり、より好ましくは3%である。上記未満であると熱収縮率が高くなることがある。リラックス率の上限は好ましくは10%であり、より好ましくは8%である。上記を超えると厚みムラが大きくなることがある。
 さらに、熱収縮率を低下させるために、上記の工程で製造されたフィルムを一旦ロール状に巻き取った後、オフラインでアニールさせることもできる。
 こうして得られた二軸配向ポリプロピレン系フィルムに、必要に応じて、コロナ放電、プラズマ処理、火炎処理等を施した後、ワインダーで巻き取ることにより本発明の二軸配向ポリプロピレンフィルムロールを得ることができる。
 以下、実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施する場合は、本発明に含まれる。
(測定方法)
 実施例および比較例で用いた原料や得られたフィルム物性の測定方法は、以下の通りである。
1)メソペンタッド分率([mmmm]単位:%)
 メソペンタッド分率の測定は、13C-NMRを用いて行った。メソペンタッド分率は、「Zambelliら、Macromolecules,第6巻,925頁(1973)」に記載の方法に従って算出した。13C-NMR測定は、BRUKER社製「AVANCE500」を用い、試料200mgをo-ジクロロベンゼンと重ベンゼンの8:2(体積比)の混合液に135℃で溶解し、110℃で行った。
2)メルトフローレート([MFR]g/10分)
 JIS K7210に準拠し、温度230℃、荷重2.16kgfで測定した。
 原料樹脂の場合はペレット(パウダー)をそのまま必要量を秤り取って用いた。
 フィルムの場合は必要量切り出した後、約5mm角にカットしたサンプルを用いた。
3)分子量および分子量分布
 原料樹脂及びフィルムの分子量および分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて単分散ポリスチレン基準により求めた。GPC測定での使用カラム、溶媒等の測定条件は以下のとおりである。
溶媒:1,2,4-トリクロロベンゼン
カラム:TSKgel GMHHR-H(20)HT×3
流量:1.0ml/min
検出器:RI
測定温度:140℃
 数平均分子量(Mn)、質量平均分子量(Mw)、分子量分布(Mw/Mn)は、それぞれ、分子量校正曲線を介して得られたGPC曲線の各溶出位置の分子量(M)の分子数(N)により次式で定義される。
数平均分子量:Mn=Σ(N・M)/ΣN
質量平均分子量:Mw=Σ(N・M )/Σ(N・M
分子量分布:Mw/Mn
 ベースラインが明確でないときは、標準物質の溶出ピークに最も近い高分子量側の溶出ピークの高分子量側のすそ野の最も低い位置までの範囲でベースラインを設定することとした。
4)融解ピーク温度(℃)、融解ピーク面積(J/g)
 SII製示差走査型熱量計(DSC)を用い、サンプル量10mg、昇温速度20℃/分で測定した。DSC曲線から融解吸熱ピーク温度と融解ピーク面積を求めた。
5)厚み(μm)
 基材層(A)と表面層(B)各層の厚みは、二軸延伸積層ポリプロピレン系フィルムを変性ウレタン樹脂で固めたものの断面をミクロトームで切り出し、微分干渉顕微鏡で観察して、測定した。
6)ヘイズ(%)
 JIS K 7105に準じて23℃で測定した。ヘイズメータ(日本電色工業株式会社製、300A)を用いて測定した。なお、測定は2回行い、その平均値を求めた。
7)引張弾性率(GPa)
 JIS K 7127に準じて測定した。フィルムの長手方向および幅方向に幅10mm、長さ180mmの試料を、剃刀を用いて切り出して試料とした。23℃、65%RHの雰囲気下で12時間放置したあと、測定は23℃、65%RHの雰囲気下、チャック間距離100mm、引っ張り速度200mm/分の条件で行い、5回の測定結果の平均値を用いた。測定装置としては島津製作所社製オートグラフAG5000Aを用いた。
8)熱収縮率(%)
 JIS Z1712に準拠して、以下の方法で測定した。フィルムを、MD方向とTD方向のそれぞれにおいて、幅20mm、長さ200mmにカットし、150℃の熱風オーブン中に吊して5分間加熱した。加熱前後の長さを測定し、加熱前の長さから加熱後の長さを引いた長さの加熱前の長さに対する割合(%)を求め、熱収縮率を求めた。
9)濡れ張力(mN/m)
 K 6768 :1999に順じて、フィルムを23℃、相対湿度 50%で24時間エージング後、下記手順でフィルムのコロナ処理面を測定した。
手順1)
 測定は,温度 23℃,相対湿度 50%の標準試験室雰囲気(JIS K 7100 参照)で行う。
手順2)
 試験片をハンドコータ(4.1)の基板の上に置き,試験片の上に試験用混合液を数滴滴下して,直ちにワイヤバーを引いて広げる。
綿棒又はブラシを使用して試験用混合液を広げる場合は,液体は少なくとも 6cm以上の面積に速やかに広げる。液体の量は,たまりを作らないで,薄層を形成する程度にする。
濡れ張力の判定は,試験用混合液の液膜を明るいところで観察し,3 秒後の液膜の状態で行う。液膜破れを生じないで,3秒以上,塗布されたときの状態を保っているのは,ぬれていることになる。濡れが3秒以上保つ場合は,さらに,次に表面張力の高い混合液に進み,また逆に、3秒以下で液膜が破れる場合は,次の表面張力の低い混合液に進む。
 この操作を繰り返し,試験片の表面を正確に、3秒間で濡らすことができる混合液を選ぶ。
手順3)
 各々の試験には,新しい綿棒を使用する。ブラシ又はワイヤバーは,残留する液体が蒸発によって組成及び表面張力を変化させるので,使用ごとにメタノールで洗浄し,乾燥させる。
手順4)
 試験片の表面を3秒間でぬらすことができる混合液を選ぶ操作を少なくとも 3回行う。このようにして選ばれた混合液の表面張力をフィルムの濡れ張力として報告する。
10)表面抵抗値(LogΩ)
 JIS K6911に準拠し、フィルムを23℃、24時間エージング後、フィルムの表面層(B)面を測定した。
11)動摩擦係数
 JIS K7125に準拠して、2枚のフィルムの表面層(B)面同士を重ね合わせ、23℃で測定した。
12)空気抜け時間(秒)
 図1に示すように、台盤1の上にフィルム4として、二軸配向ポリプリロピレン系フィルムを表面層(B)が上面になるように載せる。次いで、フィルム押え2をフィルム4の上から載せ、固定することによって張力を与えながらフィルム4を固定する。次いで、フィルム押え2の上に、フィルム5として二軸配向ポリプリロピレン系フィルムを表面層(C)が下になるようにして載せる。次いでフィルム5の上にフィルム押え8を載せ、更にネジ3を用いてフィルム押え8、2および台盤1を固定する。
 次に、フィルム押え2に設けられた空洞2aと真空ポンプ6とを、フィルム押え2に設けられた細孔2cおよびパイプ7を介して接続する。そして、真空ポンプ6を駆動すると、フィルム5には、空洞2aに吸い付けられることによって張力が加わる。また、同時にフィルム4とフィルム5の重なり合った面もフィルム押え2に円周状に設けられた細孔2dを介して減圧され、フィルム4とフィルム5はその重なり合った面において、外周部から密着し始める。
 密着する様子は、重なり合った面の上部から干渉縞を観察することによって容易に知ることができる。そして、フィルム4とフィルム5の重合面の外周部に干渉縞が生じてから重なり合った面の前面に干渉縞が拡がり、その動きが止まるまでの時間(秒)を測定し、この時間(秒)を空気抜け時間とする。なお、測定は2枚のフィルムを取り替えて5回繰り返し行い、その平均値を用いる。つまり時間(秒)が短いほどフィルムの巻き特性は良好となる。
13)マルテンス硬さ HMs(N/mm
 得られたフィルムを約2cm角に切り取り、厚さが約1mmのガラス板上に、測定面の反対面を粘着剤にて固定した後、23℃、50%RHの雰囲気下で12時間放置して調湿した。この試料について、ダイナミック超微小硬度計(島津製作所製の「DUH-211」を用いて、ISO14577-1(2002)に準拠した方法により、下記測定条件で測定した。測定はフィルムの位置を変えて10回行い、最大と最小を除いた8点の平均値を求めた。
 <測定条件>
 (設定)
 ・測定環境:温度23℃・相対湿度50%
 ・試験モード:負荷-除荷試験
 ・使用圧子:稜間角115度、三角錐圧子(ダイアモンド製)
 ・圧子弾性率:1.140×106N/mm
 ・圧子ポアソン比:0.07
・Cf-Ap,As補正:あり
 (条件)
・試験力:0.10mN
 ・負荷速度:0.0050mN/sec
 ・負荷保持時間:5sec
・除荷保持時間:0sec
 マルテンス硬さは、試験力-押し込み深さ曲線にて、試験力50%Fと90%F(F=0.10mN)間での深さが試験力の平方根に比例する傾き(m)から下記式(1)より求めた。
 マルテンス硬さ HMs=1/(26.43×m)・・・・(1)
14)中心面平均粗さ([SRa]μm)
 得られたフィルムの中心面平均粗さ(SRa)は、三次元粗さ計(小坂研究所社製、型番ET-30HK)を使用し、触針圧20mgにて、X方向の測定長さ1mm、送り速さ100μm/秒、Y方向の送りピッチ2μmで収録ライン数99本、高さ方向倍率20000倍、カットオフ80μmの測定を行い、JIS-B0601(1994)に記載の算術平均粗さの定義に準じて、計算した。
 算術平均粗さ(SRa)はそれぞれ3回の試行を行い、その平均値で評価した。
15)算術平均粗さ([Ra]nm)、最大山高さ([Rp]nm)、最大谷深さ([Rv]nm)
 得られたフィルムの算術平均粗さ(Ra)、最大山高さ(Rp)、最大谷深さ(Rv)
は、走査型プローブ顕微鏡(島津製作所製「SPM-9700」)を用いて測定した。ダイナミックモードにてX、Y方向の測定長さが共に2μmの範囲で測定し、得られた画像を補正(傾き、ラインフィット、ノイズライン除去)後、JIS-B0601(1994)に記載の算術平均粗さの定義に準じて求めた。
16)ラミネート強度(N/15mm)
 ラミネート強度は以下のような手順により測定した。
手順1)二軸配向ポリプリロピレン系フィルムと無延伸ポリエチレンフィルムの積層体ムの作成
 連続式のドライラミネート機を用いて以下の様に行った。
 実施例、比較例で得られた二軸配向ポリプロピレン系フィルムの表面層(B)面に接着剤を乾燥時塗布量が2.8g/mとなるようにグラビアコートした後、乾燥ゾーンに導き80℃、5秒で乾燥した。引き続き下流側に設けられたロール間でシーラントフィルムと貼り合わせた(ロール圧力0.2MPa、ロール温度:50℃)。得られたラミネートフィルムは巻き取った状態で40℃、3日間のエージング処理を行った。
 なお、接着剤は主剤(東洋モートン社製、TM569)28.9質量%、硬化剤(東洋モートン社製、CAT10L)4.00質量%および酢酸エチル67.1質量%を混合して得られたウレタン系接着剤を使用し、シーラントフィルムは東洋紡社製の無延伸ポリエチレンフィルム(リックス(登録商標)L4102、厚み40μm)を使用した。
手順2)ラミネート強度の測定
 上記で得られたラミネートフィルムを二軸配向ポリプロピレン系フィルムの縦方向に長辺を持つ短冊状(長さ200mm、幅15mm)に切り出し、引張試験機(テンシロン、オリエンテック社製)を用いて、23℃の環境下200mm/分の引張速度でT字剥離した際の剥離強度(N/15mm)を測定した。測定は3回行い、その平均値をラミネート強度とした。
17)フィルムロールシワ評価
 製膜した二軸配向ポリプロピレン系フィルムを幅500mm、巻長1000mで巻き取り、下記基準でロール表層にあるシワの評価を目視で行った。判定○、△を合格とした。
○:シワがない
△:弱いシワがあるが、引き出したフィルムに張力20N/m程度をかけるとシワが消える
×:強いシワがあり、引き出したフィルムに張力20N/m程度をかけてもシワが消えない
18)コート適性評価
 ブタンジオールビニルアルコール共重合体(日本合成化学工業株式会社製、ニチゴ-G-ポリマーOKS-8049)をイソプロピルアルコール15%水溶液に溶解させ、固形分濃度5%のコート液を調合した。フィルムの表面層(B)上に調合したコート液を垂らし、マイヤーバー#3でドライ0.2g/mのコート量となるようにコートした。その後ドライヤーで十分に溶液を揮発させ、コート層のハジキの評価を目視で行った。判定◎、○を合格とした。
◎:コート層のハジキがない
〇:コート層のハジキが9割ないが、僅かに微小なハジキがある 
△:コート層のハジキが部分的にあり、コートハジキがない割合が9割未満
×:コート層のハジキが全面にある
19)アルミニウム蒸着膜密着評価
 フィルムの表面層(B)上に、小型真空蒸着装置(アルバック機工株式会社製、VWR-400/ERH)を使用してアルミニウム膜厚30nmとなるように蒸着を行った。得られた蒸着フィルムの蒸着面にニチバン社製セロテープ(登録商標)18mm幅使用して90°剥離法によりアルミニウム蒸着膜の密着状態を評価した。判定〇を合格とした。
○:アルミニウム蒸着膜の剥がれがない
△:部分的にアルミニウム蒸着膜の剥がれがある
×:全面にアルミニウム蒸着膜の剥がれがある
(原料樹脂)
 下記実施例、比較例で使用したポリプロピレン系樹脂原料の詳細、フィルム製膜条件を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例1)
 基材層(A)には、表1に示すポリプロピレン単独重合体PP-1を用いた。
 また、表面層(B)には、表1に示すポリプロピレン単独重合体PP-1を43.2重量%、表1に示すエチレン共重合ポリプロピレン重合体PP-3を52.0重量%、表2に示すマスターバッチAを4.8重量%の割合で配合したものを使用した。このとき、表面層(B)を構成するポリプロピレン系樹脂組成物のメルトフローレート(g/10分)は5.1であった。
 表面層(C)には、表1に示すポリプロピレン単独重合体PP-1を93.6重量%、表2に示すマスターバッチAを6.4重量%の割合で配合したものを使用した。
 基材層(A)は45mm押出機、表面層(B)は25mm押出機、表面層(C)は20mm押出機を用いて、それぞれ原料樹脂を250℃で溶融し、Tダイからシート状に共押し出しし、30℃の冷却ロールに表面層(B)が接触するよう冷却固化した後、125℃縦方向(MD)に4.5倍に延伸した。次いでテンター内で、フィルム幅方向(TD)両端をクリップで挟み、168℃で予熱後、155℃で幅方向(TD)に8.2倍に延伸し、幅方向(TD)に6.7%緩和させながら、165℃で熱固定した。このときの製膜条件を製膜条件aとした。
 こうして、表面層(B)/基材層(A)/表面層(C)の構成の二軸配向ポリプロピレン系フィルムを得た。
 二軸配向ポリプロピレン系フィルムの表面層(B)の表面を、ソフタル・コロナ・アンド・プラズマGmbH社製のコロナ処理機を用いて、印加電流値:0.75Aの条件で、コロナ処理を施した後、ワインダーで巻き取った。得られたフィルムの厚みは20μm(表面層(B)/基材層(A)/表面層(C)の厚みが1.3μm/17.7μm/1.0μm)であった。
(実施例2)
 基材層(A)の厚みを15.1μm、表面層(B)の厚みを3.9μmとなるように押出機からの樹脂の吐出量を調整した以外は実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(実施例3)
 表面層(B)には、表1に示すポリプロピレン単独重合体PP-1を45.0重量%、表1に示すエチレン共重合ポリプロピレン重合体PP-3を52.0重量%、表2に示すマスターバッチAを3.0重量%の割合で配合したものを使用した以外は実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(実施例4)
 表面層(B)には、表1に示すポリプロピレン単独重合体PP-1を1.2重量%、表1に示すエチレン共重合ポリプロピレン重合体PP-3を94.0重量%、表2に示すマスターバッチAを4.8重量%の割合で配合したものを使用した以外は実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(実施例5)
 基材層(A)、表面層(C)で用いたポリプロピレン単独重合体PP-1を表1に示すPP-2に変更し、フィルム製膜条件を表3に示すbに変更した以外は実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(比較例1)
 表面層(A)には、表1に示すポリプロピレン単独重合体PP-1を60.0重量%、PP-4を40.0重量%とし、表面層(B)には、表1に示すポリプロピレン単独重合体PP-1を96.4重量%、表2に示すマスターバッチAを3.6重量%の割合で配合した以外は、実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(比較例2)
 表面層(B)のコロナ処理を施さなかった以外は実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(比較例3)
 表面層(B)には、表1に示すポリプロピレン単独重合体PP-1を45.0重量%、表1に示すエチレン共重合ポリプロピレン重合体PP-3を52.0重量%、表2に示すマスターバッチAを3.0重量%の割合で配合したものを使用し、表面層(C)には、表1に示すポリプロピレン単独重合体PP-1のみを使用した以外は実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(比較例4)
 表面層(B)には、表1に示すポリプロピレン単独重合体PP-1を47.25重量%、表1に示すエチレン共重合ポリプロピレン重合体PP-3を52.00重量%、表2に示すマスターバッチBを0.75重量%の割合で配合したものを使用し、表面層(C)には、表1に示すポリプロピレン単独重合体PP-1を98.4重量%、表2に示すマスターバッチBを1.60重量%の割合で配合したものを使用し、冷却ロールに表面層(C)が接触するように製膜した以外は実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(比較例5)
 基材層(A)には、表1に示すポリプロピレン単独重合体PP-1を99.0重量%、帯電防止剤として、ステアリルジエタノールアミンステアレート(松本油脂(株)KYM-4K)を1.0重量%配合したものを使用した以外は、実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
(比較例6)
 フィルム製膜条件を表3のcに変更した以外は実施例1と同じ条件とし、20μmの二軸配向ポリプロピレン系フィルムを得た。
 上記実施例、比較例で使用したフィルムの原料・製造方法、物性を表4、表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~5で得られた二軸配向ポリプロピレン系フィルムは、ラミネート強度が高く、アルミ蒸着の剥がれがなく、コート液のハジキもない密着性に優れるものであった。また、ロールにはシワがなく、耐ブロッキング性に優れたものであった。
 それに対して、比較例1~6のフィルムは、いずれも密着性やロールの巻き状態に劣るものであった。
 本発明の二軸配向ポリプロピレン系フィルムは、蒸着やコーティング、他のフィルムとのラミネートにおいて優れた密着性を示し、滑り性、耐ブロッキング性も良好であり、加工原反に適したものである。菓子などに使用される食品包装用やラベル等にも使用可能であり、また、安価にフィルムを製造できるため、産業上有用である。
 

Claims (8)

  1.  ポリプロピレン系樹脂を主成分とする基材層(A)と、前記基材層(A)の一方の面に表面層(B)を、基材層(A)の表面層(B)とは反対の面に表面層(C)を有し、表面層(B)が以下の(1)~(5)を満たし、表面層(C)が以下の(6)(7)を満たす二軸配向ポリプロピレン系フィルム。
    (1)濡れ張力が38mN以上である。
    (2)表面抵抗値が14.0LogΩ以上である。
    (3)算術平均粗さ(Ra)が3.0以上、5.5nm以下である。
    (4)マルテンス硬さが248N/mm以下である。
    (5)中心面平均粗さ(SRa)が0.010以上、0.026μm以下である。
    (6)中心面平均粗さ(SRa)が0.020μm以上である。
    (7)マルテンス硬さが270N/mm以上である。
  2.  フィルムの動摩擦係数が0.6以下である、請求項1に記載の二軸配向ポリプロピレン系フィルム。
  3.  フィルムのヘイズ値が5%以下である、請求項1あるいは2に記載の二軸配向ポリプロピレン系フィルム。
  4.  表面層(B)の最大山高さRp+最大谷深さRvが30位以上、50nm以下である、請求項1~3のいずれかに記載の二軸配向ポリプロピレン系フィルム。
  5.  フィルムの空気抜け時間が10秒以下である、請求項1~4のいずれかに記載の二軸配向ポリプロピレン系フィルム。
  6.  フィルム厚みが9μm以上、200μm以下である、請求項1~5のいずれかに記載の二軸配向ポリプロピレン系フィルム。
  7.  請求項1~5のいずれかに記載の二軸配向ポリプロピレン系フィルムと無延伸ポリエチレンフィルムとの積層体。
  8.  ラミネート強度が2.0g/15mm以上である、請求項1~7に記載の積層体。
     
PCT/JP2021/022513 2020-07-03 2021-06-14 二軸配向ポリプロピレン系フィルム WO2022004340A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21834058.6A EP4177055A4 (en) 2020-07-03 2021-06-14 BIAXIAL ORIENTED POLYPROPYLENE-BASED FILM
JP2022533803A JPWO2022004340A1 (ja) 2020-07-03 2021-06-14
CN202180044789.9A CN115916537A (zh) 2020-07-03 2021-06-14 双轴取向聚丙烯系薄膜
US18/003,230 US20230330977A1 (en) 2020-07-03 2021-06-14 Biaxially-oriented polypropylene film
KR1020237001013A KR20230033705A (ko) 2020-07-03 2021-06-14 이축배향 폴리프로필렌계 필름
JP2023064183A JP2023086787A (ja) 2020-07-03 2023-04-11 二軸配向ポリプロピレン系フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115577 2020-07-03
JP2020-115577 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022004340A1 true WO2022004340A1 (ja) 2022-01-06

Family

ID=79315239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022513 WO2022004340A1 (ja) 2020-07-03 2021-06-14 二軸配向ポリプロピレン系フィルム

Country Status (7)

Country Link
US (1) US20230330977A1 (ja)
EP (1) EP4177055A4 (ja)
JP (3) JPWO2022004340A1 (ja)
KR (1) KR20230033705A (ja)
CN (1) CN115916537A (ja)
TW (1) TW202212121A (ja)
WO (1) WO2022004340A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169952A1 (ja) * 2016-03-28 2017-10-05 東洋紡株式会社 二軸延伸積層ポリプロピレンフィルム
WO2017170244A1 (ja) * 2016-03-28 2017-10-05 東洋紡株式会社 二軸配向ポリプロピレンフィルム
WO2018142983A1 (ja) * 2017-02-01 2018-08-09 東洋紡株式会社 二軸配向ポリプロピレン系フィルム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2452716T3 (es) 2006-02-17 2014-04-02 Toray Industries, Inc. Película de polipropileno orientada biaxialmente

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169952A1 (ja) * 2016-03-28 2017-10-05 東洋紡株式会社 二軸延伸積層ポリプロピレンフィルム
WO2017170244A1 (ja) * 2016-03-28 2017-10-05 東洋紡株式会社 二軸配向ポリプロピレンフィルム
WO2018142983A1 (ja) * 2017-02-01 2018-08-09 東洋紡株式会社 二軸配向ポリプロピレン系フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZAMBELLI, MACROMOLECULES, vol. 6, 1973, pages 925

Also Published As

Publication number Publication date
JPWO2022004340A1 (ja) 2022-01-06
KR20230033705A (ko) 2023-03-08
JP2023086787A (ja) 2023-06-22
EP4177055A4 (en) 2024-07-03
JP2023116754A (ja) 2023-08-22
EP4177055A1 (en) 2023-05-10
US20230330977A1 (en) 2023-10-19
TW202212121A (zh) 2022-04-01
CN115916537A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
TWI773665B (zh) 雙軸配向聚丙烯膜
JP2023017015A (ja) 二軸配向ポリプロピレンフィルム
JP7437115B2 (ja) 二軸延伸積層ポリプロピレンフィルム
KR102500332B1 (ko) 이축배향 폴리프로필렌계 필름
JP7298751B2 (ja) 二軸配向ポリプロピレンフィルム
JP2023171764A (ja) 積層フィルム
WO2022004340A1 (ja) 二軸配向ポリプロピレン系フィルム
JP7509328B2 (ja) 二軸配向ポリプロピレン系フィルム
WO2023127535A1 (ja) 二軸配向ポリプロピレン系フィルム
WO2023127534A1 (ja) 二軸配向ポリプロピレンフィルム
JPH11268209A (ja) ポリオレフィンフィルム及びその製造方法
WO2023234189A1 (ja) 粘着フィルム及び粘着ラベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533803

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237001013

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021834058

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE