WO2017169316A1 - フェライト粒子、樹脂組成物及び樹脂フィルム - Google Patents

フェライト粒子、樹脂組成物及び樹脂フィルム Download PDF

Info

Publication number
WO2017169316A1
WO2017169316A1 PCT/JP2017/006527 JP2017006527W WO2017169316A1 WO 2017169316 A1 WO2017169316 A1 WO 2017169316A1 JP 2017006527 W JP2017006527 W JP 2017006527W WO 2017169316 A1 WO2017169316 A1 WO 2017169316A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite particles
ferrite
resin composition
resin
particles
Prior art date
Application number
PCT/JP2017/006527
Other languages
English (en)
French (fr)
Inventor
小島 隆志
一隆 石井
隆男 杉浦
五十嵐 哲也
康二 安賀
Original Assignee
パウダーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パウダーテック株式会社 filed Critical パウダーテック株式会社
Priority to US16/082,102 priority Critical patent/US11014826B2/en
Priority to CA3017094A priority patent/CA3017094C/en
Priority to EP17773863.0A priority patent/EP3438054B1/en
Priority to KR1020187024779A priority patent/KR101984455B1/ko
Priority to CN201780015150.1A priority patent/CN108779001B/zh
Publication of WO2017169316A1 publication Critical patent/WO2017169316A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • H01F1/375Flexible bodies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials

Definitions

  • the present invention relates to ferrite particles, a resin composition containing the ferrite particles, and a resin film comprising the resin composition.
  • such a resin film is obtained by dispersing a filler in a resin composition containing a resin and an aqueous or solvent-based solvent, and then applying the resin composition containing the filler on a substrate to volatilize the solvent. It is formed by curing the resin.
  • metal wiring is formed by laminating
  • ferrite particles for example, Mn—Mg ferrite particles having an average particle diameter of 20 to 50 ⁇ m and a magnetization (saturation magnetization) of about 60 Am 2 / kg disclosed in Patent Document 2 can be considered.
  • Patent Document 2 when the ferrite particles disclosed in Patent Document 2 are used for a resin film, it is difficult to disperse the ferrite particles in a resin, a solvent, or a resin composition, or irregularities are generated on the film surface by the ferrite particles. There is a fear.
  • An object of the present invention is to provide a ferrite particle having high saturation magnetization and excellent dispersibility in a resin, a solvent or a resin composition, a resin composition containing the ferrite particle, and a resin film comprising the resin composition
  • the purpose is to do.
  • the present inventors have found that the ferrite particles made of a single crystal having a particle size in a specific range are spherical and have a specific ferrite composition. The inventors have found that it has characteristics satisfying the object, and have reached the present invention.
  • the ferrite particles according to the present invention are Mn-based ferrite particles which are single crystal bodies having an average particle diameter of 1 to 2000 nm, have a spherical shape, and have a saturation magnetization of 45 to 95 Am 2 / kg. It is characterized by.
  • the metal component is composed of Mn and Fe, preferably 1 to 23% by weight of Mn and 58 to 65% by weight of Fe.
  • the ferrite particles according to the present invention preferably have a residual magnetization of 0 to 12 Am 2 / kg.
  • the ferrite particles according to the present invention preferably have a BET specific surface area of 1 to 30 m 2 / g.
  • the resin composition according to the present invention is characterized by containing the ferrite particles as a filler.
  • the resin film according to the present invention is characterized by comprising the above resin composition.
  • the ferrite particles according to the present invention are Mn-based ferrite particles made of a single crystal, high saturation magnetization of 45 to 95 Am 2 / kg can be obtained and residual magnetization can be lowered.
  • the ferrite particles according to the present invention have an average particle diameter of 1 to 2000 nm and have a true spherical particle shape, and the residual magnetization is low, aggregation of particles can be reduced. Or the outstanding dispersibility with respect to a resin composition can be obtained. For this reason, when the ferrite particles according to the present invention are suitably used in a resin film containing the ferrite particles as a filler, aggregation of the ferrite particles can be prevented and a smooth surface can be obtained. Further, the resin film can be adsorbed by applying a magnetic field to the resin film.
  • FIG. 1 is a transmission electron micrograph of the ferrite particles of Example 1.
  • FIG. FIG. 2 is an electron diffraction image of the ferrite particles of Example 1.
  • the ferrite particles according to the present invention are made of a single crystal having a particle size in a specific range, are spherical and have a specific ferrite composition, so that high saturation magnetization can be obtained.
  • the resin composition here may be composed of one or more kinds of resins and a solvent, or may be composed of one or more kinds of resins.
  • the true spherical shape means a shape having an average spherical ratio of 1 to 1.2, preferably 1 to 1.1, and more preferably close to 1.
  • the average sphericity exceeds 1.2, the sphericity of the ferrite particles is impaired.
  • the sphericity can be determined as follows. First, ferrite particles are photographed at a magnification of 200,000 times using an FE-SEM (SU-8020, Hitachi High-Technologies Corporation) as a scanning electron microscope. At this time, the ferrite particles are photographed in a visual field capable of counting 100 particles or more. The photographed SEM image is read by a scanner, and image analysis is performed using image analysis software (Image-Pro PLUS, MEDIA CYBERNETICS). The circumscribed circle diameter and the inscribed circle diameter for each particle are obtained by manual measurement, and the ratio (circumscribed circle diameter / inscribed circle diameter) is defined as the spherical ratio. If the two diameters are the same, that is, a true sphere, this ratio is 1. In this embodiment, the average value of the sphericity in 100 ferrite particles is defined as the average sphericity.
  • the average particle size of the ferrite particles according to the present invention is 1 to 2000 nm.
  • the average particle size is less than 1 nm, the particles are aggregated even if the surface treatment is performed, and excellent dispersibility in the resin, solvent or resin composition cannot be obtained.
  • the average particle diameter exceeds 2000 nm, the dispersibility can be ensured, but when a molded body containing ferrite particles is formed, the surface of the molded body may be uneven due to the presence of ferrite particles. Furthermore, when the molded body is a flexible printed wiring board used for wiring to electronic equipment, cables, and the like, the metal wiring formed on the surface may be damaged by the unevenness.
  • the average particle size of the ferrite particles is preferably 1 to 800 nm, more preferably 1 to 300 nm.
  • the average particle diameter of the ferrite particles can be obtained by, for example, measuring the horizontal ferret diameter by manual measurement for an image photographed at a magnification of 200,000, similarly to the average sphericity, and setting the average value as the average particle diameter.
  • the ferrite particles according to the present invention are single crystal.
  • ferrite particles which are polycrystalline fine pores are generated in the crystal grain boundaries in the fine structure in one particle during the process of crystal growth by firing.
  • the resin composition or the like tends to enter the pores, so that it takes a long time until the ferrite particles and the resin composition are uniformly dispersed. It may take time.
  • an unnecessarily large amount of resin, solvent or resin composition is required, which is disadvantageous in terms of cost.
  • ferrite particles that are single crystals such inconveniences are eliminated.
  • the ferrite particles according to the present invention are Mn-based ferrite particles.
  • the ferrite particles are preferably composed of Mn and Fe, containing 1 to 23% by weight of Mn and 58 to 65% by weight of Fe. In this case, it is more preferable that metal components other than Fe and Mn are not included (however, inevitable impurities are excluded). Since the ferrite particles of the present invention are Mn-based ferrite particles, both high saturation magnetization and low residual magnetization can be obtained at the same time.
  • the Mn content is less than 1% by weight, the remanent magnetization of the ferrite particles increases, and the ferrite particles may easily aggregate. In that case, it becomes difficult to uniformly disperse the ferrite particles in the resin, solvent or resin composition.
  • the content of Mn is more than 23% by weight, desired saturation magnetization may not be obtained in the ferrite particles.
  • the Fe content is less than 58% by weight, desired saturation magnetization may not be obtained in the ferrite particles.
  • the Fe content exceeds 65% by weight, the residual magnetization of the ferrite particles increases, and the ferrite particles may easily aggregate. In that case, it becomes difficult to uniformly disperse the ferrite particles in the resin, solvent or resin composition.
  • the contents of Fe and Mn can be measured as follows.
  • a ferrite-containing solution in which ferrite particles are completely dissolved is prepared by weighing 0.2 g of ferrite particles and heating 60 ml of pure water to which 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid are added. Subsequently, the Fe and Mn contents of the ferrite-containing solution are measured using an ICP analyzer (ICPS-1000IV manufactured by Shimadzu Corporation).
  • the ferrite particles according to the present invention preferably have a BET specific surface area of 1 to 30 m 2 / g.
  • the BET specific surface area is less than 1 m 2 / g, when a resin composition containing ferrite particles is formed, the affinity between the particle surface and the resin composition becomes insufficient, and the resin composition present on the particle surface is locally localized.
  • irregularities may occur on the surface of the molded body.
  • ferrite particles composed of Mn and Fe often produce particles having a smooth surface state, and the BET specific surface area does not exceed 30 m 2 / g. More preferably, the BET specific surface area of the ferrite particles is 5 to 20 m 2 / g.
  • the ferrite particles according to the present invention have a saturation magnetization of 45 to 95 Am 2 / kg. By setting the saturation magnetization in the above range, desired performance can be obtained. If the saturation magnetization is less than 45 Am 2 / kg, the desired performance cannot be obtained. On the other hand, in ferrite particles composed of Mn and Fe, it is difficult to realize saturation magnetization exceeding 95 Am 2 / kg.
  • the ferrite particles according to the present invention preferably have a residual magnetization of 0 to 12 Am 2 / kg.
  • the residual magnetization By setting the residual magnetization within the above range, it is possible to more reliably obtain dispersibility in the resin, the solvent, or the resin composition. If the remanent magnetization exceeds 12 Am 2 / kg, the ferrite particles may easily aggregate together, and in that case, it may be difficult to uniformly disperse the ferrite particles in the resin, solvent, or resin composition. .
  • the ferrite particles can be produced by spraying ferrite raw materials containing Mn and Fe in the atmosphere to form ferrite, followed by rapid solidification and then collecting only particles having a particle size within a predetermined range.
  • the method for preparing the ferrite raw material is not particularly limited, and a conventionally known method can be adopted. A dry method or a wet method may be used.
  • An example of a method for preparing a ferrite raw material is as follows. An appropriate amount of Fe raw material and Mn raw material is weighed so as to have a desired ferrite composition, and then water is added to pulverize to prepare a slurry. The prepared pulverized slurry is granulated with a spray dryer and classified to prepare a granulated product having a predetermined particle size.
  • the particle size of the granulated product is preferably about 0.5 to 10 ⁇ m in consideration of the particle size of the obtained ferrite particles.
  • a ferrite raw material having a composition prepared is mixed, dry pulverized, each raw material is pulverized and dispersed, the mixture is granulated with a granulator, classified, and granulated with a predetermined particle size.
  • a ferrite raw material having a composition prepared is mixed, dry pulverized, each raw material is pulverized and dispersed, the mixture is granulated with a granulator, classified, and granulated with a predetermined particle size.
  • the granulated material thus prepared is sprayed in the atmosphere to be ferritized.
  • a mixed gas of combustion gas and oxygen can be used as a combustible gas combustion flame, and the volume ratio of the combustion gas and oxygen is 1: 3.5 to 6.0.
  • the proportion of oxygen in the combustible gas combustion flame is less than 3.5 with respect to the combustion gas, melting may be insufficient, and when the proportion of oxygen exceeds 6.0 with respect to the combustion gas, ferritization may occur. It becomes difficult.
  • it can be used in a proportion of oxygen 35 ⁇ 60Nm 3 / hr against the combustion gases 10 Nm 3 / hr.
  • propane gas, propylene gas, acetylene gas or the like can be used, and propane gas can be particularly preferably used.
  • propane gas can be particularly preferably used.
  • nitrogen, oxygen, or air can be used as a granulated material conveyance gas.
  • the flow rate of the granulated material to be conveyed is preferably 20 to 60 m / sec.
  • the thermal spraying is preferably performed at a temperature of 1000 to 3500 ° C., more preferably 2000 to 3500 ° C.
  • the ferrite particles ferritized by thermal spraying are rapidly cooled and solidified by being carried in an air stream by air supply, and then ferrite particles having an average particle diameter of 1 to 2000 nm are collected and recovered.
  • the collection is performed by, for example, rapidly solidifying ferrite particles carried in an air flow by air supply, and ferrite particles having a particle size exceeding the above range are dropped in the middle of the air flow, and ferrite having a particle size in the above range. It can be performed by a method of collecting particles by a filter provided on the downstream side of the airflow.
  • the collected ferrite particles are classified as necessary, and the particle size is adjusted to a desired particle size.
  • a classification method an existing air classification, mesh filtration method, sedimentation method, or the like can be used. It is possible to remove particles having a large particle diameter with a cyclone or the like.
  • the surface treatment with the coupling agent can further improve the dispersibility of the ferrite particles in the resin, solvent or resin composition.
  • the coupling agent various silane coupling agents, titanate coupling agents, and aluminate coupling agents can be used, and decyltrimethyoxysilane and n-octyltriethoxysilane can be used more preferably.
  • the surface treatment amount depends on the BET specific surface area of the ferrite particles, but is preferably 0.05 to 2% by weight with respect to the ferrite particles in terms of the silane coupling agent.
  • the ferrite particles according to the present invention can be used for, for example, a resin film for a flexible printed wiring board.
  • ferrite particles are added to a resin composition containing a resin and an aqueous or solvent solvent, and the ferrite particles are dispersed in the resin composition by stirring and mixing. Then, the resin composition containing the obtained filler is apply
  • Ferrite particles act as magnetic fillers in the resin film. Since the ferrite particles have a high saturation magnetization and a low remanent magnetization, by applying a magnetic field when forming a metal wiring by laminating a metal layer on the resin film, the unnecessary resin film is adsorbed. Can be removed.
  • the ferrite particles according to the present invention are not limited to resin films for flexible printed wiring boards, and can be used for various applications.
  • the ferrite particles may be used as a filler, particularly a magnetic filler, and may be used as a raw material for a molded body.
  • a molding raw material molding, granulation, coating, etc. can be performed, and firing may be performed.
  • Example 1 Iron oxide (Fe 2 O 3 ) and manganese oxide (MnO) were weighed and mixed at a molar ratio of 80:20. Water was added and pulverized to prepare a slurry having a solid content of 50% by weight. The produced slurry was granulated with a spray dryer and classified to produce a granulated product having an average particle size of 5 ⁇ m.
  • propane obtained granules: oxygen 10 Nm 3 / hr: Sprayed ferritization by performing under conditions of 35 Nm 3 / hr of combustible gas flow rate in the combustion flame of about 40 m / sec, followed by It was rapidly cooled in the atmosphere by being carried in an air stream by air supply. At this time, since the granulated material was sprayed while continuously flowing, the particles after spraying and quenching were independent without being bound to each other. Subsequently, the cooled particles were collected by a filter provided on the downstream side of the airflow. At this time, the particles having a large particle size were not collected by the filter because they dropped in the middle of the air flow. Next, about the collected particles, coarse powder having a particle size exceeding 2000 nm was removed by classification to obtain ferrite particles. That is, the obtained ferrite particles had a maximum particle size of 2000 nm or less.
  • Example 2 In this example, ferrite particles were produced in the same manner as in Example 1 except that the molar ratio of iron oxide and manganese oxide was 50:50.
  • Example 3 In this example, ferrite particles were produced in the same manner as in Example 1 except that the molar ratio of iron oxide and manganese oxide was 90:10.
  • Example 4 ferrite particles surface-treated with a silane coupling agent were produced using the ferrite particles of Example 1.
  • an acetic acid aqueous solution containing decyltrimethoxysilane (KBM3103C, Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent was prepared.
  • the ferrite particle of Example 1 was added to the obtained acetic acid aqueous solution so that it might become solid content 10weight%, and the slurry which the ferrite particle disperse
  • ferrite particles were surface-treated with a coupling agent by adding an aqueous ammonia solution to the obtained slurry until the pH reached 8. At this time, the surface treatment amount was 0.1% by weight with respect to the ferrite particles in terms of silane coupling agent.
  • the slurry containing the surface-treated ferrite particles is heat-treated at 180 ° C. for 6 hours to remove moisture, and then pulverized with a sample mill to produce ferrite particles surface-treated with a silane coupling agent. did.
  • Comparative Example 1 In this comparative example, after obtaining a granulated product in the same manner as in Example 1, the granulated product was placed in a mortar and fired in an electric furnace at 1200 ° C. for 4 hours in a nitrogen atmosphere with an oxygen concentration of 0% by volume. Then, a fermented product obtained as a lump according to the shape of the mortar was obtained. The obtained fired product was rapidly cooled in the atmosphere, and the cooled fired product was pulverized by grinding with a mortar to obtain ferrite particles.
  • Comparative Example 2 In this comparative example, a granulated product was obtained in the same manner as in Example 1 except that the condition of the spray dryer was changed to prepare a granulated product having an average particle size of 39 ⁇ m. Using the obtained granulated material, it was fired in the same manner as in Comparative Example 1, and the obtained fired product was quenched in the air. The cooled fired product was crushed with a hammer mill to obtain ferrite particles.
  • Comparative Example 3 In this comparative example, ferrite particles were produced in the same manner as in Example 1 except that the cooled particles were directly collected without being carried on the air stream (all were collected).
  • Comparative Example 4 In this comparative example, ferrite particles were produced in the same manner as in Example 1 except that the molar ratio of iron oxide and manganese oxide was 40:60.
  • Comparative Example 5 In this comparative example, ferrite particles were prepared in the same manner as in Example 1 except that the molar ratio of iron oxide and manganese oxide was 100: 0.
  • a coating film was formed on a PET film or a glass plate as a substrate by using the obtained coating film forming ink by a baker type applicator (SA-201, Tester Sangyo Co., Ltd.).
  • the coating thickness was 4 mil (101.6 ⁇ m), and the coating width was 10 cm.
  • the resin film was obtained by drying the solvent and curing the resin.
  • the contents of Fe and Mn in the ferrite particles were measured as follows. First, 0.2 g of ferrite particles were weighed, and 60 ml of pure water plus 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid was heated to prepare an aqueous solution in which the ferrite particles were completely dissolved. The obtained aqueous solution was set in an ICP analyzer (ICPS-1000IV, Shimadzu Corporation), and the content of the metal component in the ferrite particles was measured.
  • ICP analyzer ICPS-1000IV, Shimadzu Corporation
  • the average sphericity was measured by the method described above. When the average sphericity was 1.2 or less, it was determined to be “true sphere”.
  • the horizontal ferret diameter was the average particle diameter
  • the ferrite particles of Comparative Examples 1 to 5 the following volume average particle diameter was the average particle diameter.
  • the volume average particle size was measured using a Microtrac particle size analyzer (Model 9320-X100, Nikkiso Co., Ltd.). First, 10 g of the obtained ferrite particles were placed in a beaker together with 80 ml of water as a dispersion medium, and 2 to 3 drops of sodium hexametaphosphate as a dispersant were added. Next, the obtained solution was oscillated with an ultrasonic homogenizer (UH-150, SMT Co., Ltd.) for 20 seconds at an output level of 4 to disperse ferrite particles in the solution. Next, after removing bubbles generated on the beaker surface, solid-liquid separation was performed to collect ferrite particles. The volume average particle diameter of the recovered ferrite particles was measured.
  • the BET specific surface area was measured using a specific surface area measuring device (Macsorb HM model-1208, Mountec Co., Ltd.). First, about 10 g of the obtained ferrite particles are placed on a medicine wrapping paper, deaerated with a vacuum dryer, and after confirming that the degree of vacuum is ⁇ 0.1 MPa or less, the ferrite particles are heated at 200 ° C. for 2 hours. The water adhering to the surface of was removed. Subsequently, about 0.5 to 4 g of ferrite particles from which moisture was removed were placed in a standard sample cell dedicated to the apparatus and accurately weighed with a precision balance. Subsequently, the weighed ferrite particles were set in the measurement port of the apparatus and measured. The measurement was performed by a one-point method. The measurement atmosphere was a temperature of 10 to 30 ° C. and a relative humidity of 20 to 80% (no condensation).
  • the magnetic characteristics were measured using a vibration sample type magnetometer (VSM-C7-10A, Toei Industry Co., Ltd.). First, the obtained ferrite particles were filled in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in the apparatus. In the above-mentioned apparatus, a magnetic field was applied and swept to 5K ⁇ 1000 / 4 ⁇ ⁇ A / m. Next, the applied magnetic field was decreased to create a hysteresis curve on the recording paper.
  • VSM-C7-10A vibration sample type magnetometer
  • the magnetization when the applied magnetic field is 5K ⁇ 1000 / 4 ⁇ ⁇ A / m is the saturation magnetization
  • the magnetization when the applied magnetic field is 0K ⁇ 1000 / 4 ⁇ ⁇ A / m is the residual magnetization.
  • Carbon content The carbon content was measured using a carbon analyzer (C-200, LECO). The oxygen gas pressure was 2.5 kg / cm 2 and the nitrogen gas pressure was 2.8 kg / cm 2 .
  • a standard sample having a carbon content comparable to that of ferrite particles and having a clear carbon content was measured by the above-described apparatus. Moreover, it measured without using the sample itself (blank test). And the conversion factor was computed by the following formula from the obtained measured value.
  • Magnetic adsorption performance About the said resin film, magnetic adsorption
  • FIG. 2 shows that the electron diffraction image is spot-like. Therefore, it is clear that the ferrite particles of Example 1 are a single crystal.
  • the ferrite particles of Examples 1 to 3 were single crystals having an average particle diameter of 1 to 2000 nm, and had a true spherical particle shape.
  • the metal components are Mn and Fe, the Mn content is in the range of 1 to 23% by weight, and the Fe content is 58 to 65% by weight. Ferrite particles.
  • the ferrite particles of Examples 1 to 3 had a saturation magnetization in the range of 45 to 95 Am 2 / kg and a residual magnetization in the range of 0 to 12 Am 2 / kg. Therefore, it is clear that the ferrite particles of Examples 1 to 3 have both high saturation magnetization and low residual magnetization.
  • the Mn content is in the range of 1 to 23% by weight and the Fe content is in the range of 58 to 65% by weight, as in Examples 1 to 3. It was.
  • the ferrite particles of Comparative Examples 1 and 2 were made of a polycrystal having an average particle size exceeding 2000 nm, and had an irregular or granular particle shape.
  • the ferrite particles of Comparative Example 3 are Mn-based as in Examples 1 to 3, which are single crystals, have a true spherical particle shape, and have a Mn content in the range of 1 to 23 wt%. Ferrite particles. Further, the ferrite particles of Comparative Example 3 had a saturation magnetization in the range of 45 to 95 Am 2 / kg and a residual magnetization in the range of 0 to 12 Am 2 / kg, as in Examples 1 to 3. However, the ferrite particles of Comparative Example 3 had an average particle size exceeding 2000 nm.
  • the ferrite particles of Comparative Example 4 are single crystals having an average particle diameter of 1 to 2000 nm and have a true spherical particle shape as in Examples 1 to 3, but have a Mn content of 23.3. % By weight.
  • the ferrite particles of Comparative Example 4 had a saturation magnetization of less than 45 Am 2 / kg, which was lower than those of Examples 1 to 3.
  • the ferrite particles of Comparative Example 5 were single crystals having an average particle diameter of 1 to 2000 nm as in Examples 1 to 3, and had a true spherical particle shape.
  • the ferrite particles of Comparative Example 5 had an Mn content of 0.3% by weight, which is an unavoidable impurity contained in the raw material iron oxide (Fe 2 O 3 ). Therefore, it is considered that the ferrite particles of Comparative Example 5 are not substantially Mn-based ferrite particles.
  • the ferrite particles of Comparative Example 5 had a saturation magnetization in the range of 45 to 95 Am 2 / kg, but had a residual magnetization exceeding 12 Am 2 / kg, which was higher than those in Examples 1 to 3.
  • the ferrite particles of Comparative Examples 4 to 5 are made of a single crystal having an average particle diameter of 2000 nm or less and have a true spherical particle shape as in Examples 1 to 3, but have a high saturation magnetization and a low value. It was impossible to achieve both remanent magnetization.
  • the ferrite particles of Example 4 surface-treated with a silane coupling agent have an increased carbon content compared to the ferrite particles of Example 1 that were not surface-treated. It is obvious.
  • the carbon content is as small as 0.05% by weight
  • the surface treatment with the silane coupling agent is limited to a very thin area on the surface of the ferrite particles, and before and after the surface treatment. It is considered that the resistance of ferrite particles does not change. Therefore, the magnetic properties (saturation magnetization and residual magnetization) do not change before and after the surface treatment, and the ferrite particles of Example 4 are considered to have the same magnetic properties as the ferrite particles of Example 1.
  • the ferrite particles of Comparative Example 1 have low dispersibility with respect to the resin composition, and it took a long time to disperse. For this reason, it is thought that the ferrite particle of the comparative example 1 has low productivity at the time of manufacturing a resin film. Further, the resin film of Comparative Example 1 had large film surface irregularities and inferior surface smoothness. This is because the ferrite particles of Comparative Example 1 have an average particle size of about 5.6 ⁇ m, which is larger than those of Examples 1 to 3, the shape is irregular, and the residual magnetization is large, so that the particles aggregate together. It is thought that it is easy.
  • the ferrite particles of Comparative Example 2 have low dispersibility with respect to the resin composition, and it took a long time to disperse. For this reason, it is thought that the ferrite particle of the comparative example 2 has low productivity at the time of manufacturing a resin film. Moreover, since the average particle diameter of the ferrite particles was as large as 37 ⁇ m, the resin film could not be formed, and the film thickness and saturation magnetization of the resin film could not be measured.
  • the ferrite particles of Comparative Example 3 had lower dispersibility with respect to the resin composition than Examples 1 to 3. Further, the resin film of Comparative Example 3 had large film surface irregularities and inferior surface smoothness. This is probably because the ferrite particles of Comparative Example 3 have an average particle size of about 12 ⁇ m and are larger than those of Examples 1 to 3.
  • the ferrite particles of Comparative Example 4 were excellent in dispersibility in the resin composition as in Examples 1 to 3. Further, the resin film of Comparative Example 4 had small film surface irregularities and excellent surface smoothness as in Examples 1 to 3. However, the resin film of Comparative Example 4 had a low saturation magnetization and a low magnetic adsorption performance. This is probably because the ferrite particles of Comparative Example 4 have a small saturation magnetization.
  • the ferrite particles of Comparative Example 5 have low dispersibility with respect to the resin composition, and it took a long time to disperse. For this reason, it is thought that the ferrite particle of the comparative example 5 has low productivity at the time of manufacturing a resin film. Further, the resin film of Comparative Example 5 could not obtain sufficient surface smoothness. This is thought to be because the ferrite particles of Comparative Example 5 have a large residual magnetization and are likely to aggregate.
  • Mn-based ferrite particles that are single crystals having an average particle diameter of 1 to 2000 nm and have a spherical shape, and ferrite particles having a saturation magnetization of 45 to 95 Am 2 / kg have high saturation magnetization. It is clear that both low residual magnetization and high dispersibility in the resin composition are provided. Moreover, it is clear that the Mn-based ferrite particles have both excellent surface smoothness and excellent magnetic adsorption performance when a resin film is formed. In addition, the above examples revealed that the dispersibility of the Mn-based ferrite particles in the resin composition is high, but the Mn-based ferrite particles are considered to exhibit excellent dispersibility in the resin or the solvent. .
  • the ferrite particles of the present invention high saturation magnetization can be obtained, and excellent dispersibility with respect to a resin, a solvent or a resin composition can be obtained. Therefore, when the ferrite particles are prepared as a resin composition containing the ferrite particles as a filler and a molded body such as a resin film made of the resin composition is formed, the ferrite particles are aggregated on the surface of the molded body. And a smooth surface can be obtained, and the molded body can be adsorbed by applying a magnetic field.
  • the resin composition or the resin film that is no longer needed can be adsorbed and removed by a magnetic field, a metal wiring can be formed easily and efficiently.
  • the ferrite particle which concerns on this invention can be used suitably as a magnetic filler and a molded object raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高い飽和磁化を有し、且つ、樹脂、溶媒又は樹脂組成物に対する分散性に優れるフェライト粒子、該フェライト粒子を含有する樹脂組成物及び該樹脂組成物からなる樹脂フィルムを提供することを目的とする。フェライト粒子は、平均粒径が1~2000nmの単結晶体であり、真球状の粒子形状を備えるMn系フェライト粒子であり、飽和磁化が45~95Am/kgであることを特徴とする。樹脂組成物は、当該フェライト粒子をフィラーとして含有することを特徴とする。樹脂フィルムは、当該樹脂組成物からなることを特徴とする。

Description

フェライト粒子、樹脂組成物及び樹脂フィルム
 本発明は、フェライト粒子、該フェライト粒子を含有する樹脂組成物及び該樹脂組成物からなる樹脂フィルムに関する。
 従来、電子機器への配線、ケーブル等に用いられるフレキシブルプリント配線板として、平均粒径が1~10μmの酸化ケイ素、酸化チタン、酸化アルミ等のフィラーを含有する樹脂フィルムが提案されている(例えば、特許文献1参照)。
 このような樹脂フィルムは、例えば、樹脂と水系又は溶剤系の溶媒とを含む樹脂組成物にフィラーを分散させた後、フィラーを含有する当該樹脂組成物を基材上に塗布し、溶媒を揮発させ樹脂を硬化させることにより形成される。そして、樹脂フィルム上に銅層等の金属層を積層することによって、金属配線が形成される。このとき、金属層を積層する際には土台として作用する樹脂フィルムが必要である一方、金属層を積層した後には金属配線の形状に応じて不要になった樹脂フィルムを取り除く必要がある。
 そこで、樹脂フィルムの除去を簡便且つ効率よく行うために、フィラーとして、酸化ケイ素等に代えてフェライト粒子を用い、樹脂フィルムに対して磁場を印加することによって樹脂フィルムを吸着して除去することが考えられる。
 上記フェライト粒子として、例えば、特許文献2に開示された、平均粒径が20~50μmであり磁化(飽和磁化)が約60Am/kgであるMn-Mg系フェライト粒子を用いることが考えられる。
日本国特許出願 特開2014-074133号公報 日本国特許出願 特開2008-216339号公報
 しかしながら、特許文献2に開示されたフェライト粒子を樹脂フィルムに用いた場合には、フェライト粒子を樹脂、溶媒又は樹脂組成物に分散させるのが困難であったり、フェライト粒子によってフィルム表面に凹凸が生じる虞がある。
 本発明の課題は、高い飽和磁化を有し、且つ、樹脂、溶媒又は樹脂組成物に対する分散性に優れるフェライト粒子、該フェライト粒子を含有する樹脂組成物及び該樹脂組成物からなる樹脂フィルムを提供することを目的とする。
 本発明者らは、上記のような課題を解決すべく鋭意検討した結果、特定の範囲の粒径を有する単結晶体からなり真球状であり、且つ、特定のフェライト組成を有するフェライト粒子が上記目的を満足する特性を有することを知見し、本発明に到達した。
 すなわち、本発明に係るフェライト粒子は、平均粒径が1~2000nmの単結晶体であり、真球状の粒子形状を備えるMn系フェライト粒子であり、飽和磁化が45~95Am/kgであることを特徴とする。
 本発明に係るフェライト粒子は、金属成分がMn及びFeからなり、Mnを1~23重量%含有し、Feを58~65重量%含有することが好ましい。
 また、本発明に係るフェライト粒子は、残留磁化が0~12Am/kgであることが好ましい。
 また、本発明に係るフェライト粒子は、BET比表面積が1~30m/gであることが好ましい。
 また、本発明に係る樹脂組成物は、上記フェライト粒子をフィラーとして含有することを特徴とする。
 また、本発明に係る樹脂フィルムは、上記樹脂組成物からなることを特徴とする。
 本発明に係るフェライト粒子は、単結晶体からなるMn系フェライト粒子であるので、45~95Am/kgである高い飽和磁化を得ることができると共に、残留磁化を低くすることができる。また、本発明に係るフェライト粒子は、平均粒径が1~2000nmであって真球状の粒子形状を備える共に、残留磁化が低いことにより粒子同士の凝集を低減することができるので、樹脂、溶媒又は樹脂組成物に対する優れた分散性を得ることができる。このため、本発明に係るフェライト粒子は、当該フェライト粒子をフィラーとして含有する樹脂フィルムに好適に用いたときに、フェライト粒子の凝集を防ぐことができ、平滑な表面を得ることができる。また、樹脂フィルムに磁場を印加することによって樹脂フィルムを吸着することができる。
図1は、実施例1のフェライト粒子の透過電子顕微鏡写真である。 図2は、実施例1のフェライト粒子の電子回折像である。
 以下、本発明を実施するための形態について説明する。
 <本発明に係るフェライト粒子>
 本発明に係るフェライト粒子は、下記に示すように、特定の範囲の粒径を有する単結晶体からなり真球状であり、且つ、特定のフェライト組成を有することにより、高い飽和磁化を得ることができると共に、樹脂、溶媒又は樹脂組成物に対する優れた分散性を得ることができる。ここでいう樹脂組成物は、1種以上の樹脂と溶媒とからなるものであってもよく、1種以上の樹脂からなるものであってもよい。
 ここでいう真球状とは、平均球状率が1~1.2、好ましくは1~1.1、更に好ましくは、1に限りなく近い形状をいう。平均球状率が1.2を超えると、フェライト粒子の球状性が損なわれる。
 (平均球状率)
 球状率は、次のようにして求めることができる。まず、走査型電子顕微鏡としてのFE-SEM(SU-8020、株式会社日立ハイテクノロジーズ)を用いて倍率20万倍でフェライト粒子を撮影する。このとき、フェライト粒子を100粒子以上カウント可能な視野において撮影する。撮影したSEM画像をスキャナーで読み込み、画像解析ソフト(Image-Pro PLUS、メディアサイバネティクス(MEDIA CYBERNETICS)社)を用いて画像解析を行う。マニュアル測定によって各粒子に対する外接円直径、内接円直径を求め、その比(外接円直径/内接円直径)を球状率とする。2つの直径が同一である、すなわち、真球であれば、この比が1となる。本実施形態では、フェライト粒子100粒子における球状率の平均値を平均球状率とした。
 (平均粒径)
 本発明に係るフェライト粒子の平均粒径は1~2000nmである。平均粒径が1nm未満では、表面処理を行ったとしても粒子が凝集してしまい、樹脂、溶媒又は樹脂組成物に対する優れた分散性を得ることができない。一方、平均粒径が2000nmを超えると、上記分散性を確保できるものの、フェライト粒子を含有する成形体を構成したときに、フェライト粒子の存在によって成形体の表面に凹凸が生じることがある。さらに、成形体が電子機器への配線、ケーブル等に用いられるフレキシブルプリント配線板である場合には、その表面に形成される金属配線が上記凹凸によって損傷する虞がある。フェライト粒子の平均粒径は、好ましくは1~800nmであり、さらに好ましくは1~300nmである。
 フェライト粒子の平均粒径は、例えば、平均球状率と同様に、倍率20万倍で撮影した画像について、マニュアル測定によって水平フェレ径を計測し、その平均値を平均粒径とすることができる。
 (結晶形態)
 また、本発明に係るフェライト粒子は、その形態が単結晶体である。多結晶体であるフェライト粒子の場合には、焼成による結晶成長の過程で1粒子内の微細構造において結晶粒界内に微細な気孔が生じてしまう。その結果、フェライト粒子を樹脂、溶媒又は樹脂組成物に混合したときに、当該気孔に樹脂組成物等が侵入しようとするため、フェライト粒子と樹脂組成物等とが均一に分散されるまでに長時間を要することがある。また、条件によっては、必要以上の量の樹脂、溶媒又は樹脂組成物を必要とし、コスト的にも不利である。これに対し、単結晶体であるフェライト粒子の場合には、このような不都合は解消される。
 (組成)
 本発明に係るフェライト粒子は、Mn系フェライト粒子である。上記フェライト粒子は、金属成分がMn及びFeからなり、Mnを1~23重量%含有し、Feを58~65重量%含有することが好ましい。この場合、Fe及びMn以外の金属成分を含まない(但し、不可避的不純物を除く)ことがより好ましい。本発明のフェライト粒子は、Mn系フェライト粒子であることにより、高い飽和磁化と低い残留磁化とを両立して得ることができる。
 Mnの含有量が1重量%未満の場合には、フェライト粒子の残留磁化が大きくなり、フェライト粒子同士が凝集し易くなることがある。その場合、樹脂、溶媒又は樹脂組成物に当該フェライト粒子を均一に分散させるのが困難になる。一方、Mnの含有量が23重量%超の場合には、フェライト粒子において所望の飽和磁化を得ることができないことがある。
 Feの含有量が58重量%未満の場合には、フェライト粒子において所望の飽和磁化を得ることができないことがある。一方、Feの含有量が65重量%超の場合には、フェライト粒子の残留磁化が大きくなり、フェライト粒子同士が凝集し易くなることがある。その場合、樹脂、溶媒又は樹脂組成物に当該フェライト粒子を均一に分散させるのが困難になる。
 これらFe及びMnの含有量は、次のように測定することができる。フェライト粒子0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱することにより、フェライト粒子を完全溶解させたフェライト含有溶液を調製する。続いて、当該フェライト含有溶液について、ICP分析装置(島津製作所製ICPS-1000IV)を用いてFe及びMnの含有量を測定する。
 (BET比表面積)
 本発明に係るフェライト粒子は、BET比表面積が1~30m/gであることが好ましい。BET比表面積が1m/g未満では、フェライト粒子を含有する樹脂組成物を構成したときに、粒子表面と樹脂組成物との親和性が不十分となり、粒子表面に存在する樹脂組成物が局所的に盛り上がることがあり、この樹脂組成物を用いて成形体を構成したときに、成形体の表面に凹凸が生じることがある。一方、Mn及びFeから組成されるフェライト粒子は、表面状態が平滑な粒子が生成されることが多く、BET比表面積が30m/gを超えることはない。フェライト粒子のBET比表面積は、5~20m/gであることがさらに好ましい。
 (飽和磁化)
 本発明に係るフェライト粒子は、飽和磁化が45~95Am/kgである。飽和磁化を上記範囲とすることにより、所望の性能を得ることができる。飽和磁化が45Am/kg未満では、所望の性能を得られない。一方、Mn及びFeから組成されるフェライト粒子においては、95Am/kgを超える飽和磁化を実現するのは困難である。
 (残留磁化)
 本発明に係るフェライト粒子は、残留磁化が0~12Am/kgであることが好ましい。残留磁化を上記範囲とすることにより、樹脂、溶媒又は樹脂組成物に対する分散性をより確実に得ることができる。残留磁化が12Am/kgを上回ると、フェライト粒子同士が凝集し易くなることがあり、その場合、樹脂、溶媒又は樹脂組成物に当該フェライト粒子を均一に分散させるのが困難になることがある。
 <フェライト粒子の製造方法>
 次に、上記フェライト粒子の製造方法について説明する。
 上記フェライト粒子は、Mn及びFeを含むフェライト原料を大気中で溶射してフェライト化し、続いて急冷凝固した後に、粒径が所定範囲内の粒子のみを回収することにより、製造することができる。
 上記フェライト原料を調製する方法は、特に制限はなく、従来公知の方法が採用することができ、乾式による方法を用いてもよく、湿式による方法を用いてもよい。
 フェライト原料(造粒物)の調製方法の一例を挙げると、Fe原料及びMn原料を所望のフェライト組成となるように適量秤量した後、水を加えて粉砕しスラリーを作製する。作製した粉砕スラリーをスプレードライヤーで造粒し、分級して所定粒径の造粒物を調製する。造粒物の粒径は、得られるフェライト粒子の粒径を考慮すると0.5~10μm程度が好ましい。また、他の例としては、組成が調製されたフェライト原料を混合し、乾式粉砕を行い、各原材料を粉砕分散させ、その混合物をグラニュレーターで造粒し、分級して所定粒径の造粒物を調製する。
 このようにして調製された造粒物を大気中で溶射してフェライト化する。溶射には、可燃性ガス燃焼炎として燃焼ガスと酸素との混合気体を用いることができ、燃焼ガスと酸素の容量比は1:3.5~6.0である。可燃性ガス燃焼炎における酸素の割合が燃焼ガスに対して3.5未満では、溶融が不十分となることがあり、酸素の割合が燃焼ガスに対して6.0を超えると、フェライト化が困難となる。例えば燃焼ガス10Nm/hrに対して酸素35~60Nm/hrの割合で用いることができる。
 上記溶射に用いられる燃焼ガスとしては、プロパンガス、プロピレンガス、アセチレンガス等を用いることができ、特にプロパンガスを好適に用いることができる。また、造粒物を可燃性ガス燃焼中に搬送するために、造粒物搬送ガスとして窒素、酸素又は空気を用いることができる。搬送される造粒物の流速は、20~60m/secが好ましい。また、上記溶射は、温度1000~3500℃で行うことが好ましく、2000~3500℃で行うことがより好ましい。
 続いて、溶射によってフェライト化されたフェライト粒子を、大気中で空気給気による気流に乗せて搬送することによって急冷凝固した後に、平均粒径が1~2000nmであるフェライト粒子を捕集し回収する。前記捕集は、例えば、急冷凝固したフェライト粒子を空気給気による気流に乗せて搬送し、粒径が上記範囲を超えるフェライト粒子については気流の途中で落下させ、上記範囲の粒径を備えるフェライト粒子を気流の下流側に設けたフィルターによって捕集する方法により行うことができる。
 その後、回収したフェライト粒子について、必要に応じて分級を行い、所望の粒径に粒度調整する。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法等を用いることができる。なお、サイクロン等で、粒径の大きい粒子を除去することも可能である。
 また、得られたフェライト粒子に対して、カップリング剤で表面処理を施すことが好ましい。カップリング剤で表面処理することにより、フェライト粒子の樹脂、溶媒又は樹脂組成物への分散性をより向上することができる。カップリング剤としては、各種シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤を用いることができ、より好ましくはデシルトリメチキシシラン、n-オクチルトリエトキシシランを用いることができる。表面処理量は、フェライト粒子のBET比表面積にもよるが、シランカップリング剤換算でフェライト粒子に対して0.05~2重量%であるのが好ましい。
 <本発明に係るフェライト粒子の用途>
 本発明に係るフェライト粒子は、例えば、フレキシブルプリント配線板用の樹脂フィルムに用いることができる。まず、フェライト粒子を、樹脂と水系又は溶剤系の溶媒とを含む樹脂組成物に添加し、撹拌、混合することにより、樹脂組成物中にフェライト粒子を分散させる。続いて、得られたフィラーを含有する樹脂組成物を基材上に塗布し、溶媒を揮発させ樹脂を硬化させることにより、樹脂フィルムを作製することができる。
 フェライト粒子は、上記樹脂フィルムにおいて磁性フィラーとして作用する。当該フェライト粒子は飽和磁化が高く且つ残留磁化が低いので、樹脂フィルム上に金属層を積層して金属配線を形成する際に、磁場を印加することにより、不要となった樹脂フィルムを吸着して除去することができる。
 また、本発明に係るフェライト粒子は、フレキシブルプリント配線板用の樹脂フィルムに限定されるものでなく、種々の用途に用いることができる。当該フェライト粒子をフィラー、特に磁性フィラーと用いてもよく、成型体用原料として用いてもよい。当該フェライト粒子を成型用原料として用いる場合には、成型、造粒、塗工等を行うことができ、焼成を行ってもよい。
 以下、実施例等に基づき本発明を具体的に説明する。
 1.フェライト粒子の作製
 〔実施例1〕
 酸化鉄(Fe)及び酸化マンガン(MnO)をモル比で80:20の割合で計量し、混合した。水を加えて粉砕し固形分50重量%のスラリーを作製した。作製されたスラリーをスプレードライヤーで造粒し、分級して平均粒径5μmの造粒物を作製した。
 次に、得られた造粒物をプロパン:酸素=10Nm/hr:35Nm/hrの可燃性ガス燃焼炎中に流速約40m/secの条件で溶射を行うことによりフェライト化し、続いて、空気給気による気流に乗せて搬送することによって大気中で急冷した。このとき、造粒物を連続的に流動させながら溶射したため、溶射・急冷後の粒子は互いに結着することなく独立していた。続いて、冷却された粒子を気流の下流側に設けたフィルターによって捕集した。このとき、粒径が大きい粒子は、気流の途中で落下したため、フィルターによって捕集されなかった。次に、捕集された粒子について、分級によって粒径が2000nmを超える粗粉を除去し、フェライト粒子を得た。すなわち、得られたフェライト粒子は、最大粒径が2000nm以下であった。
 〔実施例2〕
 本実施例では、酸化鉄及び酸化マンガンをモル比で50:50の割合とした以外は、実施例1と同様にしてフェライト粒子を作製した。
 〔実施例3〕
 本実施例では、酸化鉄及び酸化マンガンをモル比で90:10の割合とした以外は、実施例1と同様にしてフェライト粒子を作製した。
 〔実施例4〕
 本実施例では、実施例1のフェライト粒子を用いて、シランカップリング剤で表面処理されたフェライト粒子を作製した。まず、シランカップリング剤としてのデシルトリメトキシシラン(KBM3103C、信越化学株式会社)を含有する酢酸水溶液を調製した。続いて、得られた酢酸水溶液に、実施例1のフェライト粒子を固形分10重量%となるように添加し、撹拌することにより、フェライト粒子が当該酢酸水溶液中に分散したスラリーを調製した。次に、得られたスラリーに、pHが8になるまでアンモニア水溶液を添加することにより、フェライト粒子をカップリング剤で表面処理した。このとき、表面処理量は、シランカップリング剤換算でフェライト粒子に対して0.1重量%であった。次に、表面処理されたフェライト粒子を含有するスラリーを180℃で6時間熱処理することにより水分を除去した後、サンプルミルで粉砕することにより、シランカップリング剤で表面処理されたフェライト粒子を作製した。
 〔比較例1〕
 本比較例では、実施例1と同様にして造粒物を得た後に、造粒物を匣鉢に収容し、電気炉で1200℃、4時間、酸素濃度0体積%の窒素雰囲気下で焼成してフェライト化することにより、匣鉢の形状に即した塊となった焼成物を得た。得られた焼成物を大気中で急冷し、冷却された焼成物を乳鉢で磨砕することによって粉砕し、フェライト粒子を得た。
 〔比較例2〕
 本比較例では、スプレードライヤーの条件を変更して、平均粒径39μmの造粒物を作製した以外は、実施例1と同様にして造粒物を得た。得られた造粒物を用いて、比較例1と同一にして焼成し、得られた焼成物を大気中で急冷した。そして、冷却された焼成物をハンマーミルで解砕し、フェライト粒子を得た。
 〔比較例3〕
 本比較例では、冷却された粒子を気流に乗せることなく直接捕集した(全て捕集した)以外は、実施例1と同様にしてフェライト粒子を作製した。
 〔比較例4〕
 本比較例では、酸化鉄及び酸化マンガンをモル比で40:60の割合とした以外は、実施例1と同様にしてフェライト粒子を作製した。
 〔比較例5〕
 本比較例では、酸化鉄及び酸化マンガンをモル比で100:0の割合とした以外は、実施例1と同様にしてフェライト粒子を作製した。
 2.塗膜作成用インクの調製及び樹脂フィルムの作製
 実施例1~4及び比較例1~5で得られたフェライト粒子をフィラーとして含有する樹脂フィルムを作製するために、まず、次のようにして、当該フェライト粒子を含有する樹脂組成物としての塗膜作成用インクを調製した。
 (塗膜作製用インクの調製(水系))
 実施例1~3及び比較例1~5のフェライト粒子については、N-メチル-2-ピロリドン及び水を溶媒とするポリイミドワニス(固形分20重量%)に、フェライト粒子を添加した後、撹拌機を用いて撹拌し混合することにより、塗膜作成用インクを調製した。フェライト粒子の添加量は、ポリイミドに対して30重量%であった。
 (塗膜作製用インクの作製(溶剤系))
 実施例4のフェライト粒子については、トルエンを溶媒とするポリプロピレンワニス(固形分25重量%)に、フェライト粒子を添加した後、撹拌機を用いて撹拌し混合することにより、塗膜作成用インクを調製した。フェライト粒子の添加量は、ポリプロピレンに対して30重量%であった。
 次に、得られた塗膜作成用インクを用い、ベーカー式アプリケーター(SA-201、テスター産業株式会社)によって、基材としてのPETフィルム或いはガラス板上に塗膜を形成した。塗膜厚さは4mil(101.6μm)とし、塗膜幅は10cmとした。その後、溶媒を乾燥させ樹脂を硬化させることにより、樹脂フィルムが得られた。
 3.フェライト粒子の評価方法
 得られた実施例1~3及び比較例1~5のフェライト粒子について、化学分析を行うと共に、粉体特性・磁気特性(形状、結晶形態、平均粒径、BET比表面積、飽和磁化、残留磁化及び炭素含有量)を評価した。化学分析、BET比表面積、磁気特性、抵抗及び炭素含有量の測定方法は下記のとおりであり、その他の測定方法は上述のとおりである。結果を表1に示す。さらに、得られた実施例4のフェライト粒子について炭素含有量を測定した。結果を表2に示す。
(化学分析:Fe及びMnの含有量)
 フェライト粒子におけるFe及びMnの含有量を次のようにして測定した。まず、フェライト粒子0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱し、フェライト粒子を完全溶解させた水溶液を調製した。得られた水溶液をICP分析装置(ICPS-1000IV、株式会社島津製作所)にセットし、フェライト粒子における金属成分の含有量を測定した。
 (形状)
 平均球状率は、上述の方法によって測定した。平均球状率が1.2以下である場合に「真球状」であると判定した。
 (結晶形態)
 実施例1のフェライト粒子を透過電子顕微鏡写真(倍率10万倍)によって観察し、得られた透過電子顕微鏡写真から電子回折像を得た。結果を図1及び図2に示す。
 (平均粒径)
 実施例1~3のフェライト粒子については、上述した水平フェレ径を平均粒径とし、比較例1~5のフェライト粒子については、下記の体積平均粒径を平均粒径とした。
 (体積平均粒径(マイクロトラック))
 体積平均粒径は、マイクロトラック粒度分析計(Model9320-X100、日機装株式会社)を用いて測定した。まず、得られたフェライト粒子10gを、分散媒としての水80mlと共にビーカーにいれ、分散剤としてのヘキサメタリン酸ナトリウムを2~3滴添加した。次いで、得られた溶液に対して、超音波ホモジナイザー(UH-150、株式会社エスエムテー)によって、出力レベル4で20秒間発振させることにより、溶液中にフェライト粒子を分散させた。次に、ビーカー表面に生じた泡を取り除いた後、固液分離し、フェライト粒子を回収した。回収したフェライト粒子について体積平均粒径を測定した。
 (BET比表面積)
 BET比表面積の測定は、比表面積測定装置(Macsorb HM model-1208、株式会社マウンテック)を用いて行った。まず、得られたフェライト粒子約10gを薬包紙に載せ、真空乾燥機で脱気して真空度が-0.1MPa以下であることを確認した後に、200℃で2時間加熱することにより、フェライト粒子の表面に付着している水分を除去した。続いて、水分が除去されたフェライト粒子を当該装置専用の標準サンプルセルに約0.5~4g入れ、精密天秤で正確に秤量した。続いて、秤量したフェライト粒子を当該装置の測定ポートにセットして測定した。測定は1点法で行った。測定雰囲気は、温度10~30℃、相対湿度20~80%(結露なし)であった。
 (磁気特性)
 磁気特性の測定は、振動試料型磁気測定装置(VSM-C7-10A、東英工業株式会社)を用いて行った。まず、得られたフェライト粒子を内径5mm、高さ2mmのセルに充填し、上記装置にセットした。上記装置において、磁場を印加し、5K・1000/4π・A/mまで掃引した。次いで、印加磁場を減少させ、記録紙上にヒステリシスカーブを作成した。このカーブにおいて、印加磁場が5K・1000/4π・A/mであるときの磁化を飽和磁化とすると共に、印加磁場が0K・1000/4π・A/mであるときの磁化を残留磁化とした。
 (炭素含有量)
 炭素含有量の測定は、炭素分析装置(C-200、LECO社)を用いて行った。酸素ガス圧は2.5kg/cmとし、窒素ガス圧は2.8kg/cmとした。まず、フェライト粒子と同程度の炭素含有率であって炭素含有率が明らかな標準試料について、上記装置によって測定した。また、試料自体を全く用いずに測定した(空試験)。そして、得られた測定値から下記式によって換算係数を算出した。
   換算係数=標準試料のはかり取り量(g)/{(標準試料の測定値)-(空試験での測定値)}×標準試料の炭素含有率(重量%)/100
 続いて、フェライト粒子について上記装置によって測定し、下記式によって炭素含有量を算出した。
   炭素含有量(重量%)={(フェライト粒子の測定値)-(空試験での測定値)}×換算係数/フェライト粒子のはかり取り量(g)×100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 4.塗膜作製用インク及び樹脂フィルムの評価方法
 実施例1~4及び比較例1~5で得られたフェライト粒子を用いた塗膜作成用インク、及び、当該塗膜作成用インクを用いて形成された樹脂フィルムについて、次のように評価した。結果を表3に示す。
(分散性)
 実施例1~4及び比較例1~5で得られたフェライト粒子を用いた塗膜作成用インクについて、撹拌の際に均一に分散するまでに要した時間から、フェライト粒子の樹脂組成物に対する分散性を評価した。表3中の各記号の意味は以下のとおりである。尚、均一に分散されたか否かの判定は、目視によって行った。
  ○:均一に分散するまでの撹拌時間が5分間未満。
  △:均一に分散するまでの撹拌時間が5分間以上30分間未満。
  ×:均一に分散するまでの撹拌時間が30分間以上。
 (表面平滑性)
 上記塗膜作成用インクを用いて形成された樹脂フィルムについて、マイクロメーターを使用して膜厚を測定した。測定は、位置を変えて9回行った。そして、最大膜厚を最小膜厚との差(最大膜厚-最小膜厚)を算出し、その差から樹脂フィルムの表面平滑性を評価した。表3中の各記号の意味は以下のとおりである。
  ○:最大膜厚-最小膜厚=10μm以下。
  △:最大膜厚-最小膜厚=10~20μm。
  ×:最大膜厚-最小膜厚=20μm以上。
 (磁気吸着性能)
 上記樹脂フィルムについて、飽和磁化を測定することにより磁気吸着性能を評価した。測定は、上述した振動試料型磁気測定装置を用い、フェライト粒子に代えて、1mm角に裁断された磁気フィルム100mgをセルに充填し、磁場を10K・1000/4π・A/mまで掃引した以外は、上述したフェライト粒子の飽和磁化の測定と同様に行った。飽和磁化の測定値から樹脂フィルムの磁気吸着性能を評価した。表3中の各記号の意味は以下のとおりである。
  ○:10.0Am/kg以上。
  △:5.0~10.0Am/kg。
  ×:5.0Am/kg未満。
Figure JPOXMLDOC01-appb-T000003
 5.フェライト粒子の評価結果
 図2は、電子回折像がスポット状であることを示している。従って、実施例1のフェライト粒子は単結晶体であることが明らかである。
 また、表1に示すとおり、実施例1~3のフェライト粒子は、平均粒径が1~2000nmの単結晶体であり、真球状の粒子形状を備えていた。また、実施例1~3のフェライト粒子は、金属成分がMn及びFeからなり、Mnの含有量が1~23重量%の範囲内であり、Feの含有量が58~65重量%であるMn系フェライト粒子であった。なお、Mn及びFe以外の金属成分については検出限界以下であった。また、実施例1~3のフェライト粒子は、飽和磁化が45~95Am/kgの範囲内であり、残留磁化が0~12Am/kgの範囲内であった。従って、実施例1~3のフェライト粒子は、高い飽和磁化と低い残留磁化とを両立して備えることが明らかである。
 一方、比較例1~2のフェライト粒子は、実施例1~3と同様に、Mnの含有量が1~23重量%の範囲内であり、Feの含有量が58~65重量%内であった。しかしながら、比較例1~2のフェライト粒子は、平均粒径が2000nmを上回る多結晶体からなり、不定形又は粒状の粒子形状を備えていた。
 また、比較例3のフェライト粒子は、実施例1~3と同様に、単結晶体であり、真球状の粒子形状を備え、Mnの含有量が1~23重量%の範囲内であるMn系フェライト粒子であった。また、比較例3のフェライト粒子は、実施例1~3と同様に、飽和磁化が45~95Am/kgの範囲内であり、残留磁化が0~12Am/kgの範囲であった。しかしながら、比較例3のフェライト粒子は、平均粒径が2000nmを上回っていた。
 また、比較例4のフェライト粒子は、実施例1~3と同様に、平均粒径が1~2000nmの単結晶体であり、真球状の粒子形状を備えるが、Mnの含有量が23.3重量%であった。そして、比較例4のフェライト粒子は、飽和磁化が45Am/kg未満であり、実施例1~3よりも低かった。
 また、比較例5のフェライト粒子は、実施例1~3と同様に、平均粒径が1~2000nmの単結晶体であり、真球状の粒子形状を備えていた。比較例5のフェライト粒子は、Mnの含有量が0.3重量%であったが、これは、原料の酸化鉄(Fe)に含まれる不可避的不純物である。よって、比較例5のフェライト粒子は、実質的にMn系フェライト粒子ではないと考えられる。そして、比較例5のフェライト粒子は、飽和磁化は45~95Am/kgの範囲内であるが、残留磁化が12Am/kgを上回っており、実施例1~3よりも高かった。
 すなわち、比較例4~5のフェライト粒子は、実施例1~3と同様に、平均粒径が2000nm以下の単結晶体からなり、真球状の粒子形状を備えているが、高い飽和磁化と低い残留磁化とを両立することができなかった。
 また、表2に示すとおり、シランカップリング剤で表面処理された実施例4のフェライト粒子は、表面処理されていない実施例1のフェライト粒子と比較して炭素含有量が増大していることが明らかである。しかしながら、実施例4のフェライト粒子において、炭素含有量が0.05重量%と微量であることから、シランカップリング剤による表面処理はフェライト粒子の表面のごく薄い領域に限られ、表面処理の前後でフェライト粒子の抵抗が変化しないと考えられる。そのため、表面処理の前後で磁気特性(飽和磁化及び残留磁化)は変化せず、実施例4のフェライト粒子においても、実施例1のフェライト粒子と同様の磁気特性を備えていると考えられる。
 6.塗膜作製用インク及び樹脂フィルムの評価結果
 表3に示すとおり、実施例1~4のフェライト粒子は、いずれも、樹脂組成物に対する分散性に優れていた。このため、実施例1~4のフェライト粒子は、樹脂フィルムを製造する際に優れた生産性を確保することができると考えられる。特に、シランカップリング剤によって表面処理された実施例4のフェライト粒子は、樹脂組成物に含まれる溶媒が溶剤系溶媒(非水系溶媒)であるにもかかわらず、当該樹脂組成物に対する分散性に優れていた。また、実施例1~4の樹脂フィルムは、樹脂フィルム表面の凹凸が小さく表面平滑性に優れると共に、飽和磁化が大きく磁気吸着性能が良好であった。
 一方、比較例1のフェライト粒子は、樹脂組成物に対する分散性が低く、分散するまでに長時間を要した。このため、比較例1のフェライト粒子は、樹脂フィルムを製造する際の生産性が低いと考えられる。また、比較例1の樹脂フィルムは、フィルム表面の凹凸が大きく表面平滑性が劣っていた。これは、比較例1のフェライト粒子は、平均粒径が約5.6μmであり実施例1~3よりも大きいこと、形状が不定形であること、残留磁化が大きいために粒子同士が凝集しやすいことが原因であると考えられる。
 比較例2のフェライト粒子は、樹脂組成物に対する分散性が低く、分散するまでに長時間を要した。このため、比較例2のフェライト粒子は、樹脂フィルムを製造する際の生産性が低いと考えられる。また、フェライト粒子の平均粒径が37μmと大きく粒状であるために樹脂フィルムを形成することができず、樹脂フィルムの膜厚及び飽和磁化を測定できなかった。
 比較例3のフェライト粒子は、実施例1~3と比較して、樹脂組成物に対する分散性が低かった。また、比較例3の樹脂フィルムは、フィルム表面の凹凸が大きく表面平滑性が劣っていた。これは、比較例3のフェライト粒子は、平均粒径が約12μmであり実施例1~3よりも大きいことが原因であると考えられる。
 比較例4のフェライト粒子は、実施例1~3と同様に、樹脂組成物に対する分散性が優れていた。また、比較例4の樹脂フィルムは、実施例1~3と同様に、フィルム表面の凹凸が小さく表面平滑性が優れていた。しかしながら、比較例4の樹脂フィルムは、飽和磁化が小さく磁気吸着性能が低かった。これは、比較例4のフェライト粒子は飽和磁化が小さいことが原因であると考えられる。
 比較例5のフェライト粒子は、樹脂組成物に対する分散性が低く、分散するまでに長時間を要した。このため、比較例5のフェライト粒子は、樹脂フィルムを製造する際の生産性が低いと考えられる。また、比較例5の樹脂フィルムは、十分な表面平滑性を得られなかった。これは、比較例5のフェライト粒子は残留磁化が大きいために粒子同士が凝集しやすいことが原因であると考えられる。
 以上から、平均粒径が1~2000nmの単結晶体であり、真球状の粒子形状を備えるMn系フェライト粒子であり、飽和磁化が45~95Am/kgであるフェライト粒子は、高い飽和磁化と低い残留磁化とを両立して備えると共に、樹脂組成物に対する分散性が高いことが明らかである。また、上記Mn系フェライト粒子は、樹脂フィルムを構成したときに優れた表面平滑性と優れた磁気吸着性能とを両立して備えることが明らかである。また、上記実施例によって、Mn系フェライト粒子の樹脂組成物に対する分散性が高いことが明らかになったが、上記Mn系フェライト粒子は樹脂又は溶媒に対しても優れた分散性を示すと考えられる。
 本発明に係るフェライト粒子によれば、高い飽和磁化を得ることができると共に、樹脂、溶媒又は樹脂組成物に対する優れた分散性を得ることができる。このため、当該フェライト粒子は、当該フェライト粒子をフィラーとして含有する樹脂組成物を調製し、当該樹脂組成物からなる樹脂フィルム等の成形体を構成したときに、成形体の表面においてフェライト粒子の凝集を防ぎ平滑な表面を得ることができると共に、磁場を印加することによって上記成形体を吸着することができる。また、上記フェライト粒子をフィラーとして含有する樹脂組成物又は当該樹脂組成物からなる上記樹脂フィルムを電子機器への配線、ケーブル等に用いられるフレキシブルプリント配線板として用いることにより、金属配線を形成する工程の中で、不要となった上記樹脂組成物又は上記樹脂フィルムを磁場によって吸着し除去することができるため、簡便且つ効率よく金属配線を形成することができる。また、本発明に係るフェライト粒子は、磁性フィラーや成型体原料として好適に用いることができる。

Claims (6)

  1.  平均粒径が1~2000nmの単結晶体であり、真球状の粒子形状を備えるMn系フェライト粒子であり、飽和磁化が45~95Am/kgであることを特徴とするフェライト粒子。
  2.  金属成分がMn及びFeからなり、Mnを1~23重量%含有し、Feを58~65重量%含有する請求項1に記載のフェライト粒子。
  3.  残留磁化が0~12Am/kgである請求項1又は請求項2のいずれかに記載のフェライト粒子。
  4.  BET比表面積が1~30m/gである請求項1~3のいずれか一項に記載のフェライト粒子。
  5.  請求項1~4のいずれか一項に記載のフェライト粒子をフィラーとして含有することを特徴とする樹脂組成物。
  6.  請求項5に記載の樹脂組成物からなることを特徴とする樹脂フィルム。
PCT/JP2017/006527 2016-03-31 2017-02-22 フェライト粒子、樹脂組成物及び樹脂フィルム WO2017169316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/082,102 US11014826B2 (en) 2016-03-31 2017-02-22 Ferrite particles, resin composition and resin film
CA3017094A CA3017094C (en) 2016-03-31 2017-02-22 Ferrite particles, resin composition and resin film
EP17773863.0A EP3438054B1 (en) 2016-03-31 2017-02-22 Ferrite particles, resin composition, and resin film
KR1020187024779A KR101984455B1 (ko) 2016-03-31 2017-02-22 페라이트 입자, 수지 조성물 및 수지 필름
CN201780015150.1A CN108779001B (zh) 2016-03-31 2017-02-22 铁氧体粒子、树脂组合物以及树脂膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070280 2016-03-31
JP2016070280A JP6547229B2 (ja) 2016-03-31 2016-03-31 フェライト粒子、樹脂組成物及び樹脂フィルム

Publications (1)

Publication Number Publication Date
WO2017169316A1 true WO2017169316A1 (ja) 2017-10-05

Family

ID=59964160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006527 WO2017169316A1 (ja) 2016-03-31 2017-02-22 フェライト粒子、樹脂組成物及び樹脂フィルム

Country Status (8)

Country Link
US (1) US11014826B2 (ja)
EP (1) EP3438054B1 (ja)
JP (1) JP6547229B2 (ja)
KR (1) KR101984455B1 (ja)
CN (1) CN108779001B (ja)
CA (1) CA3017094C (ja)
TW (1) TWI709535B (ja)
WO (1) WO2017169316A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149794A1 (ja) 2020-01-24 2021-07-29 パウダーテック株式会社 フェライト粉末及びその製造方法
WO2021153612A1 (ja) 2020-01-27 2021-08-05 パウダーテック株式会社 フェライト粉末及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164050B (zh) * 2017-09-29 2023-05-30 保德科技股份有限公司 Mn-Zn系铁氧体颗粒、树脂成形体、软磁性混合粉及磁芯
CN111712464B (zh) * 2018-02-13 2023-04-18 保德科技股份有限公司 Mn铁氧体粉末、树脂组合物、电磁波屏蔽材料、电子材料及电子部件
JP7463736B2 (ja) * 2020-01-24 2024-04-09 味の素株式会社 樹脂組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121129A (ja) * 1997-07-02 1999-01-26 Tdk Corp 磁性酸化物粉末の製造方法
JPH1125447A (ja) * 1997-06-30 1999-01-29 Toda Kogyo Corp 磁気記録媒体
JPH1124305A (ja) * 1997-07-02 1999-01-29 Tdk Corp トナー用磁性酸化物粉末および磁性トナー
JP2003238163A (ja) * 2002-02-15 2003-08-27 Mitsui Mining & Smelting Co Ltd 黒色複合酸化物粒子及びその製造方法
JP2006335614A (ja) * 2005-06-03 2006-12-14 Mitsui Mining & Smelting Co Ltd フェライト成型体用複合酸化鉄粒子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291421A (ja) * 1986-04-25 1986-12-22 Tdk Corp 電子写真磁性トナ−用フエライト粉体の製造方法
EP1453070B1 (en) 1998-01-23 2010-03-31 Hitachi Metals, Ltd. Bonded magnet, method for producing same and magnet roll
JP3542319B2 (ja) * 2000-07-07 2004-07-14 昭栄化学工業株式会社 単結晶フェライト微粉末
JP2002311648A (ja) * 2001-04-18 2002-10-23 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像剤、静電荷像現像剤ユニット、画像形成方法
JPWO2004065306A1 (ja) 2003-01-17 2006-05-18 日立マクセル株式会社 複合粒子およびその製造方法
US20090053512A1 (en) * 2006-03-10 2009-02-26 The Arizona Bd Of Reg On Behalf Of The Univ Of Az Multifunctional polymer coated magnetic nanocomposite materials
WO2007141843A1 (ja) 2006-06-06 2007-12-13 Nitto Denko Corporation 球状焼結フェライト粒子およびそれを用いた半導体封止用樹脂組成物ならびにそれを用いて得られる半導体装置
JP2008216339A (ja) 2007-02-28 2008-09-18 Powdertech Co Ltd 電子写真用フェライトキャリア芯材及び樹脂被覆フェライトキャリアの製造方法
JP5690474B2 (ja) 2009-02-12 2015-03-25 Dowaエレクトロニクス株式会社 磁性粉末
JP5522451B2 (ja) 2010-02-26 2014-06-18 パウダーテック株式会社 電子写真現像剤用フェライトキャリア芯材、フェライトキャリア及び該フェライトキャリアを用いた電子写真現像剤
JP2011227452A (ja) 2010-03-30 2011-11-10 Powdertech Co Ltd 電子写真現像剤用フェライトキャリア芯材、フェライトキャリア及びこれらの製造方法、並びに該フェライトキャリアを用いた電子写真現像剤
JP5488910B2 (ja) 2010-06-30 2014-05-14 パウダーテック株式会社 電子写真現像剤用フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤
CN102583567B (zh) * 2012-01-09 2013-11-27 中国科学院金属研究所 一种超细高分散超顺磁性铁酸盐纳米颗粒及其制备方法
CN102786299B (zh) * 2012-08-16 2013-10-02 四川大学 掺杂Mn和Zn元素的超顺磁性铁氧体纳米微球及其制备方法
JP6076673B2 (ja) 2012-10-05 2017-02-08 株式会社カネカ 黒色ポリイミドフィルム
JP5818380B2 (ja) * 2013-11-25 2015-11-18 Dowaエレクトロニクス株式会社 フェライト粒子並びにそれを用いた電子写真現像用キャリア及び電子写真用現像剤
KR102358001B1 (ko) * 2014-09-19 2022-01-28 파우더테크 컴퍼니 리미티드 나노 사이즈의 진구상 페라이트 입자 및 그 제조 방법
CN104591295B (zh) * 2015-01-27 2016-08-24 三明学院 一种超顺磁铁氧体纳米粒子的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125447A (ja) * 1997-06-30 1999-01-29 Toda Kogyo Corp 磁気記録媒体
JPH1121129A (ja) * 1997-07-02 1999-01-26 Tdk Corp 磁性酸化物粉末の製造方法
JPH1124305A (ja) * 1997-07-02 1999-01-29 Tdk Corp トナー用磁性酸化物粉末および磁性トナー
JP2003238163A (ja) * 2002-02-15 2003-08-27 Mitsui Mining & Smelting Co Ltd 黒色複合酸化物粒子及びその製造方法
JP2006335614A (ja) * 2005-06-03 2006-12-14 Mitsui Mining & Smelting Co Ltd フェライト成型体用複合酸化鉄粒子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438054A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149794A1 (ja) 2020-01-24 2021-07-29 パウダーテック株式会社 フェライト粉末及びその製造方法
KR20220130130A (ko) 2020-01-24 2022-09-26 파우더테크 컴퍼니 리미티드 페라이트 분말 및 그 제조 방법
WO2021153612A1 (ja) 2020-01-27 2021-08-05 パウダーテック株式会社 フェライト粉末及びその製造方法
KR20220131916A (ko) 2020-01-27 2022-09-29 파우더테크 컴퍼니 리미티드 페라이트 분말 및 그 제조 방법
US12119151B2 (en) 2020-01-27 2024-10-15 Powdertech Co., Ltd. Ferrite powder and method of producing the same

Also Published As

Publication number Publication date
CA3017094C (en) 2020-05-26
US11014826B2 (en) 2021-05-25
TW201806871A (zh) 2018-03-01
EP3438054A4 (en) 2020-01-22
US20190161362A1 (en) 2019-05-30
TWI709535B (zh) 2020-11-11
CN108779001B (zh) 2023-03-28
KR101984455B1 (ko) 2019-05-30
JP6547229B2 (ja) 2019-07-24
CA3017094A1 (en) 2017-10-05
EP3438054B1 (en) 2021-07-14
EP3438054A1 (en) 2019-02-06
JP2017178718A (ja) 2017-10-05
KR20180119581A (ko) 2018-11-02
CN108779001A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2017169316A1 (ja) フェライト粒子、樹脂組成物及び樹脂フィルム
US11542174B2 (en) Ferrite particles, resin compositions and electromagnetic wave shielding material
KR102358001B1 (ko) 나노 사이즈의 진구상 페라이트 입자 및 그 제조 방법
WO2018061327A1 (ja) Ni-Zn-Cu系フェライト粒子、樹脂組成物及び樹脂成形体
JP7126267B2 (ja) フェライト粉末、樹脂組成物および成形体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024779

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3017094

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773863

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773863

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773863

Country of ref document: EP

Kind code of ref document: A1