WO2017163614A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2017163614A1
WO2017163614A1 PCT/JP2017/003261 JP2017003261W WO2017163614A1 WO 2017163614 A1 WO2017163614 A1 WO 2017163614A1 JP 2017003261 W JP2017003261 W JP 2017003261W WO 2017163614 A1 WO2017163614 A1 WO 2017163614A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
space
control device
vehicles
Prior art date
Application number
PCT/JP2017/003261
Other languages
English (en)
French (fr)
Inventor
秀昭 田中
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/076,055 priority Critical patent/US10902725B2/en
Priority to EP17769661.4A priority patent/EP3435354A4/en
Priority to JP2018507092A priority patent/JP6556939B2/ja
Publication of WO2017163614A1 publication Critical patent/WO2017163614A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance

Definitions

  • the present invention relates to a vehicle control device for merging from a merging lane to a main lane by automatic driving.
  • Patent Document 1 A driving support device that sets an appropriate acceleration of a host vehicle based on the driving state of another vehicle on the main line when merging from the merging lane to the main line on an expressway or the like is known.
  • Patent Document 2 there are a method for acquiring information on the external environment related to the vehicle by communication and a method for acquiring the information by a sensor mounted on the vehicle.
  • Patent Document 1 it is a problem to not only accelerate to an appropriate speed when actually joining, but also grasp the behavior of surrounding vehicles and confirm whether there is a space where the own vehicle can safely join. Obviously, in the case of Patent Document 1, it is a problem to not only accelerate to an appropriate speed when actually joining, but also grasp the behavior of surrounding vehicles and confirm whether there is a space where the own vehicle can safely join. Obviously, in the case of Patent Document 1, it is a problem to not only accelerate to an appropriate speed when actually joining, but also grasp the behavior of surrounding vehicles and confirm whether there is a space where the own vehicle can safely join. Become.
  • Patent Document 2 has the following advantages and disadvantages.
  • the method of acquiring information on the external environment through communication has an advantage that relatively high information accuracy or reliability can be expected in the sense that the information is objective information.
  • the method of acquiring information on the external environment using a sensor has an advantage that information can be obtained regardless of whether or not an object existing in the vicinity supports communication.
  • information from the sensor mounted on the host vehicle there is concern about accuracy or reliability in the sense that it is not objective information. Further, if the accuracy of detection by the sensor is to be improved, the calculation load increases.
  • An object of the present invention is to provide a vehicle control apparatus that can appropriately grasp the external environment while suppressing an excessive calculation load by taking advantage of the above two methods.
  • the vehicle control device of the present invention that solves the above-described problem includes an other vehicle information acquisition unit that acquires information of another vehicle by communication, and an external environment recognition unit that recognizes the external environment of the host vehicle by sensing, and the external environment recognition unit Is characterized by sensing the space surrounding the other vehicle around the other vehicle based on the information on the other vehicle acquired by the other vehicle information acquiring unit.
  • FIG. 1 shows a block diagram of the vehicle control device.
  • the vehicle control device 01 includes other vehicle information acquisition unit 02 that performs communication (C2X) such as inter-vehicle communication (C2C) and road-to-vehicle communication (C2I), and various sensors such as a radar and a camera.
  • C2X communication
  • C2C inter-vehicle communication
  • C2I road-to-vehicle communication
  • sensors such as a radar and a camera.
  • the external environment recognition unit 03 that acquires the information status of the vehicle, and the vehicle surrounding information management that manages the vehicle and road conditions around the vehicle by integrating the information from the other vehicle information acquisition unit 02 and the information from the external environment recognition unit 03 Unit 04, own vehicle behavior recognition unit 05 that detects the state of the host vehicle such as position, speed, acceleration, and yaw rate, and information from the own vehicle surrounding information management unit 04 and own vehicle behavior recognition unit 05
  • the route generation unit 06 determines a route.
  • the other vehicle information acquisition unit 02 acquires information on other vehicles by communication (C2X).
  • the other vehicle information acquisition unit 02 acquires information on the behavior of surrounding vehicles such as position, speed, acceleration, and yaw rate (information on other vehicles) by inter-vehicle communication (C2C). That is, vehicle information transmitted from another vehicle is acquired by inter-vehicle communication.
  • roadside-to-vehicle communication (C2I) provides information such as the position, speed, and acceleration of vehicles traveling on the road obtained by analyzing information from sensors such as radar and cameras. get. That is, information on other vehicles transmitted from the road equipment is acquired by road-to-vehicle communication.
  • the other vehicle information acquisition unit 02 acquires information on other vehicles existing in the other vehicle information detection range A2 of 300 m to 500 m around the host vehicle, for example.
  • the other vehicle includes, for example, a vehicle that travels on a road that merges with a road on which the host vehicle travels, and a vehicle that travels on a lane adjacent to the lane on which the host vehicle travels.
  • the communication (C2X) pattern in this embodiment includes (1) vehicle-to-vehicle communication only (C2C), (2) vehicle-to-vehicle communication and road-to-vehicle communication (C2C + C2I), and (3) road-to-vehicle communication ( There are three patterns: only C2I).
  • CAM Cooperative Awareness Message
  • CAM is a message used mainly for safety-related services of collaborative ITS, and is exchanged between ITS-S (ITS stations) to create and maintain mutual recognition and support cooperation in the road network Is done.
  • the CAM includes the state and attribute information of the transmission source ITS-S, and the contents differ depending on the type of ITS-S.
  • the state information includes time, position, operation state, and the like
  • the attribute information includes data on dimensions, vehicle types, and roles in road traffic and the like.
  • the receiving ITS-S can acquire the recognition, type, and state of the source ITS-S by receiving the CAM.
  • the CAM parameter includes a basic container, a vehicle ITS-S container, and a special vehicle container.
  • the basic container describes the type of the source ITS-S and the latest geographical location of the source ITS-S as basic information of the source ITS-S.
  • the vehicle ITS-S container includes a high frequency container and a low frequency container.
  • the high-frequency container describes the dynamic state information of the vehicle ITS-S such as the direction, speed, and acceleration
  • the low-frequency container describes the container classification of the special vehicle, external lighting, and the like.
  • the special container is a container for the vehicle ITS-S having a special role in road traffic such as public transport.
  • the outside world recognition unit 03 recognizes the outside world of the vehicle by sensing.
  • the external environment recognition unit 03 can acquire relative positions and states of vehicles, obstacles, road signs, and the like around the vehicle from sensors such as cameras and radars mounted on the vehicle.
  • the outside world recognition unit 03 can recognize, for example, an outside world recognition detection range A1 of 70 m to 100 m around the host vehicle. Based on the information on the other vehicle acquired by the other vehicle information acquisition unit 02, the outside world recognition unit 03 can sense the other vehicle and sense the surrounding space around the other vehicle.
  • the external recognition unit 30 senses and confirms an object such as another vehicle that already knows its presence by communication (C2X), but the space around the object is already known by communication. Sensing is given priority over sensing of objects. Then, sensing is performed focusing on the space around the object. For example, sensing is performed in more detail by increasing the frequency of processing on the surroundings of an object whose presence is already known through communication (C2X) or changing resources.
  • the own vehicle surrounding information management unit 04 integrates the information from the other vehicle information acquisition unit 02 and the information from the external world recognition unit 03 and manages the information as own vehicle surrounding information.
  • the other vehicle information acquisition unit 02 can acquire information on the surrounding vehicles and roads in the other vehicle information detection range A2 that is wider than the outside world recognition detection range A1 of the outside world recognition unit 03. 02, the vehicle surrounding information in the other vehicle information detection range A2 is acquired, and then the vehicle surrounding information obtained by the other vehicle information acquisition unit 02 when the vehicle enters the outside recognition detection range A1 of the outside recognition unit 03.
  • the vehicle periphery information can be more efficiently Can be detected.
  • the own vehicle behavior recognition unit 05 obtains information such as a yaw rate, a wheel speed, a steering angle, and an acceleration representing the behavior of the own vehicle from, for example, a gyro sensor, a wheel speed sensor, a rudder angle sensor, and an acceleration sensor mounted on the own vehicle. It is possible to obtain.
  • the route generation unit 06 for example, at the time of merging from the merging lane to the main line, based on the information from the own vehicle surrounding information management unit 04 and the information from the own vehicle behavior recognition unit 05, the main line on which the own vehicle can join. Is sensed, and a route for entering the mergeable space is determined. Then, according to the determined route, a control signal is transmitted to perform vehicle control in the vertical direction such as the accelerator and brake of the host vehicle and in the horizontal direction such as steering.
  • the route generation unit 06 may change the assumed mergeable space due to acceleration / deceleration or lane change of other vehicles. Therefore, the mergeable space is sensed continuously based on information from the vehicle surrounding information management unit 04 and the vehicle behavior recognition unit 05, and a route is generated again when the mergeable space has changed.
  • Acceleration is performed by setting the target speed of the host vehicle F01 based on the behavior of the other vehicle on the main line La obtained here to match the flow of the other vehicle on the main line La.
  • the speed limit of the own vehicle F01 is set to the target speed and acceleration is performed.
  • F04 existing behind the vehicle F03 is another space that can be merged.
  • the set speed of the host vehicle F01 is changed so that it can join the other space F04.
  • another space that can be merged behind the space F04 and within the merge section is also searched and listed as a candidate space that can be merged.
  • the lane change (merging) of the own vehicle F01 by the turn signal (direction indicator) of the own vehicle F01 or the inter-vehicle communication or the like it may be possible to secure a space where the vehicle F03 on the main line La can merge by decelerating or changing lanes. For this reason, when a space that can be merged cannot be found, a space that can be merged if the rear vehicle F03 decelerates or changes lanes from the position closer to the merge start point Ps again is listed as a merge candidate space. .
  • a candidate space that can be merged on the main line La gradually enters the detection range A1 of the external recognition sensor.
  • the outside world recognition unit 03 senses a space candidate F04 that can be preferentially joined within the detection range of the outside world recognition sensor, and there is no vehicle that could not be detected by inter-vehicle communication or road-to-vehicle communication. For other vehicles that existed and were detected in the vehicle, after verifying that the mergeable space has not changed due to acceleration / deceleration or lane change of the other vehicle, if the vehicle can continue to merge, the route to enter the mergeable space And control the vehicle to join.
  • the external environment recognition unit 03 confirms the other vehicle whose existence is known by communication (C2X) by sensing, but for example, for other spaces around the vehicle such as the candidate F04, the sensing is performed with priority. Then, sensing is changed more frequently than other vehicles by changing the frequency and resources of the detection process. For example, when sensing with a camera image, the candidate F04 is sensed by increasing the imaging speed or the accuracy of image processing.
  • C2X communication
  • the other vehicle information acquisition unit 02 can select any one of (1) vehicle-to-vehicle communication only (C2C), (2) both vehicle-to-vehicle communication and road-to-vehicle communication (C2C + C2I), and (3) road-to-vehicle communication (C2I) only.
  • C2C vehicle-to-vehicle communication only
  • C2C + C2I vehicle-to-vehicle communication
  • C2I road-to-vehicle communication
  • the accuracy of the information is compared with the case of (3) road-to-vehicle communication (C2I) only. Therefore, sensing for other vehicles will be even easier than (3) road-to-vehicle communication (C2I) only, and the sensing of surrounding areas other than other vehicles may be more focused. Good.
  • a candidate for a space that can be merged is searched (S103), accelerated so as to be merged with a space candidate that can be merged (S104), a lane change signal is signaled by winker-vehicle communication (S105), and the outside world Sensing of space candidates that can be merged by the recognition unit 03 is performed (S106).
  • a candidate for a space where the host vehicle can join is detected based on information on other vehicles in the vicinity obtained by inter-vehicle communication and road-to-vehicle communication, and external recognition by the sensor is performed.
  • the candidate space that can be joined is verified. Therefore, when merging on a highway or the like, it is possible not only to accelerate to an appropriate speed, but also to grasp the behavior of surrounding vehicles and confirm whether there is a space where the merging can be performed safely.
  • the lane change on the main line can also be implemented by control similar to the merge.
  • An example of the control contents will be described below.
  • the external environment recognition unit 03 senses a space between the other vehicles between the plurality of other vehicles. For example, as shown in FIG. 7, the host vehicle F01 is on the travel lane La2 of the main line La, and the other vehicles F02 and F03 on the overtaking lane La1 of the lane change destination are within the detection range A1 of the outside recognition unit 03.
  • the other vehicles F04 and F05 are outside the detection range A1 of the outside recognition unit 03, the other vehicles F02, F03, F04, F05 on the overtaking lane La1 and road conditions are determined by information from the own vehicle surrounding information management unit 04. Is detected.
  • the speed of the host vehicle F01 is adjusted to change the lane to the inter-vehicle space F06, and the other-vehicle space F06 in which the lane can be changed is within the detection range A1 of the external recognition unit 03 as shown in FIG. If it can be preferentially sensed and it can be confirmed that the inter-vehicle space F06 capable of changing lanes can be secured, a route entering the other inter-vehicle space F06 is determined, and vehicle control for changing the lane is performed. On the other hand, if the space between other vehicles that can change lanes cannot be confirmed, the same procedure is performed on the rear candidate space.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Abstract

本発明は、演算負荷が過大となるのを抑えつつ、外部環境を適切に把握することができる車両制御装置を得ることが課題である。そこで、本発明の車両制御装置01では、他車両の情報を通信によって取得する他車両情報取得部02と、センシングにより自車両の外界認識を行う外界認識部03とを備え、外界認識部03は、他車両情報取得部02によって取得された他車両の情報に基づいて、他車両の周囲の他車両周囲空間をセンシングする。

Description

車両制御装置
 本発明は、自動運転により合流車線から本線に合流するための車両制御装置に関するものである。
 高速道路などで合流車線から本線への合流を行う際に本線上の他車両の走行状態に基づいて自車両の適切な加速度を設定する走行支援装置が知られている(特許文献1)。
 そして、従来、自車に関係する外部環境の情報を、通信によって取得する方法と、自車に搭載されたセンサによって取得する方法とが存在する(特許文献2)。
特開2011-048456号公報 特開2008-129804号公報
 しかしながら、特許文献1の場合、実際に合流する際には適切な速度まで加速するだけでなく、周辺車両の挙動を把握し、自車両が安全に合流できる空間があるか確認することが課題となる。
 特許文献2の方法は、それぞれ以下のような長所と短所とを有する。
  例えば、通信によって外部環境の情報を取得する方法では、客観的な情報であるという意味において、比較的高い情報の精度又は信頼性を期待することができるという長所がある。但し、外部環境に存在する物体が通信に対応したものでない場合には、情報を当然に得ることができないという短所がある。
 一方、センサによって外部環境の情報を取得する方法では、周囲に存在する物体が通信に対応しているか否かに関わらず、情報を得ることができるという長所がある。但し、自車が搭載するセンサによる情報であるため、客観的な情報でないという意味において、精度又は信頼性に懸念が残る。また、センサによる検知の精度を向上させようとすれば、演算負荷が増大する。
 本発明は、上記2つの方法の長所を活かして、演算負荷が過大となるのを抑えつつ、外部環境を適切に把握することができる車両制御装置を提供することを目的とする。
 上記課題を解決する本発明の車両制御装置は、他車両の情報を通信によって取得する他車両情報取得部と、センシングにより自車両の外界認識を行う外界認識部と、を備え、前記外界認識部は、前記他車両情報取得部によって取得された前記他車両の情報に基づいて、前記他車両の周囲の他車両周囲空間をセンシングすることを特徴とする。
 本発明によれば、必要な速度まで加速して合流を支援し、さらに安全を確認したうえで合流のための車両制御をおこなうことができる。
  本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明に係る車両制御装置を用いた車載システムの一構成例を示す図である。 本発明に係る外界認識範囲外にある本線上の車両の一例を示す図である。 本発明に係る合流可能空間に合流の障害となる車両が存在する一例を示す図である。 本発明に係る本線上の後方車両が減速あるいは車線変更により合流可能空間を確保する一例を示す図である。 本発明に係る外界認識部が合流可能空間を検証する一例を示す図である。 本発明に係る合流車線から本線に合流する際の制御フローチャートの一例を示す図である。 本発明に係る外界認識部が車線変更時の車両及び道路状況の一例を示す図である。 本発明に係る外界認識部が車線変更可能空間を検証する一例を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。
 [実施例1]
  図1は、車両制御装置のブロック図を示している。車両制御装置01は、車車間通信(C2C)及び路車間通信(C2I)等の通信(C2X)を行う他車両情報取得部02と、レーダやカメラなどの各種センサから自車周辺の車両や道路の情報状況を取得する外界認識部03と、他車両情報取得部02からの情報と外界認識部03からの情報を統合して自車周辺の車両及び道路の状況を管理する自車周辺情報管理部04と、位置、速度、加速度、ヨーレート等自車両の状態を検知する自車挙動認識部05と、自車周辺情報管理部04および自車挙動認識部05からの情報を基に自車両の経路を決定する経路生成部06で構成される。
 他車両情報取得部02は、他車両の情報を通信(C2X)によって取得する。他車両情報取得部02は、位置、速度、加速度、ヨーレートなど周辺車両の挙動の情報(他車両の情報)を車車間通信(C2C)で取得する。すなわち、他車両から送信される車両の情報を車車間通信によって取得する。また、路側器がレーダやカメラなどのセンサからの情報を解析して得られた道路上を通行する車両の位置、速度、加速度などの情報(他車両の情報)を路車間通信(C2I)で取得する。すなわち、路上設備から送信される他車両の情報を路車間通信によって取得する。他車両情報取得部02は、例えば自車両の周囲の300m~500mの他車両情報検知範囲A2に存在する他車両の情報を取得する。他車両とは、例えば自車両が走行する道路に合流する道路を走行する車両や、自車両が走行する車線の隣接車線を走行する車両が含まれる。本実施例における通信(C2X)のパターンには、(1)車車間通信のみ(C2C)、(2)車車間通信と路車間通信の両方を行うもの(C2C+C2I)、(3)路車間通信(C2I)のみ、の3つのパターンがある。
 車車間通信および路車間通信は、例えばCAM(Cooperative Awareness Message:協調注意喚起メッセージ)を用いて行われる。CAMは、協調型ITSの主に安全系サービスに使用されるメッセージであり、互いの認識を作成し、維持し、道路網における協調性をサポートするためにITS-S(ITSステーション)間で交換される。CAMは、送信元ITS-Sの状態と属性情報を含み、ITS-Sのタイプにより内容が異なる。車両ITS-Sでは、状態情報は、時間、位置、動作状態等を含み、属性情報は、道路交通等における寸法、車両タイプ、および役割に関するデータを含む。受信ITS-Sは、CAM受信で送信元ITS-Sの存在の認識、タイプ、状態を獲得できる。CAMパラメータは、基本コンテナと、車両ITS-Sコンテナと、特殊車両コンテナとを有する。基本コンテナは、送信元ITS-Sの基本情報として送信元ITS-Sのタイプ、送信元ITS-Sの最新の地理的位置を記述する。車両ITS-Sコンテナは、高頻度コンテナと低頻度コンテナを含む。高頻度コンテナは、向きや速度、加速度のように車両ITS-Sの動的状態情報を記述し、低頻度コンテナは、特殊車両のコンテナ区分や外部灯火などを記述する。そして、特殊コンテナは、公共交通のような道路交通における特殊な役割を持つ車両ITS-Sのためのコンテナである。
 外界認識部03は、センシングにより自車両の外界認識を行う。外界認識部03は、自車両に搭載されたカメラやレーダ等のセンサから自車周辺の車両や障害物、道路標識等の相対位置およびその状態を取得することが可能である。外界認識部03は、例えば自車両の周囲の70m~100mの外界認識検知範囲A1を認識することができる。外界認識部03は、他車両情報取得部02によって取得された他車両の情報に基づいて、他車両のセンシングと、他車両の周囲の他車両周囲空間のセンシングをすることができる。
 外界認識部30は、通信(C2X)により既にその存在を把握している他車両等の物体もセンシングして確認するが、その物体の周囲の空間に対しては、通信によって既に把握されている物体に対するセンシングよりも優先させてセンシングを行う。そして、物体の周囲の空間に対して重点的にセンシングを行う。例えば、通信(C2X)により既にその存在を把握している物体よりもその周囲に対する処理の頻度を増やす、あるいは、リソースを変更する等により、より詳細にセンシングする。
 自車周辺情報管理部04は、他車両情報取得部02からの情報と、外界認識部03からの情報とを統合し、自車周辺情報として管理する。通常、他車両情報取得部02は、外界認識部03の外界認識検知範囲A1よりも広い範囲である他車両情報検知範囲A2の周辺車両及び道路の情報を取得できるので、まず他車両情報取得部02により他車両情報検知範囲A2における自車周辺情報を取得し、その後、外界認識部03の外界認識検知範囲A1に入った段階で、他車両情報取得部02によって得られた自車周辺情報と、外界認識部03によって得られた情報とを照合し、より精度の高い自車周辺情報を検知することができる。また、事前に他車両情報取得部02によって得られた情報、例えば車両の特徴、位置などから、外界認識部03で検知する対象の優先順位付けを行うことで、より効率的に自車周辺情報を検知することができる。
 自車挙動認識部05は、例えば、自車両に搭載されるジャイロセンサや車輪速度センサ、舵角センサ、加速度センサ等から自車両の挙動を表すヨーレートや車輪速度、舵角、加速度等の情報を取得することが可能である。
  経路生成部06は、例えば合流車線から本線への合流の際に、自車周辺情報管理部04からの情報と自車挙動認識部05からの情報をもとに、自車両が合流可能な本線の合流可能空間(自車両が進入する進入空間)をセンシングして、その合流可能空間に進入するための経路を決定する。そして、決定した経路に従い、制御信号を送信し、自車両のアクセル、ブレーキなどの縦方向およびステアリングなどの横方向の車両制御を行う。
 経路生成部06は、初めに経路を決定した後も、他車両が加減速あるいは車線変更をするなどにより、想定した合流可能空間が変化する可能性がある。したがって、継続的に自車周辺情報管理部04および自車挙動認識部05からの情報に基づき合流可能空間をセンシングし、合流可能空間に変化があった場合は再度、経路を生成する。
 次に、自車両が合流車線から本線に合流する際の制御内容について説明する。図2に示す通り、自車両F01が合流車線Lbを走行しており、本線Laが外界認識部03の検知範囲A1外の時点では、他車両情報取得部02からの情報により本線La上の他車両及び道路状況を検知する。図2に示す状態では、外界認識部03で他車両をセンシングすることはできない。
 ここで得られた本線La上の他車両の挙動から本線Laの他車両の流れに合うように自車両F01の目標速度を設定し加速を行う。他車両情報取得部02が車車間通信あるいは路車間通信によって本線La上の他車両の情報を得られない場合は、自車両F01の制限速度を目標速度に設定し加速を行う。
 そして、図3に示すように、続いて設定速度で合流区間の合流開始地点Psに達した場合に、外界認識部03によってセンシングを行い、本線La上に実際に合流可能な空間があるかを調べる。そして、センシングの結果、合流可能な空間がある場合は、そのまま設定速度まで加速する。
 一方、自車両F01が合流開始地点Psに達したときにセンシングを行った結果、それまでは通信により合流可能と認識していた空間F02に、車車間通信に対応していない他車両F03が存在していることが判明する場合がある。そのときは、他車両F03は、自車両F01が空間F02(他車両周囲空間)に進入するのに障害となる障害物であり、そのままでは安全に合流できないので、車両F03の後方に合流可能な別の空間があるか調べる。別の空間があるか否かは、例えば外界認識部03のセンシングによって調べることができる。
 図3に示す例では、車両F03の後方に存在するF04が合流可能な別の空間となる。このとき、その別の空間F04に合流できるように自車両F01の設定速度を変更する。さらに、空間F04の後方でかつ合流区間内で合流可能な別の空間についても検索し、合流可能な空間の候補として挙げる。
 そして、本線Laに合流可能な空間の候補がない場合でも、図4に示すように、自車両F01のウインカ(方向指示器)、あるいは車車間通信などで自車両F01の車線変更(合流)の意図を示した場合に、本線La上の後方の車両F03が減速あるいは車線変更して合流可能な空間を確保できることがある。このため、合流可能な空間を見つけられなかった場合には、再度合流開始地点Psに近いほうから後方にかけて、後方車両F03が減速あるいは車線変更すれば合流可能な空間を合流候補空間として挙げておく。
 図5の例で示すように、自車両F01が合流車線Lbを進むに従い、本線La上の合流可能な空間の候補が徐々に外界認識センサの検知範囲A1に入ってくる。外界認識部03では、外界認識センサの検知範囲の中で優先的に合流可能な空間の候補F04をセンシングし、車車間通信もしくは路車間通信では検知できなかった車両がないか、空間F04の周辺に存在して検知できていた他車両においても、他車両の加減速や車線変更により合流可能空間が変化していないか検証したうえで、引き続き合流可能であればその合流可能空間に進入する経路を決定し、合流するための車両制御を行う。
 外界認識部03は、通信(C2X)によりその存在を把握している他車両をセンシングで確認はするが、例えば候補F04等の他車両周囲空間に対しては、センシングを優先して行う。そして、検出処理の頻度やリソースを変更して、他車両よりも重点的にセンシングをする。例えばカメラ画像によりセンシングする場合には撮像速度や画像処理の精度を上げるなどして、候補F04のセンシングを行う。
 また、他車両情報取得部02が、(1)車車間通信のみ(C2C)、(2)車車間通信と路車間通信の両方(C2C+C2I)、(3)路車間通信(C2I)のみ、のいずれのパターンにより、他車両の情報を取得しているのかに応じて、センシングの重点度合いを変更してもよい。例えば、他車両の情報を(2)車車間通信と路車間通信の両方(C2C+C2I)により取得している場合は、(3)路車間通信(C2I)のみの場合と比較して、情報の精度が高いので、他車両に対するセンシングは、(3)路車間通信(C2I)のみのときよりもさらに簡易なものとし、その分、他車両以外の周辺領域のセンシングをさらに重点的に行うこととしてもよい。
 また本線上の後方車両が減速あるいは車線変更をすれば合流可能となる空間の候補については、その空間の直前にある他車両の斜め後方を走行し、車線変更の合図をした上で自車周辺情報管理部04から情報を取得し、該当空間の後方の他車両が減速あるいは車線変更して合流可能な空間が確保できることを確認できれば、その空間に進入する経路を決定し、合流するための車両制御を行う。
  合流可能な空間の候補を確認できなければ、さらに後方の空間の候補に対して同様の手順を実施する。
 以上、合流車線から本線に合流する際の制御の一例を図6のフローチャートに示す。
  車車間・路車間通信により、本線La上の他車両の情報を取得したかが判断され(S101)、取得した場合には(S101でYES)、本線Laを走行中の他車両の速度に合わせて加速し(S102)、取得できなかった場合には(S101でNO)、本線Laの制限速度に合わせて加速する(S109)。
 そして、合流可能な空間の候補の検索を行い(S103)、合流可能な空間の候補に合流できるように加速し(S104)、ウインカ・車車間通信により車線変更の合図を行い(S105)、外界認識部03によって合流可能な空間の候補のセンシングを行う(S106)。
 センシングの結果、合流可能か否かを判断し(S107)、合流可能と判断されたときは(S107でYES)、合流可能な空間に合流するための車両制御を行う(S108)。一方、合流不可能と判断されたときは(S107でNO)、次の合流可能な空間の候補へ合流対象を変更し(S110)、再びS104の処理に戻る。
 本実施例の車両制御装置01によれば、車車間通信および路車間通信で得られた周辺の他車両の情報を基に、自車両が合流可能な空間の候補を検出し、センサによる外界認識で合流可能空間候補の検証をする。したがって、高速道路などで合流する際に、適切な速度まで加速するだけでなく、周辺車両の挙動を把握し安全に合流できる空間があるか確認することができる。
 [実施例2]
  本線上での車線変更についても合流に類似の制御にて実施することができる。以下にその制御内容の一例について説明する。
  本実施例では、他車両情報取得部02が前後に並ぶ複数の他車両の情報を取得した場合、外界認識部03が複数の他車両の間の他車両間空間をセンシングする。例えば、図7に示すように、本線Laの走行車線La2上に自車両F01があり、車線変更先の追越車線La1上の他車両F02およびF03が外界認識部03の検知範囲A1内に存在し、他車両F04およびF05が外界認識部03の検知範囲A1外にある場合、自車周辺情報管理部04からの情報により追越車線La1上の他車両F02,F03,F04,F05及び道路状況を検知する。
 続いて追越車線La1へと車線変更可能な空間(他車両間空間)があるかを調べる。その際、自車両のすぐ隣である外界認識部03の検知範囲A1内の近いほうから外界認識部03の検知範囲A1外で遠くなる方へと候補を検索し、車線変更可能な空間がある場合はその空間に車線変更可能な速度まで加減速する。
 図7の場合、他車両F02とF03の間および他車両F03とF04の間には車線変更可能な空間がなく、外界認識部03の検知範囲A1外にある他車両間空間F06が車線変更可能な空間の候補となる。
 他車両間空間F06に車線変更するために自車両F01の速度を調整し、図8のように車線変更可能な他車両間空間F06が、外界認識部03の検知範囲A1内となった時点で優先的にセンシングし、車線変更可能な他車両間空間F06が確保できることを確認できれば、その他車両間空間F06に進入する経路を決定し、車線変更のための車両制御を行う。
 一方、車線変更可能な他車両間空間を確認できなければ、さらに後方の候補空間に対して同様の手順を実施する。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 01…車両制御装置、02…他車両情報取得部、03…外界認識部、04…自車周辺情報管理部、05…自車挙動認識部、06…経路生成部

Claims (10)

  1.  他車両の情報を通信によって取得する他車両情報取得部と、
     センシングにより自車両の外界認識を行う外界認識部と、を備え、
     前記外界認識部は、前記他車両情報取得部によって取得された前記他車両の情報に基づいて、前記他車両の周囲の他車両周囲空間をセンシングすることを特徴とする車両制御装置。
  2.  前記センシングの結果に基づいて、前記自車両が進入する進入空間を決定することを特徴とする請求項1に記載の車両制御装置。
  3.  前記他車両周囲空間に前記自車両が進入するのに障害となる障害物が存在するか否かを判断することを特徴とする請求項1に記載の車両制御装置。
  4.  前記外界認識部は、前記他車両よりも前記他車両周囲空間の方を優先してセンシングする
    ことを特徴とする請求項1に記載の車両制御装置。
  5.  前記他車両情報取得部が前後に並ぶ複数の他車両の情報を取得した場合、前記外界認識部が前記複数の他車両の間の他車両間空間をセンシングすることを特徴とする請求項1に記載の車両制御装置。
  6.  前記他車両は、前記自車両が走行する道路に合流する道路を走行する車両であることを特徴とする請求項1に記載の車両制御装置。
  7.  前記他車両は、前記自車両が走行する車線の隣接車線を走行する車両であることを特徴とする請求項1に記載の車両制御装置。
  8.  前記他車両情報取得部は、前記他車両から送信される該他車両の情報を車車間通信によって取得することを特徴とする請求項1に記載の車両制御装置。
  9.  前記他車両情報取得部は、路上設備から送信される前記他車両の情報を路車間通信によって取得することを特徴とする請求項1に記載の車両制御装置。
  10.  前記外界認識部は、前記他車両の情報に基づいて前記自車両が進入する進入空間の候補を抽出し、前記センシングの結果に応じて前記進入空間を決定することを特徴とする請求項1に記載の車両制御装置。
PCT/JP2017/003261 2016-03-25 2017-01-31 車両制御装置 WO2017163614A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/076,055 US10902725B2 (en) 2016-03-25 2017-01-31 Vehicle control device
EP17769661.4A EP3435354A4 (en) 2016-03-25 2017-01-31 VEHICLE CONTROL DEVICE
JP2018507092A JP6556939B2 (ja) 2016-03-25 2017-01-31 車両制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016062302 2016-03-25
JP2016-062302 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017163614A1 true WO2017163614A1 (ja) 2017-09-28

Family

ID=59901114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003261 WO2017163614A1 (ja) 2016-03-25 2017-01-31 車両制御装置

Country Status (4)

Country Link
US (1) US10902725B2 (ja)
EP (1) EP3435354A4 (ja)
JP (1) JP6556939B2 (ja)
WO (1) WO2017163614A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093061A1 (ja) * 2017-11-08 2019-05-16 日立オートモティブシステムズ株式会社 自車両の運転手を支援するための方法および装置
WO2020016621A1 (ja) 2018-07-16 2020-01-23 日産自動車株式会社 走行支援方法及び走行支援装置
JPWO2019069868A1 (ja) * 2017-10-04 2020-11-26 パイオニア株式会社 判定装置及び判定方法並びに判定用プログラム
US20210237738A1 (en) * 2020-02-05 2021-08-05 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
JP7473277B2 (ja) 2020-07-07 2024-04-23 株式会社Subaru 車両の走行制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717183B2 (ja) * 2016-12-14 2020-07-01 株式会社オートネットワーク技術研究所 路車間通信システム、路側通信装置、車載通信装置及び路車間通信方法
DE102018221860A1 (de) * 2018-12-17 2020-07-02 Volkswagen Aktiengesellschaft Verfahren und Assistenzsystem zur Vorbereitung und/oder Durchführung eines Spurwechsels
US11429115B2 (en) 2019-06-27 2022-08-30 Baidu Usa Llc Vehicle-platoons implementation under autonomous driving system designed for single vehicle
JP7091291B2 (ja) * 2019-08-09 2022-06-27 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
KR20230021457A (ko) * 2021-08-05 2023-02-14 현대모비스 주식회사 차량의 장애물 감지 시스템 및 방법
US11491987B1 (en) * 2022-06-22 2022-11-08 Embark Trucks Inc. Merge handling based on merge intentions over time

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129839A (ja) * 2006-11-21 2008-06-05 Aisin Aw Co Ltd 合流案内装置および合流案内方法
JP2015005113A (ja) * 2013-06-20 2015-01-08 パイオニア株式会社 判定装置、受信装置、制御方法、プログラム、及び記憶媒体
JP2015212115A (ja) * 2014-05-02 2015-11-26 エイディシーテクノロジー株式会社 車両制御装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652849B2 (ja) * 2005-03-03 2011-03-16 アイシン・エィ・ダブリュ株式会社 運転支援方法及び運転支援装置
US7444241B2 (en) * 2005-12-09 2008-10-28 Gm Global Technology Operations, Inc. Method for detecting or predicting vehicle cut-ins
JP4525670B2 (ja) 2006-11-20 2010-08-18 トヨタ自動車株式会社 走行制御計画生成システム
US8532862B2 (en) * 2006-11-29 2013-09-10 Ryan A. Neff Driverless vehicle
US8311730B2 (en) * 2006-11-29 2012-11-13 Neff Ryan A Vehicle position determination system
JP2011037308A (ja) * 2009-08-06 2011-02-24 Aisin Seiki Co Ltd 車両用乗員保護システム
JP5310385B2 (ja) 2009-08-25 2013-10-09 トヨタ自動車株式会社 走行支援装置
CN103080953B (zh) 2010-06-23 2017-03-15 大陆-特韦斯贸易合伙股份公司及两合公司 用于加速的物体检测和/或加速的物体属性检测的方法和系统及所述方法的用途
US8810431B2 (en) * 2011-10-20 2014-08-19 GM Global Technology Operations LLC Highway merge assistant and control
FR2986646B1 (fr) * 2012-02-03 2016-07-01 Renault Sas Procede de determination du positionnement d'un vehicule dans un couloir de circulation d'une voie, et methodes de detection d'alignement et de risque de collision entre deux vehicules
DE102012210069A1 (de) * 2012-06-14 2013-12-19 Continental Teves Ag & Co. Ohg Verfahren und System zum Anpassen eines Anfahrverhaltens eines Fahrzeugs an eine Verkehrssignalanlage sowie Verwendung des Systems
JP6015329B2 (ja) * 2012-10-11 2016-10-26 株式会社デンソー 隊列走行システム及び隊列走行装置
DE102012219637A1 (de) * 2012-10-26 2014-04-30 Continental Teves Ag & Co. Ohg Verfahren und system zur fusion von umfeldsensordaten mit kommunikationsdaten sowie verwendung des systems
US8788134B1 (en) * 2013-01-04 2014-07-22 GM Global Technology Operations LLC Autonomous driving merge management system
US9805592B2 (en) * 2013-10-07 2017-10-31 Savari, Inc. Methods of tracking pedestrian heading angle using smart phones data for pedestrian safety applications
US20150153184A1 (en) * 2013-12-04 2015-06-04 GM Global Technology Operations LLC System and method for dynamically focusing vehicle sensors
JP2016132421A (ja) * 2015-01-22 2016-07-25 トヨタ自動車株式会社 自動運転装置
US9978284B2 (en) * 2015-06-05 2018-05-22 Here Global B.V. Method and apparatus for generating vehicle maneuver plans
US9862315B2 (en) * 2015-08-12 2018-01-09 Lytx, Inc. Driver coaching from vehicle to vehicle and vehicle to infrastructure communications
US10553112B2 (en) * 2015-08-19 2020-02-04 Qualcomm Incorporated Safety event message transmission timing in dedicated short-range communication (DSRC)
US9738284B2 (en) * 2015-12-08 2017-08-22 Ford Global Technologies, Llc Vehicle acceleration determination
KR102522922B1 (ko) * 2016-01-06 2023-04-19 한국전자통신연구원 군집주행 차량들간 안전메시지 송신 제어 시스템 및 방법
US9821809B2 (en) * 2016-01-11 2017-11-21 Ford Global Technologies, Llc Management of autonomous vehicle lanes
JP6787671B2 (ja) * 2016-01-14 2020-11-18 株式会社デンソー 合流支援装置
WO2017134605A1 (en) * 2016-02-05 2017-08-10 Nokia Technologies Oy Methods and apparatuses for controlling vehicle-to-vehicle interference

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129839A (ja) * 2006-11-21 2008-06-05 Aisin Aw Co Ltd 合流案内装置および合流案内方法
JP2015005113A (ja) * 2013-06-20 2015-01-08 パイオニア株式会社 判定装置、受信装置、制御方法、プログラム、及び記憶媒体
JP2015212115A (ja) * 2014-05-02 2015-11-26 エイディシーテクノロジー株式会社 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435354A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019069868A1 (ja) * 2017-10-04 2020-11-26 パイオニア株式会社 判定装置及び判定方法並びに判定用プログラム
WO2019093061A1 (ja) * 2017-11-08 2019-05-16 日立オートモティブシステムズ株式会社 自車両の運転手を支援するための方法および装置
JPWO2019093061A1 (ja) * 2017-11-08 2020-12-03 日立オートモティブシステムズ株式会社 自車両の運転手を支援するための方法および装置
WO2020016621A1 (ja) 2018-07-16 2020-01-23 日産自動車株式会社 走行支援方法及び走行支援装置
KR20210030975A (ko) 2018-07-16 2021-03-18 르노 에스.아.에스. 주행 지원 방법 및 주행 지원 장치
US20210237738A1 (en) * 2020-02-05 2021-08-05 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
JP2021124941A (ja) * 2020-02-05 2021-08-30 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7050098B2 (ja) 2020-02-05 2022-04-07 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11654914B2 (en) 2020-02-05 2023-05-23 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
JP7473277B2 (ja) 2020-07-07 2024-04-23 株式会社Subaru 車両の走行制御装置

Also Published As

Publication number Publication date
US10902725B2 (en) 2021-01-26
EP3435354A4 (en) 2019-11-27
JP6556939B2 (ja) 2019-08-07
US20200098266A1 (en) 2020-03-26
EP3435354A1 (en) 2019-01-30
JPWO2017163614A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6556939B2 (ja) 車両制御装置
US11462022B2 (en) Traffic signal analysis system
CN106064626B (zh) 车辆行驶控制装置
CN107953884B (zh) 用于自主车辆的行驶控制设备和方法
JP6269552B2 (ja) 車両走行制御装置
US20160325750A1 (en) Travel control apparatus
JP6954180B2 (ja) 自動運転システム
JP6885462B2 (ja) 運転支援装置及び運転支援方法
JP2018100009A (ja) 車両制御装置
CN110036426B (zh) 控制装置和控制方法
JP2010083314A (ja) 車両の運転支援装置
CN110329250A (zh) 用于在至少两辆汽车之间交换信息的方法
JP2016517106A (ja) 自動車の自動運行システム
CN113848921B (zh) 车路云协同感知的方法和系统
US20190054922A1 (en) Systems and methods for automatically passing vehicles
CN110001641B (zh) 车辆控制装置、车辆控制方法及存储介质
CN112406903A (zh) 自动驾驶系统
CN116034359A (zh) 用于以至少两个互不依赖的成像环境检测传感器来进行环境检测的方法、用于执行该方法的设备、车辆以及对应设计的计算机程序
CN109969191B (zh) 驾驶辅助系统和方法
JP2018086958A (ja) 車両制御システム
JP2019040372A (ja) 車外環境認識装置
CN115497323B (zh) 基于v2x的车辆协同变道方法及设备
CN115195775A (zh) 车辆控制装置、车辆控制方法及存储介质
CN110072750B (zh) 车辆控制装置和方法
JP2020126403A (ja) 運転特性推定方法及び運転特性推定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507092

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017769661

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769661

Country of ref document: EP

Effective date: 20181025

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769661

Country of ref document: EP

Kind code of ref document: A1