WO2017159700A1 - 神経再生誘導材 - Google Patents

神経再生誘導材 Download PDF

Info

Publication number
WO2017159700A1
WO2017159700A1 PCT/JP2017/010274 JP2017010274W WO2017159700A1 WO 2017159700 A1 WO2017159700 A1 WO 2017159700A1 JP 2017010274 W JP2017010274 W JP 2017010274W WO 2017159700 A1 WO2017159700 A1 WO 2017159700A1
Authority
WO
WIPO (PCT)
Prior art keywords
nerve
regeneration
inducing
nerve regeneration
cross
Prior art date
Application number
PCT/JP2017/010274
Other languages
English (en)
French (fr)
Inventor
義久 鈴木
谷原 正夫
三津子 伊佐次
Original Assignee
公益財団法人田附興風会
国立大学法人奈良先端科学技術大学院大学
持田製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人田附興風会, 国立大学法人奈良先端科学技術大学院大学, 持田製薬株式会社 filed Critical 公益財団法人田附興風会
Priority to US16/083,600 priority Critical patent/US11052174B2/en
Priority to JP2017564746A priority patent/JP6320659B2/ja
Priority to CN201780016355.1A priority patent/CN108883306A/zh
Priority to EP17766697.1A priority patent/EP3431140B1/en
Priority to CA3017310A priority patent/CA3017310C/en
Publication of WO2017159700A1 publication Critical patent/WO2017159700A1/ja
Priority to US17/334,350 priority patent/US20210283304A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/383Nerve cells, e.g. dendritic cells, Schwann cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/32Materials or treatment for tissue regeneration for nerve reconstruction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Definitions

  • the present invention relates to a nerve regeneration-inducing material for regenerating a damaged part of a nerve.
  • a nerve suture that directly sutures the cut nerves or an autologous nerve transplantation that collects the patient's own healthy nerve and transplants it to the damaged part is performed.
  • the method of directly suturing the nerve may apply tension and cause sensory abnormalities and pain, and autologous nerve transplantation may sacrifice nerves at a healthy site, and pain and numbness may appear in the nerve sampling part.
  • Nearbridge TM is a nerve regeneration induction tube made of polyglycolic acid and collagen.
  • the Nerbridge is a cylindrical material with a hard outer material covering the collagen in the lumen, and nerves in parts with large movable thresholds such as joints such as hands and toes and in the vicinity of joints and parts that require three-dimensional curvature. Difficult to use for reconstruction.
  • the operation is complicated because the end of the torn nerve is drawn into the tube and needs to be fixed by suturing, and the inner diameter thereof is also fixed.
  • NEUROLAC registered trademark
  • a nerve regeneration effect on a linear nerve defect is disclosed using an alginate sponge produced by covalent crosslinking with ethylenediamine (Patent Document 1).
  • Non-Patent Document 1 a material obtained by covering an alginate gel with polyglycolic acid processed into a tubular shape and lyophilized regenerated a 50 mm gap in the femoral sciatic nerve.
  • Alginate gel is said to have no difference in effect between tubular and non-tubular devices in the regeneration of the cat sciatic nerve gap.
  • a non-tubular device was installed with a nerve gap between two sponges (Non-Patent Document 2). Techniques related to these are disclosed (Non-Patent Documents 3 to 6).
  • Non-patent Document 7 There is an example in which an alginate sponge is used for a 2 mm gap in the spinal cord of a rat (Non-patent Document 7).
  • Non-patent Document 8 It is disclosed that a 5 mm gap in the posterior branch of the cat's facial nerve was regenerated using an alginate sponge. However, the nerve cut site was not a bifurcation (Non-patent Document 8).
  • Non-patent Documents 9 to 14 There is a document that a 2 mm gap of rat cavernosal nerve was regenerated using an alginate gel sponge sheet (Non-patent Documents 9 to 14). Since the nerve cutting site is the cavernous nerve 1 mm downstream from the pelvic ganglion, it is difficult to consider it as a branched nerve. Regarding the regeneration of the penile cavernous nerve, there is an example in which an alginate gel sponge sheet is used as a base material for administration of human bone marrow-derived CD133 + cells, but the alginate gel sponge sheet alone does not provide a significant regeneration effect (non- Patent Document 15).
  • Non-patent Documents 16 and 17 there is an example in which an alginic acid gel is applied to a nerve defect portion of about 2 mm of the rat pelvic plexus to regenerate it.
  • Non-patent Documents 16 and 17 the details of the alginate sheet used are not clear, and the effect is not yet sufficient.
  • the alginate sponge in the above findings uses sodium alginate that has not been treated with low endotoxin, and was not produced using low endotoxin sodium alginate.
  • nerve regeneration that has been attempted using devices so far is mostly for straight nerve defects, and promotes regeneration of nerve branches and plexus defects.
  • a biological tissue reinforcing material kit containing a non-woven fabric made of a bioabsorbable material and sodium alginate is disclosed (Patent Document 2).
  • sodium alginate is used without being cross-linked and is not a material intended for nerve regeneration.
  • Patent Document 3 discloses a gel obtained by irradiating a gel formed of hyaluronic acid alone with gamma rays, electron beams, plasma, or the like.
  • the gel of hyaluronic acid alone is described as meaning a gel that is self-crosslinked without using a chemical crosslinking agent or the like other than hyaluronic acid.
  • Patent Document 4 discloses an implant made of a biodegradable polymer under conditions such as chemical, heat or radiation.
  • Non-Patent Document 18 discloses a technique for irradiating alginate nanofibers for tissue engineering with ⁇ -rays and controlling the decay rate by the amount of ⁇ -ray irradiation. Moreover, in the literature on the nerve regeneration material using alginic acid, it is described that the bioresorbability of alginic acid gel can be controlled by the dose of ⁇ -ray irradiation (Non-patent Document 19). However, until now, the relationship between the irradiation of ⁇ -rays and electron beams onto materials and nerve regeneration has not been clarified.
  • One of the objects of the present invention is to provide a medical material capable of inducing regeneration of a nerve branch and / or a damaged part of a plexus.
  • Another subject of the present invention is applicable to a damaged portion of a straight nerve, a damaged portion of a nerve branch portion and / or a plexus portion, has a high nerve regeneration inducing effect, is safe and biocompatible. It is providing the medical material which is excellent in.
  • Another object of the present invention is to provide a non-tubular nerve regeneration guide that can be applied to damages in various places and shapes that can exhibit a nerve regeneration effect even when it is not sutured, while having an appropriate strength that can be sutured. Is to provide materials.
  • the present invention relates to a nerve regeneration-inducing material containing a xerogel-like alginic acid crosslinked product prepared by covalently crosslinking low endotoxin sodium alginate with a compound represented by the following general formula (I) and / or a salt thereof:
  • a nerve regeneration-inducing material of the present invention induces nerve regeneration by connecting one nerve stump and a plurality of nerve stumps in the gap at the branch of the sciatic nerve. It was amazing that I could't imagine.
  • low endotoxin sodium alginate is covalently crosslinked with a compound represented by the following general formula (I) and / or a salt thereof, and a neuron comprising a xerogel-like alginic acid crosslinked product irradiated with an electron beam.
  • a compound represented by the following general formula (I) and / or a salt thereof e.g., a compound represented by the following general formula (I) and / or a salt thereof
  • a neuron comprising a xerogel-like alginic acid crosslinked product irradiated with an electron beam.
  • the in vivo disappearance (residual) time of the nerve regeneration-inducing material containing the alginate crosslinked body affects the nerve regeneration induction effect
  • the in vivo disappearance of the material can be controlled by electron beam or ⁇ -ray dose, etc.
  • the disappearance pattern of the crosslinked product desirable for regeneration was found.
  • the nerve regeneration-inducing material containing the bioabsorbable polymer has fewer examples of insufficient regeneration than the material not containing the bioabsorbable polymer, and stably regenerates the nerve damage part. The possibility was suggested. This was an unexpected effect. Further, it has been found that the nerve regeneration-inducing material containing the bioabsorbable polymer can be sutured as necessary, can suppress deformation of the material at the time of freeze-drying, and is excellent in handleability. completed.
  • the present invention provides the following nerve regeneration-inducing material as a first aspect.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is at least one cross-linking reagent selected from a compound represented by the following general formula (I) and a salt thereof:
  • R 1 HN— (CH 2 ) n —NHR 2 (I) [Wherein R 1 and R 2 each independently represent a hydrogen atom or a group represented by the formula: —COCH (NH 2 ) — (CH 2 ) 4 —NH 2 , and n represents an integer of 2 to 18] Show. ] (1-2) The nerve regeneration induction according to (1-1), wherein the bioabsorbable polysaccharide having a carboxyl group in the molecule is at least one selected from the group consisting of alginic acid, an ester thereof, and a salt thereof. Materials.
  • N-hydroxysuccinimide salt of the compound represented by the above general formula (I) is diaminoethane 2N-hydroxysuccinimide salt, diaminohexane 2N-hydroxysuccinimide salt, N , N′-di (lysyl) -diaminoethane 4N-hydroxysuccinimide salt and N- (lysyl) -diaminohexane 3N-hydroxysuccinimide salt
  • the material for inducing nerve regeneration according to (1-3).
  • the nerve regeneration-inducing material according to any one of (1-1) to (1-4), which is in the form of a xerogel.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule has an endotoxin content of 100 EU / g or less, according to any one of (1-1) to (1-5) Material for inducing nerve regeneration.
  • Nerve bifurcations and / or damaged parts of the plexus from the prostate, arms, brain, spinal cord, face, neck, hips, sacrum, lumbosacrum, genital area, heart, abdominal cavity, and intestinal wall
  • Nerve bifurcations and / or damaged parts of the plexus include prostate, bladder, penile cavernosa, arms, limbs, brain, spinal cord, face, neck, waist, sacrum, lumbosacrum, pudendal, heart
  • the nerve regeneration induction according to any one of (1-1) to (1-6) which is present in at least one selected from the group consisting of: abdominal cavity, lower lower abdomen, pelvis, intrathoracic cavity and intestinal wall Materials.
  • the material for inducing nerve regeneration according to any one of (1-1) to (1-7a), which is used for regeneration of a nerve damage part associated with lymph node dissection.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is at least one cross-linking reagent selected from the compound represented by the above general formula (I) and a salt thereof.
  • (1-9a) including a step of applying the nerve regeneration-inducing material described in any one of (1-1) to (1-8) to a nerve branching part and / or a damaged part of a plexus part
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is covalently crosslinked with a crosslinking agent selected from the compound represented by the above general formula (I) and a salt thereof.
  • Bioabsorbability having a carboxyl group in the molecule of the low endotoxin for producing the nerve regeneration-inducing material according to any one of (1-1) to (1-8)
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is at least one cross-linking reagent selected from a compound represented by the following general formula (I) and a salt thereof:
  • a material for inducing nerve regeneration comprising a crosslinked product that is covalently crosslinked and irradiated with an electron beam and / or ⁇ -ray.
  • R 1 HN— (CH 2 ) n —NHR 2 (I) [Wherein R 1 and R 2 each independently represent a hydrogen atom or a group represented by the formula: —COCH (NH 2 ) — (CH 2 ) 4 —NH 2 , and n represents an integer of 2 to 18] Show. ] (2-2) The nerve regeneration induction according to (2-1), wherein the bioabsorbable polysaccharide having a carboxyl group in the molecule is at least one selected from the group consisting of alginic acid, an ester thereof, and a salt thereof. Materials.
  • N-hydroxysuccinimide salt of the compound represented by the above general formula (I) is diaminoethane 2N-hydroxysuccinimide salt, diaminohexane 2N-hydroxysuccinimide salt, N , N′-di (lysyl) -diaminoethane 4N-hydroxysuccinimide salt and N- (lysyl) -diaminohexane 3N-hydroxysuccinimide salt
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule has an endotoxin content of 100 EU / g or less, according to any one of (2-1) to (2-5) Material for inducing nerve regeneration.
  • (2-7) The nerve regeneration-inducing material according to any one of (2-1) to (2-6), wherein the electron beam and / or ⁇ -ray is irradiated at an absorbed dose of 1 kGy to 100 kGy.
  • (2-8) The material for inducing nerve regeneration according to any one of (2-1) to (2-7), which disappears from the application site from 7 days to 270 days.
  • (2-10) The material for inducing nerve regeneration according to any one of (2-1) to (2-9), which is used for regeneration of a damaged portion of a peripheral nerve and / or a central nerve.
  • (2-11) The nerve regeneration-inducing material according to any one of (2-1) to (2-10), which is used for regeneration of a nerve damage part associated with lymph node dissection.
  • (2-13a) The low endotoxin for use in regeneration of an injured part of a nerve damaged part using the material for inducing nerve regeneration according to any one of (2-1) to (2-12)
  • (2-13b) In vivo absorbability having a carboxyl group in the molecule of the low endotoxin for producing the nerve regeneration-inducing material according to any one of (2-1) to (2-12)
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is at least one cross-linking reagent selected from the compound represented by the above general formula (I) and a salt thereof.
  • a method for adjusting a remaining time in a nerve regeneration-inducing material in a body which comprises a step of irradiating an electron beam and / or ⁇ -ray to a nerve regeneration-inducing material containing a covalently crosslinked product.
  • a method for producing a nerve regeneration-inducing material comprising at least a step of irradiating an electron beam and / or ⁇ -ray to a material containing a cross-linked product covalently crosslinked by using.
  • this invention provides the following materials for nerve regeneration induction as a 3rd aspect.
  • (3-1) At least one selected from the group consisting of alginic acid of low endotoxin having a weight average molecular weight measured by GPC-MALS of 90,000 to 700,000, its ester and its salt is represented by the following general formula (I
  • a material for inducing nerve regeneration comprising a crosslinked product covalently crosslinked with at least one crosslinking agent selected from a compound represented by (1) and a salt thereof.
  • R 1 HN— (CH 2 ) n —NHR 2 (I) [Wherein R 1 and R 2 each independently represent a hydrogen atom or a group represented by the formula: —COCH (NH 2 ) — (CH 2 ) 4 —NH 2 , and n represents an integer of 2 to 18] Show. ] (3-2) The nerve according to (3-1), wherein the M / G ratio of at least one selected from the group consisting of low endotoxin alginic acid, an ester thereof, and a salt thereof is 0.5 to 3.0. Regeneration induction material.
  • (3-3) including a step of applying the nerve regeneration-inducing material described in (3-1) or (3-2) to a nerve damage site, in a subject in need of regeneration of the nerve damage site.
  • (3-3b) The low endotoxin alginic acid or ester thereof for use in regeneration of an injured part of a nerve damaged part using the nerve regeneration-inducing material described in (3-1) or (3-2) Or its salt.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is at least one cross-linking reagent selected from a compound represented by the following general formula (I) and a salt thereof:
  • R 1 HN— (CH 2 ) n —NHR 2 (I) [Wherein R 1 and R 2 each independently represent a hydrogen atom or a group represented by the formula: —COCH (NH 2 ) — (CH 2 ) 4 —NH 2 , and n represents an integer of 2 to 18] Show.
  • N-hydroxysuccinimide salt of the compound represented by the above general formula (I) is diaminoethane 2N-hydroxysuccinimide salt, diaminohexane 2N-hydroxysuccinimide salt, N , N′-di (lysyl) -diaminoethane 4N-hydroxysuccinimide salt and N- (lysyl) -diaminohexane 3N-hydroxysuccinimide salt (4-3)
  • the nerve regeneration-inducing material described in the above. (4-5) The nerve regeneration-inducing material according to any one of (4-1) to (4-4), which is in the form of a xerogel.
  • the weight average molecular weight measured by at least one GPC-MALS selected from the group consisting of low endotoxin alginic acid, its ester and its salt is 90,000 to 700,000, (4-1) Or the nerve regeneration-inducing material according to any one of (4-5).
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule has an endotoxin content of 100 EU / g or less, according to any one of (4-1) to (4-7) Material for inducing nerve regeneration. (4-9) any one of (4-1) to (4-8), further comprising at least one selected from the group consisting of polyglycolic acid, polylactic acid, and copolymers thereof The material for inducing nerve regeneration as described. (4-10) The material for inducing nerve regeneration according to any one of (4-1) to (4-9), which disappears from the application site from 7 days to 270 days.
  • (4-11) The material for inducing nerve regeneration according to any one of (4-1) to (4-10), which is irradiated with an electron beam and / or ⁇ -ray.
  • (4-12) The material for inducing nerve regeneration according to (4-11), wherein the electron beam and / or ⁇ -ray is irradiated at an absorbed dose of 1 kGy to 100 kGy.
  • (4-13) The nerve regeneration-inducing material according to any one of (4-1) to (4-12), which is used for regeneration of a damaged portion of a peripheral nerve and / or a central nerve.
  • (4-14) The material for inducing nerve regeneration according to any one of (4-1) to (4-10), which is used for regeneration of a nerve branch and / or a damaged part of a plexus.
  • the material for inducing nerve regeneration according to (4-14), present in at least one selected from the group consisting of: (4-15a) Nerve bifurcations and / or damaged parts of the plexus include prostate, bladder, penile corpus cavernosum, arms, extremities, brain, spinal cord, face, neck, waist, sacrum, lumbosacrum, pudendal, heart
  • the material for inducing nerve regeneration according to (4-14) present in at least one selected from the group consisting of: abdominal cavity, lower lower abdomen, pelvis, intrathoracic cavity and intestinal wall.
  • (4-16) The material for inducing nerve regeneration according to (4-13), which is used for regeneration of a nerve damage part accompanying lymph node dissection.
  • (4-17) Necessary to regenerate a nerve damage part, including the step of applying the nerve regeneration inducing material according to any one of (4-1) to (4-14) to the nerve damage part.
  • (4-17a) The low endotoxin for use in regeneration of an injured part of a nerve damaged part using the nerve regeneration inducing material according to any one of (4-1) to (4-14) A bioabsorbable polysaccharide having a carboxyl group in the molecule.
  • this invention provides the following nerve regeneration induction material as a 5th aspect.
  • 5-1 The bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is at least one cross-link selected from the compound represented by the following general formula (I) and a salt thereof:
  • R 1 HN— (CH 2 ) n —NHR 2 (I) [Wherein R 1 and R 2 each independently represent a hydrogen atom or a group represented by the formula: —COCH (NH 2 ) — (CH 2 ) 4 —NH 2 , and n represents an integer of 2 to 18] Show. ] (5-2) The nerve regeneration according to (5-1), wherein the bioabsorbable polysaccharide having a carboxyl group in the molecule is at least one selected from the group consisting of alginic acid, an ester thereof and a salt thereof. Guiding material.
  • N-hydroxysuccinimide salt of the compound represented by the above general formula (I) is diaminoethane 2N-hydroxysuccinimide salt, diaminohexane 2N-hydroxysuccinimide salt, N , N′-di (lysyl) -diaminoethane 4N-hydroxysuccinimide salt and N- (lysyl) -diaminohexane 3N-hydroxysuccinimide salt
  • the bioabsorbable polymer is at least one selected from the group consisting of polyglycolic acid, polylactic acid, copolymers thereof, and polycaprolactone, (5-1) to (5-1) The material for inducing nerve regeneration according to any one of 5-5).
  • Double clip so that the material is cut to a size of 2 cm (length) x 2 cm (width does not matter) and the material is sandwiched at a position 5 mm away from one of the cut surfaces (Gripping part A), and after immersing the region from the cut surface (B) to 10 mm facing the grip part A of the material in physiological saline for 15 minutes, 5 mm from the cut surface (B) of the material
  • a tear test is performed in which a suture with a needle is passed through the center of the distant position, both ends of the suture are fixed to the instrument, and the gripping part A is pulled horizontally at a speed of 10 mm / min on the square surface of the material.
  • the content of the bioabsorbable polymer in the material is 0.05 mg / cm 2 to 30 mg / cm 2 , or any one of (5-1) to (5-9) The material for nerve regeneration-inducing agents as described.
  • Nerve bifurcations and / or damaged parts of the plexus include prostate, bladder, penile corpus cavernosum, arms, extremities, brain, spinal cord, face, neck, waist, sacrum, lumbar sacrum, pudenda, heart
  • the material for inducing nerve regeneration according to (5-12) which is present in at least one selected from the group consisting of: abdominal cavity, lower lower abdomen, pelvis, intrathoracic cavity and intestinal wall.
  • the nerve regeneration-inducing material according to any one of claims (5-1) to (5-13), which is used for regeneration of a damaged part.
  • At least one selected from the group consisting of alginic acid of low endotoxin, ester thereof and salt thereof has a weight average molecular weight (absolute molecular weight) measured by GPC-MALS method of 80,000 or more.
  • (5-2) to (5), wherein the M / G ratio of at least one selected from the group consisting of alginic acid of low endotoxin, ester thereof and salt thereof is 0.4 to 3.0.
  • Nerve injury including a step of applying the nerve regeneration-inducing material described in any one of (5-1) to (5-16) to a nerve damage part of a subject in need of treatment To induce the renewal of parts.
  • (5-18) Applying the nerve regeneration-inducing material according to any one of (5-1) to (5-16) to a nerve injury site of a subject in need of treatment, A bioabsorbable polysaccharide having a carboxyl group in a molecule of the low endotoxin for use in regeneration of an injured part.
  • a method of adjusting the remaining time in the body of the nerve regeneration-inducing material including at least the following steps.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is covalently bonded with at least one cross-linking reagent selected from the compound represented by the above general formula (I) and a salt thereof
  • this invention provides the manufacturing method of the following nerve regeneration induction material as a 6th aspect.
  • (6-1) A method for producing a nerve regeneration-inducing material including at least the following steps. (1) A solution containing a bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin, and at least one cross-linking reagent selected from the compound represented by the above general formula (I) and a salt thereof Mixing with (2) A step in which the mixture obtained in (1) and the bioabsorbable polymer are placed in a mold and allowed to stand for a certain period of time to form a crosslinked product, (3) a step of washing the cross-linked product obtained in (2) and then freeze-drying; (4) A step of irradiating the crosslinked product obtained in (3) with an electron beam and / or ⁇ -ray.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is at least one cross-linking reagent selected from a compound represented by the following general formula (I) and a salt thereof:
  • a non-tubular nerve regeneration-inducing material comprising a covalently crosslinked product, R 1 HN— (CH 2 ) n —NHR 2 (I) [Wherein R 1 and R 2 each independently represent a hydrogen atom or a group represented by the formula: —COCH (NH 2 ) — (CH 2 ) 4 —NH 2 , and n represents an integer of 2 to 18] Show.
  • the nerve regeneration-inducing material according to any one of (7-1) and (7-2), wherein, in the degradability test, a residual rate after 4 hours from the start is 55% or more.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule is at least one selected from the group consisting of alginic acid, its ester and its salt, (7-1) to (7-3) )
  • the crosslinkable reagent is any one of (7-1) to (7-4), which is an N-hydroxysuccinimide salt of the compound represented by the general formula (I). Material for inducing nerve regeneration.
  • N-hydroxysuccinimide salt of the compound represented by the above general formula (I) is 2N-hydroxysuccinimide salt of diaminoethane, 2N-hydroxysuccinimide salt of diaminohexane, N , N′-di (lysyl) -diaminoethane 4N-hydroxysuccinimide salt and N- (lysyl) -diaminohexane 3N-hydroxysuccinimide salt
  • (7-7) The material for inducing nerve regeneration according to any one of (7-1) to (7-6), which is in the form of a xerogel.
  • the bioabsorbable polymer is at least one selected from the group consisting of polyglycolic acid, polylactic acid, copolymers thereof, and polycaprolactone, according to (7-9). Material for inducing nerve regeneration.
  • Double clip so that the material is cut to a size of 2 cm in length x 2 cm in width (regardless of thickness) and the material is sandwiched at a position 5 mm away from one of the cut surfaces (Gripping part A), and after immersing the region from the cut surface (B) to 10 mm facing the grip part A of the material in physiological saline for 15 minutes, 5 mm from the cut surface (B) of the material
  • a tear test is performed in which a suture with a needle is passed through the center of the distant position, both ends of the suture are fixed to the instrument, and the gripping part A is pulled horizontally at a speed of 10 mm / min on the square surface of the material.
  • (7-1) to (7-10) for inducing nerve regeneration wherein the maximum test force (load) is 0.10 (N) to 10.0 (N) material.
  • the content of the bioabsorbable polymer in the material is 0.05 mg / cm 2 to 30 mg / cm 2 , or any one of (7-1) to (7-12) The material for inducing nerve regeneration as described.
  • Nerve bifurcations and / or damaged parts of the plexus include prostate, bladder, penile cavernosa, arms, limbs, brain, spinal cord, face, neck, waist, sacrum, lumbosacrum, pudendal, heart
  • the material for inducing nerve regeneration according to (7-15) present in at least one selected from the group consisting of: abdominal cavity, lower lower abdomen, pelvis, intrathoracic cavity and intestinal wall.
  • At least one selected from the group consisting of alginic acid of low endotoxin, its ester and its salt has a weight average molecular weight (absolute molecular weight) measured by GPC-MALS method of 80,000 or more.
  • Nerve injury comprising a step of applying the nerve regeneration-inducing material according to any one of (7-1) to (7-19) to a nerve damage part of a subject requiring treatment. To induce the renewal of parts.
  • (7-21) Applying the nerve regeneration-inducing material according to any one of (7-1) to (7-19) to a nerve injury site of a subject in need of treatment, A bioabsorbable polysaccharide having a carboxyl group in the molecule of the low endotoxin for use in a method for inducing regeneration of a damaged part.
  • a method for adjusting the remaining time in the body of a nerve regeneration-inducing material comprising at least the following steps.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is covalently crosslinked with at least one crosslinking reagent selected from the compound represented by the above general formula (I) and a salt thereof.
  • the material for inducing nerve regeneration according to the present invention can currently promote regeneration of nerve bifurcations and / or damaged parts of plexus without useful treatment methods other than autologous nerve transplantation and the like.
  • a therapeutic means may be provided.
  • the nerve regeneration-inducing material has a controlled body elimination time and is excellent in nerve regeneration-inducing effect.
  • the nerve regeneration-inducing material of the present invention can be used even when the damaged part of the nerve is linear, bifurcated and / or plexus, or when the stump of the defect is not visible. Applicable and induces nerve regeneration, so clinical application range is wide.
  • the nerve regeneration-inducing material is in the form of a xerogel and / or a sheet and is flexible, so that the nerve stumps and joints are covered with the nerve regeneration-inducing material. Can do. Since it is in the form of a xerogel and / or a sheet, it can be cut and used on the spot in a size suitable for the affected area to be used, so there is no need to prepare a plurality of standards according to the inner diameter of the nerve in advance. It is also possible to apply the material of the present invention to the damaged part of the nerve under an endoscope or a laparoscope.
  • the nerve regeneration-inducing material further containing a bioabsorbable polymer has an appropriate strength and can be used by being sutured with a suture when applied to the affected area.
  • the material of the present invention can be used without suturing, and when not sewn, there is an advantage that the treatment can be performed relatively easily. Since the nerve regeneration-inducing material of the present invention disappears from the body after a lapse of a certain period, it is excellent in safety and biocompatibility.
  • the nerve regeneration-inducing material further containing a bioabsorbable polymer has an appropriate strength, and the material is difficult to tear even in a movable part such as a knee, so that a nerve damage part can be stably formed. It is possible to play.
  • the manufacturing process has the advantage that the shape is not easily deformed, the handling property is excellent, and the manufacturing efficiency is high.
  • the nerve regeneration-inducing material of the present invention satisfies any one or more of the above effects.
  • FIG. 1 The schematic diagram of the test which observes the reproduction
  • a cylindrical shape represents a nerve, and a rectangle represents an alginate cross-linked body.
  • the crosslinked body was placed so that the nerve cut portion was sandwiched between two alginate crosslinked bodies.
  • the arrow indicates a portion where the regenerated nerve axon is thin and considered not to be sufficiently regenerated.
  • Bioabsorbable polysaccharide having a carboxyl group in the molecule In one of several embodiments of the present invention, one or more bioabsorbable polysaccharides having a carboxyl group in the molecule are used to induce nerve regeneration.
  • a material can be made.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule include polysaccharides such as alginic acid, carboxymethyl starch, hyaluronic acid, carboxymethyl cellulose, esters thereof and salts thereof.
  • the bioabsorbable polysaccharide is preferably decomposed and absorbed in vivo.
  • the polysaccharide is preferably a bioabsorbable polysaccharide having no cell adhesion. Preferably, it is at least one selected from alginic acid, its ester and its salt.
  • the material for inducing nerve regeneration may be referred to as “the material of the present invention”.
  • Alginic acid, ester thereof and salt thereof Alginic acid, ester thereof and salt thereof.
  • Alginic acid alginic acid ester and alginate used in the present invention may be naturally derived or synthesized, and are preferably naturally derived. In the present specification, “at least one selected from alginic acid, its ester and its salt” may be referred to as “alginic acid”.
  • Alginic acids preferably used in the present invention are bioabsorbable polysaccharides extracted from brown algae such as Lessonia, Macrocystis, Laminaria, Ascophyllum, Davilia, Kajika, Alame, Kombu and the like, and D-mannuronic acid A polymer obtained by linearly polymerizing two types of uronic acids (M) and L-guluronic acid (G). More specifically, D-mannuronic acid homopolymer fraction (MM fraction), L-guluronic acid homopolymer fraction (GG fraction), and D-mannuronic acid and L-guluronic acid are randomly arranged. This is a block copolymer in which the fractions (M / G fraction) are arbitrarily bound.
  • the composition ratio (M / G ratio) of D-mannuronic acid and L-guluronic acid of alginic acids varies depending on the type of organisms that are mainly derived from seaweeds, etc., and is also affected by the location and season of the organism. , Ranging from a high G type with an M / G ratio of about 0.2 to a high M type with an M / G ratio of about 5. It is known that the gelation ability of alginic acids is affected by the M / G ratio, and generally the gel strength increases when the G ratio is high. In addition, the M / G ratio affects the hardness, brittleness, water absorption, flexibility, and the like of the gel.
  • the M / G ratio of alginic acids and / or salts thereof used in the present invention is usually 0.2 to 4.0, more preferably 0.4 to 3.0, still more preferably 0.5 to 3. .0.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • alginate and “alginate” used in the present invention are not particularly limited, but it is necessary to have no functional group that does not inhibit the crosslinking reaction in order to react with the crosslinking agent.
  • the alginic acid ester is preferably propylene glycol alginate.
  • alginates include monovalent salts of alginic acid and divalent salts of alginic acid.
  • the monovalent salt of alginic acid is preferably sodium alginate, potassium alginate, ammonium alginate and the like, more preferably sodium alginate or potassium alginate, and particularly preferably sodium alginate.
  • Preferred examples of the divalent salt of alginic acid include calcium alginate, magnesium alginate, barium alginate, and strontium alginate.
  • Alginic acids are high molecular polysaccharides, and it is difficult to accurately determine the molecular weight, but generally the weight average molecular weight is 10 to 10 million, preferably 10,000 to 8 million, more preferably 20,000 to 300. It is in the range of 10,000.
  • the value may vary depending on the measurement method.
  • the weight average molecular weight measured by gel permeation chromatography (GPC) or gel filtration chromatography (also referred to as size exclusion chromatography) is preferably 100,000 or more, more preferably 500,000 or more, Preferably, it is 5 million or less, more preferably 3 million or less.
  • the preferable range is 100,000 to 5,000,000, more preferably 500,000 to 3.5 million.
  • the absolute weight average molecular weight can be measured.
  • the weight average molecular weight (absolute molecular weight) measured by GPC-MALS method is preferably 10,000 or more, more preferably 80,000 or more, further preferably 90,000 or more, and preferably 1,000,000 or less, more preferably 80 10,000 or less, more preferably 700,000 or less, and particularly preferably 500,000 or less.
  • the preferable range is 10,000 to 1,000,000, more preferably 80,000 to 800,000, still more preferably 90,000 to 700,000, and particularly preferably 90,000 to 500,000.
  • a measurement error of 10 to 20% may occur.
  • the value may vary in the range of about 32 to 480,000 for 400,000, 400,000 to 600,000 for 500,000, and about 800 to 1,200,000 for 1,000,000.
  • the molecular weight of alginic acids can be measured according to a conventional method. Typical conditions when gel permeation chromatography is used for molecular weight measurement are as described in Example 1 herein. For example, GMPW-XL ⁇ 2 + G2500PW-XL (7.8 mm ID ⁇ 300 mm) can be used as the column.
  • the eluent can be, for example, a 200 mM sodium nitrate aqueous solution, and pullulan can be used as a molecular weight standard. Can be used.
  • Typical conditions when GPC-MALS is used for molecular weight measurement are as described in Example 1 of this specification.
  • the detector for example, an RI detector and a light scattering detector (MALS) can be used.
  • the viscosity of the alginic acid used in the present invention is not particularly limited, but is preferably 10 mPa ⁇ s to 1000 mPa ⁇ s, more preferably 50 mPa ⁇ s when the viscosity is measured as an aqueous solution of 1 w / w% alginic acid. -800 mPa ⁇ s.
  • the viscosity of the aqueous solution of alginic acids can be measured according to a conventional method. For example, using a rotational viscometer method such as a coaxial double cylindrical rotational viscometer, a single cylindrical rotational viscometer (Brookfield viscometer), a cone-plate rotational viscometer (cone plate viscometer), etc.
  • Alginic acids are initially high in molecular weight and high in viscosity when extracted from brown algae, but in the process of drying and purification by heat, the molecular weight decreases and the viscosity decreases.
  • Alginic acids having different molecular weights can be produced by techniques such as temperature control in the production process, selection of brown algae as a raw material, and molecular weight fractionation in the production process. Furthermore, it is possible to obtain alginic acids having a target molecular weight by mixing with another lot of alginic acids having different molecular weights or viscosities.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule used in the present invention is preferably a low endotoxin bioabsorbable polysaccharide.
  • Low endotoxin refers to a low endotoxin level that does not substantially cause inflammation or fever. More preferably, it is a bioabsorbable polysaccharide treated with a low endotoxin.
  • the low endotoxin treatment can be performed by a known method or a method analogous thereto.
  • the method of Takada et al. See, for example, JP-A-9-32001 for purifying sodium hyaluronate
  • the method of Yoshida et al. Eg, JP-A-8-269102 for purifying ⁇ 1,3-glucan. Etc.
  • a method of William et al. for example, see JP-T-2002-530440, etc.
  • biopolymer salts such as alginate, gellan gum, etc.
  • James et al. For example, international publication for purifying polysaccharides, etc.
  • Lewis et al. See, for example, US Pat. No. 5,589,591), Herman Frank et al. (Eg, ApplAMicrobiol Biotechnol (1994) 40: 638) for purifying alginate. -643 etc.) or similar It can be implemented by a method.
  • the low endotoxin treatment of the present invention is not limited thereto, but is washed, filtered with a filter (such as an endotoxin removal filter or a charged filter), ultrafiltration, a column (an endotoxin adsorption affinity column, a gel filtration column, a column with an ion exchange resin, etc.) ), Adsorption to hydrophobic substances, resin or activated carbon, organic solvent treatment (extraction with organic solvent, precipitation / precipitation by addition of organic solvent, etc.), surfactant treatment (for example, JP-A-2005-036036) It can be carried out by a known method such as a gazette) or a combination thereof. These processing steps may be appropriately combined with known methods such as centrifugation. It is desirable to select appropriately according to the type of alginic acid.
  • a filter such as an endotoxin removal filter or a charged filter
  • ultrafiltration such as an endotoxin removal filter or a charged filter
  • a column an endotoxin
  • the endotoxin level can be confirmed by a known method, and can be measured, for example, by a method using Limulus reagent (LAL), a method using Enspercy (registered trademark) ES-24S set (Seikagaku Corporation), or the like. .
  • LAL Limulus reagent
  • Enspercy registered trademark
  • ES-24S set Seikagaku Corporation
  • the method for treating the endotoxin of the bioabsorbable polysaccharide used in the present invention is not particularly limited.
  • LAL Limulus reagent
  • EU endotoxin units
  • Low endotoxin-treated sodium alginate can be obtained from commercially available products such as Sea Matrix (registered trademark) (Mochida Pharmaceutical Co., Ltd.), PRONOVA TM UP LVG (FMCBioPolymer), and the like.
  • crosslinking reagent preferably used in the present invention is at least one selected from amine-based compounds and salts thereof included in the compounds represented by the following general formula (I).
  • a compound represented by the following general formula (I) may be referred to as an amine compound (I).
  • R 1 HN— (CH 2 ) n —NHR 2 (I) [Wherein R 1 and R 2 each independently represent a hydrogen atom or a group represented by the formula: —COCH (NH 2 ) — (CH 2 ) 4 —NH 2 , and n represents an integer of 2 to 18] Show.
  • diaminoalkanes such as diaminoethane, diaminopropane, diaminobutane, diaminopentane, diaminohexane, diaminoheptane, diaminooctane, diaminononane, diaminodecane, diaminododecane, diaminooctadecane and / or their salts
  • Mono- or di (lysyl) such as N- (lysyl) -diaminoethane, N, N′-di (lysyl) -diaminoethane, N- (lysyl) -diaminohexane, N, N′-di (lysyl) -diaminohexane )
  • Diaminoalkanes and / or their salts, and one or more of these diamines and their salts can be used.
  • amine compound (I) and / or a salt thereof a compound in which n is 2 to 8 in the above general formula (I) and / or a salt thereof is preferably used.
  • crosslinkable reagent is a salt of amine compound (I)
  • N-hydroxysuccinimide is preferably used as a component for forming the salt.
  • ) -Diaminoethane 4N-hydroxysuccinimide, N- (lysyl) -diaminohexane 3N-hydroxysuccinimide have higher safety and biocompatibility and are shared by the cross-linking reagents It is preferably used since the nerve regeneration action of the acid cross-linked product obtained by bond cross-linking is better.
  • nerve regeneration-inducing material containing an alginic acid cross-linked body using alginic acids as an example of a bioabsorbable polysaccharide having a carboxyl group in the molecule. These polysaccharides can also be prepared according to the following.
  • the xerogel-like alginic acid cross-linked product of the present invention is, for example, an aqueous solution of alginic acids, the cross-linking reagent, and a dehydrating condensing agent such as water-soluble carbodiimide mixed and dissolved, poured into a mold and gelled, After washing the gel, it can be obtained by lyophilization.
  • the temperature of the crosslinking reaction can usually be in the range of 4 ° C. to 37 ° C., but it is preferably in the range of 20 ° C. to 30 ° C. from the viewpoint of reaction efficiency.
  • the order of the steps of containing the other components is not particularly limited.
  • the step of containing the other components is lyophilized. It may be before or after lyophilization.
  • the nerve regeneration-inducing material of the present invention is preferably in the form of a xerogel.
  • Xerogel refers to a dried gel.
  • a gel contains a solvent such as water in a three-dimensional network structure, while a xerogel refers to one that has lost the solvent and becomes only a network.
  • xerogel is sometimes referred to as “sponge”.
  • the solution of alginic acids can be prepared by a known method or a method analogous thereto.
  • the solvent is not particularly limited as long as it is a solvent applicable to a living body, but is preferably an aqueous solvent, for example, purified water, distilled water, ion exchange water, milli-Q water, physiological saline, phosphate buffered physiological saline. DMSO and the like are preferable. These are preferably sterilized and preferably treated with a low endotoxin.
  • the crosslinking rate can be controlled by the molar ratio of the crosslinking agent used and the crosslinking reaction time. When the crosslinking rate is lowered, a flexible and high moisture content crosslinked product is obtained, and when the crosslinking rate is increased, it is strong and the moisture content is lowered.
  • the crosslinking rate can be appropriately selected depending on the use of the crosslinked product.
  • the molar ratio of the cross-linking reagent used is not particularly limited, but is preferably in the range of 1 mol% to 50 mol%, more preferably 5 mol% to 40 mol, based on the total of carboxyl groups of alginic acids. % Range.
  • the reaction time can be lengthened when a high crosslinking rate is required.
  • the reaction time is usually in the range of 6 hours to 96 hours, and preferably in the range of 24 hours to 72 hours in terms of reaction efficiency.
  • the concentration of the alginic acid solution is preferably in the range of 0.1% to 5%, and more preferably in the range of 0.5% to 3%.
  • crosslinked product obtained by the crosslinking reaction itself shows practical strength and stability, but may be used in combination with other gelation methods such as ionic bond crosslinking and hydrophobic bond crosslinking depending on applications.
  • the present invention nerve regeneration-inducing material is alginic acid, if it contains at least one (alginic acid) is selected from the group consisting of the esters and salts thereof, the material 1cm per 2 the content of alginic acids, in terms of sodium alginate is preferably from 0.2mg / cm 2 ⁇ 12mg / cm 2, more preferably 0.5mg / cm 2 ⁇ 7mg / cm 2, more preferably 1 mg / cm 2 to 6 mg / cm 2 , particularly preferably 1 mg / cm 2 to 5 mg / cm 2 .
  • the term “alginic acid content” represents a value obtained by converting the amount of alginic acid contained in the material into the amount of sodium alginate.
  • the nerve regeneration-inducing material of the present invention includes, for example, polyglycolic acid, polylactic acid, and their co-polymers in addition to the bioabsorbable polysaccharide having a carboxyl group in the molecule.
  • the polymer may contain one or more bioabsorbable polymers such as polycaprolactone.
  • a copolymer of polyglycolic acid and polylactic acid (also referred to herein as “PLGA”) is known as, for example, polyglactin. These polymers are used as suture materials and the like, have bioabsorbability, and are excellent in biocompatibility.
  • bioabsorbable polymers is not particularly limited, but preferably, a nonwoven fabric, a woven fabric, a mesh, or a needle punch can be used, and more preferably in the form of a nonwoven fabric, a mesh, or a needle punch.
  • a sheet-like nonwoven bioabsorbable polymer may be laid on a tray, and the tray may be filled with a solution in which the bioabsorbable polysaccharide and a crosslinking agent are dissolved.
  • the arrangement of the bioabsorbable polysaccharide having a carboxyl group in the molecule and the bioabsorbable polymer in the nerve regeneration-inducing material of the present invention is not particularly limited.
  • a bioabsorbable polysaccharide layer having a carboxyl group in the molecule and a bioabsorbable polymer layer are laminated, or a biomolecule having a carboxyl group in the molecule between two layers of the bioabsorbable polymer.
  • the body absorbable polysaccharide layer may be sandwiched, or both may be mixed in one layer.
  • materials other than PGA were similarly used instead of PGA. Is possible.
  • These bioabsorbable polymers can increase the strength of the crosslinked body and improve the handleability of the nerve regeneration-inducing material.
  • the cross-linked product prepared using PLGA having the same content as the cross-linked product prepared using PGA showed the same degradability. It was suggested that the functional polymer can be used in the present invention as well.
  • the bioabsorbable polymer used for the nerve regeneration-inducing material of the present invention is preferably a polymer containing polyglycolic acid, preferably polyglycolic acid and / or polyglycol. It is also desirable to be a copolymer of acid and polylactic acid (PLGA).
  • the nerve regeneration-inducing material of the present invention may contain 0.05 mg / cm 2 to 30 mg / cm 2 of the bioabsorbable polymer, more preferably 0.1 mg. / Cm 2 to 10 mg / cm 2 , more preferably 0.5 mg / cm 2 to 7 mg / cm 2 , and particularly preferably 1 mg / cm 2 to 5 mg / cm 2 .
  • the nerve regeneration-inducing material of the present invention contains these bioabsorbable polymers, it has a strength capable of suturing, can prevent deformation of the material due to freeze-drying, and can increase production efficiency.
  • examples of the nerve regeneration-inducing material containing these bioabsorbable polymers are insufficient regeneration of nerve damage as compared with materials not containing the bioabsorbable polymers. Therefore, the strength of the cross-linked body is increased by adding a bioabsorbable polymer, and the cross-linked body is difficult to break even in movable parts such as knees, and axons can be stably regenerated. The possibility of obtaining was suggested.
  • the nerve regeneration-inducing material may contain other polysaccharides and polymers in a range that does not interfere with the effects of the nerve regeneration-inducing material of the present invention.
  • the nerve regeneration-inducing material of the present invention can also contain heparin. In some embodiments of the present invention, the nerve regeneration-inducing material does not contain heparin.
  • the nerve regeneration-inducing material may contain a factor useful for nerve growth.
  • factors useful for nerve growth include, but are not limited to, basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and the like.
  • bFGF basic fibroblast growth factor
  • NVF nerve growth factor
  • the nerve regeneration-inducing material of the present invention can exert an effect of inducing nerve regeneration even when a factor useful for nerve growth is not included. In some embodiments of the present invention, the nerve regeneration-inducing material does not contain these factors.
  • the material containing a crosslinked alginate obtained by a crosslinking reaction can be purified usually by removing unreacted reagents and dehydrating condensing agent with a washing solution.
  • the cleaning liquid is not particularly limited, and for example, water, ECF (Extra Cellular Fluid), or the like can be used.
  • ECF can be prepared by dissolving CaCl 2 (2.5 mM) and NaCl (143 mM) in purified water.
  • the ECF may be used after passing through a filter for sterilization as necessary.
  • the nerve regeneration-inducing material of the present invention may be used in a gel state before lyophilization.
  • freeze-drying of the alginic acid cross-linked product can be carried out by using common technical knowledge known to those skilled in the art. Freeze-drying conditions can be adjusted as appropriate, and a primary drying step, a secondary drying step, and the like may be provided.
  • the shape of the nerve regeneration-inducing material of the present invention is not particularly limited, and can be appropriately selected in consideration of the range of the damaged portion of the nerve to be applied.
  • it when it is in the form of a xerogel, it can take a non-tubular shape (for example, a flat plate shape, a curved shape, a flat plate shape with projections and depressions), and a tubular shape, preferably a non-tubular shape, more preferably It is flat.
  • the size of the plate is not particularly limited because the nerve regeneration-inducing material can be further cut and applied to the damaged part according to the range of the damaged part of the nerve.
  • the length of the length and width is not particularly limited, and the height (thickness) is preferably 0.2 mm to 30 mm. More preferably 0.3 mm to 15 mm, still more preferably 0.5 mm to 10 mm, and particularly preferably 1 mm to 10 mm. More preferably, in addition to such height (thickness), the vertical and horizontal lengths are 1 mm to 300 mm ⁇ 1 mm to 300 mm, respectively, particularly preferably 3 mm to 200 mm ⁇ 3 mm to 200 mm, More preferably, it is 5 mm to 150 mm ⁇ 5 mm to 150 mm. Note that the thickness may not be uniform, and an inclined structure in which one is thick and the other is thin may be used.
  • the nerve regeneration-inducing material is preferably sterilized.
  • Sterilization includes, but is not limited to, ⁇ -ray sterilization, electron beam sterilization, ethylene oxide gas sterilization, ethanol sterilization, and the like.
  • a sterilization effect can also be obtained.
  • the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is the amine compound (I) described above.
  • a nerve regeneration-inducing material comprising a crosslinked product that is covalently crosslinked with and / or a salt thereof and irradiated with an electron beam and / or a ⁇ -ray is provided.
  • the target irradiated with the electron beam and / or ⁇ -ray may be only a crosslinked body in which a bioabsorbable polysaccharide is covalently bonded with the crosslinking agent, or the nerve regeneration-inducing material is a bioabsorbable polymer.
  • other components such as nerve growth factor, a cross-linked product containing other components may be used.
  • another component can also be included in the crosslinked body after irradiating an electron beam and / or a gamma ray.
  • Electron beam is one of the charged particle beams in radiation and is used for sterilization purposes.
  • the electron beam can be irradiated using an electron accelerator or the like. Since the electron beam permeates the substance, it is possible to sterilize a complicated shape or a closed portion, and there is no worry about a residue after the treatment.
  • Factors such as voltage, current, and irradiation time (conveyance speed of the object to be irradiated) are related to the electron beam dose. Since the electron beam has a lower penetrating power than the ⁇ -ray, the necessary penetrating power can be controlled.
  • the dose rate dose per hour
  • ⁇ -ray is one of electromagnetic waves in radiation and is used for sterilization purposes.
  • Gamma rays can be irradiated using a radiation source exposure device or the like.
  • Gamma rays are highly transmissive, and the dose of gamma rays is related to factors such as heat source intensity, distance from the heat source, and irradiation time, and the processing time takes several hours, so that the irradiated object is relatively deteriorated.
  • both electron beams and ⁇ rays can be used.
  • the nerve regeneration-inducing material of the present invention is preferably irradiated with an electron beam and / or ⁇ -ray at an absorbed dose of 1 kGy to 100 kGy, more preferably 3 kGy to 60 kGy, more preferably 5 kGy to 40 kGy, particularly preferably 5 kGy to 25 kGy, and still more preferably 10 kGy to 24 kGy.
  • the nerve regeneration-inducing material irradiated with the electron beam and / or ⁇ -ray has a shorter time until disappearance from the application site in the body than the material not irradiated. In other words, it has a feature that the remaining time in the body is short.
  • “Disappearance from the application site” means that when a cross-linked body is placed on the application site and the application site is observed after a certain time, the cross-linked product cannot be visually recognized by visual observation.
  • the application site in the body at this time is preferably a nerve injury site, but for example, a disappearance from the application site may be confirmed by performing a subcutaneous or intramuscular implantation test in an animal such as a rat. .
  • Such a nerve regeneration-inducing material irradiated with an electron beam and / or ⁇ -ray has a feature that it has a higher nerve regeneration-inducing effect than a material that has not been irradiated.
  • the nerve regeneration-inducing material of the present invention preferably has a disappearance from the application site of 7 to 270 days, more preferably 14 to 180 days, and still more preferably It is 14 to 150 days, and particularly preferably 14 to 120 days.
  • the nerve regeneration-inducing material of the present invention is made of 0.7 cm in length and 1.5 cm in width (regardless of thickness) according to the description in Example 6 of the present specification.
  • the nerve regeneration-inducing material of the present invention has a size of 1 cm in length and 1 cm in width (regardless of thickness) according to the description in Example 7 of the present specification.
  • 4 pieces of the cut material and 25 mL of physiological saline are placed in a 50 mL centrifuge tube, and shaken at a temperature of 50 ° C. at a temperature of 50 ° C. in a constant temperature shaking water tank.
  • the residual ratio of the material 72 hours after the start of shaking is desirably 10% to 80%, and more preferably 20% to 80%.
  • the “residual rate” as used herein refers to the mass of the material after drying under reduced pressure (60 ° C.) until the material after the decomposability test for a certain period of time has reached a constant weight relative to the mass of the material before starting the degradability test.
  • the ratio of In addition, the length and width of the cut surface of the material are perpendicular to each other. At this time, the thickness of the material is used as the thickness of the material to be tested, but it is desirable that the thickness is typically about 1 mm to about 10 mm.
  • the nerve regeneration-inducing material of the present invention shows a decrease in the residual rate after 72 hours from the start in the degradability test compared to the residual rate after 4 hours from the start. It is preferable. In the examples of the present invention, it was found that the ethanol-sterilized alginate crosslinked product did not have sufficient nerve regeneration-inducing effect. However, in the degradability test of Example 7, the crosslinked product having the same composition was 72 hours from the start. Even after that, the residual rate exceeded 100%. In one embodiment of the present invention, the nerve regeneration-inducing material of the present invention may have a residual rate of 55% or more, more preferably 60% or more after 4 hours from the start in the degradability test. desirable.
  • the nerve regeneration-inducing material of the present invention has a residual rate of 55% or more after 4 hours from the start in the degradability test, and then the residual rate decreases and 72 hours after the start. It is desirable that the residual ratio is 10% to 80%.
  • the nerve regeneration-inducing material of the present invention has a maximum test force of 0.10 (N) to 10 when the tear test described below (the tear test described in Example 10) is performed.
  • 0.0 (N) is preferable, and 0.10 (N) to 5.0 (N) is more preferable.
  • the tear test in the present invention is performed as follows. The target material is cut so as to have a size of 2 cm long ⁇ 2 cm wide (regardless of thickness). Here, the vertical and horizontal cut surfaces intersect perpendicularly. At this time, since the thickness of the material is a test for checking the tear strength of the material itself, the thickness of the material to be tested is used as it is, but it is desirable that the thickness is typically about 1 mm to about 10 mm. .
  • Grip with a double clip so as to sandwich the material at a position 5 mm away from one of the cut surfaces of the material (gripping part A).
  • a region from the cut surface (B) to 10 mm facing the gripping portion A of the material is immersed in physiological saline for 15 minutes.
  • a suture with a needle is passed through the central portion at a position 5 mm away from the cut surface (B) of the material, and both ends of the suture are fixed to the instrument.
  • the grip portion A is pulled horizontally on the square surface of the material at a speed of 10 mm / min until the material is torn, and the tensile load is measured as a test force (N).
  • the maximum test force is defined as the maximum test force (N).
  • the tensile load is preferably measured using a small physical property tester (EZ-graph, manufactured by Shimadzu Corporation), but if it is not available, a similar load measuring machine may be used.
  • the width of the gripping portion is preferably 15 to 19 mm. It is preferable to use “Bikrill (registered trademark)” as the suture used in the test and “4-0” as the thickness of the yarn.
  • the material is polyglactin 910 (glycolic acid / lactic acid polyester: 90). / 10), and a suture having a thread thickness of 4-0 may be used.
  • the needle it is preferable to use a round needle SH-1, but if it is not available, a needle that matches a similar suture may be used.
  • the present invention is also directed to inducing nerve regeneration, wherein the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin comprises a crosslinked product covalently crosslinked with the above-mentioned amine compound (I) and / or a salt thereof.
  • a method for adjusting the remaining time in the body of a nerve regeneration-inducing material comprising at least a step of irradiating the material with an electron beam and / or ⁇ -ray.
  • the present invention also provides that (A) the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is at least one cross-link selected from the compounds represented by the above general formula (I) and salts thereof
  • Body of nerve regeneration-inducing material comprising at least a step of irradiating an electron beam and / or ⁇ -ray to a crosslinked body covalently crosslinked with a sex reagent and (B) a crosslinked body containing a bioabsorbable polymer
  • a method for adjusting the remaining time is provided. In order to shorten the remaining time in the body of the material of the present invention, the irradiation dose of electron beam and / or ⁇ -ray is increased. Conversely, in order to increase the remaining time in the body, the irradiation dose of electron beam and / or ⁇ -ray is increased. By making it low, the remaining time in the body of the nerve regeneration-inducing material can be adjusted.
  • the present invention also relates to a material comprising a cross-linked product covalently crosslinked using a bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin and an amine compound (I) and / or a salt thereof.
  • a method for producing a nerve regeneration-inducing material including at least a step of irradiating an electron beam and / or ⁇ -ray.
  • the “material containing a cross-linked body” is optionally useful for the growth of the above-mentioned bioabsorbable polymer and nerves in addition to the cross-linked body made of a bioabsorbable polysaccharide having a carboxyl group in the molecule.
  • Other components such as factors may be included. Specific preferred embodiments are as described above.
  • the present invention also provides a method for producing a nerve regeneration-inducing material including at least the following steps.
  • (1) A solution containing a bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin, and at least one cross-linking reagent selected from the compound represented by the above general formula (I) and a salt thereof Mixing with (2)
  • a step in which the mixture obtained in (1) and the bioabsorbable polymer are placed in a mold and allowed to stand for a certain period of time to form a crosslinked product, (3) a step of washing the cross-linked product obtained in (2) and then freeze-drying;
  • (4) A step of irradiating the crosslinked product obtained in (3) with an electron beam and / or ⁇ -ray.
  • a preferred embodiment of this production method is as described in this specification.
  • the nerve regeneration-inducing material is applied to nerve damage caused by trauma, tumor resection, or the like to induce nerve regeneration and / or reconstruction.
  • the material for inducing nerve regeneration according to the present invention is excellent in safety because it is absorbed and decomposed after several months necessary for nerve reconstruction, and is finally metabolized and excreted.
  • “nerve damage” includes a state in which nerve continuity is lost (deficiency) and a state in which nerve continuity is maintained but nerve function is impaired, including rupture and the like. Including.
  • the “defect” may be referred to as “gap”, “cut”, or the like, and also includes “rupture”.
  • Nerve damage is caused by, for example, trauma, tumor resection, lymph node dissection, central nervous system or peripheral nervous system diseases, etc., but in the present invention, the cause of nerve damage does not matter.
  • the part where the nerve and the nerve are joined at the part where the suture thread is not applied can be in a state where a gap is formed. Materials can also be applied. In addition, for example, it can be used for regeneration of a nerve damaged part when reconstructing a tissue that has been deficient, dropped, or excised due to various factors.
  • “apply” means that a nerve regeneration-inducing material is placed in a damaged part of a nerve.
  • the contact between the nerve regeneration-inducing material and the nerve stump is not essential, but preferably, the nerve stump is deficient in the nerve regeneration-inducing material. It is desirable to place the material of the present invention so as to come into contact, and more preferably, the material of the present invention is placed so that the nerve regeneration-inducing material and the stump of the nerve overlap. When the nerve stump cannot be visually recognized, the nerve regeneration-inducing material and the nerve stump need not necessarily be brought into contact with each other.
  • nerve regeneration-inducing material may be performed, for example, by placing the nerve regeneration-inducing material in one direction with respect to both ends of the nerve to be reconstructed.
  • both ends may be sandwiched vertically or horizontally, and for example, the entire periphery of both ends of the nerve may be covered with a nerve regeneration-inducing material.
  • the nerve regeneration-inducing material is non-tubular, it is easier to supply the nutrients and oxygen necessary for nerve axon elongation than the tubular material, while preventing the invasion of fibrous tissue that works for tissue repair It is advantageous for nerve axon extension, preferably non-tubular, and more preferably flat. In this case, the fibrous tissue that acts on tissue repair impairs normal tissue repair due to scarring.
  • the alginate cross-linked product of the present invention has an effect of suppressing adhesion and proliferation of fibroblasts as compared with a collagen sponge, and has a preferable performance as a material for inducing nerve regeneration. It was found to provide.
  • induction of nerve regeneration means to promote proliferation of nerve cells and / or elongation of nerve axons.
  • the damaged part of the nerve is a defective part, it means to promote the extension of the nerve axon so as to restore the nerve continuity.
  • the nerve axon on the distal side (distal from the cut end) from the defect is degenerated because the continuity from the nerve cell body is cut off (in the peripheral nerve it is called Waller degeneration) ) Occurs and nerve function is lost.
  • Degenerated nerve axons far from the defect are phagocytosed by macrophages as remnants.
  • a number of nerve axons sprouting from the central stump extend to the peripheral stump side.
  • an axon extending from the central side is preferably connected to the distal stump.
  • induction of nerve regeneration can be indicated by at least partially restoring lost nerve function and perception. Induction of nerve regeneration in the present invention does not necessarily mean that the state before injury is completely restored.
  • the nerve regeneration-inducing material of the present invention preferably achieves any one or more of the above effects.
  • the method for using the nerve regeneration-inducing material of the present invention exposes the target nerve site to be reconstructed, and reconstructs the nerve regeneration-inducing material of an appropriate size according to the length and width of the nerve to be reconstructed. Applies to damaged nerve parts.
  • a “subject” is a human or non-human organism, such as avian and non-human mammals (eg, cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, and horses). is there.
  • the nerve regeneration-inducing material When the nerve regeneration-inducing material is in a xerogel form, it may be applied in a dry state as it is, or may be applied in a gel state after containing physiological saline or purified water. That is, the nerve regeneration-inducing material of the present invention may be in a gel form.
  • the nerve regeneration-inducing material After the nerve regeneration-inducing material is applied to the nerve damage part, it is not necessary to stitch the nerve regeneration-inducing material and the nerve damage part, but if necessary, the nerve regeneration-inducing material and the nerve damage part (for example, the nerve damage part) A stump or the like) may be sewn.
  • the nerve regeneration-inducing material is applied to a nerve branch and / or a damaged part of the plexus.
  • the nerve plexus is also called a nerve collection network, and is a portion where branched nerves form a network structure.
  • the nerve regeneration-inducing material of the present invention is preferably applied to nerve branches and / or damaged parts of the plexus, for example, prostate, bladder, penile corpus cavernosum, arms, extremities, brain, spinal cord, face, neck, hips. Applicable to sacrum, lumbar sacrum, pubic area, heart, abdominal cavity, lower lower abdomen, pelvis, thoracic cavity, intestinal wall, etc.
  • the site to which the nerve regeneration-inducing material can be applied is not particularly limited as long as it is a nerve damaged part. It can be used to induce regeneration of damaged parts of peripheral nerves and / or central nerves, and can be applied to linear nerves, nerve branch parts and / or damaged parts of plexus parts, and the like. In the case of the central nervous system, for example, damaged parts of the brain and spinal cord can be mentioned.
  • the nerve regeneration-inducing material of the present invention may be used in combination with factors useful for nerve regeneration or growth, humoral factors such as physiologically active substances, or cells.
  • humoral factors such as physiologically active substances, or cells.
  • the humoral factor is not particularly limited as long as it is a factor that can be used supplementarily to the regenerated tissue, and examples thereof include bFGF, NGF, hepatocyte growth factor, immunosuppressive agent, and anti-inflammatory agent.
  • Examples of the cells include mesenchymal stem cells, bone marrow mesenchymal stem cells, neural stem cells, bone marrow-derived mononuclear cells, adipose-derived stem cells, in vivo pluripotent stem cells, ES cells, neural progenitors by autologous or autologous culture Examples include, but are not limited to, cells, iPS cells, CD133 + cells. In another aspect of the present invention, it is also preferable that the material for inducing nerve regeneration of the present invention is not used in combination with these cells and factors, and more preferably not used in combination with CD133 + cells.
  • the method for evaluating nerve regeneration is not particularly limited.
  • the elongation of nerve axons can be observed under an optical microscope, such as by observing axon elongation at a target site.
  • nerves are embedded with Epon resin, and reached between the gap or the peripheral stump by staining with reagents such as toluidine blue, anti-beta tubulin class 3 antibody, or anti-S100 antibody. It can be shown by counting the number of myelinated axons.
  • Epon resin After embedding by an appropriate method such as Epon resin, it is possible to observe and evaluate the state of the regenerating axon with a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • electrophysiological measurements for example, electrophysiological measurements, histopathological evaluations, walking patterns, tracer tests to examine axon transport, tracer detection, and two-point discrimination It may be evaluated by a visual inspection (Two-point discrimination) or the like.
  • CMAP compound muscle action potentials
  • SEP somatosensory energy voluntary potentials
  • the present invention also provides a method for inducing regeneration of a nerve damaged part in a subject in need of regeneration of the nerve damaged part, including the step of applying the above-described nerve regeneration inducing material to the nerve damaged part. .
  • the present invention also requires regeneration of nerve bifurcation and / or plexus injury including the step of applying the aforementioned nerve regeneration-inducing material to nerve bifurcation and / or plexus injury.
  • a method for inducing regeneration of a nerve branch and / or a damaged part of a plexus The specific method is as described above.
  • the present invention further provides a bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin and / or a compound represented by the above general formula (I) for producing the above-mentioned material for inducing nerve regeneration. And at least one cross-linking reagent selected from the salts thereof, wherein the nerve regeneration-inducing material is applied to a nerve damage site, preferably a nerve branch and / or a nerve plexus injury site
  • a nerve damage site preferably a nerve branch and / or a nerve plexus injury site
  • the present invention further provides that the bioabsorbable polysaccharide having a carboxyl group in the molecule of low endotoxin is covalently crosslinked with a crosslinking agent selected from the compound represented by the above general formula (I) and a salt thereof.
  • a crosslinking agent selected from the compound represented by the above general formula (I) and a salt thereof.
  • Example 1 Preparation of Alginate Crosslinker and Evaluation of Properties Alginate in the form of a xerogel using sodium alginate, (i) calcium chloride, (ii) a mixture of calcium chloride and sodium chloride, and (iii) ethylenediamine as a crosslinking agent.
  • a crosslinked product was prepared and evaluated for properties.
  • Sodium Alginate As the sodium alginate, six kinds of low endotoxin sodium alginate (Sea Matrix (registered trademark), Mochida Pharmaceutical Co., Ltd.) having an endotoxin content of less than 50 EU / g were used.
  • A-1, A-2 and A-3 have a sodium / alginate M / G ratio in the range of 0.4 to 1.8, and B-1, B-2 and B-3 are sodium alginate M
  • the / G ratio was in the range of 0.1 to 0.4.
  • Table 1 shows the viscosity and weight average molecular weight of a 1 w / w% aqueous solution of each sodium alginate.
  • the viscosity of sodium alginate was measured using the rotational viscometer method (cone plate type rotational viscometer) according to the viscosity measurement method of the Japanese Pharmacopoeia (16th edition). Specific measurement conditions are as follows.
  • the sample solution was prepared using MilliQ water.
  • a cone plate type rotational viscometer visco-viscoelasticity measuring device Rheostress RS600 (Thermo Haake GmbH) sensor: 35/1 was used.
  • the number of revolutions was 1 rpm when measuring a 1 w / w% sodium alginate solution.
  • the reading time was measured for 2 minutes, and an average value from 1 minute to 2 minutes from the start.
  • the average value of three measurements was taken as the measurement value.
  • the measurement temperature was 20 ° C.
  • the weight average molecular weight of each sodium alginate was measured by two types of measurement methods, gel permeation chromatography (GPC) and GPC-MALS.
  • the measurement conditions are as follows.
  • a tube containing 1 mL of an aqueous sodium alginate solution (Falcon2054) was layered with 1 mL of 50 mM calcium chloride aqueous solution and allowed to stand overnight, then the gelled one was washed three times with Milli-Q water, freeze-dried, and a xerogel-like solution. A cross-linked alginate was obtained.
  • a tube containing 1 mL of sodium alginate aqueous solution (Falcon2054) was layered with 1 mL of calcium-sodium crosslinker aqueous solution and allowed to stand overnight, and then the gelled one was washed three times with milli-Q water, freeze-dried, and xerogel-like A crosslinked alginic acid product was obtained.
  • a cross-linking agent aqueous solution in which the calcium ion of the calcium-sodium cross-linking agent aqueous solution is 10 mM, 20 mM, or 50 mM is prepared, and an alginate cross-linked product is obtained by the same procedure using A-1 or A-2 sodium alginate. It was.
  • ECF Extra Cellular Fluid
  • the mixture was allowed to stand in a Falcon 2054 tube at room temperature for 2 days to gel.
  • the gel was washed 3 times / day with ECF for about 7 days, then 3 times with milliQ water, and then lyophilized to obtain a xerogel-like alginate crosslinked product.
  • ECF Extra Cellular Fluid
  • Table 2 shows the evaluation results of the alginic acid crosslinked product using ethylenediamine as a crosslinking agent.
  • A-1 had about 1/2 remaining after one week, whereas A-2, A-3, B-1, B-2, B-3 Almost all of the transparent hydrogel remained after 1 week.
  • A-1, A-2 and B-3 are compared with sodium alginate of B-1, B-2 and B-3 (M / G ratio is 0.1 to 0.4). It has been found preferable to use sodium alginate of A-3 (M / G ratio of 0.6 to 1.8).
  • the sodium alginate of A-2 and A-3 that is, GPS-MALS from the viewpoint of gelation and gel remaining in PBS. It was found that it is preferable to use sodium alginate having a weight average molecular weight of 90,000 or more.
  • Example 2 Evaluation of Survival Rate of Nerve-Like Cells
  • the alginic acid crosslinked product (about 1.0 cm ⁇ 1.0 cm) prepared in Example 1 was impregnated with 1 mL of PC12 cells (50,000 cells / mL).
  • Nerve growth factor (NGF) final 100 ng / mL
  • NGF Nerve growth factor
  • DOJINDO WST-8 reagent
  • the alginate cross-linked product is obtained by cross-linking A-2 with (i) calcium chloride (iii) with ethylenediamine (referred to as A-2Ca and A-2EDA, respectively), and A-3 with (i) calcium chloride (iii) with ethylenediamine.
  • A-2Ca and A-2EDA ethylenediamine
  • A-3 calcium chloride (iii) with ethylenediamine.
  • A-3Ca and A-3EDA Four types of cross-linked products (referred to as A-3Ca and A-3EDA, respectively) were used.
  • a tissue culture plate was used as a control.
  • A-2EDA, A-3Ca, and A-3EDA were all 98% or higher when the survival rate of nerve-like cells in the control was 100%.
  • A-2Ca showed a low survival rate (63%).
  • A-2Ca the reason why the survival rate of nerve-like cells was low was presumed to be due to the toxicity of eluted calcium and insufficient supply of oxygen due to increased viscosity in the medium due to dissolved alginic acid.
  • Example 3 Evaluation of electron beam irradiated alginic acid crosslinked product 3- (1) Electron beam irradiation to alginate crosslinked material Using low endotoxin sodium alginate A-2 and A-3, calcium chloride and sodium chloride were used as crosslinking agents. Alginic acid crosslinked bodies (respectively A-2CaNa and A-3CaNa) and alginate crosslinked bodies using ethylenediamine as a crosslinking agent (respectively A-2EDA and A-3EDA) were prepared according to Example 1- (4).
  • Alginate cross-linked product using calcium chloride and sodium chloride as a cross-linking agent is a 25 ml calcium-sodium cross-linking agent aqueous solution (calcium chloride anhydrous 50 mM, sodium chloride 300 mM) filled with 3.15 ml each of 1% sodium alginate aqueous solution. It was made to gel by dipping, washed and freeze-dried.
  • Each alginate crosslinked body was irradiated with 20 kGy, 40 kGy, and 60 kGy of an electron beam.
  • a Dynamitron electron accelerator manufactured by RDI was used as the electron beam irradiation device, and a Shimadzu UV1800 spectrophotometer for CTA dosimeter was used as the dose measurement device.
  • CTA dosimeter FRR-125 manufactured by Fuji Photo Film Co., Ltd. Lot No. 459 was used as a dosimeter.
  • the electron beam was irradiated under the conditions of an acceleration voltage of 4.8 MV and a current of 20.0 mA while adjusting the irradiation time so as to obtain a target irradiation dose.
  • each cross-linked body is cut into about 7 mm ⁇ about 7 mm, put into a 50 ml centrifuge tube containing 25 ml of physiological saline, and placed in a 37 ° C. incubator with the centrifuge tube laid sideways. The mixture was shaken at 60 rpm, and the time until the crosslinked body completely disintegrated was measured.
  • alginic acid crosslinked products (A-2CaNa, A-3CaNa) using calcium chloride and sodium chloride as crosslinking agents, there was no constant relationship between the electron dose and the time until dissolution.
  • alginic acid crosslinked products (A-2EDA and A-3EDA) using ethylenediamine as a crosslinking agent, the time until dissolution was shortened as the electron dose increased.
  • Example 4 Induction of regeneration of rat sciatic nerve injury using alginate crosslinked body An ethylenediamine-crosslinked alginate crosslinked body was placed at the cut site of the rat sciatic nerve (peripheral nerve) to evaluate the effect of nerve regeneration induction.
  • Example 4- Preparation of Ethylenediamine Crosslinked Alginic Acid Crosslinked Product
  • a xerogel-like alginic acid crosslinked product obtained by covalently crosslinking ethylenediamine with A-2 and A-3 low endotoxin sodium alginate ( A-2EDA and A-3EDA, respectively) were produced.
  • the content of alginic acid in the crosslinked product was 3.0 mg / cm 2 .
  • the thickness of the crosslinked body was about 2 mm to about 8 mm.
  • alginate cross-linked body was placed on the nerve cutting site, so that the nerve cut portion was sandwiched between the two alginate cross-linked bodies.
  • Two alginate cross-linked bodies were used in a size that could cover both the central and peripheral nerve stumps.
  • the cross-linked alginate was not fixed by suture.
  • the open muscle was sutured and the skin was also sutured.
  • Another alginate cross-linked body was placed on the nerve cutting site, so that the nerve cut portion was sandwiched between the two alginate cross-linked bodies.
  • the two cross-linked alginates were used in a size that could cover the central and peripheral nerve stumps.
  • the cross-linked alginate was not fixed by suture. The open muscle was sutured and the skin was also sutured.
  • Example 5 Induction of regeneration of a rat sciatic nerve lesion using a cross-linked alginate containing polyglycolic acid irradiated with an electron beam 5- (1) An ethylenediamine cross-linked alginate containing polyglycolic acid irradiated with an electron beam Preparation According to Example 1- (4), EDA ⁇ 2HOSu and EDC ⁇ HCl were dissolved in a low endotoxin sodium alginate aqueous solution of A-2.
  • the obtained solution is filled in a tray on which a sheet-like nonwoven polyglycolic acid (PGA) (100 mg / cc, 3.0 mg / cm 2 Non-woven PGA Biofelt, Biomedical Structures (USA)) is laid and freeze-dried.
  • PGA sheet-like nonwoven polyglycolic acid
  • A-2EDA ⁇ PGA100 the content of alginic acid in the crosslinked product was 2.0 mg / cm 2 .
  • the alginic acid solution was filled in a tray laid with PGA, and after the gelation sufficiently proceeded, the gel was washed to remove unreacted crosslinking agent and reaction byproducts.
  • the washing solution was prepared by dissolving CaCl 2 (2.5 mM, for example 0.28 g / 1 L) and NaCl (143 mM, for example 8.36 g / 1 L) in ECF (Extra Cellular Fluid: purified water), and using a 0.22 ⁇ m filter (Millipore, Milli-Pak 20 etc.) and endotoxin removal filter (prepared by Millipore, prep-scale UF cartridge PLGC CDUF 001 LG) were used.Replace the washing solution as appropriate, and then wash with distilled water to remove excess salts.
  • the resulting crosslinked product had a thickness of about 2 mm to about 8 mm.
  • A-3EDA ⁇ PGA100 a cross-linked alginate produced using A-3 low endotoxin sodium alginate was designated as A-3EDA ⁇ PGA100.
  • the two types of crosslinked products obtained were irradiated with an electron beam at an absorbed dose of 20 kGy.
  • the number of regenerated myelinated nerves was 1,001 on average for A-2EDA ⁇ PGA100 and 7010 on average for A-3EDA ⁇ PGA100.
  • the number of regenerated myelinated nerves was obtained by counting all myelinated nerves in the nerve bundles judged to be regenerated sites in the collected tissue specimens.
  • the number of axons in healthy rats was about 6700, indicating that a sufficient number of myelinated nerves were regenerated.
  • Example 5- (3) Regeneration induction effect on sciatic nerve branch defect According to Example 5- (1), low endotoxin sodium alginate (A-2 or A-3) and sheet-like non-woven polyglycolic acid (PGA) (50 mg / cc, 1.5 mg / cm 2 ) was used to prepare alginate crosslinked bodies containing two types of PGA, which were designated as A-2EDA ⁇ PGA50 and A-3EDA ⁇ PGA50, respectively.
  • the alginic acid content in the crosslinked product was 2.0 mg / cm 2 .
  • the thickness of the obtained crosslinked product was about 2 mm to about 8 mm.
  • the two types of crosslinked products obtained were irradiated with an electron beam at an absorbed dose of 20 kGy.
  • the treatment was performed according to 4), and the regeneration induction effect on the gap at the bifurcation of the sciatic nerve was evaluated 8 weeks after the application of the crosslinked body.
  • FIGS. 1 and 2 photographs taken 8 weeks after the operation of A-3EDA ⁇ PGA50 and A-2EDA ⁇ PGA100 are shown in FIGS. 1 and 2, respectively.
  • FIG. 3 and 4 show the result of staining a cross section of the nerve distal to the distal stump using toluidine blue according to Example 4- (3).
  • FIG. 3 shows a photograph of a regeneration axon on the tibial nerve side
  • FIG. 4 shows a photograph of a regeneration axon on the radial nerve side.
  • Example 1- (4) an ethylenediamine-crosslinked alginate (alginate content 2.0 mg / cm 2 ) was prepared using low endotoxin sodium alginate of A-2, irradiated with 20 kGy of electron beam, did.
  • Example 5- (3) The results obtained in Example 5- (3) are shown with sample numbers 2 and 3 respectively for A-2EDA / PDA50 and A-2EDA / PDA100 used in Example 5- (3).
  • Example 5- (1) a cross-linked product was prepared using A-3 low endotoxin sodium alginate and PGA100 (A-3EDA ⁇ PGA100).
  • a crosslinked product with an alginic acid content of 2.0 mg / cm 2 was designated as sample number 4
  • a crosslinked product with an alginic acid content of 4.0 mg / cm 2 was designated as sample number 5
  • an electron beam of 15 kGy was used for these crosslinked products. Irradiated.
  • the cross-linked alginate containing no PGA was distorted during freeze-drying, and it was difficult to obtain a cross-linked product having a certain shape.
  • the cross-linked alginate containing PGA had a shape filled in a plate. It was possible to maintain and freeze-dry and increase the production efficiency.
  • FIG. 5 shows a schematic diagram of a test in which an alginate cross-linked product is applied to a defect in a nerve branch.
  • Sample Nos. 1 to 5 showed sufficient regeneration of nerve axons on both the tibia side and the radius side, and the number of regenerating axons compared to the group of Sample No. 6 where only the bifurcation was cut. There were many. Even when compared with the untreated group (sample No. 7) in which the nerve branch was not cut, it was found that a sufficient regenerative effect was obtained at 8 weeks after the operation.
  • the number of regenerative axons of the cross-linked body containing no PGA was not significantly different from the number of cross-linked bodies containing the PGA (sample numbers 2 and 3). From this, it was shown that the presence or absence of PGA in the crosslinked product does not significantly affect the nerve regeneration effect. On the other hand, comparing the proportion of regeneration-incomplete axons with 400 or less regeneration axons in each group, the cross-linked product (sample number 1) containing no PGA was 33%, whereas the sample number Cross-linked products containing 2-5 PGA were 0% -19%.
  • the alginic acid crosslinked body containing PGA tended to have fewer examples of insufficient regeneration than the alginic acid crosslinked body not containing PGA.
  • insufficient regeneration there was an example in which the regenerating nerve was thinned at a portion close to the knee of the rat. This is thought to be due to pressure applied to the crosslinked body due to the movement of the knee and tearing (rupture), continuity of the crosslinked body was lost, and regeneration was insufficient.
  • Algaic acid cross-linked product containing PGA is stronger than cross-linked product not containing PGA, and the gel is not easily torn (torn) even in movable parts such as knees, and the possibility of stably regenerating axons Was suggested.
  • FIG. 6 shows an example of insufficient regeneration when a crosslinked product not containing PGA (Sample No. 1) is used.
  • Example 1- (4) a cross-linked alginate (A-2EDA, alginic acid content 2 mg / cm 2 ) prepared using A-2 low endotoxin sodium alginate and containing 40 kGy or 60 kGy electron beam irradiation. ),
  • A-2EDA alginic acid content 2 mg / cm 2
  • the regenerative effect on the linear nerve gap at 8 weeks after surgery was evaluated according to Example 5- (2).
  • the average number of regenerating axons was as small as 267 on average and 275 on average, respectively.
  • no cross-linked body remained in the affected area.
  • Example 5- (2) the cross-linked product containing PGA irradiated with 20 kGy of electron beam is a linear nerve. It showed a sufficient nerve regeneration effect for the gap, and (ii) the presence or absence of PGA in the cross-linked product did not significantly affect the nerve regeneration effect, although it was for the gap at the branch (Table 4). In view of these, it was suggested that increasing the electron dose to 40 kGy or 60 kGy may have affected the nerve regeneration effect.
  • Example 6 Subcutaneous Implantation Test of Alginic Acid Crosslinked Body 6- (1) Rat Long-Term Subcutaneous Implantation Test (1) Since previous studies suggested a relationship between the rate of disappearance of the alginic acid crosslinked body in the body (remaining rate) and the nerve regeneration effect, rat crosslinked implantation tests were conducted on various crosslinked bodies to examine the body disappearance rate.
  • the sample was prepared by irradiating with changing the electron dose.
  • Table 5 shows the sample types.
  • sample numbers 43 and 44 only PGA (50 mg / cc, 1.5 mg / cm 2 ) and PLGA (50 mg / cc, 1.5 mg / cm 2 ) were used as samples.
  • Each sample having a size of 0.7 cm in length and 1.5 cm in width (regardless of thickness) was implanted subcutaneously on the back of the rat and evaluated histologically after 4 weeks. The histological evaluation was performed using a specimen prepared as follows.
  • paraffin-embedded blocks were prepared according to a conventional method, and hematoxylin / eosin staining and safranin-O staining were performed.
  • Sample Nos. 52 and 53 are sample Nos. 4 and 5 in Table 4, and sample No. 54 is a crosslinked product whose nerve regeneration effect was confirmed in Example 5- (3).
  • sample Nos. 52 and 53 are sample Nos. 4 and 5 in Table 4, and sample No. 54 is a crosslinked product whose nerve regeneration effect was confirmed in Example 5- (3).
  • Example 7 Underwater Degradability Test of Alginic Acid Crosslinked Product Degradability of the alginic acid crosslinked product was evaluated by an in vitro test.
  • the liquid after the measurement was filtered under reduced pressure with a membrane filter (Merck, Omnipore) having a pore diameter of 10 ⁇ m, and after collecting the image of the filtered residue, it was dried under reduced pressure (60 ° C.) until a constant weight was obtained. . The remaining sample was weighed, and the ratio to the sample amount before the start of the test was calculated as the remaining rate (%).
  • a membrane filter Merck, Omnipore
  • the number of shakes of the constant temperature shaking water tank was 120 round-trips.
  • the solvent temperature was 50 ° C. as the set temperature of the constant temperature shaking water tank.
  • Example 5- (3) and (4) the sample numbers 61 to 64 in which the rat nerve regeneration effect was confirmed and the crosslinked body not irradiated with the electron beam were evaluated. Table 7 shows the evaluated crosslinked products.
  • Sample No. 66 has the same composition as the crosslinked product used after ethanol sterilization in the rat test in Example 4- (2).
  • Sample 68 was a cross-linked product similarly prepared using PLGA (50 mg / cc, 1.5 mg / cm 2 ) instead of PGA according to Example 5- (1).
  • the cross-linked samples Nos. 61 to 64 tended to have a residual rate that decreased with time, and the residual rate after 3 days (72 hours) from the start of the test was in the range of about 20% to about 70%. Indicated.
  • the residual ratios of the samples 65 and 66 which are cross-linked bodies not containing PGA and not irradiated with an electron beam increased.
  • Samples 67 and 68, which are cross-linked products containing PGA or PLGA and not irradiated with an electron beam showed a decrease in the residual rate over time, but the residual rate after 3 days (72 hours) from the start of the test. Showed 80% or more. From the above, it was suggested that in this test, a cross-linked product having a residual ratio of the cross-linked product 3 days after the start of the test (72 hours later) in the range of about 20% to about 80% is preferable for nerve regeneration.
  • Sample No. 71 is a cross-linked product whose rat nerve regeneration effect was confirmed in Example 5- (4).
  • the residual rate of sample 75 with a ⁇ -ray dose of 50 kGy decreased to about 50% after 4 hours immediately after the start. From this result, it was suggested that the residual rate of electron beam and ⁇ -ray immediately after the start decreases by increasing the irradiation dose.
  • a cross-linked body is placed in a nerve gap to promote nerve regeneration, it is considered that if the cross-linked body disappears early after installation, it cannot be an initial scaffold for nerve regeneration.
  • the crosslinked body irradiated with an electron dose of 40 kGy or 60 kGy did not have a high regeneration effect of the linear nerve gap because the crosslinked body disappeared from the beginning of installation. There was a possibility that it could not serve as a nerve scaffold.
  • Example 5- (1) the degradability was similarly compared between the cross-linked product prepared in the same manner using PLGA (50 mg / cc, 1.5 mg / cm 2 ) instead of PGA and the cross-linked product containing PGA. did.
  • Table 9 shows the evaluated crosslinked products.
  • Sample number 84 is a crosslinked product in which the nerve regeneration effect was confirmed in Example 5- (3) and sample number 85 in Example 5- (4).
  • EXAMPLE 1 Evaluation of cell adhesion and cell proliferation of normal human skin fibroblasts (NHDF) using a commercially available collagen sponge crosslinked with ethylenediamine cross-linked with ethylenediamine prepared according to Example 1- (4) And compared. It is considered that fibroblasts such as NHDF move and proliferate into a space for nerve regeneration and prevent nerve regeneration.
  • NHDF normal human skin fibroblasts
  • Samples consisted of four groups: (1) A-2EDA, (2) A-3EDA, (3) bovine collagen sponge (SpongeCol®, Advanced BioMatrix), (4) 2D control (tissue culture dish) did.
  • the size of each sample was about 5 mm in length ⁇ about 5 mm in width ⁇ about 2 mm to about 7 mm in thickness in (1) and (2), and (3) in a circle of 4 mm in diameter ⁇ about 1 mm in thickness. It was seeded 10 4 cells per sample, one day in culture, after 4 days of culture, in order to separate the cells not adhering to the sample, after moving each sample to a new well, and adhered to each sample.
  • the number of cells present was evaluated with the absorbance at 450 nm using WST-8 reagent.
  • the medium was 10% FCS / EMEM.
  • Example 9 Nerve regeneration effect on rat cavernous plexus removal model 9- (1) Preparation of rat cavernous plexus removal model Rats were fixed in the supine position under anesthesia by inhalation of 2% isoflurane. A midline incision was made in the lower abdomen, and the inside of the pelvis was expanded under a microscope to expose the pelvic plexus and cavernous nerve. In the treatment group and the non-treatment group, after securing the cavernous nerve, about 2 mm of the cavernous nerve was excised so as to cross the plexus branched in a mesh form. The left and right were treated in the same manner.
  • a cross-linked alginate (A-3EDA ⁇ PGA100) containing PGA prepared according to Example 5- (1) was placed so as to sufficiently cover the nerve excision stump, and then sutured and fixed.
  • the normal control group did not perform cavernosal nerve resection. Thereafter, the muscle layer and skin of the lower abdomen were sutured.
  • benzylpenicillin potassium was injected intramuscularly at a dose of 20000 units / kg.
  • Example 10 Tear test of cross-linked alginate A tear test was performed on the six types of cross-linked alginate in Table 11 assuming that the cross-linked body was sutured by surgery, and the strength of each sample was compared.
  • Sample numbers 101 and 104 are alginic acid crosslinked bodies not containing PGA, and the other samples are alginic acid crosslinked bodies containing PGA, which were obtained in Example 1- (4) and Example 5- (1), respectively. Prepared as described. Sample numbers 101 to 103 were not irradiated with an electron beam, and sample numbers 104 to 106 were irradiated with an electron beam at 15 kGy.
  • the test method is as follows. A schematic diagram of the test method is shown in FIG.
  • Each sample was cut so as to have a size of 2 cm in length ⁇ 2 cm in width (regardless of thickness).
  • the vertical and horizontal cut surfaces intersect each other vertically.
  • the thickness of each sample was about 2 mm to about 8 mm.
  • the material was held with a double clip (the width of the holding portion was about 15 mm) so as to sandwich the material at a position 5 mm away from one of the cut surfaces (gripping portion A).
  • the entire part from the cut surface (B) to 10 mm facing the gripping part A of the sample was immersed in physiological saline for 15 minutes.
  • a needle-attached suture thread (Bikerill (registered trademark), 4-0, round needle SH-1) is passed through the center of the sample at a position 5 mm away from the cut surface (B), and both ends of the suture thread are attached to the instrument. Fixed.
  • the grip portion A was pulled horizontally at a speed of 10 mm / min on the square surface of the sample. Pulling was continued until each sample was torn near the suture, and the pulling load was measured as a test force.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Polymers & Plastics (AREA)
  • Cell Biology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

(A)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、下記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体、並びに(B)生体内吸収性高分子を含む、神経の損傷部の再生のために用いられる非管状の神経再生誘導用材料。 RHN-(CH-NHR (I) [式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]これにより、神経の損傷部の再生を誘導しうる医療用材料が提供される。

Description

神経再生誘導材
 本発明は、神経の損傷部を再生するための神経再生誘導用材料に関する。
 外傷や腫瘍切除などによる神経損傷に対する治療方法として、切断された神経同士を直接縫合する神経縫合、又は患者自身の健常な神経を採取して損傷部に移植する自家神経移植等が行われている。しかし、神経を直接縫合する方法では張力がかかって知覚異常や痛みが残る場合があり、自家神経移植は、健常な部位の神経を犠牲にし、かつ、神経採取部に痛みやしびれが現れる場合がある等の問題があった。
 生体適合性材料を用いて末梢神経の断裂部位を連結して神経を再生させようという試みが1980年代初め頃から行なわれ、直線状の神経の欠損部に対しては、神経再生のためのデバイスはいくつか存在する。例えば、「ナーブリッジTM」はポリグリコール酸とコラーゲンとからなる神経再生誘導チューブである。しかし、ナーブリッジは円柱状で内腔のコラーゲンを覆っている外側の素材が硬く、手足指などの関節や関節近傍部位などの可動閾が大きな部分や三次元的な湾曲が必要な部分の神経再建には使いづらい。また、断裂した神経の末端をチューブ内に引き込んで縫合による固定を必要として手術が煩雑であり、その内径も固定されているので、複数の内径の規格を常に準備しておかなくてはならない。また、神経の分岐部や神経叢部の欠損部には使用できず、必ず、断裂した神経の断端が明瞭である神経を1:1で接合するしかない。その他、神経を1:1で接合するチューブとして、ポリ乳酸とεカプロラクタムとの共重合体からなる「NEUROLAC(登録商標)」等が存在する。
 エチレンジアミンで共有結合架橋して作製されたアルギン酸スポンジを用いて、直線状の神経の欠損部に対する神経再生効果が開示されている(特許文献1)。
 アルギネートゲルを管状に加工したポリグリコール酸で覆い、凍結乾燥して得られた材料がネコの坐骨神経の大腿部の50mmのギャップを再生したことが開示されている(非特許文献1)。アルギネートゲルは、ネコ坐骨神経ギャップの再生において、管状のデバイスと非管状のデバイスとで効果に差がなかったとされている。非管状のデバイスは、2枚のスポンジで神経のギャップを挟んで設置された(非特許文献2)。これらに関連する技術が開示されている(非特許文献3~6)。
 ラットの脊髄の2mmのギャップに対してアルギネートスポンジが用いられた例がある(非特許文献7)。
 アルギン酸スポンジを用いて、ネコの顔面神経の後枝の5mmのギャップを再生したことが開示されている。しかし、神経の切断部位は分岐部ではなかった(非特許文献8)。
 アルギネートゲルスポンジシートを用いてラット陰茎海綿体神経の2mmのギャップを再生したとの文献がある(非特許文献9~14)。神経の切断部位は、骨盤神経節から1mm下流の海綿体神経とされているため、分岐した神経とは考えにくい。陰茎海綿体神経の再生に関しては、アルギネートゲルスポンジシートがヒト骨髄由来CD133+細胞投与の基材として用いられた例があるが、アルギネートゲルスポンジシートのみでは有意な再生効果が得られていない(非特許文献15)。また、ラット骨盤神経叢の約2mmの神経欠損部に対してアルギン酸ゲルを貼りつけてその再生が試みられた例がある(非特許文献16、17)。これらの文献で、用いられたアルギネートシートの詳細は明らかではなく、また、その効果はまだ十分とはいえない。
 上記知見におけるアルギネートスポンジは、低エンドトキシン処理されていないアルギン酸ナトリウムが用いられており、低エンドトキシンアルギン酸ナトリウムを用いて作製されたものではなかった。
 このように、これまでデバイスを用いて試みられてきた神経の再生は、そのほとんどが直線状の神経の欠損部に対するものであり、神経の分岐部や神経叢部の欠損部の再生を促すことができる実用化可能な材料は知られていない。
 生体吸収性材料からなる不織布とアルギン酸ナトリウムを含有する生体組織補強材料キットが開示されている(特許文献2)。しかし、アルギン酸ナトリウムは架橋されずに用いられており、また神経再生を目的とする材料ではない。
 多糖類などの高分子材料とγ線や電子線との関係をみた文献がいくつか存在する。特許文献3は、ヒアルロン酸単独で形成されたゲルにガンマ線、電子線、プラズマ等を照射して得られるゲルを開示する。ヒアルロン酸単独のゲルとは、ヒアルロン酸以外に化学的架橋剤などを使用せず、自己架橋したゲルを意味すると説明されている。特許文献4は、化学的、熱又は放射線などの条件において、生体分解性ポリマーからなるインプラントを開示している。非特許文献18は、組織エンジニアリング用アルギネートナノファイバーにγ線を照射して、γ線照射量により崩壊率をコントロールする技術を開示する。また、アルギン酸を用いた神経再生材料に関する文献では、アルギン酸ゲルの生体吸収性はγ線照射線量によりコントロールが可能であると記載されている(非特許文献19)。しかしながら、これまで、材料へのγ線や電子線の照射と、神経再生との関係は具体的には明らかになっていなかった。
特許第4531887号明細書 特開2013-165884号公報 特開2000-237294号公報 米国特許出願公開2007/0203564号明細書
Neuroscience Letters 259 (1999) 75-78 Journal of Neurotrauma Vol.18  No.3 (2001) p.329-338 J Biomed Mater Res,(2000) 49, p.528-533 Exp Brain Res (2002) 146: p.356-368 J Materials science: Materials in medicine 16 (2005) p.503-509 J Biomed Mater Res Pt A : 71A(4) (2004) p.661-668 Journal of Biomedical Materials Research Vol.54 p.373-384 (2001) Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery  2002; 36: 135-140 Urology 68: 1366-1371 (2006) 日本泌尿器科学会雑誌(2006)97巻2号 APP-089           http://togodb.dbcls.jp/yokou_abstract/show/200601893130275 The Journal of Urology (2006) Vol.75.No.4 Supplement, p.421,1307 日本泌尿器科学会雑誌(2007)98巻2号                   http://togodb.dbcls.jp/yokou_abstract/show/200701846760209 WS5-6 Urology View Vol.4 No.4 p.74-79 泌尿器外科(2009)22(2) p.133-138 J Sex Med 2014; 11:p.1148-1158 日本泌尿器科学会雑誌(2005)96巻2号 OP4-026           http://togodb.dbcls.jp/yokou_abstract/show/200501884320564 The Journal of Urology (2005) Vol.173, No.4 Supplement p.333 1228 Tissue Engineering and Regenerative Medicine Vol.11 Suppl.2 p.64-71 (2014) 医学のあゆみ (2005) Vol.215 No.10 ,p.867-873
 本発明の課題の一つは、神経の分岐部及び/又は神経叢部の損傷部の再生を誘導しうる医療用材料を提供することである。
 また、本発明の別の課題は、直線状の神経の損傷部にも、神経分岐部及び/又は神経叢部の損傷部にも適用可能で、神経再生誘導効果が高く、安全で生体適合性に優れる医療用材料を提供することである。
 また、本発明のまた別の課題は、縫合可能な適度な強度を備えつつ、縫合しない場合でも神経再生効果を発揮しうる、様々な場所や形状の損傷に適用しやすい非管状の神経再生誘導用材料を提供することである。
 本発明は、低エンドトキシンアルギン酸ナトリウムを後述の一般式(I)で表される化合物及び/又はその塩で共有結合架橋して作製したキセロゲル状のアルギン酸架橋体を含む神経再生誘導用材料が、ラット坐骨神経のY字状の分岐部のギャップを再生誘導したとの知見に基づいてなされたものである。これまで、デバイスを用いて坐骨神経の分岐部のギャップの再生誘導が試みられたことはなかった。本発明の神経再生誘導用材料が、坐骨神経の分岐部のギャップにおいて、1の神経断端部と複数の神経断端部とをつなぐことにより神経の再生を誘導したことは、これまでの知見からは想到し得ない驚くべきことであった。
 本発明の別の態様では、低エンドトキシンアルギン酸ナトリウムを後述の一般式(I)で表される化合物及び/又はその塩で共有結合架橋し、電子線を照射したキセロゲル状のアルギン酸架橋体を含む神経再生誘導用材料を用いて、ラットの神経欠損部の再生誘導効果を評価したところ、電子線を照射した神経再生誘導用材料は、電子線を照射していないものと比較して、神経再生誘導の効果が高まることが見出された。また、アルギン酸架橋体を含む神経再生誘導用材料の生体内消失(残存)時間が神経再生誘導効果に影響すること、電子線やγ線線量などにより材料の生体内消失をコントロールできること、さらに、神経再生に望ましい架橋体の消失パターンを見出した。また、さらに生体内吸収性高分子を含む神経再生誘導用材料は、生体内吸収性高分子を含まない材料と比較して、再生不十分の例が少なく、安定的に神経損傷部を再生する可能性が示唆された。これは予想外の効果であった。また、生体内吸収性高分子を含む神経再生誘導用材料は、必要に応じて縫合も可能であり、凍結乾燥時の材料の変形も抑制でき、取扱い性にも優れることを見出し、本発明を完成した。
すなわち、本発明は、第1の態様として、以下の神経再生誘導用材料を提供する。
(1-1)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、下記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体を含む、神経の分岐部及び/又は神経叢部の損傷部の再生のために用いられる神経再生誘導用材料。
 RHN-(CH-NHR  (I)
[式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]
(1-2)分子内にカルボキシル基を有する生体内吸収性多糖類が、アルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種である(1-1)に記載の神経再生誘導用材料。
(1-3)架橋性試薬が、上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩である(1-1)または(1-2)のいずれかに記載の神経再生誘導用材料。
(1-4)上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩が、ジアミノエタンの2N-ヒドロキシコハク酸イミド塩、ジアミノヘキサンの2N-ヒドロキシコハク酸イミド塩、N,N’-ジ(リジル)-ジアミノエタンの4N-ヒドロキシコハク酸イミド塩、および、N-(リジル)-ジアミノヘキサンの3N-ヒドロキシコハク酸イミド塩からなる群から選択される少なくとも1種である(1-3)に記載の神経再生誘導用材料。
(1-5)キセロゲルの形態である、(1-1)ないし(1-4)のいずれか1つに記載の神経再生誘導用材料。
(1-6)分子内にカルボキシル基を有する生体内吸収性多糖類が、100EU/g以下のエンドトキシン含有量である、(1-1)ないし(1-5)のいずれか1つに記載の神経再生誘導用材料。
(1-7)神経の分岐部及び/又は神経叢部の損傷部が、前立腺、腕、脳、脊髄、顔面、頸、腰、仙骨、腰仙骨、陰部、心臓、腹腔、及び腸壁内からなる群から選択される少なくとも1種に存在する、(1-1)ないし(1-6)のいずれか1つに記載の神経再生誘導用材料。
(1-7a)神経の分岐部及び/又は神経叢部の損傷部が、前立腺、膀胱、陰茎海綿体、腕、四肢、脳、脊髄、顔面、頸、腰、仙骨、腰仙骨、陰部、心臓、腹腔、下下腹、骨盤、胸腔内及び腸壁内からなる群から選択される少なくとも1種に存在する、(1-1)ないし(1-6)のいずれか1つに記載の神経再生誘導用材料。
(1-8)リンパ節の郭清に伴う神経損傷部の再生のために用いられる(1-1)ないし(1-7a)のいずれか1つに記載の神経再生誘導用材料。
(1-9)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上記の一般式(I)で表される化合物及びその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体を含む神経再生誘導用材料を、神経の分岐部及び/又は神経叢部の損傷部に適用する工程を含む、神経の再生を必要とする対象において神経の分岐部及び/又は神経叢部の損傷部の再生を誘導する方法。
(1-9a)(1-1)ないし(1-8)のいずれか1項に記載の神経再生誘導用材料を、神経の分岐部及び/又は神経叢部の損傷部に適用する工程を含む、神経の再生を必要とする対象において神経の分岐部及び/又は神経叢部の損傷部の再生を誘導する方法。
(1-10)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上記の一般式(I)で表される化合物及びその塩から選択される架橋性試薬で共有結合架橋された架橋体を含む神経再生誘導用材料を用いる、神経の分岐部及び/又は神経叢部の損傷部の損傷部の再生において使用されるための前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類。
(1-10a)(1-1)ないし(1-8)のいずれか1項に記載の神経再生誘導用材料を用いる、神経の分岐部及び/又は神経叢部の損傷部の損傷部の再生において使用されるための前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類。
(1-11)(1-1)ないし(1-8)のいずれか1項に記載の神経再生誘導用材料を製造するための、前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類及び/又は前記一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬の使用であって、前記神経再生誘導用材料が神経の分岐部及び/又は神経叢部の損傷部に適用し神経を再生するように用いられる、前記使用。
 また、本発明は第2の態様として、以下の神経再生誘導用材料を提供する。
(2-1)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、下記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋され、電子線及び/又はγ線が照射された架橋体を含む、神経再生誘導用材料。
 RHN-(CH-NHR  (I)
[式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]
(2-2)分子内にカルボキシル基を有する生体内吸収性多糖類が、アルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種である(2-1)に記載の神経再生誘導用材料。
(2-3)架橋性試薬が、上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩である(2-1)または(2-2)のいずれかに記載の神経再生誘導用材料。
(2-4)上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩が、ジアミノエタンの2N-ヒドロキシコハク酸イミド塩、ジアミノヘキサンの2N-ヒドロキシコハク酸イミド塩、N,N’-ジ(リジル)-ジアミノエタンの4N-ヒドロキシコハク酸イミド塩、および、N-(リジル)-ジアミノヘキサンの3N-ヒドロキシコハク酸イミド塩からなる群から選択される少なくとも1種である(2-3)に記載の神経再生誘導用材料。
(2-5)キセロゲルの形態である、(2-1)ないし(2-4)のいずれか1つに記載の神経再生誘導用材料。
(2-6)分子内にカルボキシル基を有する生体内吸収性多糖類が、100EU/g以下のエンドトキシン含有量である、(2-1)ないし(2-5)のいずれか1つに記載の神経再生誘導用材料。
(2-7)電子線及び/又はγ線が、吸収線量1kGy~100kGyで照射された、(2-1)ないし(2-6)のいずれか1つに記載の神経再生誘導用材料。
(2-8)7日~270日で適用部位から消失する、(2-1)ないし(2-7)のいずれか1つに記載の神経再生誘導用材料。
(2-9)さらにポリグリコール酸、ポリ乳酸、およびそれらの共重合体からなる群から選択される少なくとも1種を含有する、(2-1)ないし(2-8)のいずれか1つに記載の神経再生誘導用材料。
(2-10)末梢神経及び/又は中枢神経の損傷部の再生のために用いられる、(2-1)ないし(2-9)のいずれか1つに記載の神経再生誘導用材料。
(2-11)リンパ節の郭清に伴う神経損傷部の再生のために用いられる(2-1)ないし(2-10)のいずれか1つに記載の神経再生誘導用材料。
(2-12)体内の適用部位から消失するまでの時間が、電子線及び/又はγ線が照射されていない材料と比較して短い、(2-1)ないし(2-11)のいずれか1つに記載の神経再生誘導用材料。
(2-13)(2-1)ないし(2-12)のいずれか1つに記載の神経再生誘導用材料を神経の損傷部に適用する工程を含む、神経の損傷部の再生を必要とする対象において神経の損傷部の再生を誘導する方法。
(2-13a)(2-1)ないし(2-12)のいずれか1項に記載の神経再生誘導用材料を用いる、神経の損傷部の損傷部の再生において使用されるための前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類。
(2-13b)(2-1)ないし(2-12)のいずれか1項に記載の神経再生誘導用材料を製造するための、前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類及び/又は前記一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬の使用であって、前記神経再生誘導用材料が神経の損傷部に適用し神経を再生するように用いられる、前記使用。
(2-14)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上記の一般式(I)で表される化合物及びその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体を含む神経再生誘導用材料に対して、電子線及び/又はγ線を照射する工程を含む、神経再生誘導用材料の体内残存時間を調節する方法。
(2-15)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類と、上記の一般式(I)で表される化合物及びその塩から選択される少なくとも1種の架橋性試薬とを用いて共有結合架橋した架橋体を含む材料に対して電子線及び/又はγ線を照射する工程を少なくとも含む、神経再生誘導用材料を製造する方法。
 また、本発明は第3の態様として、以下の神経再生誘導用材料を提供する。
(3-1)GPC-MALSにより測定された重量平均分子量が9万~70万の低エンドトキシンのアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種が、下記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体を含む、神経再生誘導用材料。
 RHN-(CH-NHR  (I)
[式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]
(3-2)低エンドトキシンのアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種のM/G比が0.5~3.0である、(3-1)に記載の神経再生誘導用材料。
(3-3)(3-1)または(3-2)に記載の神経再生誘導用材料を神経の損傷部に適用する工程を含む、神経の損傷部の再生を必要とする対象において神経の損傷部の再生を誘導する方法。
(3-3b)(3-1)または(3-2)に記載の神経再生誘導用材料を用いる、神経の損傷部の損傷部の再生において使用されるための前記低エンドトキシンのアルギン酸、そのエステルまたはその塩。
(3-3c)(3-1)または(3-2)に記載の神経再生誘導用材料を製造するための、前記低エンドトキシンのアルギン酸、そのエステルまたはその塩及び/又は前記一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬の使用であって、前記神経再生誘導用材料が神経の損傷部に適用し神経を再生するように用いられる、前記使用。
 また、本発明は第4の態様として、以下の神経再生誘導用材料を提供する。
(4-1)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、下記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体を含む、神経再生誘導用材料。
 RHN-(CH-NHR  (I)
[式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]
(4-2)分子内にカルボキシル基を有する生体内吸収性多糖類が、アルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種である、(4-1)に記載の神経再生誘導用材料。
(4-3)架橋性試薬が、上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩である(4-1)または(4-2)のいずれかに記載の神経再生誘導用材料。
(4-4)上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩が、ジアミノエタンの2N-ヒドロキシコハク酸イミド塩、ジアミノヘキサンの2N-ヒドロキシコハク酸イミド塩、N,N’-ジ(リジル)-ジアミノエタンの4N-ヒドロキシコハク酸イミド塩、および、N-(リジル)-ジアミノヘキサンの3N-ヒドロキシコハク酸イミド塩からなる群から選択される少なくとも1種である(4-3)記載の神経再生誘導用材料。
(4-5)キセロゲルの形態である、(4-1)ないし(4-4)のいずれか1つに記載の神経再生誘導用材料。
(4-6)低エンドトキシンのアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種のGPC-MALSにより測定された重量平均分子量が9万~70万である、(4-1)ないし(4-5)のいずれか1つに記載の神経再生誘導用材料。
(4-7)低エンドトキシンのアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種のM/G比が0.5~3.0である、(4-1)ないし(4-6)のいずれか1つに記載の神経再生誘導用材料。
(4-8)分子内にカルボキシル基を有する生体内吸収性多糖類が、100EU/g以下のエンドトキシン含有量である、(4-1)ないし(4-7)のいずれか1つに記載の神経再生誘導用材料。
(4-9)さらにポリグリコール酸、ポリ乳酸、およびそれらの共重合体からなる群から選択される少なくとも1種を含有する、(4-1)ないし(4-8)のいずれか1つに記載の神経再生誘導用材料。
(4-10)7日~270日で適用部位から消失する、(4-1)ないし(4-9)のいずれか1つに記載の神経再生誘導用材料。
(4-11)電子線及び/又はγ線が照射された、(4-1)ないし(4-10)のいずれか1つに記載の神経再生誘導用材料。
(4-12)電子線及び/又はγ線が、吸収線量1kGy~100kGyで照射された、(4-11)に記載の神経再生誘導用材料。
(4-13)末梢神経および/または中枢神経の損傷部の再生のために用いられる、(4-1)ないし(4-12)のいずれか1つに記載の神経再生誘導用材料。
(4-14)神経の分岐部および/または神経叢の損傷部の再生のために用いられる、(4-1)ないし(4-10)のいずれか1つに記載の神経再生誘導用材料。
(4-15)神経の分岐部および/または神経叢部の損傷部が、前立腺、腕、脳、脊髄、顔面、頸、腰、仙骨、腰仙骨、陰部、心臓、腹腔、及び腸壁内からなる群から選択される少なくとも1種に存在する、(4-14)に記載の神経再生誘導用材料。 
(4-15a)神経の分岐部および/または神経叢部の損傷部が、前立腺、膀胱、陰茎海綿体、腕、四肢、脳、脊髄、顔面、頸、腰、仙骨、腰仙骨、陰部、心臓、腹腔、下下腹、骨盤、胸腔内及び腸壁内からなる群から選択される少なくとも1種に存在する、(4-14)に記載の神経再生誘導用材料。 
(4-16)リンパ節の郭清に伴う神経損傷部の再生のために用いられる、(4-13)に記載の神経再生誘導用材料。
(4-17)(4-1)ないし(4-14)のいずれか1つに記載の神経再生誘導用材料を神経の損傷部に適用する工程を含む、神経の損傷部の再生を必要とする対象において神経の損傷部の再生を誘導する方法。
(4-17a)(4-1)ないし(4-14)のいずれか1項に記載の神経再生誘導用材料を用いる、神経の損傷部の損傷部の再生において使用されるための前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類。
(4-17c)(4-1)ないし(4-14)のいずれか1項に記載の神経再生誘導用材料を製造するための、前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類及び/又は前記一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬の使用であって、前記神経再生誘導用材料が神経の損傷部に適用し神経を再生するように用いられる、前記使用。
 また、本発明は第5の態様として、以下の神経再生誘導用材料を提供する。
(5-1)(A)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、下記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体、並びに(B)生体内吸収性高分子を含む、神経の損傷部の再生のために用いられる非管状の神経再生誘導用材料。
 RHN-(CH-NHR  (I)
[式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]
(5-2)分子内にカルボキシル基を有する生体内吸収性多糖類が、アルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種である、(5-1)に記載の神経再生誘導用材料。
(5-3)架橋性試薬が、上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩である(5-1)または(5-2)のいずれかに記載の神経再生誘導用材料。
(5-4)上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩が、ジアミノエタンの2N-ヒドロキシコハク酸イミド塩、ジアミノヘキサンの2N-ヒドロキシコハク酸イミド塩、N,N’-ジ(リジル)-ジアミノエタンの4N-ヒドロキシコハク酸イミド塩、および、N-(リジル)-ジアミノヘキサンの3N-ヒドロキシコハク酸イミド塩からなる群から選択される少なくとも1種である(5-3)記載の神経再生誘導用材料。
(5-5)キセロゲルの形態である、(5-1)ないし(5-4)のいずれか1項に記載の神経再生誘導用材料。
(5-6)生体内吸収高分子が、ポリグリコール酸、ポリ乳酸、およびそれらの共重合体、並びに、ポリカプロラクトンからなる群から選択される少なくとも1種である、(5-1)ないし(5-5)のいずれか1項に記載の神経再生誘導用材料。
(5-7)電子線及び/又はγ線が吸収線量1kGy~100kGyで照射された、(5-1)ないし(5-6)のいずれか1項に記載の神経再生誘導用材料。
(5-8)前記材料を、縦2cm×横2cmのサイズ(厚さは問わない)となるように裁断し、その裁断面の1つから5mm離れた位置で該材料を挟むようにダブルクリップで把持し(把持部A)、該材料の把持部Aに相対する裁断面(B)から10mmまでの領域を生理食塩水に15分間浸漬した後、該材料の該裁断面(B)から5mm離れた位置の中央部に、針付き縫合糸を貫通させて、縫合糸の両端を器具に固定し、該把持部Aを材料の正方形面に水平に、速度10mm/分で引っ張る引き裂き試験を行ったときの最大試験力(荷重)が、0.10(N)~10.0(N)である、(5-1)ないし(5-7)のいずれか1項に記載の神経再生誘導用材料。
(5-9)前記材料中のアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種の含量が、アルギン酸ナトリウムに換算して、0.2mg/cm~12mg/cmである、(5-2)ないし(5-8)のいずれか1項に記載の神経再生誘導剤用材料。
(5-10)前記材料中の生体内吸収性高分子の含量が、0.05mg/cm~30mg/cmである、(5-1)ないし(5-9)のいずれか1項に記載の神経再生誘導剤用材料。
(5-11)末梢神経および/または中枢神経の損傷部の再生のために用いられる、(5-1)ないし(5-10)のいずれか1項に記載の神経再生誘導剤用材料。
(5-12)神経の分岐部および/または神経叢部の損傷部の再生のために用いられる、(5-1)ないし(5-11)のいずれか1項に記載の神経再生誘導剤用材料。
(5-13)神経の分岐部および/または神経叢部の損傷部が、前立腺、膀胱、陰茎海綿体、腕、四肢、脳、脊髄、顔面、頸、腰、仙骨、腰仙骨、陰部、心臓、腹腔、下下腹、骨盤、胸腔内及び腸壁内からなる群から選択される少なくとも1種に存在する、(5-12)に記載の神経再生誘導用材料。
(5-14)腫瘍切除、リンパ節の郭清、および/または外傷に伴う神経損傷部の再生、並びに、組織再建に伴う神経損傷部の再生、からなる群から選択される少なくとも1種の神経損傷部の再生のために用いられる、請求項(5-1)ないし(5-13)のいずれか1項に記載の神経再生誘導用材料。
(5-15)前記低エンドトキシンのアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種は、GPC-MALS法により測定された重量平均分子量(絶対分子量)が8万以上である、(5-2)ないし(5-14)のいずれか1項に記載の神経再生誘導用材料。
(5-16)前記低エンドトキシンのアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種のM/G比が0.4~3.0である、(5-2)ないし(5-15)のいずれか1項に記載の神経再生誘導用材料。
(5-17)(5-1)ないし(5-16)のいずれか1項に記載の神経再生誘導用材料を、治療を必要とする対象の神経損傷部に適用する工程を含む、神経損傷部の再生を誘導する方法。
(5-18)(5-1)ないし(5-16)のいずれか1項に記載の神経再生誘導用材料を、治療を必要とする対象の神経損傷部に適用することを含む、神経の損傷部の再生において使用されるための前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類。
(5-18a)(5-1)ないし(5-16)のいずれか1項に記載の神経再生誘導用材料を製造するための、前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類及び/又は前記一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬の使用であって、前記神経再生誘導用材料が神経の損傷部に適用し神経を再生するように用いられる、前記使用。
(5-19)少なくとも以下の工程を含む神経再生誘導用材料の体内残存時間を調節する方法。
(A)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体、並びに(B)生体内吸収性高分子を含む架橋体に対して、電子線および/またはγ線を照射する工程。
 また、本発明は第6の態様として、以下の神経再生誘導用材料の製造方法を提供する。
(6-1)少なくとも以下の工程を含む神経再生誘導用材料を製造する方法。
(1)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類を含む溶液と、上記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬とを混合する工程、
(2)(1)で得られた混合物と、生体内吸収性高分子とを型に入れて一定時間静置し、架橋体とする工程、
(3)(2)で得られた架橋体を洗浄し、その後、凍結乾燥する工程、
(4)(3)で得られた架橋体に対して、電子線および/またはγ線を照射する工程。
 また、本発明は第7の態様として、以下の神経再生誘導用材料を提供する。
(7-1)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、下記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体を含む、非管状の神経再生誘導用材料であって、
 RHN-(CH-NHR  (I)
[式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]
 前記材料を縦1cm×横1cmのサイズ(厚さは問わない)となるように裁断した該材料4個と生理食塩水25mLを50mLの容遠沈管に入れて、恒温振とう水槽で、振とう数を往復120回/分、温度50℃で振とうする分解性試験を行うとき、振とう開始から72時間後の材料の残存率が10%~80%である、該材料。
(7-2)前記分解性試験において、開始から72時間後の残存率が、開始から4時間後の残存率と比較して低下を示す、(7-1)に記載の神経再生誘導用材料。
(7-3)前記分解性試験において、開始から4時間後の残存率が55%以上である、(7-1)または(7-2)のいずれかに記載の神経再生誘導用材料。
(7-4)分子内にカルボキシル基を有する生体内吸収性多糖類が、アルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種である、(7-1)ないし(7-3)のいずれか1項に記載の神経再生誘導用材料。
(7-5)架橋性試薬が、上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩である(7-1)ないし(7-4)のいずれか1項に記載の神経再生誘導用材料。
(7-6)上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩が、ジアミノエタンの2N-ヒドロキシコハク酸イミド塩、ジアミノヘキサンの2N-ヒドロキシコハク酸イミド塩、N,N’-ジ(リジル)-ジアミノエタンの4N-ヒドロキシコハク酸イミド塩、および、N-(リジル)-ジアミノヘキサンの3N-ヒドロキシコハク酸イミド塩からなる群から選択される少なくとも1種である(7-5)記載の神経再生誘導用材料。
(7-7)キセロゲルの形態である、(7-1)ないし(7-6)のいずれか1項に記載の神経再生誘導用材料。
(7-8)電子線及び/又はγ線が、吸収線量1kGy~100kGyで照射された、(7-1)ないし(7-7)のいずれか1項に記載の神経再生誘導用材料。
(7-9)さらに、生体内吸収性高分子を含有する、(7-1)ないし(7-8)のいずれか1項に記載の神経再生誘導用材料。
(7-10)生体内吸収性高分子が、ポリグリコール酸、ポリ乳酸、およびそれらの共重合体、並びにポリカプロラクトンからなる群から選択される少なくとも1種である、(7-9)に記載の神経再生誘導用材料。
(7-11)前記材料を、縦2cm×横2cmのサイズ(厚さは問わない)となるように裁断し、その裁断面の1つから5mm離れた位置で該材料を挟むようにダブルクリップで把持し(把持部A)、該材料の把持部Aに相対する裁断面(B)から10mmまでの領域を生理食塩水に15分間浸漬した後、該材料の該裁断面(B)から5mm離れた位置の中央部に、針付き縫合糸を貫通させて、縫合糸の両端を器具に固定し、該把持部Aを材料の正方形面に水平に、速度10mm/分で引っ張る引き裂き試験を行ったときの最大試験力(荷重)が、0.10(N)~10.0(N)である、(7-1)ないし(7-10)のいずれか1項に記載の神経再生誘導用材料。
(7-12)前記材料中のアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種の含量が、アルギン酸ナトリウムに換算して、0.2mg/cm~12mg/cmである、(7-4)ないし(7-11)のいずれか1項に記載の神経再生誘導用材料。
(7-13)前記材料中の生体内吸収性高分子の含量が、0.05mg/cm~30mg/cmである、(7-1)ないし(7-12)のいずれか1項に記載の神経再生誘導用材料。
(7-14)末梢神経および/または中枢神経の損傷部の再生のために用いられる、(7-1)ないし(7-13)のいずれか1項に記載の神経再生誘導用材料。
(7-15)神経の分岐部および/または神経叢部の損傷部の再生のために用いられる、(7-1)ないし(7-14)のいずれか1項に記載の神経再生誘導用材料。
(7-16)神経の分岐部および/または神経叢部の損傷部が、前立腺、膀胱、陰茎海綿体、腕、四肢、脳、脊髄、顔面、頸、腰、仙骨、腰仙骨、陰部、心臓、腹腔、下下腹、骨盤、胸腔内及び腸壁内からなる群から選択される少なくとも1種に存在する、(7-15)に記載の神経再生誘導用材料。 
(7-17)腫瘍切除、リンパ節の郭清、および/または外傷に伴う神経損傷部の再生、並びに、組織再建に伴う神経損傷部の再生からなる群から選択される少なくとも1種の神経損傷部の再生のために用いられる、(7-1)ないし(7-16)のいずれか1項に記載の神経再生誘導用材料。
(7-18)前記低エンドトキシンのアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種は、GPC-MALS法により測定された重量平均分子量(絶対分子量)が8万以上である、(7-4)ないし(7-17)のいずれか1項に記載の神経再生誘導用材料。
(7-19)前記低エンドトキシンのアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種のM/G比が0.4~3.0である、(7-4)ないし(7-18)のいずれか1項に記載の神経再生誘導用材料。
(7-20)(7-1)ないし(7-19)のいずれか1項に記載の神経再生誘導用材料を、治療を必要とする対象の神経損傷部に適用する工程を含む、神経損傷部の再生を誘導する方法。
(7-21)(7-1)ないし(7-19)のいずれか1項に記載の神経再生誘導用材料を、治療を必要とする対象の神経損傷部に適用することを含む、神経の損傷部の再生誘導方法において使用されるための前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類。
(7-21a)(7-1)ないし(7-19)のいずれか1項に記載の神経再生誘導用材料を製造するための、前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類及び/又は前記一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬の使用であって、前記神経再生誘導用材料が神経の損傷部に適用し神経を再生するように用いられる、前記使用。
(7-22)少なくとも以下の工程を含む神経再生誘導用材料の体内残存時間を調節する方法。
 低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体を含む材料に対して、電子線および/またはγ線を照射する工程。
 本発明の神経再生誘導用材料は、現在、自家神経移植等の他に有用な治療方法のない神経の分岐部及び/又は神経叢部の損傷部の再生を促すことが可能であり、新たな治療手段を提供しうる。
 また、本発明の態様のひとつでは、神経再生誘導用材料は、体内消失時間がコントロールされており、神経再生誘導効果に優れる。
 本発明の神経再生誘導用材料は、神経の損傷部が、直線状であっても、分岐部及び/又は神経叢部であっても、あるいは、欠損部の断端部が視認できない場合にも適用でき、神経再生を誘導するため、臨床上応用範囲が広い。
 本発明のいくつかの態様では、神経再生誘導用材料はキセロゲル状及び/又はシート状であり柔軟性に富むため、神経の断端部や接合部を神経再生誘導用材料で覆うように包むことができる。キセロゲル状及び/又はシート状であるため、使用する患部に適した大きさに、その場で切断して使用できるため、予め神経の内径に応じた規格を複数用意する必要が無い。また、内視鏡下、腹腔鏡下等で本発明の材料を神経の損傷部へ適用することも可能である。
 本発明のいくつかの態様のひとつでは、さらに生体内吸収性高分子を含む神経再生誘導用材料は、適度な強度を備え、患部への適用時に縫合糸で縫合して用いることも可能である。一方で、本発明の材料は縫合しなくても使用でき、縫合しない場合には、比較的簡易に施術を行うことができるという利点がある。
 本発明の神経再生誘導用材料は、一定期間経過後は体内から消失するため、安全性及び生体適合性に優れる。
 本発明の態様のひとつでは、さらに生体内吸収性高分子を含む神経再生誘導用材料は、適度な強度を有し、膝などの可動部でも該材料がちぎれにくく、安定的に神経損傷部を再生することが可能である。また、製造過程で、形状が変形しにくく、取扱い性に優れ、製造効率も高いという利点を有する。
 本発明の神経再生誘導用材料は、上記のいずれか1以上の効果を満たす。
坐骨神経の分岐部欠損部に対してA-3EDA・PGA50を適用した術後8週の写真である。 坐骨神経の分岐部欠損部に対してA-2EDA・PGA100を適用した術後8週の写真である。 坐骨神経の分岐部欠損部に対してA-2EDA・PGA100を適用した術後8週の脛骨神経側の再生軸索の染色写真である。 坐骨神経の分岐部欠損部に対してA-2EDA・PGA100を適用した術後8週の腓骨神経側の再生軸索の染色写真である。 坐骨神経の分岐部の欠損部にアルギン酸架橋体を適用して再生誘導効果をみる試験の模式図を示す。円筒形は神経を表し、長方形はアルギン酸架橋体を表す。実施例では、2枚のアルギン酸架橋体で神経切断部を挟むように、該架橋体を設置した。 坐骨神経の分岐部欠損部に対してアルギン酸架橋体A-2EDA(試料番号1)を適用した術後8週の写真である。矢印は、再生された神経軸索が細く、十分に再生していないと考えられる箇所を示す。 アルギン酸架橋体の分解性をin vitro試験で評価した結果を示すグラフである。 アルギン酸架橋体の分解性をin vitro試験で評価した結果を示すグラフである。 アルギン酸架橋体の分解性をin vitro試験で評価した結果を示すグラフである。 皮膚線維芽細胞(NHDF)の細胞接着性および細胞増殖性を評価した結果を示すグラフである。 実施例10のアルギン酸架橋体の引き裂き試験の試験方法を示す模式図である。 6種のアルギン酸架橋体に対して引き裂き試験を行ったときの最大試験力(N)の平均値を示すグラフである。
1.分子内にカルボキシル基を有する生体内吸収性多糖類
 本発明のいくつかの態様のひとつでは、分子内にカルボキシル基を有する生体内吸収性多糖類を1種又は2種以上用いて神経再生誘導用材料を作製することができる。分子内にカルボキシル基を有する生体内吸収性多糖類は、例えば、アルギン酸、カルボキシメチルデンプン、ヒアルロン酸、カルボキシメチルセルロース等の多糖類、そのエステルおよびその塩が挙げられる。生体内吸収性多糖類は、生体内で分解され吸収されることが好ましい。また、多糖類は、細胞接着性のない生体内吸収性の多糖類であることが好ましい。好ましくは、アルギン酸、そのエステル及びその塩から選択される少なくとも1種である。なお、本明細書において、「神経再生誘導用材料」は「本発明の材料」という場合がある。
2.アルギン酸、そのエステルおよびその塩
 本発明で用いられる「アルギン酸」「アルギン酸エステル」「アルギン酸塩」は、天然由来でも合成物であってもよく、天然由来であるのが好ましい。本明細書において「アルギン酸、そのエステルおよびその塩から選択される少なくとも1種」を「アルギン酸類」と記載する場合がある。本発明で好ましく用いられるアルギン酸類は、レッソニア、マクロシスティス、ラミナリア、アスコフィラム、ダービリア、カジカ、アラメ、コンブなどの褐藻類から抽出される生体内吸収性の多糖類であって、D-マンヌロン酸(M)とL-グルロン酸(G)という2種類のウロン酸が直鎖状に重合したポリマーである。より具体的には、D-マンヌロン酸のホモポリマー画分(MM画分)、L-グルロン酸のホモポリマー画分(GG画分)、およびD-マンヌロン酸とL-グルロン酸がランダムに配列した画分(M/G画分)が任意に結合したブロック共重合体である。
 アルギン酸類のD-マンヌロン酸とL-グルロン酸の構成比(M/G比)は、主に海藻等の由来となる生物の種類によって異なり、また、その生物の生育場所や季節による影響を受け、M/G比が約0.2の高G型からM/G比が約5の高M型まで高範囲にわたる。アルギン酸類のゲル化能力は生成したゲルの性質は、M/G比によって影響を受け、一般的に、G比率が高い場合にはゲル強度が高くなることが知られている。M/G比は、その他にも、ゲルの硬さ、もろさ、吸水性、柔軟性などにも影響を与える。本発明に用いるアルギン酸類および/またはその塩のM/G比は、通常、0.2~4.0であり、より好ましくは、0.4~3.0、さらに好ましくは0.5~3.0である。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本発明で用いられる「アルギン酸エステル」「アルギン酸塩」とは、特に限定されないが、架橋剤と反応させるため、架橋反応を阻害しない官能基を有していないことが必要である。アルギン酸エステルとしては、好ましくは、アルギン酸プロピレングリコールが挙げられる。
 アルギン酸塩としては、例えば、アルギン酸の1価の塩、アルギン酸の2価の塩が挙げられる。
 アルギン酸の1価の塩は、好ましくは、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウムなどが挙げられ、より好ましくは、アルギン酸ナトリウムまたはアルギン酸カリウムであり、とりわけ好ましくは、アルギン酸ナトリウムである。
 アルギン酸の2価の塩は、好ましくは、アルギン酸カルシウム、アルギン酸マグネシウム、アルギン酸バリウム、アルギン酸ストロンチウムなどが挙げられる。
 アルギン酸類は、高分子多糖類であり、分子量を正確に定めることは困難であるが、一般的に重量平均分子量で1000~1000万、好ましくは1万~800万、より好ましくは2万~300万の範囲である。天然物由来の高分子物質の分子量測定では、測定方法により値に違いが生じうることが知られている。
 例えば、ゲル浸透クロマトグラフィー(GPC)又はゲルろ過クロマトグラフィー(これらを合わせてサイズ排除クロマトグラフィーともいう)により測定した重量平均分子量は、好ましくは10万以上、より好ましくは50万以上であり、また好ましくは、500万以下、より好ましくは300万以下である。その好ましい範囲は、10万~500万であり、より好ましくは50万~350万である。
 また、例えば、GPC-MALS法によれば、絶対重量平均分子量を測定することができる。GPC-MALS法により測定した重量平均分子量(絶対分子量)は、好ましくは1万以上、より好ましくは8万以上、さらに好ましくは9万以上であり、また好ましくは、100万以下、より好ましくは80万以下、さらに好ましくは70万以下、とりわけ好ましくは50万以下である。その好ましい範囲は、1万~100万であり、より好ましくは8万~80万であり、さらに好ましくは9万~70万、とりわけ好ましくは9万~50万である。
 通常、高分子多糖類の分子量を上記のような手法で算出する場合、10~20%の測定誤差を生じうる。例えば、40万であれば32~48万、50万であれば40~60万、100万であれば80~120万程度の範囲で値の変動が生じうる。
 アルギン酸類の分子量の測定は、常法に従い測定することができる。
 分子量測定にゲル浸透クロマトグラフィーを用いる場合の代表的な条件は、本明細書の実施例1に記載のとおりである。カラムは、例えば、GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm)を用いることができ、溶離液は、例えば、200mM硝酸ナトリウム水溶液とすることができ、分子量標準としてプルランを用いることができる。
 分子量測定にGPC-MALSを用いる場合の代表的な条件は、本明細書の実施例1に記載のとおりである。検出器として、例えば、RI検出器と光散乱検出器(MALS)を用いることができる。
 本発明で用いられるアルギン酸類の粘度は、特に限定されないが、1w/w%のアルギン酸類の水溶液として粘度を測定した場合、好ましくは、10mPa・s~1000mPa・s、より好ましくは、50mPa・s~800mPa・sである。
 アルギン酸類の水溶液の粘度の測定は、常法に従い測定することができる。例えば、回転粘度計法の、共軸二重円筒形回転粘度計、単一円筒形回転粘度計(ブルックフィールド型粘度計)、円すい-平板形回転粘度計(コーンプレート型粘度計)等を用いて測定することができる。好ましくは、日本薬局方(第16版)の粘度測定法に従うことが望ましい。本発明においては、より好ましくは、コーンプレート型粘度計を用いることが好ましい。この場合の代表的な測定条件は、本発明の実施例1に記載のとおりである。
 アルギン酸類は、褐藻類から抽出された当初は、分子量が大きく、粘度が高めだが、熱による乾燥、精製などの過程で、分子量が小さくなり、粘度は低めとなる。製造工程の温度等の条件管理、原料とする褐藻類の選択、製造工程における分子量の分画などの手法により分子量の異なるアルギン酸類を製造することができる。さらに、異なる分子量あるいは粘度を持つ別ロットのアルギン酸類と混合することにより、目的とする分子量を有するアルギン酸類とすることも可能である。
 本発明で用いられる分子内にカルボキシル基を有する生体内吸収性多糖類は、好ましくは低エンドトキシンの生体内吸収性多糖類である。低エンドトキシンとは、実質的に炎症、または発熱を惹起しない程度にまでエンドトキシンレベルが低いことをいう。より好ましくは、低エンドトキシン処理された生体内吸収性多糖類であることが望ましい。
 低エンドトキシン処理は、公知の方法またはそれに準じる方法によって行うことができる。例えば、ヒアルロン酸ナトリウムを精製する、菅らの方法(例えば、特開平9-324001号公報など参照)、β1,3-グルカンを精製する、吉田らの方法(例えば、特開平8-269102号公報など参照)、アルギネート、ゲランガム等の生体高分子塩を精製する、ウィリアムらの方法(例えば、特表2002-530440号公報など参照)、ポリサッカライドを精製する、ジェームスらの方法(例えば、国際公開第93/13136号パンフレットなど参照)、ルイスらの方法(例えば、米国特許第5589591号明細書など参照)、アルギネートを精製する、ハーマンフランクらの方法(例えば、Appl  Microbiol  Biotechnol(1994)40:638-643など参照)等またはこれらに準じる方法によって実施することができる。本発明の低エンドトキシン処理は、それらに限らず、洗浄、フィルター(エンドトキシン除去フィルターや帯電したフィルターなど)によるろ過、限外ろ過、カラム(エンドトキシン吸着アフィニティーカラム、ゲルろ過カラム、イオン交換樹脂によるカラムなど)を用いた精製、疎水性物質、樹脂または活性炭などへの吸着、有機溶媒処理(有機溶媒による抽出、有機溶剤添加による析出・沈降など)、界面活性剤処理(例えば、特開2005-036036号公報など参照)など公知の方法によって、あるいはこれらを適宜組合せて実施することができる。これらの処理の工程に、遠心分離など公知の方法を適宜組み合わせてもよい。アルギン酸の種類に合わせて適宜選択するのが望ましい。
 エンドトキシンレベルは、公知の方法で確認することができ、例えば、リムルス試薬(LAL)による方法、エントスペシー(登録商標)ES-24Sセット(生化学工業株式会社)を用いる方法などによって測定することができる。
 本発明に用いられる生体内吸収性多糖類のエンドトキシンの処理方法は特に限定されないが、その結果として、生体内吸収性多糖類のエンドトキシン含有量が、リムルス試薬(LAL)によるエンドトキシン測定を行った場合に、500エンドトキシン単位(EU)/g以下であることが好ましく、さらに好ましくは、100EU/g以下、とりわけ好ましくは、50EU/g以下、特に好ましくは、30EU/g以下である。低エンドトキシン処理されたアルギン酸ナトリウムは、例えば、Sea Matrix(登録商標)(持田製薬株式会社)、PRONOVATM UP LVG(FMCBioPolymer)など市販品により入手可能である。
3.架橋性試薬
 本発明において好ましく用いられる架橋性試薬は、下記の一般式(I)で表される化合物に包含されるアミン系化合物およびその塩から選択される少なくとも1種である。本明細書において、下記の一般式(I)で表される化合物は、アミン系化合物(I)という場合がある。
HN-(CH-NHR  (I)
[式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]
具体例としては、例えば、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、ジアミノヘプタン、ジアミノオクタン、ジアミノノナン、ジアミノデカン、ジアミノドデカン、ジアミノオクタデカンなどのジアミノアルカン類および/またはそれらの塩、N-(リジル)-ジアミノエタン、N,N’-ジ(リジル)-ジアミノエタン、N-(リジル)-ジアミノヘキサン、N,N’-ジ(リジル)-ジアミノヘキサンなどのモノまたはジ(リジル)ジアミノアルカン類および/またはそれらの塩などを挙げることができ、これらのジアミンおよびその塩の1種または2種以上を用いることができる。
 そのうちでも、アミン系化合物(I)および/またはその塩としては、上記の一般式(I)においてnが2~8である化合物および/またはその塩が好ましく用いられる。架橋性試薬がアミン系化合物(I)の塩からなる場合は、塩を形成する成分としては、N-ヒドロキシコハク酸イミドが好ましく用いられる。
 アミン系化合物(I)および/またはその塩からなる架橋性試薬としては、特にジアミノエタンの2N-ヒドロキシコハク酸イミド塩、ジアミノヘキサンの2N-ヒドロキシコハク酸イミド塩、N,N’-ジ(リジル)-ジアミノエタンの4N-ヒドロキシコハク酸イミド塩、N-(リジル)-ジアミノヘキサンの3N-ヒドロキシコハク酸イミド塩などが、安全性、生体適合性などが一層高く、且つ該架橋性試薬で共有結合架橋して得られる酸架橋体の神経再生作用が一層良好であることから好ましく用いられる。
4.神経再生誘導用材料の作製
 以下に、分子内にカルボキシル基を有する生体内吸収性多糖類の例として、アルギン酸類を用いたアルギン酸架橋体を含む神経再生誘導用材料の作製を説明するが、他の多糖類についても下記に準じて作製することができる。
 本発明のキセロゲル状のアルギン酸架橋体は、例えば、アルギン酸類の水性溶液と、前記架橋性試薬と、水溶性カルボジイミド等の脱水縮合剤とを混合して溶解し、型に流し入れてゲル化させ、ゲルを洗浄後、凍結乾燥して得ることができる。
 架橋反応の温度は、通常4℃~37℃の範囲で行いうるが、反応効率の点から20℃~30℃の範囲で行うことが好ましい。
 神経再生誘導用材料が、アルギン酸架橋体の他に他の成分を含む場合には、他の成分を含有させる工程の順は特に限定されず、例えば、他の成分を含有させる工程は、凍結乾燥前でも凍結乾燥後であってもよい。
 本発明の態様のひとつでは、本発明の神経再生誘導用材料は、望ましくは、キセロゲルの形態である。キセロゲルとは、ゲルが乾燥した状態ものをいう。ゲルは立体的な網目構造の中に水などの溶媒を含んだものであるが、キセロゲルは、溶媒を失って網目だけになったものをいう。本明細書において、キセロゲルは「スポンジ」という場合もある。
 アルギン酸類の溶液は、公知の方法またはそれに準じる方法により調製することができる。溶媒は、生体へ適用可能な溶媒であれば特に限定されないが、好ましくは水性溶媒であり、例えば、精製水、蒸留水、イオン交換水、ミリQ水、生理食塩水、リン酸緩衝生理食塩水、DMSOなどが好ましい。これらは、滅菌されていることが好ましく、低エンドトキシン処理されたものが好ましい。
 架橋率は、用いる架橋性試薬のモル比および架橋反応時間で制御することができる。架橋率を低くすると柔軟で含水率の高い架橋体が得られ、架橋率を高くすると強固で含水率が低くなる。架橋率は、架橋体の用途により適宜選択されうる。
 用いられる架橋性試薬のモル比は、特に限定されないが、好ましくは、アルギン酸類が有するカルボキシル基の総和に対して1モル%~50モル%の範囲であり、より好ましくは5モル%~40モル%の範囲である。
 架橋反応時間については、架橋反応は時間とともに進行するので、高い架橋率が必要な場合は反応時間を長くすることができる。反応時間は、通常6時間~96時間の範囲であり、反応効率の点で24時間~72時間の範囲であることが好ましい。
 また、架橋反応は、アルギン酸類の溶液濃度が低すぎると、十分な機械的強度を有する架橋体が得られず、また濃度が高すぎるとアルギン酸類の溶解に時間がかかり、かつ得られる架橋体の含水率が低くかつ硬くなり好ましくない。従って、アルギン酸類の溶液の濃度は、0.1%~5%の範囲にあることが好ましく、0.5%~3%の範囲にあることがさらに好ましい。
 架橋反応によって得られた架橋体は、それ自身でも実用的な強度と安定性を示すが、用途によりさらにイオン結合架橋、疎水結合架橋などの他のゲル化方法と併用してもよい。
 本発明のいくつかの態様では、本発明の神経再生誘導用材料が、アルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種(アルギン酸類)を含む場合、該材料1cmあたりのアルギン酸類の含量は、アルギン酸ナトリウムに換算して、0.2mg/cm~12mg/cmであることが好ましく、より好ましくは0.5mg/cm~7mg/cmであり、さらに好ましくは、1mg/cm~6mg/cmであり、とりわけ好ましくは、1mg/cm~5mg/cmである。本明細書において、「アルギン酸含量」の語は、該材料に含まれるアルギン酸類の量をアルギン酸ナトリウムの量に換算した値を表す。
 本発明の好ましい態様のひとつとして、本発明の神経再生誘導用材料は、分子内にカルボキシル基を有する生体内吸収性多糖類の他に、例えば、ポリグリコール酸、ポリ乳酸、およびそれらの共重合体、並びにポリカプロラクトンなどの生体内吸収性高分子を1種又は2種以上含んでいてもよい。ポリグリコール酸とポリ乳酸との共重合体(本明細書において「PLGA」ともいう)は、例えばポリグラクチン等として知られている。これらの高分子は、縫合糸の材料等として使用されており、生体吸収性を有し、生体適合性に優れる。これらの生体内吸収性高分子の形態は、特に限定されないが、好ましくは、不織布、織布、メッシュ、又はニードルパンチなどを用いることができ、より好ましくは不織布、メッシュ、又はニードルパンチの形態で用いられる。例えば、シート状の不織布の生体内吸収性高分子をトレイに敷き、生体内吸収性多糖類と架橋剤等を溶解した溶液をそのトレイに充填し、ゲル化させてもよい。本発明の神経再生誘導用材料における、分子内にカルボキシル基を有する生体内吸収性多糖類と生体内吸収性高分子との配置は特に限定されない。分子内にカルボキシル基を有する生体内吸収性多糖類の層と生体内吸収性高分子の層とを積層したり、生体内吸収性高分子の2層の間に分子内にカルボキシル基を有する生体内吸収性多糖類の層を挟んだり、あるいは、1層に両者が混在していてもよい。本明細書の実施例5-(4)において、本発明のアルギン酸架橋体がPGA含有の有無に関わらず、神経再生誘導作用を発揮したことから、PGA以外の材料もPGAに替えて同様に使用することが可能である。これらの生体内吸収性高分子は、架橋体の強度を高め、神経再生誘導用材料の取扱性を向上させることができる。本明細書の実施例7では、PGAを用いて作製された架橋体と同程度の含量のPLGAを用いて作製された架橋体とは同様の分解性を示したことから、これらの生体内吸収性高分子は、本発明において同様に使用できることが示唆された。本発明の一態様では、好ましくは、本発明の神経再生誘導用材料に用いる生体内吸収性高分子は、ポリグリコール酸を含有する高分子であり、好ましくは、ポリグリコール酸および/またはポリグリコール酸とポリ乳酸との共重合体(PLGA)であることも望ましい。
 本発明の好ましい態様のひとつでは、本発明の神経再生誘導材は、0.05mg/cm~30mg/cmの生体内吸収性高分子を含有してもよく、より好ましくは、0.1mg/cm~10mg/cmであり、さらに好ましくは、0.5mg/cm~7mg/cmであり、とりわけ好ましくは、1mg/cm~5mg/cmであってもよい。本発明の神経再生誘導材がこれらの生体内吸収性高分子を含有することにより、縫合もできる強度を備え、凍結乾燥による材料の変形を防ぎ、製造効率も高めることができる。また、本明細書の実施例において、これらの生体内吸収性高分子を含有した神経再生誘導材が、生体内吸収性高分子を含有しない材料と比較して、神経損傷の再生不十分な例が少ない傾向がみられたことから、生体内吸収性高分子を含有させることにより架橋体の強度が高まり、膝などの可動部においても架橋体が破断しにくく、安定的に軸索を再生させ得る可能性が示唆された。
 本発明のいくつかの態様のひとつとして、神経再生誘導用材料は、その他の多糖類や高分子を、本発明の神経再生誘導用材料の効果を妨げない範囲で含有してもよい。中でも、ヘパリンは、ヘパリン結合性の成長因子の徐放などの効果が確認されているため、本発明の神経再生誘導用材料はヘパリンを含有することもできる。なお、本発明のいくつかの態様では、神経再生誘導用材料はヘパリンを含まない。
 また、本発明のいくつかの態様のひとつとして、神経再生誘導用材料は、神経の成長に有用な因子を含んでいてもよい。神経の成長に有用な因子とは、例えば、塩基性線維芽細胞増殖因子(bFGF)、神経成長因子(NGF)等が挙げられるがこれらに限定されない。しかしながら、本発明の神経再生誘導用材料は、神経の成長に有用な因子を含まない場合でも神経再生の誘導効果を発揮することができる。本発明のいくつかの態様では、神経再生誘導用材料はこれらの因子を含まない。
 架橋反応により得られたアルギン酸架橋体を含む材料は、通常、洗浄液により未反応の試薬や脱水縮合剤を除去し、精製することができる。洗浄液は、特に限定されないが、例えば、水、ECF(Extra Cellular Fluid)等を用いることができる。ECFは、精製水にCaCl(2.5mM)とNaCl(143mM)を溶解して作製しうる。ECFは、必要に応じて滅菌用のフィルターを通じた後に用いられてもよい。アルギン酸架橋体を含む材料をECFで洗浄した後は、残存するカルシウムを除去するため、水で洗浄することが好ましい。本発明の神経再生誘導用材料は、凍結乾燥する前のゲル状の状態で用いられてもよい。
 アルギン酸架橋体の凍結乾燥は、当業者に知られた技術常識を用いて実施しうる。凍結乾燥の条件は適宜調節可能であり、一次乾燥工程、二次乾燥工程等を設けてもよい。
 本発明のいくつかの態様のひとつでは、本発明の神経再生誘導用材料の形状は特に限定されず、適用する神経の損傷部の範囲などを考慮し適宜選択することができる。例えば、キセロゲル状の形態のとき、非管状(例えば、平板状、湾曲状、凹凸のある平板状など)、および管状の形状をとることができるが、好ましくは非管状であり、より好ましくは、平板状である。神経再生誘導用材料が平板状のとき、神経の損傷部の範囲に合わせて神経再生誘導用材料をさらに切断して損傷部に適用することができるため、平板のサイズは特に限定されない。例えば、平板状の形状を、縦×横×高さ(厚さ)で表すと、縦と横の長さは特に限定されず、高さ(厚さ)は、好ましくは0.2mm~30mmであり、より好ましくは0.3mm~15mm、さらに好ましくは0.5mm~10mmであり、とりわけ好ましくは1mm~10mmである。さらに好ましくは、そのような高さ(厚さ)であることに加えて、縦と横の長さは、それぞれ、1mm~300mmx1mm~300mmであり、特に好ましくは、3mm~200mmx3mm~200mmであり、さらに好ましくは、5mm~150mmx5mm~150mmである。なお、厚さは均一でなくても良く、一方が厚くて他方が薄い、傾斜構造であってもよい。
 本発明のいくつかの態様のひとつでは、神経再生誘導用材料は、滅菌処理がなされていることが好ましい。滅菌は、γ線滅菌、電子線滅菌、エチレンオキシドガス滅菌、エタノール滅菌等が挙げられ、これらに限定されない。本発明のいくつかの態様では、架橋体に電子線やγ線が照射されるため、滅菌効果も得ることができる。
5.電子線及び/又はγ線照射された神経再生誘導用材料
 本発明のいくつかの態様では、低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上述のアミン系化合物(I)および/またはその塩で共有結合架橋され、電子線及び/又はγ線が照射された架橋体を含む、神経再生誘導用材料を提供する。この態様において、電子線及び/又はγ線を照射する対象は、生体吸収性多糖類が前記架橋剤で共有結合された架橋体のみでもよいし、神経再生誘導用材料が生体内吸収性高分子や神経成長因子など他の成分を含む場合には、他の成分を含む架橋体であってもよい。また、他の成分は、電子線及び/又はγ線を照射した後の架橋体に含ませることもできる。
 電子線は、放射線の中の電荷を持った粒子線のひとつであり、滅菌などの目的で使用される。電子線は電子加速器などを用いて照射可能である。電子線は、物質を透過するので複雑な形状や閉塞部の滅菌処理も可能であり、処理後の残留物等の心配がないのが特徴である。電子線の線量には、電圧、電流、照射時間(被照射物の搬送速度)等のファクターが関係する。電子線は、γ線と比較して浸透力が弱いため、必要な浸透力をコントロールすることが可能である。線量率(時間当りの線量)はγ線に比べ5,000~10,000倍と高く、短時間(数秒~分)での処理が可能となる。
 γ線は、放射線の中の電磁波のひとつであり、滅菌などの目的で使用される。γ線は放射線源の露出装置などを用いて照射可能である。γ線は透過性が強く、γ線の線量は、熱源強度、熱源からの距離及び照射時間等のファクターが関係し、処理時間は数時間かかるため、被照射物の劣化が比較的大きい。
 本発明においては、電子線とγ線をいずれも使用可能であるが、照射線量を一定に制御しやすいこと、被照射物に均一な線量を照射しやすいこと、γ線の放射線源コバルト60の廃棄物処理等の観点から、より好ましくは電子線を用いることが望ましい。
 本発明のいくつかの態様のひとつでは、本発明の神経再生誘導用材料は、電子線及び/又はγ線が1kGy~100kGyの吸収線量で照射されていることが好ましく、より好ましくは、3kGy~60kGyであり、さらに好ましくは、5kGy~40kGyであり、とりわけ好ましくは、5kGy~25kGy、またさらに好ましくは、10kGy~24kGyである。
 本発明のいくつかの態様の、電子線及び/又はγ線が照射された神経再生誘導用材料は、照射されていない材料と比較して、体内の適用部位から消失するまでの時間が短い、言い換えると、体内残存時間が短いという特徴を有する。「適用部位からの消失」とは、適用部位に架橋体を置き、一定時間後に適用部位を観察したとき、肉眼による観察で架橋体が視認できないことをいう。このときの体内の適用部位は、神経損傷部位であることが好ましいが、例えば、ラット等の動物で皮下又は筋肉内での埋植試験等を行い、適用部位からの消失を確認してもよい。
 このような電子線及び/又はγ線が照射された神経再生誘導用材料は、照射されていない材料と比較して、神経再生誘導効果が高いという特徴を有する。
 本発明のいくつかの態様では、本発明の神経再生誘導用材料は、適用部位からの消失が7日~270日であることが好ましく、より好ましくは14日~180日であり、さらに好ましくは14日~150日であり、とりわけ好ましくは14日~120日である。また、本発明の態様のひとつでは、本発明の神経再生誘導用材料は、本明細書の実施例6の記載に従い、該材料を縦0.7cm×横1.5cm(厚さは問わない)のサイズとしてラット皮下埋植試験を行い、埋植から4週後に、埋植部位の組織染色による評価を行ったとき、材料の少なくとも一部の残存がみられることが望ましい。
 本発明の別の態様では、本発明の神経再生誘導用材料は、本明細書の実施例7の記載に従い、該材料を縦1cm×横1cmのサイズ(厚さは問わない)となるように裁断した該材料4個と生理食塩水25mLを、50mLの容遠沈管に入れて、恒温振とう水槽で、振とう数を往復120回/分、温度50℃で振とうする、該材料の分解性試験を行うとき、振とう開始から72時間後の材料の残存率が10%~80%であることが望ましく、より好ましくは、20%~80%である。ここでの「残存率」とは、分解性試験を開始する前の材料の質量に対する、一定時間の分解性試験実施後の材料を恒量になるまで減圧乾燥(60℃)した後の材料の質量の割合をいう。また、材料の裁断面の縦と横とは垂直に交わるものとする。このとき材料の厚さは、試験対象とする材料の厚さのまま用いるが、標準的には約1mm~約10mmの厚さであることが望ましい。
 また、本発明の一態様では、本発明の神経再生誘導用材料は、前記分解性試験において、開始から72時間後の残存率が、開始から4時間後の残存率と比較して低下を示すことが好ましい。本発明の実施例では、エタノール滅菌したアルギン酸架橋体が神経再生誘導効果が十分ではないことが分かったが、これと同組成の架橋体は、実施例7の分解性試験では、開始から72時間後も残存率は100%を超えていた。
 また、本発明の一態様では、本発明の神経再生誘導用材料は、前記分解性試験において、開始から4時間後の残存率が55%以上であり、より望ましくは60%以上であることが望ましい。本明細書の実施例において、電子線を40kGy、60kGyと高い線量で照射した架橋体は神経再生効果が十分ではないことが分かったが、これは、高い電子線量を照射した架橋体が分解性試験の開始直後(4時間後)に残存率が低下したことに示されるように、架橋体を損傷部に設置した当初から架橋体が消失してしまい、神経の足場としての役目を果たせなかったことに起因すると考えられた。
 本発明の一態様では、本発明の神経再生誘導用材料は、前記分解性試験において、開始から4時間後の残存率は55%以上であり、その後残存率が低下し、開始から72時間後には残存率が10%~80%を示すことが望ましい。
 本発明の一態様では、本発明の神経再生誘導用材料は、以下に記載の引き裂き試験(実施例10に記載の引き裂き試験)を行ったとき、最大試験力が0.10(N)~10.0(N)であることが好ましく、より好ましくは0.10(N)~5.0(N)である。
 本発明における引き裂き試験は、次のように実施する。対象とする材料は、縦2cm×横2cmのサイズ(厚さは問わない)となるように裁断する。ここで縦と横の裁断面は垂直に交わるものとする。このとき材料の厚さは、材料自体の引き裂き強度をみる試験であるため、試験対象とする材料の厚さのまま用いるが、標準的には約1mm~約10mmの厚さであることが望ましい。該材料の裁断面の1つから5mm離れた位置で該材料を挟むようにダブルクリップで把持する(把持部A)。該材料の把持部Aに相対する裁断面(B)から10mmまでの領域を生理食塩水に15分間浸漬する。該材料の裁断面(B)から5mm離れた位置の中央部に針付き縫合糸を貫通させて、縫合糸の両端を器具に固定する。把持部Aを、材料の正方形面に水平に、速度10mm/分で、該材料が裂けるまで引っ張り、この引っ張る荷重を試験力(N)として測定する。試験力の最大点を最大試験力(N)とする。引っ張り荷重の測定は、小型物性試験機(EZ-graph,島津製作所製)を用いて行うことが望ましいが、入手できない場合には、これに類する荷重測定機械を用いてもよい。
 把持部Aに使用するダブルクリップの大きさは、把持部の幅が15mm~19mmであることが望ましい。試験に用いる縫合糸は「バイクリル(登録商標)」、糸の太さは「4-0」を用いることが好ましいが、入手できない場合には、材質が、ポリグラクチン910(グリコール酸/乳酸ポリエステル:90/10)であり、糸の太さが4-0である縫合糸を用いてもよい。針は、丸針SH-1を用いることが好ましいが、入手できない場合には、これと類似の縫合糸に合う針を用いてもよい。
 好ましくは、材料の最大試験力を求める場合には、材料を裁断し、n=3~10で試験力を測定し、その最大試験力の平均値を求め、該材料の最大試験力とすることが望ましい。
 本発明はまた、低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上述のアミン系化合物(I)および/またはその塩で共有結合架橋された架橋体を含む神経再生誘導用材料に対して、電子線及び/又はγ線を照射する工程を少なくとも含む、神経再生誘導用材料の体内残存時間を調節する方法を提供する。本発明はまた、(A)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体、並びに(B)生体内吸収性高分子を含む架橋体に対して、電子線および/またはγ線を照射する工程を少なくとも含む神経再生誘導用材料の体内残存時間を調節する方法を提供する。本発明の材料の体内残存時間を短くするには、電子線及び/又はγ線の照射線量を高くする、逆に、体内残存時間を長くするには電子線及び/又はγ線の照射線量を低くすることにより、神経再生誘導用材料の体内残存時間を調節することができる。
 本発明はまた、低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類と、アミン系化合物(I)及び/又はその塩とを用いて共有結合架橋した架橋体を含む材料に対して電子線及び/又はγ線を照射する工程を少なくとも含む、神経再生誘導用材料を製造する方法を提供する。「架橋体を含む材料」は、分子内にカルボキシル基を有する生体内吸収性多糖類で作製された架橋体の他に、任意で、前述の生体内吸収性高分子や神経の成長に有用な因子などの他の成分を含んでいてもよい。具体的な好ましい態様は前述のとおりである。
 本発明はまた、少なくとも以下の工程を含む神経再生誘導用材料を製造する方法を提供する。
(1)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類を含む溶液と、上記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬とを混合する工程、
(2)(1)で得られた混合物と、生体内吸収性高分子とを型に入れて一定時間静置し、架橋体とする工程、
(3)(2)で得られた架橋体を洗浄し、その後、凍結乾燥する工程、
(4)(3)で得られた架橋体に対して、電子線および/またはγ線を照射する工程。
この製造方法の好ましい態様は、本明細書に記載のとおりである。
6.使用方法
 本発明のいくつかの態様では、神経再生誘導用材料は、外傷や腫瘍切除等により生じた神経の損傷部に適用して、神経の再生および/または再建を誘導する。本発明の神経再生誘導用材料は、通常神経再建に必要な数ヶ月後に吸収分解され、最終的には代謝・排出されてなくなるため、安全性に優れる。
 本発明において、「神経の損傷」とは、神経の連続性が失われた状態(欠損)及び、神経の連続性は保たれているが神経機能が損なわれている状態を含み、断裂等も含む。本明細書において、「欠損部」は、「ギャップ」「切断部」などという場合があり、また「断裂」も含む。
 神経の損傷は、例えば、外傷、腫瘍切除、リンパ節の郭清、中枢神経や末梢神経系の疾患等が原因で生じるが、本発明では、神経の損傷の発生原因は問わない。例えば、神経縫合術あるいは自家神経移植時において、神経と神経が接合された部位では、縫合糸のかかっていない箇所は隙間ができている状態となりえるので、このような部位に対して神経再生誘導用材料を適用することもできる。また例えば、様々な要因から欠損・脱落・切除した組織を再建するときの神経損傷部の再生のためにも用いることができる。
 本発明において「適用する」とは、神経再生誘導用材料を神経の損傷部に置くことをいう。神経の損傷部が欠損部である場合には、神経再生誘導用材料と神経の断端部との接触は必須ではないが、好ましくは、神経再生誘導用材料が欠損した神経の断端部に接触するように本発明の材料を置くことが望ましく、より好ましくは、神経再生誘導用材料と神経の断端部が重なるように本発明の材料を置くことが望ましい。神経の断端部が視認できない場合等では、必ずしも神経再生誘導用材料と神経の断端部とを接触させなくてもよい。
 神経再生誘導用材料の適用は、例えば、再建すべき神経の両端部に対して神経再生誘導用材料を一方向から接触させるように置いてもよいし、また例えば、神経再生誘導用材料により神経の両端部を手術部位の状態によって上下または左右に挟むようにしてもよいし、また例えば、神経の両端部の周囲全体を神経再生誘導用材料で覆うように置いてもよい。
 神経再生誘導用材料が非管状のときは、管状の材料と比較して、神経軸索伸長に必要な栄養や酸素が供給されやすく、一方で、組織修復に働く線維組織の侵入を防止するため、神経軸索伸長に有利であり、好ましくは非管状であり、より好ましくは平板状である。この場合、組織修復に働く線維組織は瘢痕化によって、正常な組織修復を損なうものである。本明細書の実施例8において、本発明のアルギン酸架橋体は、コラーゲンスポンジと比較して、線維芽細胞の接着、増殖を抑制する効果が示されており、神経再生誘導用材料として好ましい性能を備えることが見出された。
 本発明において「神経の再生の誘導」とは、神経細胞の増殖及び/又は神経軸索の伸長を促すことをいう。神経の損傷部が欠損部である場合には、神経の連続性を回復するように神経軸索の伸長を促すことをいう。神経に損傷や挫滅などによる欠損が生じると、欠損部から末梢側(切断端部から遠位)の神経軸索は神経細胞体からの連続性が断たれるため変性(末梢神経ではWaller変性という)が生じ、神経機能が失われる。欠損部から以遠の変性した神経軸索は遺残物としてマクロファージなどに貪食される。その後、中枢側断端から発芽した多数の神経軸索が末梢断端側まで伸長する。好ましくは、中枢側から伸長した軸索が末梢側の断端部につながることが望ましい。あるいは、神経の再生の誘導は、失われた神経機能や知覚を少なくとも一部回復することにより示すこともできる。本発明における神経の再生の誘導とは、必ずしも損傷前の状態に完全に回復することを意味するものではない。本発明の神経再生誘導用材料は、前記のいずれか1以上の効果を達成することが好ましい。
 本発明の神経再生誘導用材料の使用方法は、対象の再建すべき神経部位を露出させ、再建すべき神経の長さや幅に応じて、適当な大きさの神経再生誘導用材料とし、再建すべき神経の損傷部に適用する。「対象」は、ヒト、またはヒト以外の生物、例えば、トリおよび非ヒト哺乳動物(例えば、ウシ、サル、ネコ、マウス、ラット、モルモット、ハムスター、ブタ、イヌ、ウサギ、ヒツジ、およびウマ)である。
 管状の材料は、適用部位の神経の太さに応じて管状材料の太さを合わせる必要があるが、平板状であればその必要はなく、損傷部の大きさに合わせて材料を切断して適用することができる。
 神経再生誘導用材料がキセロゲル状のときは、そのまま乾燥状態で適用してもよいし、生理食塩水あるいは精製水等を含ませた後にゲル状の状態で適用してもよい。すなわち、本発明の神経再生誘導用材料はゲル状の形態であってもよい。
 神経再生誘導用材料を神経損傷部に適用した後、神経再生誘導用材料と神経の損傷部の縫合は必要ないが、必要に応じて、神経再生誘導用材料と神経の損傷部(例えば、神経断端部など)を縫合してもよい。
 本発明のいくつかの態様では、神経再生誘導用材料は、神経の分岐部及び/又は神経叢部の損傷部に適用される。神経叢とは、神経集網ともいい、分岐した神経が網目状構造を作っている部分をいう。本発明の神経再生誘導用材料は、神経の分岐部及び/又は神経叢の損傷部に好ましく適用され、例えば、前立腺、膀胱、陰茎海綿体、腕、四肢、脳、脊髄、顔面、頸、腰、仙骨、腰仙骨、陰部、心臓、腹腔、下下腹、骨盤、胸腔内、腸壁内などに適用可能である。
 本発明のいくつかの態様では、神経再生誘導用材料が適用可能な部位は、神経の損傷部であれば特に限定されない。末梢神経及び/又は中枢神経の損傷部の再生誘導のために用いることができ、直線状の神経、神経の分岐部及び/又は神経叢部の損傷部などに適用可能である。中枢神経であれば、例えば、脳や脊髄の損傷部が挙げられる。
 本発明のいくつかの態様では、本発明の神経再生誘導用材料は、神経の再生あるいは成長に有用な因子、生理活性物質などの液性因子、あるいは細胞と併用して用いられてもよい。併用する方法は特に限定されないが、例えば、本発明の神経再生誘導用材料に、これらの因子や細胞を含有させてもよい。液性因子としては、再生組織に対して補助的に用いることができる因子であれば特に限定されないが、例えば、bFGF、NGF、肝細胞増殖因子、免疫抑制剤、抗炎症剤などが挙げられる。細胞としては、例えば、自家または他家培養による間葉系幹細胞、骨髄間葉系幹細胞、神経幹細胞、骨髄由来単核球細胞、脂肪由来幹細胞、生体内多能性幹細胞、ES細胞、神経系前駆細胞、iPS細胞、CD133+細胞などが挙げられるがこれらに限定されない。本発明の別の態様では、本発明の神経再生誘導用材料は、これらの細胞や因子と併用されない態様も好ましく、より好ましくは、CD133+細胞と併用されない。
 神経の再生の評価方法は、特に限定されないが、例えば、神経軸索の伸長は、本明細書の実施例4及び5に記載のとおり、光学顕微鏡下、対象部位の軸索伸長を観察したり、常法に従い、神経をエポン樹脂で包埋し、トルイジンブルー、抗ベータチューブリンクラス3抗体、又は抗S100抗体などの試薬で染色する等して、ギャップの間又は末梢側断端部に到達した有髄軸索の数を数える等により示すことができる。エポン樹脂など適切な方法で包埋したあと、透過電子顕微鏡(TEM)または走査電子顕微鏡(SEM)で再生軸索の状態を観察して評価することも可能である。
 また例えば、電気生理学的測定(electrophysiological measurement)、組織病理学的評価(histopathological evaluation)、歩行パターン(walking pattern)、 軸索輸送を調べるためのトレーサー試験(tracer detective study for axoplasmic transport)、二点識別覚検査(Two-point discrimination)などにより評価されてもよい。
 電気生理学的測定は、例えば、運動神経機能の回復の指標としてCMAP(compound muscle action potentials)、感覚神経機能の回復の指標として、SEP(somatosensory evoked potentials)などを用いることができる(例えば、Journal of Materials Science: Materials in medicine 16 (2005) p.503-509参照)。
 本発明は、また、前述の神経再生誘導用材料を神経の損傷部に適用する工程を含む、神経の損傷部の再生を必要とする対象において神経の損傷部の再生を誘導する方法を提供する。本発明はまた、前述の神経再生誘導用材料を神経の分岐部及び/又は神経叢部の損傷部に適用する工程を含む、神経の分岐部及び/又は神経叢部の損傷部の再生を必要とする対象において、神経の分岐部及び/又は神経叢部の損傷部の再生を誘導する方法を提供する。具体的な方法は、前述の記載のとおりである。
 本発明は、さらに、前述の神経再生誘導用材料を製造するための、低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類及び/又は上記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬の使用であって、前記神経再生誘導用材料が神経の損傷部、好ましくは、神経の分岐部及び/又は神経叢部の損傷部に適用するように用いられる、前記使用を提供する。具体的な使用は、前述の通りである。
 本発明は、さらに、低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、上記の一般式(I)で表される化合物及びその塩から選択される架橋性試薬で共有結合架橋された架橋体を含む神経再生誘導用材料を用いる、神経の損傷部、好ましくは、神経の分岐部及び/又は神経叢部の損傷部の再生において使用されるための前記低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類を提供する。
 次に、実施例を示し、本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1 アルギン酸架橋体の作製と性状の評価
 アルギン酸ナトリウムと、架橋剤として(i)塩化カルシウム、(ii)塩化カルシウムと塩化ナトリウムの混合物、(iii)エチレンジアミンをそれぞれ用いて、キセロゲルの形態のアルギン酸架橋体を作製し、性状を評価した。
1-(1)アルギン酸ナトリウム
 アルギン酸ナトリウムは、いずれもエンドトキシン含量は50EU/g未満の低エンドトキシンのアルギン酸ナトリウム(Sea Matrix(登録商標)発売元 持田製薬株式会社)6種を用いた。
 A-1、A-2およびA-3は、アルギン酸ナトリウムのM/G比が0.4~1.8の範囲であり、B-1、B-2およびB-3は、アルギン酸ナトリウムのM/G比が0.1~0.4の範囲であった。
 各アルギン酸ナトリウムの1w/w%の水溶液の粘度および重量平均分子量を表1に示した。
 アルギン酸ナトリウムの粘度測定は、日本薬局方(第16版)の粘度測定法に従い、回転粘度計法(コーンプレート型回転粘度計)を用いて測定した。具体的な測定条件は以下のとおりである。試料溶液の調製は、MilliQ水を用いて行った。測定機器は、コーンプレート型回転粘度計(粘度粘弾性測定装置レオストレスRS600(Thermo Haake GmbH)センサー:35/1)を用いた。回転数は、1w/w%アルギン酸ナトリウム溶液測定時は1rpmとした。読み取り時間は、2分間測定し、開始1分から2分までの平均値とした。3回の測定の平均値を測定値とした。測定温度は20℃とした。
 各アルギン酸ナトリウムの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)と、GPC-MALSの2種類の測定法で測定した。測定条件は以下のとおりである。
[前処理方法]
 試料に溶離液を加え溶解後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(1)ゲル浸透クロマトグラフィー(GPC)測定
[測定条件(相対分子量分布測定)]
 カラム:TSKgel GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm×3本)
  溶離液:200mM硝酸ナトリウム水溶液
  流量:1.0mL/min
  濃度:0.05%
  検出器:RI検出器
  カラム温度:40℃
  注入量:200μL
  分子量標準:標準プルラン、グルコース
(2)GPC-MALS測定
[屈折率増分(dn/dc)測定(測定条件)]
 示唆屈折率計:Optilab T-rEX
 測定波長:658nm
 測定温度:40℃
 溶媒:200mM硝酸ナトリウム水溶液
 試料濃度:0.5~2.5mg/mL(5濃度)
[測定条件(絶対分子量分布測定)]
 カラム:TSKgel GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm×3本)
  溶離液:200mM硝酸ナトリウム水溶液
  流量:1.0mL/min
  濃度:0.05%
  検出器:RI検出器、光散乱検出器(MALS)
  カラム温度:40℃
  注入量:200μL
Figure JPOXMLDOC01-appb-T000001
1-(2)塩化カルシウムを架橋剤としたアルギン酸架橋体の作製
 以下の作業は、特に断らない限り、室温環境下(20~30℃)で実施した。表1中の各低エンドトキシンアルギン酸ナトリウム凍結乾燥品をミリQ水で溶解して1w/vol%アルギン酸ナトリウム水溶液とした。塩化カルシウム無水物をミリQ水で溶解して50mM塩化カルシウム水溶液とした。アルギン酸ナトリウム水溶液1mLを入れたチューブ(Falcon2054)に50mM塩化カルシウム水溶液1mLを重層して終夜静置した後、ゲル化したものについてはミリQ水で3回洗浄し、凍結乾燥して、キセロゲル状のアルギン酸架橋体を得た。
1-(3)塩化カルシウムと塩化ナトリウムを架橋剤としたアルギン酸架橋体の作製
 表1中の各低エンドトキシンアルギン酸ナトリウム凍結乾燥品をミリQ水で溶解して1w/vol%アルギン酸ナトリウム水溶液とした。塩化カルシウム無水物と塩化ナトリウムをミリQ水で溶解し、カルシウムイオン4mMとナトリウムイオン300mM含む水溶液を作製した(カルシウム-ナトリウム架橋剤水溶液)。アルギン酸ナトリウム水溶液1mLを入れたチューブ(Falcon2054)にカルシウム-ナトリウム架橋剤水溶液1mLを重層して終夜静置した後、ゲル化したものについてはミリQ水で3回洗浄し、凍結乾燥し、キセロゲル状のアルギン酸架橋体を得た。
 別途、カルシウム-ナトリウム架橋剤水溶液のカルシウムイオンを10mM、20mM、又は50mMとした架橋剤水溶液を作製し、A-1又はA-2のアルギン酸ナトリウムを用いて、同様の手順でアルギン酸架橋体を得た。
1-(4)エチレンジアミンを架橋剤として用いたアルギン酸架橋体の作製
 N-ヒドロキシコハク酸イミド23gをメタノール1000mlに溶解した。エチレンジアミン6.7mlを100mlのメタノールに溶解して、N-ヒドロキシコハク酸イミドの溶液へ添加し混合した。生じた結晶をグラスフィルター上に濾取し、乾燥させて、約27.0gのエチレンジアミン2N-ヒドロキシコハク酸イミド塩(EDA・2HOSu)を得た。
 表1中の各低エンドトキシンアルギン酸ナトリウムをミリQ水に溶解して得た、1w/vol%のアルギン酸ナトリウム水溶液1mlに、EDA・2HOSu2.2mgと、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩(EDC・HCl)16mgを加えて溶解した。
 混合物をFalcon2054チューブ中で、室温で2日間静置し、ゲル化させた。ゲルをECFで3回/日×約7日間、次いでミリQ水で3回洗浄後、凍結乾燥し、キセロゲル状のアルギン酸架橋体を得た。ECF(Extra Cellular Fluid)は、精製水にCaCl2(2.5mM)とNaCl(143mM)を溶解し、滅菌フィルター及びエンドトキシン除去フィルターを通じたものを用いた。
1-(5)アルギン酸架橋体の評価
 上記1-(2)~1-(4)で得られたアルギン酸架橋体をゲル化、多孔性、及びPBS(Phosphate buffered saline)中の残存性の観点から評価した。
 ゲル化は、転倒法にて目視観察し、全ての溶液がゲル化した場合を3点、約半分の溶液がゲル化した場合を2点、ほとんどの溶液がゲル化しなかった場合を1点とした。
 多孔性は、アルギン酸架橋体の断面を走査型電子顕微鏡を用いて、金コーティング後に、100倍で(加速電圧15kV)測定し、100μm~500μmの均一な細孔を有している場合を3点、不規則な大きさの細孔を有している場合を2点、細孔を有していない場合を1点とした。
 PBS中のゲル残存性試験は、各ゲル約5mm角をPBS5ml中に入れ、37℃、1週間後のゲルの状態を観察し、ほとんど全てが残存している場合を3点、およそ半分程度が残存している場合を2点、ほとんど全てが溶解した場合を1点とした。
 その結果、(i)塩化カルシウムを架橋剤とした架橋体、及び、(ii)塩化カルシウムと塩化ナトリウムの混合物を架橋剤とした架橋体は、ゲル化の評価は一部3点もあったが、多孔性の評価、及び、PBS中のゲル残存性評価では、そのほとんどが2点又は1点であった。
 (iii)エチレンジアミンを架橋剤としたアルギン酸架橋体の評価結果を表2に示す。
 ゲル化の評価では、A-2、A-3、B-2、及びB-3はゲル化したが、A-1とB-1のゲル化は不十分であった。
 多孔性の評価は、A-1、A-2及びA-3については、孔の大きさが300μm~500μmの多孔体が得られたことが分かった。一方、B-1、B-2及びB-3については、細孔は認められず砕片状であった。
 PBS中のゲル残存性評価は、A-1は、1週間後に約1/2が残存していたのに対し、A-2、A-3、B-1、B-2、B-3は、1週間後も透明な含水ゲルのほとんど全てが残存した。
 以上より、多孔性の点から、B-1、B-2及びB-3のアルギン酸ナトリウム(M/G比が0.1~0.4)と比較して、A-1、A-2及びA-3のアルギン酸ナトリウム(M/G比が0.6~1.8)を用いることが好ましいことが分かった。
 また、A-1、A-2及びA-3のアルギン酸ナトリウムの中では、ゲル化、及びPBS中のゲル残存性の点から、A-2及びA-3のアルギン酸ナトリウム、すなわち、GPS-MALSによる重量平均分子量が9万以上のアルギン酸ナトリウムを用いることが好ましいことが分かった。
Figure JPOXMLDOC01-appb-T000002
実施例2 神経様細胞の生存率の評価
 実施例1において作製したアルギン酸架橋体(約1.0 cm x 1.0 cm)に、PC12細胞(50,000 cells/mL)1 mLを、含浸した。神経成長因子(NGF)(final 100 ng/mL)を加えて7日間培養(3日目に0.5mLの培地追加)後、WST-8試薬(DOJINDO)を150 μL/well添加し、37℃で3時間静置した。上清100 μLずつ96穴プレートに分注し、プレートリーダー(Tecan)を用いて450 nmの吸光度を測定した。
 アルギン酸架橋体は、A-2を(i)塩化カルシウム(iii)エチレンジアミンによりそれぞれ架橋した架橋体(それぞれA-2Ca,A-2EDAという)、A-3を(i)塩化カルシウム(iii)エチレンジアミンによりそれぞれ架橋した架橋体(それぞれA-3Ca,A-3EDAという)の4種とした。組織培養用プレートをコントロールとして用いた。
 その結果、コントロールにおける神経様細胞の生存率を100%としたときの、A-2EDA、A-3Ca、及びA-3EDAにおける生存率はいずれも98%以上であった。一方、A-2Caのみ低い生存率(63%)を示した。
 A-2Caについて、神経様細胞の生存率が低かった理由は、溶出したカルシウムの毒性、溶解したアルギン酸による培地中の粘度増大に起因する酸素の供給不足が原因と推察された。
実施例3 電子線照射したアルギン酸架橋体の評価
3-(1)アルギン酸架橋体に対する電子線照射
 低エンドトキシンアルギン酸ナトリウムのA-2とA-3を用いて、塩化カルシウムと塩化ナトリウムを架橋剤としたアルギン酸架橋体(それぞれA-2CaNa、A-3CaNaという)、実施例1-(4)に従い、エチレンジアミンを架橋剤としたアルギン酸架橋体(それぞれA-2EDA、A-3EDAという)を作製した。塩化カルシウムと塩化ナトリウムを架橋剤としたアルギン酸架橋体は、1%アルギン酸ナトリウム水溶液を3.15mlずつ充填したプレートを25mlのカルシウム-ナトリウム架橋剤水溶液(塩化カルシウム無水和物50mM、塩化ナトリウム300mM)に浸漬してゲル化させ、洗浄後凍結乾燥して作製した。
 各アルギン酸架橋体に対して、電子線の20kGy、40kGy、60kGyをそれぞれ照射した。
 電子線照射装置としてRDI社製ダイナミトロン型電子加速器を、線量測定装置としてCTA線量計用島津UV1800分光光度計を用いた。線量計としてCTA線量計(富士写真フィルム社製FTR-125)Lot No.459を用いた。電子線は、加速電圧4.8MV、電流20.0mAの条件で、目的の照射線量となるように照射時間を調節して照射した。
3-(2)電子線照射したアルギン酸架橋体の崩壊時間の評価
 実施例3-(1)で作製した、電子線照射されたアルギン酸架橋体、及び、電子線照射されていないアルギン酸架橋体について、生理食塩液中での崩壊時間を測定した。
 具体的には、各架橋体を約7mm×約7mmにカットし、生理食塩液25mlを入れた50mlの遠沈管に入れ、37℃の恒温器内で、遠沈管を横に寝かせた状態で、60rpmで振とうし、架橋体が完全に崩壊するまでの時間を測定した。
 結果を表3に示す。
 塩化カルシウムと塩化ナトリウムを架橋剤としたアルギン酸架橋体(A-2CaNa、A-3CaNa)は、電子線量と溶解時間までの時間に一定の関係は見られなかった。一方、エチレンジアミンを架橋剤としたアルギン酸架橋体(A-2EDA、A-3EDA)については、電子線量が高くなるに従い、溶解終了までの時間は短くなった。A-3EDAの電子線照射量が0kGyと20kGyの架橋体は、いずれも20日後も溶解しなかったが、未照射の架橋体は20日後も形状を保っていたのに対して、20kGy照射の架橋体は、スポンジの形状は保っておらず、ピンセットで掴むことはできない硬さであった。また、A-2EDAは、全体として、A-3EDAと比較して、溶解終了までの時間が短い傾向がみられた。
 
Figure JPOXMLDOC01-appb-T000003
実施例4 アルギン酸架橋体を用いたラット坐骨神経損傷部の再生誘導
 ラットの坐骨神経(末梢神経)の切断部位にエチレンジアミン架橋のアルギン酸架橋体を設置し、神経再生誘導の効果を評価した。
4-(1)エチレンジアミン架橋アルギン酸架橋体の作製
 実施例1-(4)に従い、A-2とA-3の低エンドトキシンアルギン酸ナトリウムを用いて、エチレンジアミンで共有結合架橋したキセロゲル状のアルギン酸架橋体(それぞれA-2EDA、A-3EDAという)を作製した。このとき架橋体におけるアルギン酸含量は3.0mg/cmとした。架橋体の厚さは約2mm~約8mmであった。
4-(2)直線状の坐骨神経の切断とエチレンジアミン架橋アルギン酸架橋体による再生誘導
 上記4-(1)で作製したA-2EDAとA-3EDAをエタノール滅菌して下記実験に用いた。
 4週齢の雄性Wistarラットを麻酔下で、分岐していない直線状の坐骨神経の周囲の皮膜を剥離して、神経を露出させた。神経の裏側へ糸を入れて神経を糸で結んで神経を上部へ持ちあげ、神経の下の空間に1枚のアルギン酸架橋体を置いた。アルギン酸架橋体の上に位置する神経を切断して、7~8mmの幅のギャップを作製した。その後、神経の切断部位の上にもう1枚のアルギン酸架橋体を置くことにより、2枚のアルギン酸架橋体で神経の切断部を挟むように設置した。2枚のアルギン酸架橋体は、中枢側及び末梢側の両神経断端をカバーできる大きさにして用いた。アルギン酸架橋体は縫合による固定は行わなかった。開いた筋肉を縫合し、皮膚も縫合した。
4-(3)アルギン酸架橋体の回収と再生した神経軸索の評価
 上記4-(2)の施術から8週目に手術部位からアルギン酸架橋体と神経を回収し、架橋体より末梢側の神経を取り出した。取り出した神経は、2.5%グルタールアルデヒドのPBS液で1次固定し、2.0%四酸化オスミウムのPBS液で2次固定を行った。脱水、置換後、エポン樹脂に包埋した。1μmの厚さで薄切して、0.5%トルイジンブルーで染色した。光学顕微鏡下に観察し、有髄軸索の数をカウントした。
 その結果、8週目の末梢側神経において、A-2EDAでは平均493本、A-3EDAでは平均524本の有髄軸索が確認され、アルギン酸架橋体の神経再生誘導効果が確認された。しかし、8週時に回収したアルギン酸架橋体と神経の部分は、アルギン酸架橋体はほとんど吸収されておらず、組織が増大し塊となっていた。
 比較例として実施した、神経の切断のみ行い、アルギン酸架橋体を設置しなかった群では、軸索本数は平均156本 であった。また、神経を切断していない無処置のコントロール群の軸索本数は平均8918本 であった。
4-(4)坐骨神経の分岐部の切断とエチレンジアミン架橋アルギン酸架橋体による再生誘導
 上記4-(1)で作製したA-2EDAを下記実験に用いた。
 4週齢の雄性Wistarラットを麻酔下で、坐骨神経から総腓骨神経と脛骨神経とにY字状に分岐している神経部位を確認し、周囲の皮膜を剥離して神経を露出させた。坐骨神経に糸を結んで神経を上に持ち上げ、神経の下の空間に1枚のアルギン酸架橋体を置いた。神経分岐部を含んで7~8mmのギャップが生じるように、坐骨神経と総腓骨神経と脛骨神経を切断した。その後、神経の切断部位の上にもう1枚のアルギン酸架橋体を置くことにより、2枚のアルギン酸架橋体で神経の切断部を挟むように設置した。2枚のアルギン酸架橋体は、中枢側及び末梢側の神経断端をカバーできる大きさにして用いた。アルギン酸架橋体は縫合による固定は行わなかった。開いた筋肉を縫合し、皮膚も縫合した。
4-(5)アルギン酸架橋体の回収と再生した神経軸索の評価
 4-(4)の施術から4週目に手術部位からアルギン酸架橋体と神経を回収し、架橋体より末梢側の神経を取り出した。抗ベータチューブリンクラス3抗体を軸索に対する抗体として、抗S100抗体(abcam社製)をシュワン細胞に対する抗体として用いて染色を行った。
 その結果、脛骨側断端部及び腓骨側断端部のいずれにおいても軸索の再生が認められた。架橋体を移植した部位では、ゲル表層部に再生軸索を認めた。
実施例5 電子線が照射されたポリグリコール酸を含むアルギン酸架橋体を用いたラット坐骨神経損傷部の再生誘導
5-(1)電子線が照射されたポリグリコール酸を含むエチレンジアミン架橋アルギン酸架橋体の作製
 実施例1-(4)に従い、A-2の低エンドトキシンアルギン酸ナトリウム水溶液にEDA・2HOSuとEDC・HClを溶解させた。得られた溶液を、シート状の不織布のポリグリコール酸(PGA)(100mg/cc,3.0mg/cmNon-woven PGA Biofelt ,Biomedical Structures (USA))を敷いたトレイに充填し、凍結乾燥することによりPGAを含むアルギン酸架橋体を作製し、A-2EDA・PGA100とした。このとき架橋体におけるアルギン酸の含量は2.0mg/cmとした。より詳細には、PGAを敷いたトレイにアルギン酸溶液を充填し、十分にゲル化が進んだ後、未反応の架橋剤および反応副生成物を除去するためにゲルの洗浄を行った。洗浄液は、ECF(Extra Cellular Fluid:精製水に CaCl2(2.5 mM、例えば0.28 g/1 L)とNaCl(143 mM、例えば8.36 g/1 L)を溶解し、0.22μmフィルター(ミリポア社製、ミリパック20等)とエンドトキシン除去フィルター(ミリポア社製、プレップスケールUFカートリッジPLGC CDUF 001 LG)を通じたものを用いた。洗浄液は適宜交換し、その後蒸留水で洗浄し、過剰の塩類を除いてから凍結乾燥した。得られた架橋体の厚さは約2mm~約8mmであった。
 同様に、A-3の低エンドトキシンアルギン酸ナトリウムを用いて作製したアルギン酸架橋体を、A-3EDA・PGA100とした。
 得られた2種類の架橋体には、電子線を吸収線量20kGyで照射した。
5-(2)直線状の坐骨神経に対する再生誘導効果
 実施例5-(1)で得られた2種類の架橋体(A-2EDA・PGA100、及びA-3EDA・PGA100)を、4-(2)、4-(3)に従い、直線状の坐骨神経のギャップに適用し、架橋体の適用から8週後に直線状の坐骨神経のギャップに対する再生誘導効果を評価した。
 その結果、いずれの群でもギャップから末梢側の断端部に向けて有髄神経の再生がみられた。再生した有髄神経の本数は、A-2EDA・PGA100では平均12001本、A-3EDA・PGA100では平均7010本であった。本明細書において、再生した有髄神経の本数は、採取した組織標本中の再生部位と判断した神経束中の有髄神経を全てカウントした。健常ラットの軸索本数は、およそ6700本程度であり、十分な数の有髄神経の再生が得られたことが分かった。
5-(3)坐骨神経の分岐部の欠損に対する再生誘導効果
 実施例5-(1)に準じて、低エンドトキシンアルギン酸ナトリウム(A-2又はA-3)と、シート状の不織布のポリグリコール酸(PGA)(50mg/cc,1.5mg/cm)を用いて2種類のPGAを含むアルギン酸架橋体を作製し、それぞれA-2EDA・PGA50、A-3EDA・PGA50とした。架橋体におけるアルギン酸含量は2.0mg/cmとした。得られた架橋体の厚さは約2mm~約8mmであった。得られた2種類の架橋体には電子線を吸収線量20kGyで照射した。実施例5-(1)で得られた2種類の架橋体(A-2EDA・PGA100、及びA-3EDA・PGA100)と合わせて計4種類のPGAを含むアルギン酸架橋体について、実施例4-(4)に従い施術を行い、架橋体の適用から8週後に坐骨神経の分岐部のギャップに対する再生誘導効果を評価した。
 8週後に外観観察したところ、いずれの群も、坐骨神経から脛骨神経と腓骨神経へと神経組織がつながっていることを認めた。その例として、A-3EDA・PGA50とA-2EDA・PGA100の術後8週の写真をそれぞれ図1、図2に示した。
 また、実施例4-(3)に準じて末梢側断端部より遠位部の神経の横断切片をトルイジンブルーを用いて染色した結果を図3及び図4に示す。図3は、脛骨神経側の再生軸索、図4は腓骨神経側の再生軸索の写真を示す。その結果、脛骨神経側及び腓骨神経側において、有髄軸索の径は長く、数は多く、ミエリンは厚く、十分な再生が認められた。すなわち、本発明の神経再生誘導用材料は、神経分岐部の欠損部に使用した場合、分岐する両方の神経の再生を誘導することが示された。
5-(4)坐骨神経の直線状または分岐部の欠損に対する再生誘導効果(2)
 以下の各試料について、実施例4に従い、ラットの坐骨神経の分岐部のギャップに対する再生誘導効果を、架橋体の適用から8週後に評価した。
 実施例1-(4)に従い、A-2の低エンドトキシンアルギン酸ナトリウムを用いてエチレンジアミン架橋したアルギン酸架橋体(アルギン酸含量2.0mg/cm)を作製し、電子線20kGy照射し、試料番号1とした。
 実施例5-(3)で用いた、A-2EDA・PDA50と、A-2EDA・PDA100をそれぞれ試料番号2、3として、実施例5-(3)で得られた結果を示す。
 実施例5-(1)に従い、A-3の低エンドトキシンアルギン酸ナトリウムとPGA100を用いて架橋体を作製した(A-3EDA・PGA100)。アルギン酸含量を2.0mg/cmとした架橋体を試料番号4、アルギン酸含量を4.0mg/cmとした架橋体を試料番号5とし、これらの架橋体に対しては、電子線15kGyで照射した。
 PGAを含有しないアルギン酸架橋体は、凍結乾燥時に架橋体の形状が歪み、一定の形状の架橋体を得ることが困難であったが、PGAを含有するアルギン酸架橋体は、プレートに充填した形状を維持して凍結乾燥が可能であり、製造効率を高めることができた。
 なお、神経の分岐部の切断のみ行った群を試料番号6として、神経の分岐部の切断を行っていない無処置群を試料番号7として評価した。
各群について、ギャップから末端の脛骨側と腓骨側の再生軸索本数を計数し、その平均値を算出した(n=6~8)。神経の分岐部の欠損部にアルギン酸架橋体を適用する試験の模式図を図5に示す。また、神経の分岐部の切断のみ行った群の平均再生本数が脛骨側で200本、腓骨側で138本であったことを参考に、各群において、脛骨および腓骨とも再生本数が400本以下の軸索は再生不十分として、各群における再生不十分と判断した再生部位の割合を求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 その結果、試料番号1~5では、いずれも脛骨側および腓骨側とも十分な神経軸索の再生を示し、試料番号6の分岐部の切断のみ行った群と比較して、再生軸索の本数が多かった。神経分岐部の切断を行わなかった無処置群(試料番号7)と比較しても、施術後8週の時点では十分な再生効果が得られたことが分かった。
 また、PGAを含有しない架橋体(試料番号1)の再生軸索の本数は、PGAを含有する架橋体(試料番号2および3)の本数と比較して有意な差がみられなかった。このことから、架橋体中のPGAの有無は神経再生効果には有意な影響を与えないことが示された。一方で、再生軸索本数が400本以下の再生不十分の軸索の割合を各群で比較すると、PGAを含有しない架橋体(試料番号1)は33%であったのに対し、試料番号2~5のPGAを含有する架橋体は0%~19%であった。すなわち、PGAを含有するアルギン酸架橋体では、PGAを含有しないアルギン酸架橋体と比較して、再生不十分の例が少ない傾向がみられた。再生不十分の例では、再生神経が、ラットの膝に近い部分で細くなっていた例もあった。これは膝の動きによって架橋体に圧力がかかってちぎれ(断裂し)、架橋体の連続性が失われ、再生が不十分となったと考えられる。PGAを含有するアルギン酸架橋体は、PGAを含有しない架橋体と比較して、強度が高く、膝などの可動部でもゲルがちぎれ(断裂し)にくく、安定的に軸索を再生させ得る可能性が示唆された。PGAを含有しない架橋体(試料番号1)を用いた場合の再生不十分の一例を図6に示す。
 また、実施例1-(4)に従い、A-2の低エンドトキシンアルギン酸ナトリウムを用いて作製され、電子線40kGyまたは60kGy照射したPGAを含有しないアルギン酸架橋体(A-2EDA,アルギン酸含量2mg/cm)について、術後8週時の直線状の神経のギャップに対する再生効果を、実施例5-(2)に準じて評価した。その結果、再生軸索の平均本数は、それぞれ平均267本 、平均275本 と少なかった。術後8週時に患部に架橋体の残存は見られなかった。このように再生軸索本数が少なかった要因を考察すると、これまでの試験から(i)実施例5-(2)で、電子線を20kGy照射したPGAを含有する架橋体は、直線状の神経ギャップに対して十分な神経再生効果を示したこと、(ii)分岐部のギャップに対してではあるが、架橋体のPGAの有無は神経再生効果に有意な影響を与えないこと(表4)が分かっており、これらを考慮すると、電子線量を40kGyまたは60kGyと上昇させたことが、神経再生効果に影響を与えた可能性が示唆された。
 実施例6 アルギン酸架橋体の皮下埋植試験
6-(1)ラット長期間皮下埋植試験(1)
 これまでの試験で、アルギン酸架橋体の体内消失速度(残存率)と神経再生効果の関連が示唆されたため、種々の架橋体について、ラット皮下埋植試験を行い、体内消失速度を検討した。
 実施例1-(4)および実施例5-(1)に従い、A-2またはA-3の低エンドトキシンアルギン酸ナトリウムを用いて作製したアルギン酸架橋体(一部、PGAを含有する架橋体も含む)に対して、電子線量を変更して照射して、試料を作製した。試料の種類は表5のとおりである。試料番号43と44は、それぞれPGA(50mg/cc,1.5mg/cm)、PLGA(50mg/cc,1.5mg/cm)のみを試料とした。縦0.7cm×横1.5cm(厚さは問わない)のサイズの各試料を、ラット背面部の皮下に埋植し、4週間後に組織学的に評価した。組織学的評価は、次のように作製した標本により評価した。すなわち、常法に従ってパラフィン包埋ブロックを作製し、ヘマトキシリン・エオジン染色、およびサフラニン-O染色を行った。試料の残存性を5段階のスコアで評価した。すなわち、各試料について、試料残存なしを0、ごくわずかに残存を1、わずかに残存を2、中等度に残存を3、顕著に残存を4として、各群n=3または6で評価しその平均値をその試料の残存スコアとした。
 結果を表5に示す。その結果、A-2の低エンドトキシンアルギン酸ナトリウムを用いて作製したアルギン酸架橋体のA-2EDAは、同じアルギン酸含量の架橋体においては、電子線量が上昇するに従い、残存スコアは低下する傾向がみられた。また、アルギン酸含量が増加すると、残存スコアは上昇する傾向がみられた。A-3の低エンドトキシンアルギン酸ナトリウムを用いて作製したアルギン酸架橋体のA-3EDAについても同じ傾向がみられた。A-2EDAとA-3EDAとを比較すると、アルギン酸含量と電子線量が同じであれば、A-3EDAは、A-2EDAと比較して、残存スコアが上昇する傾向がみられた。
Figure JPOXMLDOC01-appb-T000005
実施例6-(2)ラット長期間皮下埋植試験(2)
 実施例1-(4)および実施例5-(1)に従い、表6のとおり試料を作製し、6-(1)と同様にラット背面部の皮下に埋植し、8週間後と12週間後に、試料の残存性について組織学的評価を行った。組織学的評価は、次のように作製した標本により評価した。すなわち、埋植した皮下組織を摘出し、10%中性緩衝ホルマリン溶液で固定後、組織を切り出し、パラフィン包埋ブロックを作製し、ヘマトキシリン・エオジン染色、およびサフラニン-O染色を行った。試料の残存性を5段階のスコアで評価した。すなわち、各試料について、試料残存なしを0、ごくわずかに残存を1、わずかに残存を2、中等度に残存を3、顕著に残存を4として、各群n=3で評価し、その平均値をその試料の残存スコアとした。
Figure JPOXMLDOC01-appb-T000006
 その結果、各試料とも8週、12週と次第に残存スコアが低下した。試料番号51と52との残存率の比較から、PGA添加は残存率に大きな影響を与えないと考えられた。また、試料番号52と53との比較から、アルギン酸含量を増加させることにより、試料の残存率が上昇することが示された。試料番号52、53は、表4の試料番号4、5として、試料番号54は、実施例5-(3)で神経再生効果が確認された架橋体である。このように、神経再生誘導用材料を用いてラット背面部に皮下埋植試験を行うとき、埋植から8週後~12週後の患部の組織学的評価により、試料の残存が確認されることも神経再生効果にとって望ましい要素のひとつと考えられた。
 実施例7 アルギン酸架橋体の水中分解性試験
 アルギン酸架橋体の分解性をin vitro試験で評価した。
 縦1cm×横1cmのサイズ(厚さは問わない)に裁断した試料4個を50mLの容遠沈管(ガラス製)に入れ、生理食塩液25mLを加えた後、恒温振とう水槽で振とうし、経時的に試料の変化を観察した。試料の縦横の裁断面は垂直に交わるように裁断した。各試料の厚さは、約2mm~約8mmであった。測定時点は開始から4時間時、1日(24時間)、2日(48時間)、3日(72時間)、4日(96時間)、5日(120時間)および6日(144時間)とした。試料は、試験開始前に秤量した。各測定時においては、測定後の液を孔径10μmのメンブランフィルター(メルク製、オムニポア)で減圧ろ過し、ろ取した残分の画像を取得した後、恒量になるまで減圧乾燥(60℃)した。残存した試料を秤量し、試験開始前の試料量に対する割合を、残存率(%)として算出した。
 恒温振とう水槽(トーマス科学器械製、T-N22S型、温調;ヤマト科学製、CTA401S)の振とう数は、往復120回/分とした。溶媒温度は、恒温振とう水槽の設定温度として、50℃とした。
 実施例5-(3)(4)においてラット神経再生効果が確認された試料番号61~64、および電子線を照射していない架橋体について評価した。評価した架橋体を表7に示す。試料番号66は、実施例4-(2)でラットの試験でエタノール滅菌して用いた架橋体と同じ組成である。試料68は、実施例5-(1)に準じて、PGAに替えてPLGA(50mg/cc,1.5mg/cm)を用いて同様に作製された架橋体を試料とした。
Figure JPOXMLDOC01-appb-T000007
 結果を図7に示す。その結果、試料番号61~64の架橋体は、経時的に残存率が低下する傾向がみられ、試験開始から3日後(72時間後)の残存率は約20%~約70%の範囲を示した。一方、PGAを含有せず、電子線を照射していない架橋体である試料65と66は、残存率が上昇した。PGAまたはPLGAを含有する、電子線を照射していない架橋体である試料67と68は、残存率は経時的な低下がみられたが、試験開始から3日後(72時間後)の残存率は80%以上を示した。
 以上より、当該試験において、試験開始から3日後(72時間後)の架橋体の残存率が、約20%~約80%を範囲とする架橋体が、神経再生にとって好ましいことが示唆された。
 電子線とγ線とを線量を変更して照射した架橋体について同様に評価した。評価した架橋体は、表8のとおりである。試料番号71は、実施例5-(4)でラット神経再生効果が確認された架橋体である。
Figure JPOXMLDOC01-appb-T000008
 結果を図8に示す。その結果、電子線を照射した架橋体である試料番号71と72は、同様に経時的に残存率が低下する傾向がみられたが、開始直後の4時間後の残存率を両者で比較すると、電子線量が15kGyの試料71と比較して、電子線量が30kGyの試料72の残存率が低かった。γ線を照射した架橋体である試料番号73~75も、電子線照射した架橋体と同様に、経時的に残存率が低下する傾向がみられた。また、試料番号73~75の中では、γ線線量が50kGyの試料75は、開始直後の4時間後の残存率が約50%程度まで低下した。この結果から、電子線およびγ線は、照射線量を上昇させることにより、開始直後の残存率が低下することが示唆された。神経のギャップに架橋体を設置して神経の再生を促す場合、架橋体が設置後早い時期に消失すると、神経の再生の初期の足場となることができないと考えられる。実施例5-(4)に記載したとおり、電子線量40kGyまたは60kGyで照射した架橋体が、直線状の神経ギャップの再生効果が高くなかったのは、設置当初から架橋体が消失してしまい、神経の足場としての役目を果たせなかった可能性が考えられた。
 実施例5-(1)に従い、PGAに替えてPLGA(50mg/cc,1.5mg/cm)を用いて同様に作製した架橋体とPGAを含有する架橋体とで同様に分解性を比較した。評価した架橋体は、表9のとおりである。試料番号84は、実施例5-(3)において、試料番号85は、実施例5-(4)において、神経再生効果が確認された架橋体である。
 
Figure JPOXMLDOC01-appb-T000009
 結果を図9に示す。その結果、PLGAを含有する試料は、PGAを含有する試料と同様に、残存率は経時的に低下した。PLGAを含有する試料番号81と82と、PGAを含有する試料番号83、84、85とでは、ともに電子線量が高い試料ほど開始から4時間後の残存率が低い傾向がみられ、その後は同様に残存率が低下することが示された。このように、PLGAは架橋体の材料としてPGAに替えて同様に使用できることが示唆された。
実施例8  正常ヒト皮膚線維芽細胞に対する架橋体の効果
 実施例1-(4)に従い作製されたエチレンジアミンで架橋されたアルギン酸架橋体と市販のコラーゲンスポンジについて、正常ヒト皮膚線維芽細胞(NHDF:Normal Human Dermal Fibroblasts)の細胞接着性および細胞増殖性を評価し比較した。NHDFなど線維芽細胞は神経再生のためのスペースに移動・増殖して神経再生を妨げると考えられる。
 試料は、(1)A-2EDA、(2)A-3EDA、(3)ウシコラーゲンスポンジ(SpongeCol(登録商標), Advanced BioMatrix社製)、(4)2Dコントロール(組織培養皿)の4群とした。各試料の大きさは、(1)および(2)は縦約5mm×横約5mm×厚さ約2mm~約7mm、(3)は直径4mm円形×厚さ約1mmとした。各試料に細胞10個を播種し、培地中で1日、4日間培養後、試料に接着していない細胞を分離するため、各試料を新しいウエルに移動した後、各試料に接着している細胞数をWST-8試薬を用いて、450nmの吸光度で評価した。培地は、10%FCS/EMEMとした。
 NHDFの接着と増殖の結果を図10に示す。その結果、培養1日後に、A-2EDAおよびA-3EDAの架橋体には、NHDFがコラーゲンスポンジと同程度接着したが、その後、細胞数は減少した。一方、コラーゲンスポンジでは、細胞数が増加したことが示された。このように、アルギン酸架橋体は、コラーゲンスポンジと比較して、神経再生を妨げる線維芽細胞の接着、増殖を抑制することが示された。
実施例9  ラット海綿体神経叢除去モデルに対する神経再生効果
9-(1)ラット海綿体神経叢除去モデルの作製
 ラットを2%イソフルランの吸入による麻酔下にて、仰臥位に固定した。下腹部を正中切開し、顕微鏡下で骨盤内を展開し、骨盤神経叢および海綿体神経を露出させた。治療群と無治療群は、海綿体神経を確保した後、網目状に分岐している神経叢を横断するように海綿体神経を約2mm切除した。左右同様に処置した。治療群は、実施例5-(1)に準じて作製したPGAを含有するアルギン酸架橋体(A-3EDA・PGA100)を、神経切除断端を十分被覆するように置き、縫合固定した。無治療群は、神経切除のみ行った。正常コントロール群は、海綿体神経切除を行わなかった。その後、下腹部の筋層および皮膚を縫合した。手術前に、ベンジルペニシリンカリウムを20000units/kg用量で筋肉内注射した。また、鎮痛剤ブプレノルフィン0.01mg/kg用量を1日2回3日間1mL/kgの容量で皮下投与した。各群n=3で行った。
9-(2) 交尾行動の確認
 9-(1)の処置から4週後、および7週後に、各群3匹は、発情を確認した雌と金網製の床網を敷いたケージで同居させた。翌日、メスの膣プラグ(copulatory plug)の有無により、交尾行動の有無を確認した。なお、プラグが確認できなかったラットは7日目まで観察を続けて判定した。
 その結果、各群3匹中、交尾行動がみられた(メスの膣プラグ有り)ラットの割合を表10に示す。その結果、海綿体神経切除を行っていない正常コントロールは100%で交尾行動がみられたが、海綿体神経を切除した無治療群は、4週後および7週後とも交尾行動は全くみられなかった。一方、海綿体神経の切除後に前記アルギン酸架橋体を置いた治療群は、4週後および7週後とも2/3で交尾行動が見られた。このことから、アルギン酸を含有する架橋体は、海綿体神経における網目状構造の神経叢自体が切除された損傷部を、施術から4週後という早い時期に再生させ、正常な交尾行動を行うことができるまでに機能を回復させたことが示された。
Figure JPOXMLDOC01-appb-T000010
実施例10 アルギン酸架橋体の引き裂き試験
 表11の6種のアルギン酸架橋体について、手術で架橋体を縫合する場合を想定し、引き裂き試験を行い、各試料の強度を比較した。
 試料番号101と104は、PGAを含有しないアルギン酸架橋体であり、その他の試料は、PGAを含有するアルギン酸架橋体であり、それぞれ、実施例1-(4)、実施例5-(1)の記載に従い作製した。試料番号101~103は、電子線を照射しておらず、試料番号104~106は、電子線を15kGyで照射した。
 試験方法は以下のとおりである。試験方法の模式図を図11に示す。各試料を、縦2cm×横2cmのサイズ(厚さは問わない)となるように裁断した。ここで縦と横の裁断面は垂直に交わるものとした。このとき各試料の厚さは約2mm~約8mmであった。その裁断面の1つから5mm離れた位置で該材料を挟むようにダブルクリップ(把持部の幅が約15mm)で把持した(把持部A)。該試料の把持部Aに相対する裁断面(B)から10mmまでの部分全体を生理食塩水に15分間浸漬した。該試料の裁断面(B)から5mm離れた位置の中央部に、針付き縫合糸(バイクリル(登録商標)、4-0、丸針SH-1)を貫通させ、縫合糸の両端を器具に固定した。前記把持部Aを、試料の正方形面に水平に、速度10mm/分で引っ張った。縫合糸の付近で各試料が裂けるまで引っ張り続け、引っ張る荷重を試験力として測定した。引っ張り荷重の測定は、小型物性試験機(EZ-graph,島津製作所製)を用いて行った。各試料ともn=5で測定し、試験力の最大点(最大試験力)の平均値を求めた。
Figure JPOXMLDOC01-appb-T000011
 結果を図12に示す。その結果、電子線を照射していない架橋体(試料番号101~103)と、電子線照射した架橋体(試料番号104~106)のそれぞれにおいて、PGAを含有する架橋体は、PGAを含有しない架橋体と比較して、最大試験力(N)が高かった。また、電子線照射した架橋体(試料番号104~106)は、電子線を照射していない架橋体(試料番号101~103)と比較して、全体的に最大試験力はやや低下した。
 別途、これらの架橋体について、手術での縫合手技、架橋体の設置部位への固定を想定した縫合試験を行ったところ、PGAを含有しない架橋体(試料番号101および104)は、縫合糸を固く結ぶと架橋体がちぎれてしまい、縫合が不可能であったが、PGAを含有する試料番号102、103、105、106は十分に縫合が可能な強度を有していた。引き裂き強度の結果、アルギン酸含量の2mg/cm2と4mg/cm2は含量による差は大きくなく、引き裂き試験および縫合試験の結果は、もっぱらPGAの有る、無しの差に因ることが大きいと考えられた。これらのことから、縫合が可能な架橋体とするためには、上記試験において、試験力が0.10(N)を超える架橋体が望ましいと考えられた。
 

Claims (15)

  1.  (A)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類が、下記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬で共有結合架橋された架橋体、並びに(B)生体内吸収性高分子を含む、神経の損傷部の再生のために用いられる非管状の神経再生誘導用材料。
     RHN-(CH-NHR  (I)
    [式中、RおよびRはそれぞれ独立して水素原子または式:-COCH(NH)-(CH-NHで表される基を示し、nは2~18の整数を示す。]
  2.  分子内にカルボキシル基を有する生体内吸収性多糖類が、アルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種である、請求項1に記載の神経再生誘導用材料。
  3.  架橋性試薬が、上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩である請求項1または2のいずれかに記載の神経再生誘導用材料。
  4.  上記の一般式(I)で表される化合物のN-ヒドロキシコハク酸イミド塩が、ジアミノエタンの2N-ヒドロキシコハク酸イミド塩、ジアミノヘキサンの2N-ヒドロキシコハク酸イミド塩、N,N’-ジ(リジル)-ジアミノエタンの4N-ヒドロキシコハク酸イミド塩、および、N-(リジル)-ジアミノヘキサンの3N-ヒドロキシコハク酸イミド塩からなる群から選択される少なくとも1種である請求項3記載の神経再生誘導用材料。
  5.  キセロゲルの形態である、請求項1ないし4のいずれか1項に記載の神経再生誘導用材料。
  6.  生体内吸収高分子が、ポリグリコール酸、ポリ乳酸、およびそれらの共重合体、並びに、ポリカプロラクトンからなる群から選択される少なくとも1種である、請求項1ないし5のいずれか1項に記載の神経再生誘導用材料。
  7.  電子線及び/又はγ線が吸収線量1kGy~100kGyで照射された、請求項1ないし6のいずれか1項に記載の神経再生誘導用材料。
  8.  前記材料を、縦2cm×横2cmのサイズ(厚さは問わない)となるように裁断し、その裁断面の1つから5mm離れた位置で該材料を挟むようにダブルクリップで把持し(把持部A)、該材料の把持部Aに相対する裁断面(B)から10mmまでの領域を生理食塩水に15分間浸漬した後、該材料の該裁断面(B)から5mm離れた位置の中央部に、針付き縫合糸を貫通させて、縫合糸の両端を器具に固定し、該把持部Aを材料の正方形面に水平に、速度10mm/分で引っ張る引き裂き試験を行ったときの最大試験力(荷重)が、0.10(N)~10.0(N)である、請求項1ないし7のいずれか1項に記載の神経再生誘導用材料。
  9.  前記材料中のアルギン酸、そのエステルおよびその塩からなる群から選択される少なくとも1種の含量が、アルギン酸ナトリウムに換算して、0.2mg/cm~12mg/cmである、請求項2ないし8のいずれか1項に記載の神経再生誘導剤用材料。
  10.  前記材料中の生体内吸収性高分子の含量が、0.05mg/cm~30mg/cmである、請求項1ないし9のいずれか1項に記載の神経再生誘導剤用材料。
  11.  末梢神経および/または中枢神経の損傷部の再生のために用いられる、請求項1ないし10のいずれか1項に記載の神経再生誘導剤用材料。
  12.  神経の分岐部および/または神経叢部の損傷部の再生のために用いられる、請求項1ないし11のいずれか1項に記載の神経再生誘導剤用材料。
  13.  神経の分岐部および/または神経叢部の損傷部が、前立腺、膀胱、陰茎海綿体、腕、四肢、脳、脊髄、顔面、頸、腰、仙骨、腰仙骨、陰部、心臓、腹腔、下下腹、骨盤、胸腔内及び腸壁内からなる群から選択される少なくとも1種に存在する、請求項12に記載の神経再生誘導用材料。 
  14.  腫瘍切除、リンパ節の郭清、および/または外傷に伴う神経損傷部の再生、並びに、組織再建に伴う神経損傷部の再生からなる群から選択される少なくとも1種の神経損傷部の再生のために用いられる、請求項1ないし13のいずれか1項に記載の神経再生誘導用材料。
  15.  少なくとも以下の工程を含む神経再生誘導用材料を製造する方法。
    (1)低エンドトキシンの分子内にカルボキシル基を有する生体内吸収性多糖類を含む溶液と、上記の一般式(I)で表される化合物およびその塩から選択される少なくとも1種の架橋性試薬とを混合する工程、
    (2)(1)で得られた混合物と、生体内吸収性高分子とを型に入れて一定時間静置し、架橋体とする工程、
    (3)(2)で得られた架橋体を洗浄し、その後、凍結乾燥する工程、
    (4)(3)で得られた架橋体に対して、電子線および/またはγ線を照射する工程。
PCT/JP2017/010274 2016-03-14 2017-03-14 神経再生誘導材 WO2017159700A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/083,600 US11052174B2 (en) 2016-03-14 2017-03-14 Nerve regeneration-inducing material
JP2017564746A JP6320659B2 (ja) 2016-03-14 2017-03-14 神経再生誘導材
CN201780016355.1A CN108883306A (zh) 2016-03-14 2017-03-14 神经再生诱导材料
EP17766697.1A EP3431140B1 (en) 2016-03-14 2017-03-14 Nerve regeneration-inducing material
CA3017310A CA3017310C (en) 2016-03-14 2017-03-14 Nerve regeneration-inducing material
US17/334,350 US20210283304A1 (en) 2016-03-14 2021-05-28 Nerve regeneration-inducing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-049955 2016-03-14
JP2016049955 2016-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/083,600 A-371-Of-International US11052174B2 (en) 2016-03-14 2017-03-14 Nerve regeneration-inducing material
US17/334,350 Division US20210283304A1 (en) 2016-03-14 2021-05-28 Nerve regeneration-inducing material

Publications (1)

Publication Number Publication Date
WO2017159700A1 true WO2017159700A1 (ja) 2017-09-21

Family

ID=59852156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010274 WO2017159700A1 (ja) 2016-03-14 2017-03-14 神経再生誘導材

Country Status (6)

Country Link
US (2) US11052174B2 (ja)
EP (1) EP3431140B1 (ja)
JP (4) JP6320659B2 (ja)
CN (1) CN108883306A (ja)
CA (1) CA3017310C (ja)
WO (1) WO2017159700A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138583A1 (ja) * 2018-01-15 2019-07-18 持田製薬株式会社 癒着防止用組成物
EP3593807A4 (en) * 2017-03-07 2020-12-16 Mochida Pharmaceutical Co., Ltd. LIQUID FORMULATION BASED ON ALGINATE
US11464597B2 (en) 2016-07-13 2022-10-11 The University Of Tokyo Adhesion-preventing composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592808B (zh) * 2019-09-02 2020-11-24 中科纺织研究院(青岛)有限公司 一种海藻改性pp纺粘无纺布
CN111544069A (zh) * 2020-06-10 2020-08-18 叶晓峰 自愈合神经吻合装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013136A1 (en) 1991-12-20 1993-07-08 Howmedica Inc. Ultra-pure polysaccharide materials for medical use
JPH08269102A (ja) 1995-03-30 1996-10-15 Shiseido Co Ltd エンドトキシンフリーのβ1,3−グルカン及びその製造法並びに医療用ゲル素材
US5589591A (en) 1986-07-03 1996-12-31 Advanced Magnetics, Inc. Endotoxin-free polysaccharides
JPH09324001A (ja) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd ヒアルロン酸ナトリウムの精製法
JP2000198738A (ja) * 1998-10-27 2000-07-18 Kuraray Co Ltd 神経再生用材料
JP2000237294A (ja) 1999-02-18 2000-09-05 Denki Kagaku Kogyo Kk ヒアルロン酸ゲルを含有する医用材料
JP2002078792A (ja) * 2000-09-07 2002-03-19 Kuraray Co Ltd 神経再生用材料
JP2002530440A (ja) 1998-11-13 2002-09-17 シーピー ケルコ ユー.エス.インク. エンドトキシンレベルが低い生体高分子塩、その生体高分子組成物およびこれを製造する方法
JP2005036036A (ja) 2003-07-16 2005-02-10 Tanabe Seiyaku Co Ltd エンドトキシン除去方法
US20050069525A1 (en) * 2001-11-16 2005-03-31 Wiberg Mikael Nerve repair unit and method of producing it
JP2005270237A (ja) * 2004-03-23 2005-10-06 Kuraray Medical Inc 神経再生用材料及び神経再生材
US20070203564A1 (en) 2006-02-28 2007-08-30 Boston Scientific Scimed, Inc. Biodegradable implants having accelerated biodegradation properties in vivo
JP2013509963A (ja) * 2009-11-09 2013-03-21 スポットライト テクノロジー パートナーズ エルエルシー 断片化ヒドロゲル
JP2013165884A (ja) 2012-02-16 2013-08-29 Doshisha 生体組織補強材料キット及び生体組織補強材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416918A (zh) 2001-10-29 2003-05-14 马利安·L·拉森 经保形膜的药物传送
JP4986273B2 (ja) * 2005-09-15 2012-07-25 持田製薬株式会社 アルギン酸を含む創傷被覆材
US8221744B2 (en) * 2007-09-19 2012-07-17 Abbott Cardiovascular Systems Inc. Cytocompatible alginate gels
WO2009094225A2 (en) * 2008-01-25 2009-07-30 The Johns Hopkins University Biodegradable nerve guides
EP2380601B1 (en) * 2010-04-15 2013-03-20 National University of Ireland, Galway Multichannel collagen nerve conduit for nerve repair
CN105169486B (zh) 2015-10-11 2018-04-03 温州医科大学 一种结合去细胞神经应用的神经修复材料

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589591A (en) 1986-07-03 1996-12-31 Advanced Magnetics, Inc. Endotoxin-free polysaccharides
WO1993013136A1 (en) 1991-12-20 1993-07-08 Howmedica Inc. Ultra-pure polysaccharide materials for medical use
JPH08269102A (ja) 1995-03-30 1996-10-15 Shiseido Co Ltd エンドトキシンフリーのβ1,3−グルカン及びその製造法並びに医療用ゲル素材
JPH09324001A (ja) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd ヒアルロン酸ナトリウムの精製法
JP4531887B2 (ja) 1998-10-27 2010-08-25 株式会社クラレ 神経再生用材料
JP2000198738A (ja) * 1998-10-27 2000-07-18 Kuraray Co Ltd 神経再生用材料
JP2002530440A (ja) 1998-11-13 2002-09-17 シーピー ケルコ ユー.エス.インク. エンドトキシンレベルが低い生体高分子塩、その生体高分子組成物およびこれを製造する方法
JP2000237294A (ja) 1999-02-18 2000-09-05 Denki Kagaku Kogyo Kk ヒアルロン酸ゲルを含有する医用材料
JP2002078792A (ja) * 2000-09-07 2002-03-19 Kuraray Co Ltd 神経再生用材料
US20050069525A1 (en) * 2001-11-16 2005-03-31 Wiberg Mikael Nerve repair unit and method of producing it
JP2005036036A (ja) 2003-07-16 2005-02-10 Tanabe Seiyaku Co Ltd エンドトキシン除去方法
JP2005270237A (ja) * 2004-03-23 2005-10-06 Kuraray Medical Inc 神経再生用材料及び神経再生材
US20070203564A1 (en) 2006-02-28 2007-08-30 Boston Scientific Scimed, Inc. Biodegradable implants having accelerated biodegradation properties in vivo
JP2013509963A (ja) * 2009-11-09 2013-03-21 スポットライト テクノロジー パートナーズ エルエルシー 断片化ヒドロゲル
JP2013165884A (ja) 2012-02-16 2013-08-29 Doshisha 生体組織補強材料キット及び生体組織補強材料

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
APPL. MICROBIOL. BIOTECHNOL., vol. 40, 1994, pages 638 - 643
EXP. BRAIN RES., vol. 146, 2002, pages 356 - 368
J. BIOMED. MATER. RES., vol. 49, 2000, pages 528 - 533
J. BIOMED. MATER. RES., vol. 71A, no. 4, 2004, pages 661 - 668
J. MATERIALS SCIENCE: MATERIALS IN MEDICINE, vol. 16, 2005, pages 503 - 509
J. SEX. MED., vol. 11, 2014, pages 1148 - 1158
JAPANESE JOURNAL OF UROLOGICAL SURGERY, vol. 22, no. 2, 2009, pages 133 - 138
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 54, 2001, pages 373 - 384
JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 215, no. 10, 2005, pages 867 - 873
JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE, vol. 16, 2005, pages 503 - 509
JOURNAL OF NEUROTRAUMA, vol. 18, no. 3, 2001, pages 329 - 338
MINAKO ISHIKAWA ET AL.: "Kanjo Kozo denai Gel-jo no Jinko Shinkeiyo Zairyo ni yoru Massho Shinkei Bunkibu no Shinkei Chiyu Katei no Shinchiken", DAI 24 KAI JAPAN SOCIETY OF PLASTIC AND RECONSTRUCTIVE SURGERY KISO GAKUJUTSU SHUKAI PROGRAM·SHOROKUSHU, 2015, pages 114, XP009515479 *
NEUROSCIENCE LETTERS, vol. 259, 1999, pages 75 - 78
SCANDINAVIAN JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY AND HAND SURGERY, vol. 36, 2002, pages 135 - 140
THE JAPANESE JOURNAL OF UROLOGY, vol. 96, no. 2, 2005, Retrieved from the Internet <URL:http://togodb.dbcls.jp/yokou_abstract/show/200501884320564>
THE JAPANESE JOURNAL OF UROLOGY, vol. 97, no. 2, 2006, Retrieved from the Internet <URL:http://togodb.dbcls.jp/yokou_abstract/show/200601893130275>
THE JAPANESE JOURNAL OF UROLOGY, vol. 98, no. 2, 2007, Retrieved from the Internet <URL:http://togodb.dbcls.jp/yokou_abstract/show/200701846760209 WS5-6>
THE JOURNAL OF UROLOGY, vol. 173, no. 4, 2005, pages 333
THE JOURNAL OF UROLOGY, vol. 75, no. 4, 2006, pages 421
TISSUE ENGINEERING AND REGENERATIVE MEDICINE, vol. 11, no. 2, 2014, pages 64 - 71
UROLOGY VIEW, vol. 4, no. 4, pages 74 - 79
UROLOGY, vol. 68, 2006, pages 1366 - 1371
Y. SUZUKI ET AL.: "Cat peripheral nerve regeneration across 50mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel.", NEUROSCIENCE LETTERS, vol. 259, no. 2, 1999, pages 75 - 78, XP055545091 *
Y.SUZUKI ET AL.: "Nontubulation Repair of Peripheral Nerve Gap Using Heparin/Alginate Gel Combined with b-FGF", PRS GLOBAL OPEN, vol. 4, no. 1, January 2016 (2016-01-01), pages 1 - 3, XP055545095 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11464597B2 (en) 2016-07-13 2022-10-11 The University Of Tokyo Adhesion-preventing composition
US11890145B2 (en) 2016-07-13 2024-02-06 The University Of Tokyo Adhesion-preventing composition
EP3593807A4 (en) * 2017-03-07 2020-12-16 Mochida Pharmaceutical Co., Ltd. LIQUID FORMULATION BASED ON ALGINATE
EP4295838A3 (en) * 2017-03-07 2024-01-17 Mochida Pharmaceutical Co., Ltd. Alginate liquid formulation
US11969437B2 (en) 2017-03-07 2024-04-30 Mochida Pharmaceutical Co., Ltd. Alginate liquid preparation
WO2019138583A1 (ja) * 2018-01-15 2019-07-18 持田製薬株式会社 癒着防止用組成物
CN111936175A (zh) * 2018-01-15 2020-11-13 持田制药株式会社 防粘连用组合物
JPWO2019138583A1 (ja) * 2018-01-15 2021-01-28 持田製薬株式会社 癒着防止用組成物
JP7161496B2 (ja) 2018-01-15 2022-10-26 持田製薬株式会社 癒着防止用組成物

Also Published As

Publication number Publication date
JP6320659B2 (ja) 2018-05-09
CN108883306A (zh) 2018-11-23
CA3017310A1 (en) 2017-09-21
JP6926025B2 (ja) 2021-08-25
EP3431140A1 (en) 2019-01-23
JP7271615B2 (ja) 2023-05-11
US20210283304A1 (en) 2021-09-16
JPWO2017159700A1 (ja) 2018-03-29
JP2023099367A (ja) 2023-07-12
US20190083678A1 (en) 2019-03-21
CA3017310C (en) 2023-09-26
US11052174B2 (en) 2021-07-06
EP3431140A4 (en) 2019-11-13
EP3431140B1 (en) 2024-03-27
JP2018140184A (ja) 2018-09-13
JP2021176584A (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
JP7271615B2 (ja) 神経再生誘導材
US9023379B2 (en) Biodegradable tissue composition with biodegradable cross-linkers
Yoo et al. Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel
Luis et al. PLGA 90/10 and caprolactone biodegradable nerve guides for the reconstruction of the rat sciatic nerve
Santos et al. PEOT/PBT guides enhance nerve regeneration in long gap defects
Chen et al. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury
Yen et al. Novel electrospun poly (ε-caprolactone)/type I collagen nanofiber conduits for repair of peripheral nerve injury
Askarzadeh et al. Bilayer Cylindrical Conduit Consisting of Electrospun Polycaprolactone Nanofibers and DSC Cross‐Linked Sodium Alginate Hydrogel to Bridge Peripheral Nerve Gaps
Luis et al. Evaluation of two biodegradable nerve guides for the reconstruction of the rat sciatic nerve
Cicero et al. Polybutylene succinate artificial scaffold for peripheral nerve regeneration
Chang et al. Highly permeable genipin‐cross‐linked gelatin conduits enhance peripheral nerve regeneration
KR102014248B1 (ko) 이상 인산 칼슘이 탑재된 탈세포화된 돼지 피부 유래 주입형 세포외 기질 기반 하이드로겔의 제조방법
RU2517117C2 (ru) Способ стимулирования регенерации нерва с помощью наноструктурированного матрикса и генетических конструкций
KR101256550B1 (ko) 유착방지기능을 갖는 수술용 메쉬 복합체 및 이의 제조 방법
JP7023288B2 (ja) 脳損傷修復材
CN114699560A (zh) 用于促进缺损性神经再生的双层管状产品
Yan et al. PDLLA/β-TCP/HA/CHS/NGF sustained-release conduits for peripheral nerve regeneration
EP3697461A1 (en) Porous material
DE ROSE DANNO NERVOSO PERIFERICO E SVILUPPO DI POLIMERI BIOATTIVI PER RIGENERAZIONE NERVOSA
Shirosaki et al. Nerve regeneration by using of chitosan-silicate hybrid porous membranes
KR20240057836A (ko) 콜라겐, 및 폴리카프로락톤을 포함하는 치유성이 개선된 다공성 치주조직 재생용 차폐막 및 이의 제조방법
Jansen et al. Evaluation of morphological and functional nerve recovery of rat sciatic nerve with a Hyaff11-based nerve guide

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017564746

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3017310

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766697

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766697

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766697

Country of ref document: EP

Kind code of ref document: A1