WO2017154561A1 - Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器 - Google Patents

Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器 Download PDF

Info

Publication number
WO2017154561A1
WO2017154561A1 PCT/JP2017/006428 JP2017006428W WO2017154561A1 WO 2017154561 A1 WO2017154561 A1 WO 2017154561A1 JP 2017006428 W JP2017006428 W JP 2017006428W WO 2017154561 A1 WO2017154561 A1 WO 2017154561A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
soft magnetic
magnetic material
based alloy
alloy composition
Prior art date
Application number
PCT/JP2017/006428
Other languages
English (en)
French (fr)
Inventor
寿人 小柴
水嶋 隆夫
貴郁 日比野
輝夫 尾藤
Original Assignee
アルプス電気株式会社
公立大学法人秋田県立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社, 公立大学法人秋田県立大学 filed Critical アルプス電気株式会社
Priority to KR1020187019659A priority Critical patent/KR102231316B1/ko
Priority to CN201780007609.3A priority patent/CN108603272B/zh
Priority to JP2018504344A priority patent/JP6548059B2/ja
Publication of WO2017154561A1 publication Critical patent/WO2017154561A1/ja
Priority to US16/035,302 priority patent/US10950374B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to an Fe-based alloy composition, and more particularly to an Fe-based alloy composition used as a soft magnetic material. Further, the present invention relates to a soft magnetic material comprising the above-described Fe-based alloy composition, a magnetic member including the soft magnetic material, an electric / electronic related component including the magnetic member, and an apparatus including the electric / electronic related component. .
  • a soft magnetic material having excellent magnetic properties a soft magnetic material having excellent magnetic properties
  • a soft magnetic material containing an amorphous phase herein also referred to as “amorphous soft magnetic material” has attracted attention.
  • amorphous soft magnetic materials is a substantially spherical powder formed by a water atomization method formed using a Fe-based alloy composition, and the powder contains Fe as a main component, P, C,
  • the temperature interval of the supercooled liquid (supercooled liquid region) represented by the formula of ⁇ T x T x ⁇ T g (wherein T x represents a crystallization start temperature and T g represents a glass transition temperature) at least including B.
  • Amorphous soft magnetic alloy powder characterized by comprising an amorphous phase having ⁇ T x of 20 K or more Patent Document 1.
  • Amorphous soft magnetic alloy powder described in Patent Document 1 (amorphous soft magnetic material) has a glass transition temperature T g, processing the powder obtained (molding can be mentioned is. Specific examples) and An annealing process (specifically, it is performed by heating for a predetermined time) for removing a strain during processing from a magnetic member (a dust core is given as a specific example) is facilitated. Therefore, given as electrical and electronic related parts (inductors embodiment comprises a magnetic member containing amorphous magnetic material having a glass transition temperature T g as amorphous soft magnetic alloy powder described in Patent Document 1 .) Are easily obtained with excellent magnetic properties. In particular, when the temperature range of the supercooled liquid region ⁇ T x is wide, the temperature range and heating time allowed for the annealing process become wide, and the annealing process can be performed more stably.
  • an amorphous soft magnetic material having a glass transition temperature Tg
  • the inclusion of P as a semimetal element is substantially Was essential.
  • P is an excellent amorphizing element, but it may be a hindrance to the enhancement of the magnetic properties of the obtained amorphous soft magnetic material, in particular the saturation magnetization Js (unit: T).
  • an amorphous soft magnetic material (also referred to as "Fe-based amorphous soft magnetic material" in the present specification) composed of an Fe-based alloy composition is obtained by rapidly cooling a molten metal of an Fe-based alloy composition having a predetermined composition.
  • P in the molten metal easily evaporates, and it becomes difficult to stabilize the composition of the Fe-based alloy composition in the process of manufacturing the amorphous soft magnetic material.
  • P evaporated from the molten metal adheres to the manufacturing equipment around the molten metal and causes contamination to other steel types, or cleaning takes time to prevent this, which may lower the workability. there were.
  • the present invention relates to a can forming a Fe-based amorphous soft magnetic material having a glass transition temperature T g, and an object thereof is to provide a substantially Fe-based alloy composition containing no P.
  • the present invention also aims to provide an Fe-based amorphous soft magnetic material having a glass transition temperature T g contains substantially no P.
  • the present invention provides a magnetic member including the Fe-based amorphous soft magnetic material having the above glass transition temperature Tg , an electric / electronic related component including the magnetic member, and an apparatus including the electric / electronic related component. The purpose is also to do.
  • the present inventors have found to solve the above problems have been studied, in order to obtain a Fe-based amorphous soft magnetic material having a glass transition temperature
  • the T g is conventionally be contained P as amorphous element nonmetallic element
  • it is common sense that it is necessary, even an Fe-based alloy composition containing B and C as an amorphizing element and optionally Si and having substantially no P has a glass transition temperature T g
  • New findings have been obtained that amorphous soft magnetic materials can be formed.
  • an Fe-based alloy composition soft magnetic material capable of forming containing an amorphous phase having a glass transition temperature T g, a composition formula (Fe 1- a T a ) 100 at%-(x + b + c + d) M x B b C c Si d
  • T is an optional additive element and is one or two selected from Co and Ni
  • M is an optional additive element
  • An Fe group comprising one or more selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W and Al, and satisfying the following conditions: It is an alloy composition.
  • 100 at%-(x + b + c + d) be 67.20 at% or more and 80.00 at% or less.
  • composition formula it may be preferable that b be 11.52 at% or more and 18.14 at% or less.
  • c 6.00 at% or more and 16.32 at% or less.
  • d be more than 0 atomic percent and 10 atomic percent or less.
  • M contains Cr.
  • the method of forming the soft magnetic material from the Fe-based alloy composition uses water such as water atomization, it is preferable to add Cr from the viewpoint of enhancing the corrosion resistance of the obtained soft magnetic material.
  • the Cr addition amount be 0 atomic percent or more and 4 atomic percent or less, and it may be more preferable that the Cr addition amount be 0 atomic percent or more and 3 atomic percent or less .
  • an Fe-based alloy composition soft magnetic material capable of forming containing an amorphous phase having a glass transition temperature T g, composition formula (Fe 1-a T a) 100 It is an Fe-based alloy composition represented by atomic%-(x + b + c + d) M x B b C c S i d and satisfying the following conditions.
  • T is an optional additive element and is one or two selected from Co and Ni
  • M is an optional additive element
  • Ti, V, Cr, Zr, Nb, Mo, Hf, Ta It consists of 1 type, or 2 or more types selected from the group which consists of W and Al.
  • R (b + c) / [(1 ⁇ a) ⁇ ⁇ 100 at% — (x + b + c + d) ⁇ ].
  • Such Fe-based alloy composition has not been added P is even amount c of C is less than 6.00 atomic%, forming a soft magnetic material containing an amorphous phase having a glass transition temperature T g It is possible.
  • b be 15.0 atomic% or more and 19.0 atomic% or less.
  • R is 0.25 or more and 0.30 or less.
  • the present invention provides, in another aspect, includes a composition of the Fe-based alloy composition, corresponding to the soft magnetic material characterized by containing an amorphous phase having a glass transition temperature T g.
  • the above-mentioned soft magnetic material may have a band-like shape, or may have a wire shape or a powder shape.
  • the subcooled liquid region ⁇ T x may preferably be 25 ° C. or more, and more preferably 40 ° C. or more.
  • the Curie temperature T c may preferably be 340 ° C. or higher from the viewpoint of facilitating raising the operation guarantee temperature of the magnetic member containing the above-mentioned soft magnetic material.
  • an X-ray diffraction spectrum having at least one of a peak assigned to Fe 3 B and a peak assigned to Fe 3 (B y C 1-y ) (y is 0 or more and less than 1) It may be preferable to be obtained.
  • the present invention in another aspect, is a magnetic member including the above-described soft magnetic material.
  • the magnetic member may be a magnetic core or a magnetic sheet.
  • the present invention in still another aspect, is an electrical and electronic component including the above-described magnetic member.
  • the present invention in still another aspect, is an apparatus comprising the above-described electrical and electronic components.
  • an amorphous soft magnetic material having a glass transition temperature T g soft magnetic material containing an amorphous phase
  • Fe-based alloy composition containing substantially no P is provided .
  • Fe-based amorphous soft magnetic material having a glass transition temperature T g contains substantially no P is also provided.
  • An apparatus provided with electrical and electronic components is provided.
  • an amorphous soft magnetic material having a glass transition temperature T g soft magnetic material containing an amorphous phase
  • the composition has a composition formula (Fe 1-a T a) 100 atomic% - expressed in (x + b + c + d ) M x B b C c Si d, satisfy the following formula.
  • T is an optional additive element and is one or two selected from Co and Ni
  • M is an optional additive element; Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W and Al
  • P is not added and P is substantially free.
  • the Fe-based alloy composition according to one embodiment of the present invention may contain unavoidable impurities in addition to the following components.
  • the addition amount b of B in the Fe-based alloy composition is 11.0 atomic% or more.
  • the melting point of the alloy may be high, and it may be difficult to form an amorphous. Therefore, the addition amount b of B in the Fe-based alloy composition may be 25 atomic% or less, and may be 18.20 atomic% or less.
  • the addition amount b of B in the Fe-based alloy composition is 10 atomic% or more and 25 atomic% or less It is more preferable that the content be 10.5 atomic percent or more and 15 atomic percent or less, and further preferable that the amount be 11.81 atomic percent or more and 14.59 atomic percent or less.
  • Amount b of B in the Fe-based alloy composition is, in the case of less than 18.14 atomic% 11.52 atomic% or more, likely the amorphous soft magnetic material is obtained containing an amorphous phase having a glass transition temperature T g
  • T g glass transition temperature
  • an amorphous soft magnetic material containing an amorphous phase having a clear glass transition can be easily obtained.
  • the addition amount c of C is 6.00 atomic% or more.
  • the addition amount c of C in the Fe-based alloy composition may be 15 atomic% or less, and may be 17 atomic% or less.
  • the addition amount c of C in the Fe-based alloy composition is preferably 6.00 at% or more and 10 at% or less, and is 6.00 at% or more and 9.0 at% or less More preferably, it is more preferably 6.02 atomic percent or more and 8.16 atomic percent or less.
  • Amount c of C in the Fe-based alloy composition is, in the case of less than 16.32 atomic percent, easily obtained amorphous soft magnetic material containing an amorphous phase having a glass transition temperature T g is below 15 atomic% In the case where it is more preferably 14.5 atomic% or less, and even more preferably 14.40 atomic% or less, an amorphous soft magnetic material containing an amorphous phase with a clear glass transition can be easily obtained.
  • the ratio of the total of the addition amounts of B and C to the addition amount of Fe (hereinafter, also referred to as "BC / Fe ratio") is 0.25 or more and 0.429 or less It is preferable to do.
  • the BC / Fe ratio which is the ratio of the sum of the addition amounts of the main amorphizing elements B and C to the addition amount of Fe which is the basic element of the Fe-based alloy composition, is somewhat high (specifically, BC / Fe) Since the Fe ratio is 0.25 or more), it may be easy to form a soft magnetic material (amorphous soft magnetic material) containing an amorphous phase from the Fe-based alloy composition.
  • the BC / Fe ratio is preferably 0.261 or more, preferably 0.282 or more, and more preferably 0.333 or more.
  • the BC / Fe ratio is preferably 0.370 or less, more preferably 0.333 or less, and still more preferably 0.282 or less.
  • the BC / Fe ratio is preferably 0.261 or more and 0.370 or less, preferably 0.261 or more, in consideration of stably obtaining an amorphous soft magnetic material and considering the balance with high saturation magnetization Js. It is preferable that it is .333 or less, and it is preferable that it is 0.282 or more and 0.333 or less.
  • Si enhances the thermal stability of the Fe-based alloy composition and has excellent amorphous formation ability.
  • the addition amount d of Si in the Fe-based alloy composition is increased, the crystallization start temperature T x takes precedence over the glass transition temperature T g for the Fe-based amorphous soft magnetic material formed from the Fe-based alloy composition. And the supercooled liquid region ⁇ T x can be expanded.
  • the melting point of the Fe-based alloy composition can be lowered by increasing the addition amount d of Si in the Fe-based alloy composition, and the workability using a molten metal can be improved. Therefore, the Fe-based alloy composition according to an embodiment of the present invention may contain Si.
  • the glass transition temperature T g of the Fe-based amorphous soft magnetic materials formed from Fe-based alloy composition is rapidly increased, the supercooled liquid region [Delta] T x It will be difficult to spread.
  • the addition amount d of Si in the Fe-based alloy composition is 12 atomic% or less.
  • the additive amount d of is preferably 0 atomic percent or more and 10 atomic percent or less, more preferably 1.0 atomic percent or more and 8.0 atomic percent or less, and 2 atomic percent or more and 6.0 atomic It is further preferable to do.
  • an element (optional additional element) T consisting of one or two selected from Co and Ni may be added.
  • Ni and Co are elements which exhibit ferromagnetism at room temperature as well as Fe.
  • the magnetic properties of the Fe-based amorphous soft magnetic material formed from the Fe-based alloy composition can be adjusted by substituting a part of Fe with Co or Ni, Co and Ni.
  • the element T is preferably substituted by about 3/10 or less with respect to the addition amount (unit: atomic%) of Fe.
  • substitution by about 2/10 with respect to the addition amount of Fe (unit: atomic%) increases the saturation magnetization Js, but Co is expensive and it is not preferable to substitute too much.
  • the substitution amount of the element T is more preferably 2/10 or less with respect to the addition amount (unit: atomic%) of Fe.
  • the Fe-based alloy composition according to one embodiment of the present invention may be any one or more selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W and Al.
  • An additional element M may be added. These elements function as substitution elements for Fe or function as amorphizing elements.
  • the addition amount x of the optional additional element M in the Fe-based alloy composition is excessively high, the addition amounts of other elements (C, B, Si, etc.) and the addition amount of Fe relatively decrease, In some cases, it is difficult to enjoy the benefits based on the addition of the addition of the
  • the upper limit of the additive amount x of the optional additional element M is 4 atomic% or less in consideration of this point.
  • the addition amount of Cr is preferably 0.5 atomic% or more. If the addition amount of Cr in the Fe-based alloy composition is up to about 4 atomic%, the effect on the supercooled liquid region ⁇ T x of the Fe-based amorphous soft magnetic material formed from the Fe-based alloy composition is minor When the Fe-based alloy composition contains Cr, the addition amount of Cr is preferably 4 atomic% or less, more preferably 3 atomic% or less, and still more preferably 2.88 atomic% or less preferable.
  • the addition amount c of C can be made lower than 6.00 atomic% by setting the aforementioned BC / Fe ratio to 0.25 or more. it can.
  • Fe based alloy composition there can be formed an amorphous soft magnetic material having a glass transition temperature T g (soft magnetic material containing an amorphous phase), the composition of The composition formula may be represented by (Fe 1 -a Ta ) 100 atom%-(x + b + c + d) M x B b C c Si d and may satisfy the following formula.
  • T is an optional additive element and is one or two selected from Co and Ni
  • M is an optional additive element; Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W and Al
  • the Fe-based alloy composition according to another embodiment of the present invention is P-free and substantially P-free.
  • R (b + c) / [(1 ⁇ a) ⁇ ⁇ 100 at% — (x + b + c + d) ⁇ ], and R is the BC / Fe ratio.
  • the BC / Fe ratio When the BC / Fe ratio is 0.25 or more, it may be easy to form a soft magnetic material (amorphous soft magnetic material) containing an amorphous phase from the Fe-based alloy composition.
  • the BC / Fe ratio is preferably 0.25 or more, more preferably 0.26 or more, and still more preferably 0.261 or more, Particularly preferred is 0.266 or more.
  • the BC / Fe ratio it is advantageous that the BC / Fe ratio be small.
  • the BC / Fe ratio is preferably 0.30 or less, more preferably 0.29 or less, and still more preferably 0.290 or less.
  • the amorphous soft magnetic material is stably obtained and the BC / Fe ratio is 0.25 or more and 0.30 or less, considering the balance with high saturation magnetization Js, 0.26 or more and 0 .29 or less is more preferable, 0.261 or more and 0.290 or less is more preferable, and 0.266 or more and 0.290 or less is particularly preferable.
  • the addition amount b of B in the Fe-based alloy composition according to another embodiment of the present invention is 11.0 atomic% or more from the viewpoint of appropriately exhibiting the amorphous formation ability by B while considering the melting point fluctuation. It is 0 atomic% or less.
  • Amount b of B is equal to or less than 19.0 atomic% 15.0 atomic% or more, easy to obtain an amorphous soft magnetic material containing an amorphous phase having a glass transition temperature T g is 15.5 atom % Or more and 18.0 atomic% or less, preferably 15.84 atomic% or more and 17.28 atomic% or less, it is easy to obtain an amorphous soft magnetic material containing an amorphous phase in which the glass transition is clear .
  • addition of Si is essential (that is, the addition amount of Si is more than 0 atomic%).
  • the addition amount of elements other than B and C since it is substantially the same as the case of the Fe-based alloy composition which concerns on one Embodiment of this invention, detailed description is abbreviate
  • the soft magnetic material according to an embodiment of the present invention has the composition of the Fe-based alloy composition according to an embodiment of the present invention or the composition of an Fe-based alloy composition according to another embodiment of the present invention. and, it does not substantially contain P, which is an amorphous soft magnetic material containing an amorphous phase having a glass transition temperature T g.
  • the amorphous phase in the soft magnetic material according to one embodiment of the present invention is preferably the main phase of the soft magnetic material.
  • main phase means the phase with the highest volume fraction in the soft magnetic material tissue.
  • the soft magnetic material according to an embodiment of the present invention substantially consists of an amorphous phase.
  • "consisting essentially of an amorphous phase” means that no distinctive peak is observed in the X-ray diffraction spectrum obtained by X-ray diffraction measurement of the soft magnetic material.
  • the method of manufacturing the soft magnetic material according to an embodiment of the present invention from the Fe-based alloy composition according to each embodiment of the present invention is not limited. From the viewpoint of facilitating obtaining a soft magnetic material in which the main phase is amorphous or a soft magnetic material substantially consisting of an amorphous phase, a quenched ribbon method such as a single roll method or a twin roll method, a gas atomization method, water It is preferable to manufacture by atomizing methods, such as the atomizing method.
  • the obtained soft magnetic material has a band-like shape.
  • a soft magnetic material having a powder shape can be obtained.
  • the obtained soft magnetic material has a powder shape.
  • the Curie temperature T c , the glass transition temperature T g, and the crystallization start temperature T x which are thermal property parameters of the soft magnetic material, are measured with the temperature increase rate of 40 ° C./min for the soft magnetic material. It sets up based on the DSC chart obtained by performing differential scanning calorimetry (as a measuring device, "STA449 / A23 jupiter by Nettigeritebau" is illustrated as a measuring device).
  • the supercooled liquid region ⁇ T x is calculated from the glass transition temperature T g and the crystallization start temperature T x described above.
  • the subcooled liquid region ⁇ T x in the soft magnetic material according to an embodiment of the present invention is preferably 25 ° C. or higher, preferably 35 ° C. or higher, from the viewpoint of facilitating the heat treatment of the magnetic member containing such soft magnetic material. Is more preferably 45.degree. C. or more.
  • the Curie temperature T c in the soft magnetic material according to an embodiment of the present invention is preferably 340 ° C. or more.
  • the Fe-based alloy composition that provides the soft magnetic material according to an embodiment of the present invention does not substantially contain P as described above. Since P is a factor that lowers the saturation magnetization Js, the soft magnetic material according to an embodiment of the present invention tends to have a high saturation magnetization Js. For this reason, the Curie temperature T c at which the magnetization is substantially lost tends to be high. It is preferable that the Curie temperature T c is high because it raises the operation guarantee temperature of the electric / electronic related component including the magnetic member containing the soft magnetic material according to the embodiment of the present invention.
  • the soft magnetic material according to an embodiment of the present invention by heating to a temperature above the crystallization onset temperature T x, the crystallization occurs in the soft magnetic material.
  • T x crystallization onset temperature
  • the above X-ray diffraction spectrum has a peak attributed to Fe 3 B and an Fe 3 (B 3 It is preferable to have at least one of the peaks attributed to y C 1-y ) (where y is 0 or more and less than 1, and 0.7 is typically mentioned as an example).
  • crystals such as ⁇ -Fe is exemplified as an example
  • Crystals composed of a plurality of elements such as are sometimes difficult to produce as compared to crystals composed of Fe.
  • the transition from the amorphous phase to the crystalline phase is relatively unlikely to occur, and that the crystalline substance is less likely to be formed during the annealing process.
  • the crystal phase consisting of Fe and B Fe 23 B 6 may also be mentioned, and the above-mentioned X-ray diffraction spectrum may have a peak attributed to Fe 23 B 6 .
  • the magnetic member according to an embodiment of the present invention contains the soft magnetic material according to an embodiment of the present invention described above.
  • the specific form of the magnetic member according to an embodiment of the present invention is not limited. It may be a magnetic core obtained by, for example, compacting a powder material containing the soft magnetic material according to the embodiment of the present invention.
  • FIG. 1 shows a toroidal core 1 having a ring shape as an example of such a magnetic core.
  • it is obtained by forming a slurry composition containing the soft magnetic material according to an embodiment of the present invention into a sheet. Magnetic sheets are included.
  • the magnetic member When distortion is accumulated in the soft magnetic material in the magnetic member by the preparation process (for example, pulverization) of the soft magnetic material or the production process (for example, compacting) of the magnetic member, electric / electronic related parts including the magnetic member In some cases, this may lead to a decrease in the magnetic properties (iron loss, direct current superposition characteristics, etc., as a specific example). In such a case, the magnetic member is subjected to an annealing treatment to relieve the stress due to the strain in the soft magnetic material, thereby suppressing the deterioration of the magnetic characteristics of the electric / electronic related component provided with the magnetic member. Is commonly done.
  • the soft magnetic material contained therein has a glass transition temperature Tg , and in a preferred example, the supercooled liquid region ⁇ T x is 25 ° C. or higher, so annealing treatment It can be done easily. Therefore, the electric / electronic related component provided with the magnetic member according to one embodiment of the present invention can have excellent magnetic properties.
  • An inductor, a motor, a transformer, an electromagnetic interference suppression member etc. are mentioned as a specific example of the electric and electronic related components which concern on one Embodiment of such this invention.
  • An apparatus includes the electric / electronic related components according to the above-described embodiment of the present invention.
  • Specific examples of such devices include portable electronic devices such as smartphones, notebook computers and tablet terminals; electronic computers such as personal computers and servers; transport devices such as automobiles and two-wheelers; electricity-related devices such as power generation facilities, transformers, and storage facilities Is illustrated.
  • the Fe-based alloy composition having the composition shown in Tables 1 to 3 was melted, and a soft magnetic material consisting of a ribbon was obtained by a single roll method.
  • the thickness of the ribbon was about 20 ⁇ m.
  • X-ray diffraction measurement (ray source: CuK ⁇ ) was performed on the obtained ribbon, no peak indicating the presence of crystalline substance was observed in any X-ray diffraction spectrum, and all ribbons were in the amorphous phase. It was confirmed that it consists of In Tables 1 to 3, "A" in the column of the structures means that it consists of an amorphous phase.
  • Tables 1 to 3 in the column of “(B + C) / Fe”, the numerical value of BC / Fe ratio is described.
  • the DSC chart of the Fe-based amorphous soft magnetic material having a glass transition temperature T g ((a) Example 13 and (b) Example 25) shown in FIG. 2, Fe-based amorphous having no glass transition temperature T g
  • the DSC chart of the soft magnetic material (Example 3) is shown in FIG.
  • FIG. 2 (a) an example of the Fe-based amorphous soft magnetic material having a glass transition temperature T g in the DSC chart (Example 13), the Curie temperature T c (420 ° C.) after crystallization starting temperature It is confirmed that the endothermic state is passed in the range up to the temperature showing T x (540 ° C.), specifically, as shown in FIG.
  • T g glass transition temperature
  • T c 426 ° C.
  • Example 25 in the case where the endothermic state is clearly recognized as shown in FIG. 2 (b) in the DSC chart, it may be expressed that the glass transition is clearly measured. .
  • the DSC chart of no glass transition temperature T g Fe-based amorphous soft magnetic material (Example 3), a Curie temperature T c (380 ° C.) after crystallization starting temperature In the range up to the temperature showing T x (480 ° C.), it was confirmed that no endothermic state was recognized.
  • Tables 4 to 6 show the judgment results based on this DSC chart in the column of "metallic glass". That is, when the above-mentioned endothermic state was not recognized, it was judged that it was not metal glass and "A" was described in the table. In the case where the above endothermic state is observed, particularly when the degree is large (specifically, when the glass transition is clearly measured as in Example 25), the properties of the metallic glass are remarkable. "C” was written in the table. When the above endothermic state was recognized but not to the extent that it is described as “C” (specifically, in the case of Example 13), it was judged as metallic glass and "B" was described in the table. .
  • the saturation magnetization Js (unit: T) of the soft magnetic material according to each example was measured. The results are shown in Tables 4 to 6. Moreover, the coercive force Hc (unit: A / m) was measured for the soft magnetic materials (thin ribbons) according to Example 5, Example 10, Example 15 and Example 22. The results were 6.4 A / m, 4.0 A / m, 5.7 A / m, and 5.4 A / m, respectively. All soft magnetic materials (strips) showed good soft magnetic properties.
  • the composition of the Fe-based alloy composition according to Examples 9 to 15 and Example 44 to Example 46 can be expressed as follows. (Fe 0.793 B 0.143 C 0.064 ) 100 atomic% - ⁇ Si ⁇
  • is 0 atomic percent or more and 12 atomic percent or less.
  • FIG. 4 is a graph showing the relationship between the melting point T m of the Fe-based alloy composition and the amount of Si added.
  • FIG. 5 is a graph showing the relationship between the Curie temperature T c of a ribbon which is an Fe-based amorphous soft magnetic material formed from a Fe-based alloy composition and the amount of Si added.
  • FIG. 6 is a graph showing the relationship between the supercooled liquid region ⁇ T x of the ribbon which is an Fe-based amorphous soft magnetic material formed from the Fe-based alloy composition and the amount of Si added.
  • the Curie temperature T c becomes higher as the addition amount of Si is increased up to 6 atomic%, but when the addition amount of Si is further increased than 6 atomic%
  • the Curie temperature T c tended to decrease.
  • An increase in the Curie temperature T c contributes to an increase in the operation guarantee temperature of the electric / electronic related component including the magnetic member made of the Fe-based amorphous soft magnetic material.
  • the supercooled liquid region ⁇ T x becomes wider, but the amount of added Si is further increased than 5 atomic%. Then, the supercooled liquid region ⁇ T x tended to narrow conversely. The widening of the supercooled liquid region ⁇ T x facilitates the annealing of the magnetic member made of the Fe-based amorphous soft magnetic material.
  • the composition of the Fe-based alloy composition according to Example 26 to Example 29 can be expressed as follows. (Fe 0.793- ⁇ Cr ⁇ B 0.143 C 0.064 ) 96 at% Si 4 at% Here, ⁇ is 0 or more and 0.03 or less.
  • FIG. 7 is a graph showing the relationship between the amount of supercooled liquid region ⁇ T x of the ribbon which is an Fe-based amorphous soft magnetic material formed from the Fe-based alloy composition and the amount of added Cr. As shown in FIG. 7, no significant change was observed in the supercooled liquid region ⁇ T x even if part of Fe was replaced with Cr.
  • a magnetic member made of an Fe-based amorphous soft magnetic material formed from the Fe-based alloy composition even if a part of Fe in the Fe-based alloy composition is replaced with Cr, up to a few atomic percent or so It is expected that the possibility of a noticeable change in the ease of annealing treatment is low. Since Cr can impart corrosion resistance to Fe-based amorphous soft magnetic materials, Cr can be added to Fe-based alloy compositions when Fe-based amorphous soft magnetic materials are formed from a Fe-based alloy composition using a water atomizing method. Is preferably contained.
  • FIG. 8 shows a part of the Fe-based alloy composition manufactured in the example in which the addition amount of Si is 4 atomic% and Cr is not added (Example 2, Example 4, Example 6, Example 32, Example 17, Example 17, Example 21, Example 21, Example 23, Example 25, Example 30 to Example 43, and Example 47 to Example 54 of Example 54)
  • the composition of the Fe-based alloy composition (the addition amount of B, the addition amount of C and the addition amount of Fe + Si (4 atomic%)) and the glass transition temperature T g of the Fe-based amorphous soft magnetic material formed from each are measured It is a pseudo ternary diagram which shows the relationship with whether it was or not.
  • the asterisk (*) indicates an example in which the glass transition temperature T g was clearly measured (the endothermic state was clearly recognized in the DSC chart), and the black circles ( ⁇ ) indicate the case of the asterisk. although not show an embodiment in which the glass transition temperature T g is measured, a white circle ( ⁇ ) shows an embodiment in which the glass transition temperature T g was not measured.
  • the numerical values shown in the vicinity of these marks are the subcooled liquid region ⁇ T x (unit: ° C.) of each example.
  • Example 31 Example 33, Example 36, Example 37, Example 39, Example 40, Example 42, Example 43, Example 47 to Example 50, and Example 52 to Example 54
  • the glass transition temperature Tg is measured, and in particular, Example 23, Example 25, Example 30, Example 33, Example 37, Example 39, Example In the thirteen examples of Example 40, Example 42, Example 43, Examples 48 to 50, and Example 53, the glass transition temperature Tg was clearly measured.
  • the Fe-based alloy composition satisfying the composition range of the present invention is more likely to form an Fe-based amorphous soft magnetic material than an Fe-based alloy composition having a composition other than the composition range.
  • a soft magnetic material having a ribbon shape from the Fe-based alloy composition according to Example 7 (outside of the composition range of the present invention) and the Fe-based alloy composition according to Example 25 (within the composition range of the present invention)
  • thin ribbons having different thicknesses were prepared. Specifically, two types (22 ⁇ m and 34 ⁇ m) of the thin ribbon according to Example 7 were prepared. Six types (17 ⁇ m, 40 ⁇ m, 49 ⁇ m, 68 ⁇ m, 120 ⁇ m, 135 ⁇ m) of thin ribbons according to Example 25 were prepared.
  • the ribbon according to Example 25 formed from the Fe-based alloy composition having the composition within the composition range of the present invention has a thickness of 120 ⁇ m. A peak having a sharp tip was not observed, and a peak having a sharp tip at about 45 ° was observed only when the thickness was 135 ⁇ m.
  • the Fe-based alloy composition according to Example 25 having a composition within the composition range of the present invention is amorphous compared to the Fe-based alloy composition according to Example 7 having a composition outside the composition range according to the present invention. It was confirmed that the performance was high.
  • Example 58 An Fe-based alloy composition having the composition (unit: atomic%) shown in Table 7 was prepared.
  • the compositions according to Example 58 and Example 59 are the same as Example 28, and the composition according to Reference Example 2 contains P.
  • Soft magnetic powders were produced from these Fe-based alloy compositions using a water atomization method. All the soft magnetic powders were amorphous soft magnetic powders having an amorphous phase as the main phase. The particle size distribution of these soft magnetic powders was measured by volume distribution using "Microtrack particle size distribution measuring apparatus MT3000 series" manufactured by Nikkiso Co., Ltd. Particle size D10 (10% volume cumulative diameter), D50 (50% volume cumulative diameter), D90 (D50 (50% volume cumulative diameter) where the integrated particle size distribution from the small particle size side becomes 10%, 50% and 90% respectively in the volume based particle size distribution. The 90% volume cumulative diameter) is as shown in Table 8.
  • the soft magnetic powders according to Examples 57 to 60 and Reference Example 2 described above and the commercially available soft magnetic powders according to Reference Example 1 (the compositions of which are shown in Table 7) 97.2.
  • a slurry is obtained by mixing 2 to 3 parts by mass of an insulating binder comprising an acrylic resin and a phenol resin, and 0 to 0.5 parts by mass of a lubricant comprising zinc stearate in water as a solvent.
  • the Granulated powder was obtained from the obtained slurry.
  • the obtained granulated powder was filled in a mold, and pressure molded with a surface pressure of 0.5 to 1.5 GPa to obtain a molded product having a ring shape of outer diameter 20 mm ⁇ inner diameter 12 mm ⁇ thickness 3 mm. .
  • the resulting formed product is placed in a furnace in a nitrogen stream atmosphere, and the furnace temperature is heated from room temperature (23 ° C.) to the annealing temperature shown in Table 8 at a heating rate of 10 ° C./min.
  • Heat treatment was carried out by holding at temperature for 1 hour and then cooling to room temperature in a furnace to obtain a toroidal core consisting of a dust core. The results of measuring the density of these toroidal cores are shown in Table 8.
  • a coated copper wire was wound 40 times on each of the toroidal cores described above to obtain toroidal coils.
  • the relative magnetic permeability ⁇ was measured for each of these toroidal coils using an impedance analyzer (“4192A” manufactured by HP) under the condition of 100 kHz. The measurement results are shown in Table 8.
  • the iron loss Pcv (unit: kW / m 3 ) was measured at a measurement frequency of 100 kHz under the condition that the magnetic flux density Bm was 100 mT.
  • the magnetic properties of the toroidal core obtained from the soft magnetic powder having the composition according to the present invention were obtained from commercially available amorphous soft magnetic powder and amorphous soft magnetic powder having a composition containing P. It was equivalent to the magnetic properties of the toroidal core.
  • Magnetic core (toroidal core)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Pを含有せずガラス遷移温度Tを有するアモルファス軟磁性材料を形成可能なFe基合金組成物として、組成式が(Fe1-a100原子%-(x+b+c+d)Siで表され、TはNiなどの任意添加元素であって、MはCrなどの任意添加元素であって、下記の条件を満たすことを特徴とするFe基合金組成物が提供される。 0≦a≦0.3 11.0原子%≦b≦18.20原子%、 6.00原子%≦c≦17原子%、 0原子%≦d≦10原子%、かつ 0原子%≦x≦4原子%

Description

Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器
 本発明は、Fe基合金組成物に関し、詳しくは、軟磁性材料として用いられるFe基合金組成物に関する。また、本発明は、上記のFe基合金組成物からなる軟磁性材料、当該軟磁性材料を含む磁性部材、上記の磁性部材を備える電気・電子関連部品、当該電気・電子関連部品を備える機器に関する。
 優れた磁気特性を有する軟磁性材料として、アモルファス相を含有する軟磁性材料(本明細書において、「アモルファス軟磁性材料」ともいう。)が注目されている。
 そのようなアモルファス軟磁性材料の一つに、Fe基合金組成物を用いて形成される水アトマイズ法により形成された略球状粉末であり、該粉末は、Feを主成分とし、P、C、Bを少なくとも含み、ΔT=T-T(ただしTは結晶化開始温度、Tはガラス遷移温度を示す。)の式で表される過冷却液体の温度間隔(過冷却液体領域)ΔTが20K以上の非晶質相からなることを特徴とする非晶質軟磁性合金粉末が挙げられる(特許文献1)。
特開2004-156134号公報
 特許文献1に記載される非晶質軟磁性合金粉末(アモルファス軟磁性材料)は、ガラス遷移温度Tを有するため、当該粉末を加工(成形加工が具体例として挙げられる。)して得られる磁性部材(圧粉コアが具体例として挙げられる。)から加工の際の歪を除去するアニール処理(具体的には所定時間加熱することにより行われる。)が容易となる。このため、特許文献1に記載される非晶質軟磁性合金粉末のようなガラス遷移温度Tを有するアモルファス磁性材料を含有する磁性部材を備える電気・電子関連部品(インダクタが具体例として挙げられる。)は、磁気特性に優れるものが得られやすい。特に、過冷却液体領域ΔTの温度域が広い場合には、アニール処理に許容される温度域や加熱時間の幅が広くなり、アニール処理をより安定的に実施することができる。
 ここで、ガラス遷移温度Tを有するアモルファス軟磁性材料を得るために用いられるアモルファス化元素のうち、Fe以外の遷移金属を含まない合金においては、半金属元素としてはPを含有させることが実質的に必須であった。Pは優れたアモルファス化元素であるが、得られたアモルファス軟磁性材料の磁気特性、特に飽和磁化Js(単位:T)を高めることについて阻害要因となる場合があった。また、Fe基合金組成物からなるアモルファス軟磁性材料(本明細書において「Fe基アモルファス軟磁性材料」ともいう。)は、所定の組成を有するFe基合金組成物の溶湯を急冷することにより得られるところ、その溶湯中にPが含まれている場合には、溶湯内のPが蒸発しやすく、アモルファス軟磁性材料の製造過程でFe基合金組成物の組成を安定化させることが困難となる場合や、溶湯から蒸発したPが溶湯周辺の製造装置に付着して他の鋼種へのコンタミネーションを生じる、または、これを防止するための清掃に時間を要し、作業性を低下させる場合があった。
 本発明は、ガラス遷移温度Tを有するFe基アモルファス軟磁性材料を形成可能であって、実質的にPを含有しないFe基合金組成物を提供することを目的とする。本発明は、実質的にPを含有せずガラス遷移温度Tを有するFe基アモルファス軟磁性材料を提供することも目的とする。さらに、本発明は、上記のガラス遷移温度Tを有するFe基アモルファス軟磁性材料を含む磁性部材、上記の磁性部材を備える電気・電子関連部品、および当該電気・電子関連部品を備える機器を提供することも目的とする。
 上記課題を解決すべく本発明者らが検討した結果、従来はガラス遷移温度Tを有するFe基アモルファス軟磁性材料を得るためには、非金属元素のアモルファス化元素としてPを含有させることが必要であるとの常識であったが、アモルファス化元素としてBおよびCならびに必要に応じSiを含有し、実質的にPを含有しないFe基合金組成物であってもガラス遷移温度Tを有するアモルファス軟磁性材料を形成可能であるとの新たな知見を得た。
 かかる知見に基づき完成された本発明は、一態様において、ガラス遷移温度Tを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、組成式が(Fe1-a100原子%-(x+b+c+d)Siで表され、Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなり、下記の条件を満たすことを特徴とするFe基合金組成物である。
  0≦a≦0.3
  11.0原子%≦b≦18.20原子%、
  6.00原子%≦c≦17原子%、
  0原子%≦d≦10原子%、かつ
  0原子%≦x≦4原子%
 このような組成を有するFe基合金組成物は、Pが実質的に添加されていないにもかかわらず、ガラス遷移温度Tを有するアモルファス相を含有する軟磁性材料を形成可能である。
 前記組成式において、R=(b+c)/[(1-a)×{100原子%-(x+b+c+d)}]としたときに、0.25≦R≦0.429であることが好ましい場合がある。
 前記組成式において、100原子%-(x+b+c+d)が、67.20原子%以上80.00原子%以下であることが好ましい場合がある。
 前記組成式において、bが11.52原子%以上18.14原子%以下であることが好ましい場合がある。
 前記組成式において、cが6.00原子%以上16.32原子%以下であることが好ましい場合がある。
 前記組成式において、dが0原子%超10原子%以下であることが好ましい場合がある。
 前記組成式において、MがCrを含むことが好ましい場合がある。特に、Fe基合金組成物から軟磁性材料を形成する方法が水アトマイズ法など水を用いる場合には、得られた軟磁性材料の耐食性を高める観点から、Crを添加することが好ましい。MがCrを含む場合において、Cr添加量が0原子%以上4原子%以下であることが好ましい場合があり、Cr添加量が0原子%以上3原子%以下であることがより好ましい場合がある。
 本発明は、他の一態様において、ガラス遷移温度Tを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、組成式が(Fe1-a100原子%-(x+b+c+d)Siで表され、下記の条件を満たすFe基合金組成物である。ここで、Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなる。
  0≦a≦0.3
  11.0原子%≦b≦20.0原子%、
  1.5原子%≦c<6原子%、
  0原子%<d≦10原子%、
  0原子%≦x≦4原子%、かつ
  0.25≦R≦0.32
 ここで、R=(b+c)/[(1-a)×{100原子%-(x+b+c+d)}]である。
 かかるFe基合金組成物は、Pが添加されておらず、Cの添加量cが6.00原子%未満であっても、ガラス遷移温度Tを有するアモルファス相を含有する軟磁性材料を形成可能である。
 前記組成式において、bが15.0原子%以上19.0原子%以下であることが好ましい場合がある。
 Rが0.25以上0.30以下であることが好ましい場合がある。
 本発明は、別の一態様において、上記のFe基合金組成物の組成を有し、ガラス遷移温度Tを有するアモルファス相を含有することを特徴とする軟磁性材料である。
 上記の軟磁性材料は、帯型の形状を有していてもよいし、ワイヤー状や粉体の形状を有していてもよい。
 前記軟磁性材料の結晶化開始温度Tと前記ガラス遷移温度Tとの温度差(T-T)により定義される過冷却液体領域ΔTが広いほど、アモルファス形成能が高いと期待される。過冷却液体領域ΔTは、25℃以上であることが好ましい場合があり、40℃以上であることがより好ましい場合がある。
 上記の軟磁性材料を含む磁性部材の動作保障温度を高めることが容易となる観点から、キュリー温度Tが340℃以上であることが好ましい場合がある。
 上記の軟磁性材料について、結晶化開始温度Tを超える温度まで加熱して結晶化させて軟磁性材料を得て、得られた軟磁性材料についてX線回折測定したときに、α-Feに帰属されるピークに加えて、FeBと帰属されるピークおよびFe(B1-y)(yは0以上1未満)と帰属されるピークの少なくとも一方を有するX線回折スペクトルが得られることが好ましい場合がある。
 本発明は、また別の一態様において、上記の軟磁性材料を含むことを特徴とする磁性部材である。この磁性部材は、磁性コアであってもよいし、磁性シートであってもよい。
 本発明は、さらまた別の一態様において、上記の磁性部材を備える電気・電子関連部品である。
 本発明は、さらまた別の一態様において、上記の電気・電子関連部品を備える機器である。
 本発明によれば、ガラス遷移温度Tを有するアモルファス軟磁性材料(アモルファス相を含有する軟磁性材料)を形成可能であって、実質的にPを含有しないFe基合金組成物が提供される。また、本発明によれば、実質的にPを含有せずガラス遷移温度Tを有するFe基アモルファス軟磁性材料も提供される。さらに、本発明によれば、上記の実質的にPを含有せずガラス遷移温度Tを有するFe基アモルファス軟磁性材料を含む磁性部材、上記の磁性部材を備える電気・電子関連部品、および当該電気・電子関連部品を備える機器が提供される。
本発明の一実施形態に係る磁性コアの形状を概念的に示す斜視図である。 ガラス遷移温度Tを有するFe基アモルファス軟磁性材料(実施例13および実施例25)のDSCチャートを示すグラフである。 ガラス遷移温度Tを有しないFe基アモルファス軟磁性材料(実施例23)のDSCチャートを示すグラフである。 実施例において製造されたFe基合金組成物の融点とSi添加量との関係を示すグラフである。 実施例において製造されたFe基合金組成物から形成されたFe基アモルファス軟磁性材料である薄帯のキュリー温度とSi添加量との関係を示すグラフである。 実施例において製造されたFe基合金組成物から形成されたFe基アモルファス軟磁性材料である薄帯の過冷却液体領域とSi添加量との関係を示すグラフである。 Fe基合金組成物から形成されたFe基アモルファス軟磁性材料である薄帯の過冷却液体領域とCr添加量との関係を示すグラフである。 実施例において製造したFe基合金組成物からなるFe基アモルファス軟磁性材料のFe基合金組成物の組成(Bの添加量、Cの添加量およびFe+Siの添加量)とガラス遷移温度Tが測定されたか否かとの関係を示す擬三元図である。 実施例7に係る薄帯のX線回折スペクトルを示すグラフである。 実施例25に係る薄帯のX線回折スペクトルを示すグラフである。
 以下、本発明の実施形態について詳しく説明する。
 本発明の一実施形態に係るFe基合金組成物は、ガラス遷移温度Tを有するアモルファス軟磁性材料(アモルファス相を含有する軟磁性材料)を形成可能であって、その組成は、組成式が(Fe1-a100原子%-(x+b+c+d)Siで表され、下記式を満たす。Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなる。本発明の一実施形態に係るFe基合金組成物はPが添加されておらず、実質的にPを含有しない。
  0≦a≦0.3
  11.0原子%≦b≦18.20原子%、
  6.00原子%≦c≦17原子%、
  0原子%≦d≦10原子%、かつ
  0原子%≦x≦4原子%
 以下、各成分元素について説明する。本発明の一実施形態に係るFe基合金組成物は、下記の成分以外に、不可避的不純物を含有していてもよい。
 Bは優れたアモルファス形成能を有する。したがって、Fe基合金組成物におけるBの添加量bは11.0原子%以上とされる。しかしながら、Fe基合金組成物内にBを過度に添加させると、合金の融点が高くなり、アモルファス形成が難しくなる場合がある。したがって、Fe基合金組成物におけるBの添加量bは、25原子%以下とされる場合があり、18.20原子%以下とされる場合がある。Fe基合金組成物から形成されたFe基アモルファス軟磁性材料の磁気特性をより安定的に高める観点から、Fe基合金組成物におけるBの添加量bを、10原子%以上25原子%以下とすることが好ましく、10.5原子%以上15原子%以下とすることがより好ましく、11.81原子%以上14.59原子%以下とすることがさらに好ましい。
 Fe基合金組成物におけるBの添加量bが、11.52原子%以上18.14原子%以下の場合には、ガラス遷移温度Tを有するアモルファス相を含有するアモルファス軟磁性材料が得られやすく、12.96原子%以上18.14原子%以下の場合、好ましくは14原子%以上17原子%以下の場合には、ガラス遷移が明瞭なアモルファス相を含有するアモルファス軟磁性材料が得られやすい。
 Cは、Fe基合金組成物の熱的安定性を高め、優れたアモルファス形成能を有する。したがって、本発明の一実施形態に係るFe基合金組成物はCの添加量cは6.00原子%以上とされる。しかしながら、Fe基合金組成物内にCを過度に添加させると、合金化が難しい場合がある。したがって、Fe基合金組成物におけるCの添加量cは、15原子%以下とされる場合があり、17原子%以下とされる場合がある。融点を低くする観点から、Fe基合金組成物におけるCの添加量cを、6.00原子%以上10原子%以下とすることが好ましく、6.00原子%以上9.0原子%以下とすることがより好ましく、6.02原子%以上8.16原子%以下とすることがさらに好ましい。Fe基合金組成物におけるCの添加量cが、16.32原子%以下の場合には、ガラス遷移温度Tを有するアモルファス相を含有するアモルファス軟磁性材料が得られやすく、15原子%以下の場合、より好ましくは14.5原子%以下の場合、さらに好ましくは14.40原子%以下には、ガラス遷移が明瞭なアモルファス相を含有するアモルファス軟磁性材料が得られやすい。
 本発明のFe基合金組成物の組成において、BおよびCの添加量の総和のFeの添加量に対する割合(以下、「BC/Fe比」ともいう。)を0.25以上0.429以下とするのが好ましい。Fe基合金組成物の基本元素であるFeの添加量に対する、主要なアモルファス化元素であるBおよびCの添加量の総和の割合であるBC/Fe比がある程度高い(具体的には、BC/Fe比が0.25以上である)ことにより、Fe基合金組成物からアモルファス相を含有する軟磁性材料(アモルファス軟磁性材料)を形成することが容易となっている可能性がある。
 アモルファス軟磁性材料を安定的に得る観点から、BC/Fe比は、0.261以上であることが好ましく、0.282以上であることが好ましく、0.333以上であることがさらに好ましい。一方、アモルファス軟磁性材料の飽和磁化Jsをより高くする観点から、BC/Fe比は小さい方が有利である。具体的には、BC/Fe比は、0.370以下であることが好ましく、0.333以下であることがより好ましく、0.282以下であることがさらに好ましい。
 以上より、アモルファス軟磁性材料を安定的に得られ、高い飽和磁化Jsとのバランスを考慮すると、BC/Fe比は、0.261以上0.370以下であることが好ましく、0.261以上0.333以下であることが好ましく、0.282以上0.333以下であることが好ましい。
 Siは、Fe基合金組成物の熱的安定性を高め、優れたアモルファス形成能を有する。また、Fe基合金組成物におけるSiの添加量dを増大させると、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料について、ガラス遷移温度Tよりも結晶化開始温度Tを優先的に高め、過冷却液体領域ΔTを広げることができる。また、Fe基合金組成物におけるSiの添加量dを増大させると、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料のキュリー温度Tを高めることが可能である。さらに、Fe基合金組成物におけるSiの添加量dを増大させることによりFe基合金組成物の融点を低下させ、溶湯を用いた作業性を向上させることができる。したがって、本発明の一実施形態に係るFe基合金組成物はSiを含有してもよい。
 しかしながら、Fe基合金組成物内にSiを過度に添加すると、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料のガラス遷移温度Tが急激に上昇し、過冷却液体領域ΔTを広げることが困難となる。また、Fe基合金組成物内にSiを過度に添加すると、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料の飽和磁化Jsの低下が顕著になる傾向を示す場合もある。したがって、Fe基合金組成物におけるSiの添加量dは12原子%以下とされる。Fe基合金組成物から形成されたFe基アモルファス軟磁性材料の熱的特性を良好にすることと磁気特性を良好にすることとをより安定的に実現させる観点から、Fe基合金組成物におけるSiの添加量dを、0原子%超10原子%以下とすることが好ましく、1.0原子%以上8.0原子%以下とすることがより好ましく、2原子%以上6.0原子%以下とすることがさらに好ましい。
 本発明の一実施形態に係るFe基合金組成物には、CoおよびNiより選ばれる1種または2種からなる元素(任意添加元素)Tを添加してもよい。NiおよびCoはFeと同様に室温で強磁性を示す元素である。Feの一部をCoもしくはNi、CoおよびNiに置換することにより、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料の磁気特性を調整することができる。元素TはFeの添加量(単位:原子%)に対して3/10以下程度置換するのが好ましい。元素TがCoの場合、Feの添加量(単位:原子%)に対して2/10程度置換すると飽和磁化Jsも大きくなるが、Coは高価であるためあまり多く置換するのは好ましくない。また、元素TがNiの場合、置換量を増加させると融点が下がるため好ましいが、置換量を多くすると飽和磁化Jsが小さくなるため好ましくない。この観点からFeの添加量(単位:原子%)に対して元素Tの置換量は2/10以下がより好ましい。
 本発明の一実施形態に係るFe基合金組成物には、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなる任意添加元素Mを添加してもよい。これらの元素は、Feの置換元素として機能したり、アモルファス化元素として機能したりする。Fe基合金組成物における任意添加元素Mの添加量xが過度に高い場合には、他の元素(C,B,Siなど)の添加量やFeの添加量が相対的に低下して、これらの元素を添加したことに基づく利益を享受しにくくなることもある。任意添加元素Mの添加量xの上限は、この点を考慮して4原子%以下とされる。
 任意添加元素Mの一例であるCrは、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料に耐食性を向上させることも可能である。したがって、Fe基合金組成物がCrを含有する場合には、Crの添加量を、0.5原子%以上とすることが好ましい。Fe基合金組成物におけるCrの添加量が4原子%程度までであれば、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料の過冷却液体領域ΔTに与える影響は軽微であるため、Fe基合金組成物がCrを含有する場合には、Crの添加量を、4原子%以下とすることが好ましく、3原子%以下、さらに好ましくは2.88原子%以下とすることがより好ましい。
 本発明の他の一実施形態に係るFe基合金組成物は、前述のBC/Fe比を0.25以上とすることにより、Cの添加量cを6.00原子%よりも低くすることができる。
 すなわち、本発明の他の一実施形態に係るFe基合金組成物は、ガラス遷移温度Tを有するアモルファス軟磁性材料(アモルファス相を含有する軟磁性材料)を形成可能であって、その組成は、組成式が(Fe1-a100原子%-(x+b+c+d)Siで表され、下記式を満たしていてもよい。Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなる。本発明の他の一実施形態に係るFe基合金組成物はPが添加されておらず、実質的にPを含有しない。
  11.0原子%≦b≦20.0原子%、
  1.5原子%≦c<6原子%、
  0原子%<d≦10原子%、
  0原子%≦x≦4原子%、かつ
  0.25≦R≦0.32
 ここで、R=(b+c)/[(1-a)×{100原子%-(x+b+c+d)}]であり、RがBC/Fe比である。
 BC/Fe比が0.25以上であることにより、Fe基合金組成物からアモルファス相を含有する軟磁性材料(アモルファス軟磁性材料)を形成することが容易となっている可能性がある。アモルファス軟磁性材料を安定的に得る観点から、BC/Fe比は、0.25以上であることが好ましく、0.26以上であることがより好ましく、0.261以上であることがさらに好ましく、0.266以上であることが特に好ましい。一方、アモルファス軟磁性材料の飽和磁化Jsをより高くする観点から、BC/Fe比は小さい方が有利である。具体的には、BC/Fe比は、0.30以下であることが好ましく、0.29以下であることがより好ましく、0.290以下であることがさらに好ましい。
 以上より、アモルファス軟磁性材料を安定的に得られ、高い飽和磁化Jsとのバランスを考慮すると、BC/Fe比は、0.25以上0.30以下であることが好ましく、0.26以上0.29以下であることがより好ましく、0.261以上0.290以下であることがさらに好ましく、0.266以上0.290以下であることが特に好ましい。
 本発明の他の一実施形態に係るFe基合金組成物のBの添加量bは、融点変動を考慮しつつBによるアモルファス形成能を適切に発揮させる観点から、11.0原子%以上20.0原子%以下とされる。Bの添加量bが、15.0原子%以上19.0原子%以下である場合には、ガラス遷移温度Tを有するアモルファス相を含有するアモルファス軟磁性材料が得られやすく、15.5原子%以上18.0原子%以下である場合、好ましくは15.84原子%以上17.28原子%以下である場合には、ガラス遷移が明瞭なアモルファス相を含有するアモルファス軟磁性材料が得られやすい。なお、本発明の他の一実施形態に係るFe基合金組成物の場合にはSiの添加が必須となる(すなわち、Siの添加量dは0原子%超である。)。BおよびC以外の元素の添加量の範囲については、本発明の一実施形態に係るFe基合金組成物の場合とおおむね同様なので、詳しい説明を省略する。
 本発明の一実施形態に係る軟磁性材料は、上記の本発明の一実施形態に係るFe基合金組成物の組成または本発明の他の一実施形態に係るFe基合金組成物の組成を有し、Pを実質的に含有せず、ガラス遷移温度Tを有するアモルファス相を含有するアモルファス軟磁性材料である。本発明の一実施形態に係る軟磁性材料におけるアモルファス相は軟磁性材料の主相であることが好ましい。本明細書において、「主相」とは、軟磁性材料の組織において、最も体積分率が高い相を意味する。本発明の一実施形態に係る軟磁性材料は、実質的にアモルファス相からなることがより好ましい。本明細書において、「実質的にアモルファス相からなる」とは、軟磁性材料のX線回折測定により得られたX線回折スペクトルに際立ったピークが認められないことを意味する。
 本発明の各実施形態に係るFe基合金組成物から本発明の一実施形態に係る軟磁性材料を製造する方法は限定されない。主相がアモルファスである軟磁性材料、あるいは、実質的にアモルファス相からなる軟磁性材料を得ることを容易にする観点から、単ロール法、双ロール法等の急冷薄帯法、ガスアトマイズ法、水アトマイズ法等のアトマイズ法などにより製造することが好ましい。
 本発明の一実施形態に係る軟磁性材料を製造する方法として急冷薄帯法を用いた場合には、得られた軟磁性材料は帯型の形状を有する。この帯型の形状を有する軟磁性材料を粉砕することにより、粉体の形状を有する軟磁性材料を得ることができる。本発明の一実施形態に係る軟磁性材料を製造する方法としてアトマイズ法を用いた場合には、得られた軟磁性材料は粉体の形状を有する。
 本明細書において、軟磁性材料の熱物性パラメータであるキュリー温度T、ガラス遷移温度Tおよび結晶化開始温度Tは、軟磁性材料を測定対象として、昇温速度を40℃/分とする示差走査熱量測定(測定装置として、ネッチゲレイテバウ社製「STA449/A23 jupiter」が例示される。)を行うことにより得られたDSCチャートに基づいて設定される。過冷却液体領域ΔTは、上記のガラス遷移温度Tおよび結晶化開始温度Tから算出される。
 本発明の一実施形態に係る軟磁性材料における過冷却液体領域ΔTは、かかる軟磁性材料を含有する磁性部材の熱処理を容易にする観点から、25℃以上であることが好ましく、35℃以上であることがより好ましく、45℃以上であることがさらに好ましい。
 本発明の一実施形態に係る軟磁性材料におけるキュリー温度Tは340℃以上であることが好ましい。本発明の一実施形態に係る軟磁性材料を与えるFe基合金組成物は、前述のようにPを実質的に含有しない。Pは飽和磁化Jsを低下させる因子であるため、本発明の一実施形態に係る軟磁性材料は飽和磁化Jsが高くなる傾向がある。このため、磁化が実質的に失われるキュリー温度Tは高くなりやすい。キュリー温度Tが高いことは、本発明の一実施形態に係る軟磁性材料を含有する磁性部材を備える電気・電子関連部品の動作保障温度を高めることになり、好ましい。
 本発明の一実施形態に係る軟磁性材料を、結晶化開始温度Tを超える温度まで加熱することにより、軟磁性材料内で結晶化が生じる。こうして得られた結晶質を有する軟磁性材料についてX線回折測定を行うと、α-Feに帰属されるピークを有するX線回折スペクトルが得られる。本発明の一実施形態に係る軟磁性材料の場合には、アモルファス化元素としてBおよびCを含有することから、上記のX線回折スペクトルは、FeBと帰属されるピークおよびFe(B1-y)(ここで、yは0以上1未満であり、0.7が典型例として挙げられる。)と帰属されるピークの少なくとも一方を有することが好ましい。軟磁性材料内のアモルファス相が加熱されて結晶相に変化する際に、主元素であるFeからなる結晶(α-Feが具体例として挙げられる。)は比較的容易に形成されるが、上記のような複数の元素からなる結晶はFeからなる結晶に比べると生成しにくい場合がある。このため、アモルファス相から結晶相への遷移が相対的に生じにくく、アニール処理の際に結晶質が生成しにくくなると期待される。FeとBとからなる結晶相の例としてFe23も挙げられ、上記のX線回折スペクトルはFe23に帰属されるピークを有していてもよい。
 本発明の一実施形態に係る磁性部材は、上記の本発明の一実施形態に係る軟磁性材料を含有する。本発明の一実施形態に係る磁性部材の具体的な形態は限定されない。上記の本発明の一実施形態に係る軟磁性材料を含む粉体材料を圧粉成形することなどによって得られる磁性コアであってもよい。図1にはそのような磁性コアの一例として、リング形状を有するトロイダルコア1を示した。本発明の一実施形態に係る磁性部材の具体的な形態の他の例として、上記の本発明の一実施形態に係る軟磁性材料を含むスラリー状組成物をシート状に成形することなどによって得られる磁性シートが挙げられる。
 軟磁性材料の調製過程(例えば粉砕)や、磁性部材の製造過程(例えば圧粉成形)などによって、磁性部材内の軟磁性材料に歪が蓄積されると、磁性部材を備える電気・電子関連部品の磁気特性(鉄損、直流重畳特性などが具体例として挙げられる。)の低下をもたらす場合がある。このような場合には、磁性部材に対してアニール処理を行って、軟磁性材料内の歪に基づく応力を緩和して、磁性部材を備える電気・電子関連部品の磁気特性の低下を抑制することが一般的に行われる。
 本発明の一実施形態に係る磁性部材は、これに含有される軟磁性材料がガラス遷移温度Tを有し、好ましい一例では過冷却液体領域ΔTが25℃以上であるため、アニール処理を容易に行うことができる。したがって、本発明の一実施形態に係る磁性部材を備える電気・電子関連部品は、優れた磁気特性を有することができる。そのような本発明の一実施形態に係る電気・電子関連部品の具体例として、インダクタ、モータ、トランス、電磁干渉抑制部材などが挙げられる。
 本発明の一実施形態に係る機器は、上記の本発明の一実施形態に係る電気・電子関連部品を備える。かかる機器の具体例として、スマートフォン、ノートパソコン、タブレット端末等の携帯電子機器;パーソナルコンピューター、サーバー等の電子計算機;自動車、二輪車等の輸送機器;発電設備、トランス、蓄電設備などの電気関連機器などが例示される。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
 表1から表3に示される組成のFe基合金組成物を溶製し、単ロール法により薄帯からなる軟磁性材料を得た。薄帯の厚さは約20μmであった。得られた薄帯に対してX線回折測定(線源:CuKα)を行ったところ、いずれのX線回折スペクトルにおいても結晶質の存在を示すピークは認められず、すべての薄帯がアモルファス相からなるものであることが確認された。表1から表3中、構造の列の「A」はアモルファス相からなるものであったことを意味する。なお、表1から表3中、「(B+C)/Fe」の列には、BC/Fe比の数値を記した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られた薄帯を測定対象として、示差走査熱量計を用いて、キュリー温度T(単位:℃)、ガラス遷移温度T(単位:℃)、結晶化開始温度T(単位:℃)および融点T(単位:℃)を測定し、得られたDSCチャートに基づいて、過冷却液体領域ΔT(単位:℃)を算出した。結果を表4から表6に示す。また、得られた薄帯の密度を測定した。密度はF. E. Luborsky, J. J. Becker, J. L. Walter, D. L. Martin, “The Fe-B-C Ternary Amorphous  Alloys,” IEEE Transactions on Magnetics, MAG-16(1980) 521.のFig.9に示された合金組成の密度から換算したものである。その結果も表4から表6に示す。
 なお、ガラス遷移温度Tを有するFe基アモルファス軟磁性材料((a)実施例13および(b)実施例25)のDSCチャートを図2に示し、ガラス遷移温度Tを有しないFe基アモルファス軟磁性材料(実施例3)のDSCチャートを図3に示した。図2(a)に示されるように、ガラス遷移温度Tを有するFe基アモルファス軟磁性材料の一例(実施例13)のDSCチャートでは、キュリー温度T(420℃)以降、結晶化開始温度T(540℃)を示す温度に至るまでの範囲、具体的には、図2(a)に示されるように、500℃程度から540℃程度の範囲に、吸熱状態を経由することが確認された。また、図2(b)に示されるように、ガラス遷移温度Tを有するFe基アモルファス軟磁性材料の他の一例(実施例25)のDSCチャートでは、キュリー温度T(426℃)以降、結晶化開始温度T(560℃)を示す温度に至るまでの範囲、具体的には、図2(b)に示されるように、520℃程度から560℃程度の範囲に、明確な吸熱状態を経由することが確認された。本明細書において、実施例25のように、DSCチャートにおいて、図2(b)に示されるように吸熱状態が明確に認められる場合には、ガラス遷移が明瞭に測定されたと表現する場合がある。
 これに対し、図3に示されるように、ガラス遷移温度Tを有しないFe基アモルファス軟磁性材料(実施例3)のDSCチャートでは、キュリー温度T(380℃)以降、結晶化開始温度T(480℃)を示す温度に至るまでの範囲において、吸熱状態を経由しているとは認められないことが確認された。
 表4から表6には、このDSCチャートに基づく判断結果を「金属ガラス」の列に示した。すなわち、上記の吸熱状態が認められなかった場合には、金属ガラスでなかったと判断して表中に「A」を記した。上記の吸熱状態が認められた場合であって、特にその程度が大きい場合(具体的には、実施例25のようにガラス遷移が明瞭に測定された場合)には、金属ガラスの性質が顕著であると判断して、表中に「C」を記した。上記の吸熱状態が認められたが「C」と記す程度ではない場合(具体的には実施例13のような場合)には、金属ガラスであると判断して表中「B」を記した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 各実施例に係る軟磁性材料の飽和磁化Js(単位:T)を測定した。その結果を表4から表6に示した。また、実施例5、実施例10、実施例15および実施例22に係る軟磁性材料(薄帯)について、保磁力Hc(単位:A/m)を測定した。その結果は、それぞれ、6.4A/m、4.0A/m、5.7A/m、5.4A/mであった。いずれの軟磁性材料(薄帯)も、良好な軟磁気特性を示した。
 実施例9から実施例15および実施例44から実施例46に係るFe基合金組成物の組成は、次のように表すことができる。
  (Fe0.7930.1430.064100原子%-αSiα
 ここで、αは0原子%以上12原子%以下である。
 したがって、実施例9から実施例15および実施例44から実施例46を対比することにより、アモルファス化元素としてのSiを添加したことによる効果を確認することができる。その結果を図4から図6に示す。図4は、Fe基合金組成物の融点TとSi添加量との関係を示すグラフである。図5は、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料である薄帯のキュリー温度TとSi添加量との関係を示すグラフである。図6は、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料である薄帯の過冷却液体領域ΔTとSi添加量との関係を示すグラフである。
 図4に示されるように、Siを添加する場合には、基本的な傾向として、Si添加量を0原子%から増加させると1原子%までは融点Tが高くなり、2原子%を超えて添加すると融点Tが低下する傾向が認められた。Fe基合金組成物の融点Tの低下は溶湯の取扱い性を高め、Fe基アモルファス軟磁性材料の生産性および品質向上をもたらす。
 図5に示されるように、Siを添加する場合には、6原子%まではSi添加量を増加させるとキュリー温度Tが高くなるが、6原子%よりもSi添加量をさらに増加させるとキュリー温度Tは逆に低下する傾向が認められた。キュリー温度Tが高くなることは、Fe基アモルファス軟磁性材料を用いてなる磁性部材を備える電気・電子関連部品の動作保障温度を高めることに寄与する。
 図6に示されるように、Siを添加する場合には、5原子%まではSi添加量を増加させると過冷却液体領域ΔTが広くなるが、5原子%よりもSi添加量をさらに増加させると過冷却液体領域ΔTは逆に狭くなる傾向が認められた。過冷却液体領域ΔTが広くなることにより、Fe基アモルファス軟磁性材料を用いてなる磁性部材のアニール処理がより容易となる。
 実施例26から実施例29に係るFe基合金組成物の組成は、次のように表すことができる。
  (Fe0.793-βCrβ0.1430.06496原子%Si4原子%
 ここで、βは0以上0.03以下である。
 したがって、実施例26から実施例29を対比することにより、Feの置換元素としてのCrを添加したことによる効果を確認することができる。その結果を図7に示す。図7は、Fe基合金組成物から形成されたFe基アモルファス軟磁性材料である薄帯の過冷却液体領域ΔTとCr添加量との関係を示すグラフである。図7に示されるように、Feの一部をCrに置き換えても、過冷却液体領域ΔTに顕著な変化は認められなかった。したがって、数原子%程度までであれば、Fe基合金組成物におけるFeの一部をCrに置き換えても、そのFe基合金組成物から形成されたFe基アモルファス軟磁性材料を用いてなる磁性部材のアニール処理の容易さに顕著な変化が生じる可能性は低いと期待される。CrはFe基アモルファス軟磁性材料に耐食性を付与することができるため、Fe基合金組成物から水アトマイズ法を用いてFe基アモルファス軟磁性材料を形成する場合には、Fe基合金組成物にCrを含有させることが好ましい。
 図8は、実施例において製造したFe基合金組成物のうち、Siの添加量が4原子%であってCrが添加されていないものの一部(実施例2、実施例4、実施例6、実施例8、実施例13、実施例17、実施例19、実施例21、実施例23、実施例25、実施例30から実施例43、および実施例47から実施例54の32実施例)のそれぞれから形成されたFe基アモルファス軟磁性材料について、Fe基合金組成物の組成(Bの添加量、Cの添加量およびFe+Si(4原子%)の添加量)とガラス遷移温度Tが測定されたか否かとの関係を示す擬三元図である。図8中、星印(☆)は、ガラス遷移温度Tが明瞭に測定された(DSCチャートにおいて吸熱状態が明確に認められた)実施例を示し、黒丸(●)は星印の場合ほどではないもののガラス遷移温度Tが測定された実施例を示し、白丸(○)はガラス遷移温度Tが測定されなかった実施例を示している。これらの印の近傍に示される数値は、各実施例の過冷却液体領域ΔT(単位:℃)である。
 図8に示されるように、本発明の組成範囲を満たした実施例(実施例8、実施例13、実施例17、実施例19、実施例21、実施例23、実施例25、実施例30、実施例31、実施例33、実施例36、実施例37、実施例39、実施例40、実施例42、実施例43、実施例47から実施例50、および実施例52から実施例54の24実施例)に係るFe基アモルファス軟磁性材料では、ガラス遷移温度Tが測定され、特に、実施例23、実施例25、実施例30、実施例33、実施例37、実施例39、実施例40、実施例42、実施例43、実施例48から実施例50、および実施例53の13実施例では、ガラス遷移温度Tが明瞭に測定された。これに対し、C添加量が過度に低い組成を有する場合(実施例2および実施例4)、B添加量が過度に低い組成を有する場合(実施例8および実施例32)、B添加量が過度に高い組成を有する場合(実施例35、実施例38および実施例41)には、ガラス遷移温度Tが測定されなかった。
 本発明の組成範囲を満たしたFe基合金組成物は、当該組成範囲以外の組成のFe基合金組成物よりもFe基アモルファス軟磁性材料を生成しやすいことを、次のようにして確認した。実施例7(本発明の組成範囲外)に係るFe基合金組成物および実施例25(本発明の組成範囲内)に係るFe基合金組成物から薄帯形状を有する軟磁性材料を形成する際に、溶湯の滴下速度、ロール回転速度などを調整して、薄帯の厚さが異なるものを用意した。具体的には、実施例7に係る薄帯は、2種類(22μm、34μm)を用意した。実施例25に係る薄帯は、6種類(17μm、40μm、49μm、68μm、120μm、135μm)を用意した。
 これらの薄帯についてX線回折測定(線源:Cuα)を行って、X線回折スペクトルを得た。測定結果を図9(実施例7)および図10(実施例25)に示した。薄帯の厚さが厚くなるほど、薄帯形成の際のFe基合金組成物の冷却速度は遅くなるため、得られた薄帯内に結晶が形成されやすくなる。したがって、薄帯のX線回折スペクトルにおいて、結晶生成が認められる薄帯の厚さの下限値が大きいほど、Fe基合金組成物のアモルファス形成能が高いといえる。
 図9に示されるように、本発明の組成範囲外の組成を有するFe基合金組成物から形成された実施例7に係る薄帯では、厚さが34μmの場合に45°程度にシャープな先端を有するピークが認められた。これに対し、図10に示されるように、本発明の組成範囲内の組成を有するFe基合金組成物から形成された実施例25に係る薄帯では、厚さが120μmの場合であっても、シャープな先端を有するピークは認められず、厚さが135μmの場合になって初めて、45°程度にシャープな先端を有するピークが認められた。したがって、本発明の組成範囲内の組成を有する実施例25に係るFe基合金組成物は、本発明の組成範囲外の組成を有する実施例7に係るFe基合金組成物に比べて、アモルファス形成能が高いことが確認された。
 表7に示される組成(単位:原子%)のFe基合金組成物を用意した。なお、実施例58および実施例59に係る組成は実施例28に等しく、参考例2に係る組成はPを含有する。
Figure JPOXMLDOC01-appb-T000007
 これらのFe基合金組成物から水アトマイズ法を用いて軟磁性粉末を作製した。いずれの軟磁性粉末もアモルファス相を主相とするアモルファス軟磁性粉末であった。これらの軟磁性粉末の粒度分布を日機装社製「マイクロトラック粒度分布測定装置 MT3000シリーズ」を用いて体積分布で測定した。体積基準の粒度分布において小粒径側からの積算粒径分布がそれぞれ10%、50%および90%となる粒径D10(10%体積累積径)、D50(50%体積累積径)、D90(90%体積累積径)は、表8のとおりであった。
Figure JPOXMLDOC01-appb-T000008
 上記の実施例57から実施例60および参考例2に係る軟磁性粉末、ならびに参考例1(表7に組成を示した。)に係る市販の軟磁性粉末のそれぞれについて、軟磁性粉末97.2質量部、アクリル樹脂およびフェノール樹脂からなる絶縁性結着材を2~3質量部、およびステアリン酸亜鉛からなる潤滑剤0~0.5質量部を、溶媒としての水に混合してスラリーを得た。得られたスラリーから造粒粉を得た。
 得られた造粒粉を金型に充填し、面圧0.5~1.5GPaで加圧成形して、外径20mm×内径12mm×厚さ3mmのリング形状を有する成形製造物を得た。
 得られた成形製造物を、窒素気流雰囲気の炉内に載置し、炉内温度を、室温(23℃)から昇温速度10℃/分で表8に示されるアニール温度まで加熱し、この温度にて1時間保持し、その後、炉内で室温まで冷却する熱処理を行い、圧粉コアからなるトロイダルコアを得た。これらのトロイダルコアの密度を測定した結果を表8に示した。
 上記のトロイダルコアのそれぞれに被覆銅線をそれぞれ40回巻いてトロイダルコイル得た。これらのトロイダルコイルのそれぞれについて、インピーダンスアナライザー(HP社製「4192A」)を用いて、100kHzの条件で比透磁率μを測定した。測定結果を表8に示した。
 上記のトロイダルコアに被覆銅線をそれぞれ1次側40回、2次側10回巻いて得られたトロイダルコイルについて、BHアナライザー(岩崎通信機社製「SY-8218」)を用いて、実効最大磁束密度Bmを100mTとする条件で、測定周波数100kHzで鉄損Pcv(単位:kW/m)を測定した。
 表8に示されるように、本発明に係る組成を有する軟磁性粉末から得られたトロイダルコアの磁気特性は、市販のアモルファス軟磁性粉末やPを含有する組成のアモルファス軟磁性粉末から得られたトロイダルコアの磁気特性と同等であった。
1…磁性コア(トロイダルコア)

Claims (23)

  1.  ガラス遷移温度Tを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、
     組成式が(Fe1-a100原子%-(x+b+c+d)Siで表され、
     Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなり、
     下記の条件を満たすことを特徴とするFe基合金組成物。
      0≦a≦0.3
      11.0原子%≦b≦18.20原子%、
      6.00原子%≦c≦17原子%、
      0原子%≦d≦10原子%、かつ
      0原子%≦x≦4原子%
  2.  R=(b+c)/[(1-a)×{100原子%-(x+b+c+d)}]としたときに、0.25≦R≦0.429であることを特徴とする請求項1に記載のFe基合金組成物。
  3.  前記組成式において、100原子%-(x+b+c+d)が、67.20原子%以上80.00原子%以下である、請求項1または2に記載のFe基合金組成物。
  4.  前記組成式において、bが11.52原子%以上18.14原子%以下である、請求項1から3のいずれか一項に記載のFe基合金組成物。
  5.  前記組成式において、cが6.00原子%以上16.32原子%以下である、請求項1から4のいずれか一項に記載のFe基合金組成物。
  6.  前記組成式において、dが0原子%超10原子%以下である、請求項1から5のいずれか一項に記載のFe基合金組成物。
  7.  前記組成式において、MがCrを含む、請求項1から6のいずれか一項に記載のFe基合金組成物。
  8.  前記組成式において、Cr添加量が0原子%以上4原子%以下である、請求項7に記載のFe基合金組成物。
  9.  ガラス遷移温度Tを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、
     組成式が(Fe1-a100原子%-(x+b+c+d)Siで表され、
     Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなり、
     下記の条件を満たすことを特徴とするFe基合金組成物。
      0≦a≦0.3
      11.0原子%≦b≦20.0原子%、
      1.5原子%≦c<6原子%、
      0原子%<d≦10原子%、
      0原子%≦x≦4原子%、かつ
      0.25≦R≦0.32
     ここで、R=(b+c)/[(1-a)×{100原子%-(x+b+c+d)}]である。
  10.  前記組成式において、bが15.0原子%以上19.0原子%以下である、請求項9に記載のFe基合金組成物。
  11.  Rが0.25以上0.30以下である、請求項9または10に記載のFe基合金組成物。
  12.  請求項1から11のいずれか一項に記載されるFe基合金組成物の組成を有し、ガラス遷移温度Tを有するアモルファス相を含有することを特徴とする軟磁性材料。
  13.  帯型の形状を有する、請求項12に記載の軟磁性材料。
  14.  粉体の形状を有する、請求項12に記載の軟磁性材料。
  15.  前記軟磁性材料の結晶化開始温度Tと前記ガラス遷移温度Tとの温度差(T-T)により定義される過冷却液体領域ΔTは、25℃以上である、請求項12から14のいずれか一項に記載の軟磁性材料。
  16.  前記過冷却液体領域ΔTは40℃以上である、請求項15に記載の軟磁性材料。
  17.  キュリー温度Tが340℃以上である、請求項12から16のいずれか一項に記載の軟磁性材料。
  18.  結晶化開始温度Tを超える温度まで加熱して結晶化させて得られる軟磁性材料についてX線回折測定したときに、α-Feに帰属されるピークに加えて、FeBと帰属されるピークおよびFe(B1-y)(yは0以上1未満)と帰属されるピークの少なくとも一方を有するX線回折スペクトルが得られる、請求項12から17のいずれか一項に記載の軟磁性材料。
  19.  請求項12から18のいずれか一項に記載される軟磁性材料を含むことを特徴とする磁性部材。
  20.  磁性コアである、請求項19に記載の磁性部材。
  21.  磁性シートである、請求項19に記載の磁性部材。
  22.  請求項19から21のいずれか一項に記載される磁性部材を備える電気・電子関連部品。
  23.  請求項22に記載される電気・電子関連部品を備える機器。
PCT/JP2017/006428 2016-03-07 2017-02-21 Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器 WO2017154561A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187019659A KR102231316B1 (ko) 2016-03-07 2017-02-21 Fe 기 합금 조성물, 연자성 재료, 자성 부재, 전기·전자 관련 부품 및 기기
CN201780007609.3A CN108603272B (zh) 2016-03-07 2017-02-21 Fe基合金组合物、软磁性材料、磁性部件、电气电子相关部件和设备
JP2018504344A JP6548059B2 (ja) 2016-03-07 2017-02-21 Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器
US16/035,302 US10950374B2 (en) 2016-03-07 2018-07-13 Fe-based alloy composition, soft magnetic material, magnetic members, electric/electronic component, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016043817 2016-03-07
JP2016-043817 2016-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/035,302 Continuation US10950374B2 (en) 2016-03-07 2018-07-13 Fe-based alloy composition, soft magnetic material, magnetic members, electric/electronic component, and device

Publications (1)

Publication Number Publication Date
WO2017154561A1 true WO2017154561A1 (ja) 2017-09-14

Family

ID=59789262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006428 WO2017154561A1 (ja) 2016-03-07 2017-02-21 Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器

Country Status (5)

Country Link
US (1) US10950374B2 (ja)
JP (1) JP6548059B2 (ja)
KR (1) KR102231316B1 (ja)
CN (1) CN108603272B (ja)
WO (1) WO2017154561A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245391B1 (ja) * 2017-01-30 2017-12-13 Tdk株式会社 軟磁性合金および磁性部品
CN113053610A (zh) * 2019-12-27 2021-06-29 Tdk株式会社 软磁性合金粉末、磁芯、磁性部件和电子设备
CN114360883B (zh) * 2021-12-31 2022-11-01 华南理工大学 一种基于非晶晶化双功能基元的高磁感磁粉芯及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508129A (ja) * 1997-01-09 2001-06-19 アライドシグナル・インコーポレーテッド 低周波数用途で有用な軟磁性特性を有するアモルファスFe−B−Si−C合金
JP2009019259A (ja) * 2007-07-13 2009-01-29 Daido Steel Co Ltd 非晶質軟磁性金属粉末および圧粉磁芯
JP2009120927A (ja) * 2007-11-19 2009-06-04 Nec Tokin Corp 軟磁性非晶質合金
JP2013510242A (ja) * 2009-11-06 2013-03-21 ザ・ナノスティール・カンパニー・インコーポレーテッド ハニカム構造における非晶質鋼板の利用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152150A (en) * 1979-05-17 1980-11-27 Res Inst Electric Magnetic Alloys High magnetic flux amorphous iron alloy
JP3920599B2 (ja) 2001-08-07 2007-05-30 アルプス電気株式会社 手動入力装置
DE60200502T2 (de) 2001-08-07 2005-05-25 Alps Electric Co., Ltd. Manuelle Eingabevorrichtung mit Kraftrückkopplungsfunktion
US6854573B2 (en) 2001-10-25 2005-02-15 Lord Corporation Brake with field responsive material
JP3771224B2 (ja) 2002-09-11 2006-04-26 アルプス電気株式会社 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
DE102005003593A1 (de) 2004-01-29 2005-09-15 Preh Gmbh Programmierbarer Drehmomentgeber mit Federelement
JP2007538301A (ja) 2004-01-29 2007-12-27 プレー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ばね部品を用いたプログラム可能な回転トルク供給装置
JP4695928B2 (ja) 2005-06-29 2011-06-08 ホシデン株式会社 ロック装置
CN101206943B (zh) * 2007-11-16 2011-02-02 北京航空航天大学 一种具有高饱和磁感应强度及良好韧性的铁基非晶软磁合金
FR2930655B1 (fr) 2008-04-29 2013-02-08 Commissariat Energie Atomique Interface a retour d'effort a sensation amelioree
CN102803168B (zh) * 2010-02-02 2016-04-06 纳米钢公司 加工金属玻璃组合物中二氧化碳和/或一氧化碳气体的利用
WO2012094046A2 (en) * 2010-10-19 2012-07-12 California Institute Of Technology Zintl phases for thermoelectric applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508129A (ja) * 1997-01-09 2001-06-19 アライドシグナル・インコーポレーテッド 低周波数用途で有用な軟磁性特性を有するアモルファスFe−B−Si−C合金
JP2009019259A (ja) * 2007-07-13 2009-01-29 Daido Steel Co Ltd 非晶質軟磁性金属粉末および圧粉磁芯
JP2009120927A (ja) * 2007-11-19 2009-06-04 Nec Tokin Corp 軟磁性非晶質合金
JP2013510242A (ja) * 2009-11-06 2013-03-21 ザ・ナノスティール・カンパニー・インコーポレーテッド ハニカム構造における非晶質鋼板の利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TERUO BITO ET AL.: "Development of Fe-B-C Amorphous Alloys with High Magnetization and a Glass Transition", AKITA PREFECTURAL UNIVERSITY WEB JOURNAL B, vol. 65, no. 7, 30 September 2016 (2016-09-30), pages 152 - 156, Retrieved from the Internet <URL:https://akita-pu.repo.nii.ac.jp> [retrieved on 20170516] *

Also Published As

Publication number Publication date
CN108603272B (zh) 2021-09-14
CN108603272A (zh) 2018-09-28
JPWO2017154561A1 (ja) 2018-08-30
JP6548059B2 (ja) 2019-07-24
KR102231316B1 (ko) 2021-03-23
US20180322991A1 (en) 2018-11-08
KR20180093033A (ko) 2018-08-20
US10950374B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
JP6309149B1 (ja) 軟磁性粉末、圧粉磁芯、磁性部品及び圧粉磁芯の製造方法
JP6472939B2 (ja) 軟磁性粉末、Fe基ナノ結晶合金粉末、磁性部品及び圧粉磁芯
JP6181346B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP6046357B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP4815014B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法
JP5419302B2 (ja) Fe基非晶質合金、及び前記Fe基非晶質合金を用いた圧粉コア、ならびにコイル封入圧粉コア
JP5912239B2 (ja) Fe基合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
TW201817897A (zh) 軟磁性合金及磁性零件
JP2009174034A (ja) アモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた磁心並びに磁性部品
JP5916983B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP6842824B2 (ja) 金属軟磁性合金と磁心の製造方法
WO2016121950A1 (ja) 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
JP2008231534A5 (ja)
JP6548059B2 (ja) Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器
JPH07268566A (ja) Fe基軟磁性合金およびそれを用いた積層磁心の製造方法
JP2006040906A (ja) 高透磁率かつ高飽和磁束密度の軟磁性成形体の製造方法
JP5069408B2 (ja) 非晶質磁性合金
WO2019044132A1 (ja) Fe基合金組成物、軟磁性材料、圧粉磁心、電気・電子関連部品および機器
JP6080115B2 (ja) 圧粉磁心の製造方法
JPH08948B2 (ja) Fe基磁性合金
JPH03249151A (ja) 超微結晶磁性合金およびその製法
JPH0442508A (ja) 高周波磁心用非晶質合金及び高周波磁心

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504344

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187019659

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019659

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762903

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762903

Country of ref document: EP

Kind code of ref document: A1