WO2017150701A1 - 強靭な硬化物を与える樹脂シート製造用硬化型組成物 - Google Patents

強靭な硬化物を与える樹脂シート製造用硬化型組成物 Download PDF

Info

Publication number
WO2017150701A1
WO2017150701A1 PCT/JP2017/008476 JP2017008476W WO2017150701A1 WO 2017150701 A1 WO2017150701 A1 WO 2017150701A1 JP 2017008476 W JP2017008476 W JP 2017008476W WO 2017150701 A1 WO2017150701 A1 WO 2017150701A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin sheet
meth
composition
acrylate
Prior art date
Application number
PCT/JP2017/008476
Other languages
English (en)
French (fr)
Inventor
津田 隆
浩之 神村
信明 小池
岡崎 栄一
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to KR1020187025102A priority Critical patent/KR20180119161A/ko
Priority to JP2018503415A priority patent/JP6780698B2/ja
Priority to CN201780014392.9A priority patent/CN108699343B/zh
Publication of WO2017150701A1 publication Critical patent/WO2017150701A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/38Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Definitions

  • the present invention relates to a curable composition capable of producing a resin sheet or film conveniently and in a short time, and preferably relates to an active energy ray curable composition.
  • the resin sheet obtained from the composition is a liquid crystal display (LCD) or the like. It can be used for various applications including optical substrates and polarizer protective films.
  • LCD liquid crystal display
  • an acryloyl group or a methacryloyl group is represented as a (meth) acryloyl group
  • an acrylate or methacrylate is represented as a (meth) acrylate
  • acrylic acid or methacrylic acid is represented as (meth) acrylic acid.
  • “resin sheet” means a resin sheet or a resin film.
  • a touch panel integrated liquid crystal display device or a touch panel integrated organic EL display device is often applied to mobile devices such as smartphones, tablet terminals, and car navigation systems.
  • a transparent conductive thin film of a touch panel a conductive glass in which a thin film of indium tin oxide (hereinafter referred to as “ITO”) is formed on glass is well known, but it is possible because the base material is glass. Poor flexibility and workability. Therefore, depending on applications, transparent conductive sheets based on polyethylene terephthalate sheets are used because of advantages such as excellent flexibility, workability, impact resistance, and light weight.
  • OPS One Plastic Solution
  • a touch sensor such as ITO is directly formed on a resin sheet
  • cover material having excellent impact resistance.
  • conventional acrylic and polycarbonate sheets are easily scratched because of their low surface hardness, and the toughness may be insufficient and may be broken by an external impact force.
  • Patent Document 1 discloses a plastic member for forming a transparent conductive film obtained by photocuring a photocurable composition containing a bismethacrylate having an alicyclic skeleton and a mercapto compound.
  • Patent Document 2 it is obtained by photocuring a photocurable composition containing a polyfunctional urethane (meth) acrylate having an alicyclic structure, a bifunctional (meth) acrylate having an alicyclic structure, and a photopolymerization initiator, A transparent resin molded body having a thickness of 50 to 500 ⁇ m is disclosed.
  • Patent Document 1 gives moderate toughness to the cured product by blending a mercapto compound
  • the pot life of the composition is shortened and the stability of the composition is reduced.
  • the invention described in Patent Document 2 cannot exhibit the same rigidity as glass, there is a problem that an appearance defect occurs in the heating step in the transparent conductive film or metal electrode formation process.
  • the toughness is also insufficient, and there is a possibility of cracking by an external impact force.
  • a resin sheet for a polarizer protective film in the production of a polarizing plate a cyclic polyolefin using a cyclic olefin such as cellulose acetate resin such as triacetyl cellulose and diacetyl cellulose, acrylic resin, polyethylene terephthalate, polycarbonate, and norbornene as a monomer. Resins and the like are known. These resin sheets have been conventionally used as protective films for various polarizing plates and are excellent in rigidity and toughness, but may be insufficient in applications requiring further heat resistance.
  • the inventors of the present invention provide a curable composition in which the obtained resin sheet is excellent in rigidity and toughness, specifically, in a bending test, it is excellent in all physical properties of elastic modulus, maximum stress, and fracture strain, In the tensile test, when it is used as a polarizer protective film, it is also excellent in heat resistance in addition to rigidity and toughness, as well as in the physical properties of elastic modulus, maximum stress and breaking strain. He intensively studied to find a mold composition.
  • “excellent rigidity” means that the hardness of the cured product is high and that the elastic modulus is high in a bending test or tensile test
  • excellent toughness means that the bending test or tensile test is high. It means that the stress and strain in the test are large, that is, the breaking energy is large, and particularly that the breaking strain is large.
  • the present inventors can achieve both rigidity and toughness of the cured product by using a composition utilizing intermolecular interactions other than covalent bonds. Furthermore, the inventors have found that the effect of the acid / base interaction is much higher than that of simple hydrogen bonding. However, the strong acid / base interaction that produces a neutralized salt decreases the durability and heat resistance of the cured product. Therefore, it is considered that a weak acid / base interaction is preferable, and contains an acidic carboxylic acid group.
  • Table 1 shows literature values of “pKa of conjugate acid”, which is a measure of basicity of a functional group.
  • the present inventors have studied various combinations of carboxylic acid group-containing polymers and weakly basic groups exhibiting an appropriate interaction, and as a result, have found that a weak base having a conjugate acid pKa of -3 to 1. It was discovered that the sex group is the best, that is, the balance between affinity and stability is excellent, and the present invention has been completed.
  • the present invention includes the following component (A), component (B) and optionally component (C), In a total amount of 100% by weight of component (A), component (B) and component (C), component (A) is 40 to 80% by weight, component (B) is 60 to 20% by weight and component (C) is The present invention relates to a curable composition for producing a resin sheet containing 0 to 40% by weight.
  • Component (A) Oligomer or polymer having weak basic group whose pKa of conjugate acid is -3 to 1
  • Component (B) Compound having carboxyl group and ethylenically unsaturated group
  • Component Component (A) And the ethylenically unsaturated group containing compound other than (B) component
  • this invention is demonstrated in detail.
  • a resin sheet having both rigidity and toughness can be easily produced. Specifically, in a bending test, it is excellent in all physical properties such as elastic modulus, maximum stress, and breaking strain. Furthermore, in the tensile test, it will be excellent in all physical properties such as elastic modulus, maximum stress and breaking strain. In addition, when used as a polarizer protective film, in addition to rigidity and toughness, in addition to heat resistance Will also be excellent.
  • FIG. 1 is a diagram showing an example of a mold used when a resin sheet is produced using the composition of the present invention.
  • the present invention includes the following component (A), component (B) and optionally component (C),
  • component (A) is 40 to 80% by weight
  • component (B) is 60 to 20% by weight
  • component (C) is A curable composition for producing a resin sheet containing 0 to 40% by weight.
  • Component (A) Oligomer or polymer having weak basic group whose pKa of conjugate acid is -3 to 1
  • Component (B) Compound having carboxyl group and ethylenically unsaturated group
  • Component Component (A) And the ethylenically unsaturated group containing compound other than (B) component
  • the component (A) is an oligomer or polymer having a weak basic group whose pKa of the conjugate acid is -3 to 1.
  • the pKa of the conjugate acid means a value measured by an electrochemical method such as a hydrogen electrode method or a glass electrode method, and when it cannot be measured by an electrochemical method, ultraviolet light, visible light, and nuclear magnetic resonance are used. It means a value measured by a spectroscopic method such as a method.
  • the basicity is too weak and the combined effect with the carboxyl group of the component (B) does not appear
  • the concentration of the weak basic group in component (A) is preferably 1 to 10 meq / g.
  • Examples of the compound having a carbamate group include a compound having a urethane bond.
  • Examples of the compound having an amide group include an aliphatic skeleton polyamide generally referred to as nylon.
  • the oligomer or polymer is preferably a compound having a molecular weight of 500 to 10,000.
  • the molecular weight means an absolute molecular weight measurable by mass spectrometry, while the molecular weight of the high molecular weight body means a weight average molecular weight (hereinafter referred to as “Mw”).
  • Mw means polystyrene-equivalent Mw measured by gel permeation chromatography (GPC).
  • component (A) both a compound having an ethylenically unsaturated group (hereinafter referred to as “component (A1)”) and a compound having no ethylenically unsaturated group (hereinafter referred to as “component (A2)”) are used. Can be used.
  • component (A1) and (A2) will be described.
  • the component (A1) is a compound having an ethylenically unsaturated group in the oligomer or polymer.
  • the number of ethylenically unsaturated groups in one molecule is preferably 2 or more, more preferably 3 or more, and particularly preferably 3 or 4.
  • the concentration of the ethylenically unsaturated group is preferably 0.3 to 10 meq / g. When the number and concentration of ethylenically unsaturated groups are within these ranges, the resulting cured product has a very excellent balance between mechanical properties, particularly rigidity and toughness.
  • Examples of the ethylenically unsaturated group in the component (A1) include a (meth) acryloyl group, a vinyl group and a vinyl ether group, and a (meth) acryloyl group is preferable.
  • component (A1) a compound having a urethane bond and having two or more (meth) acryloyl groups [hereinafter referred to as “component (A1-1)”] is preferable.
  • the component (A1-1) is a compound usually referred to as urethane (meth) acrylate.
  • component (A1-1) a reaction product of polyol, organic polyisocyanate and hydroxyl group-containing (meth) acrylate (hereinafter referred to as “urethane (meth) acrylate” for convenience), and organic polyisocyanate and hydroxyl group-containing (meth) acrylate And reactants (hereinafter referred to as “urethane adducts”).
  • Urethane (meth) acrylate is a reaction product of polyol, organic polyisocyanate and hydroxyl group-containing (meth) acrylate.
  • a polyol which is a raw material of urethane (meth) acrylate a diol is preferable, and a low molecular weight diol, a diol having a polyester skeleton, a diol having a polyether skeleton, and a diol having a polycarbonate skeleton are preferably used.
  • low molecular weight diol examples include ethylene glycol, propylene glycol, cyclohexanedimethanol, neopentyl glycol, 3-methyl-1,5-pentanediol, and 1,6-hexanediol.
  • diol having a polyester skeleton examples include an esterification reaction product of a diol component such as the low molecular weight diol or polycaprolactone diol and an acid component such as dicarboxylic acid or an anhydride thereof.
  • dicarboxylic acid or anhydride thereof examples include adipic acid, succinic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid and terephthalic acid, and anhydrides thereof.
  • diol having a polyether skeleton examples include polyethylene glycol, polypropylene glycol, and polyetramethylene glycol.
  • diol having a polycarbonate skeleton examples include a reaction product of at least one diol selected from the group consisting of the low molecular weight diol and bisphenol such as bisphenol A and a dialkyl ester carbonate such as ethylene carbonate and dibutyl ester. .
  • organic polyisocyanates examples include aliphatic polyisocyanates having no alicyclic groups (hereinafter simply referred to as “aliphatic polyisocyanates”), aliphatic polyisocyanates having alicyclic groups (hereinafter referred to as “alicyclic polyisocyanates”). And polyisocyanates having aromatic rings and aromatic polyisocyanates.
  • Examples of the aliphatic polyisocyanate include hexamethylene diisocyanate, tetramethylene diisocyanate, trimethylhexamethylene diisocyanate, and lysine diisocyanate.
  • Examples of the alicyclic polyisocyanate include hydrogenated tolylene diisocyanate, hydrogenated 4,4′-diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, and isophorone diisocyanate.
  • Examples of the polyisocyanate having a heterocyclic ring include hexamethylene diisocyanate trimer and isophorone diisocyanate trimer.
  • aromatic diisocyanate examples include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, paraphenylene diisocyanate, 1,5-naphthalene diisocyanate, and the like.
  • the organic polyisocyanate that is preferably used in the present invention is an aliphatic polyisocyanate and a polyisocyanate having a heterocyclic ring because of excellent physical properties of the cured product and little yellowing.
  • hydroxyl group-containing (meth) acrylate a hydroxyl group-containing mono (meth) acrylate is preferable.
  • hydroxyl-containing mono (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxyhexyl (meth) acrylate, and hydroxy And hydroxyalkyl (meth) acrylates such as octyl (meth) acrylate.
  • Urethane Adduct Urethane adduct is a reaction product of organic polyisocyanate and hydroxyl group-containing (meth) acrylate.
  • Use of a urethane adduct as the component (A) is preferable because the crosslink density is increased and the heat resistance is improved, and the toughness is also improved by the combined use with the component (B).
  • examples of the organic polyisocyanate and the hydroxyl group-containing (meth) acrylate include the compounds described above.
  • a compound having a hydroxyl group and two or more (meth) acryloyl groups (hereinafter referred to as “hydroxyl group-containing polyfunctional (meth) acrylate”) can also be used as the hydroxyl group-containing (meth) acrylate.
  • a urethane adduct when a reaction product of an organic polyisocyanate and a hydroxyl group-containing polyfunctional (meth) acrylate (hereinafter referred to as “urethane adduct P1”) is used, the crosslink density is increased, and the heat resistance, wear resistance and scratch resistance are increased. It is also preferable because it is excellent.
  • hydroxyl group-containing polyfunctional (meth) acrylate various compounds can be used, specifically, trimethylolpropane di (meth) acrylate, pentaerythritol di- or tri (meth) acrylate, ditrimethylolpropane di- or tri- Examples include (meth) acrylate and dipentaerythritol di, tri, tetra, or penta (meth) acrylate.
  • a compound having three or more (meth) acryloyl groups and one hydroxyl group is preferable in that the cured film is excellent in abrasion resistance and scratch resistance.
  • pentaerythritol trisitol is preferable.
  • (Meth) acrylate ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and the like.
  • pentaerythritol tri (meth) acrylate is more preferable because it can prevent warpage of the resulting cured product.
  • the raw material hydroxyl group-containing polyfunctional (meth) acrylate is usually a mixture containing a hydroxyl group-containing polyfunctional (meth) acrylate and a polyfunctional (meth) acrylate having no hydroxyl group, but the urethane adduct P1.
  • those produced using the mixture can also be used.
  • the reactant obtained from the mixture is a mixture of the component (A) and the component (C).
  • Preferable compounds of the urethane adduct include a reaction product of an organic polyisocyanate having three or more isocyanate groups and a hydroxyl group-containing mono (meth) acrylate (hereinafter referred to as “urethane adduct P2”).
  • Examples of the hydroxyl group-containing mono (meth) acrylate in the urethane adduct P2 include the same compounds as those described above.
  • Examples of the organic polyisocyanate having three or more isocyanate groups include the aforementioned hexamethylene diisocyanate trimer and isophorone diisocyanate trimer.
  • Preferable examples of the urethane adduct P2 include an addition reaction product of hexamethylene diisocyanate trimer and hydroxybutyl acrylate.
  • Preferred (A1-1) component (A1-1) component is preferably a urethane adduct, which is a reaction product of an organic polyisocyanate and a hydroxyl group-containing (meth) acrylate, and comprises 3 or more (meth) More preferred are compounds having an acryloyl group, and particularly preferred are compounds having 3 or 4 (meth) acryloyl groups.
  • the compound has high toughness while maintaining rigidity by an appropriate crosslinking density of the cured product.
  • Examples of the urethane act having 3 or more (meth) acryloyl groups include the urethane adduct P1 and the urethane adduct P2 described above, and as the urethane act having 3 or 4 (meth) acryloyl groups, Mention may be made of the urethane adduct P2.
  • A1-1) Component Production Method (A1-1) As a method for producing the component, in urethane (meth) acrylate, addition reaction of polyol, organic polyisocyanate and hydroxyl group-containing (meth) acrylate, in urethane adduct, It is produced by an addition reaction of an organic polyisocyanate and a hydroxyl group-containing (meth) acrylate.
  • this addition reaction is possible without a catalyst, in order to advance the reaction efficiently, a tin-based catalyst such as dibutyltin dilaurate, an amine-based catalyst such as triethylamine, a metal complex-based catalyst such as a zinc complex or an iron complex, etc. It may be added.
  • the component (A2) is an oligomer or polymer having a weak basic group whose pKa of the conjugate acid is -3 to 1, and having no ethylenically unsaturated group.
  • Examples of the component (A2) include polyurethane and polyamide, and polyurethane can be preferably used.
  • Examples of the polyurethane include an addition reaction product of a polyol and a polyisocyanate.
  • Examples of the polyol and polyisocyanate in the polyurethane raw material include the same compounds as described above.
  • As the polyol a diol having a polyester skeleton, a diol having a polyether skeleton, and a diol having a polycarbonate skeleton are preferable.
  • As polyisocyanate aliphatic diisocyanate and alicyclic diisocyanate are preferable.
  • polyamides examples include aliphatic polyamides having an alkylene group having 10 or more carbon atoms, such as polyamides obtained by ring-opening polycondensation of undecane lactam (nylon 11) and polyamides obtained by ring-opening polycondensation of lauryl lactam (nylon 12). .
  • the component (A2) can be used alone, but is preferably used in combination with the component (A1).
  • the combined ratio is preferably less than 50% by weight, more preferably 2 to 40% by weight in 100% of the total amount of the components (A1) and (A2).
  • the (B) component of the present invention is a compound having a carboxyl group and an ethylenically unsaturated group.
  • the ethylenically unsaturated group in the component (B) include a (meth) acryloyl group, a vinyl group and a vinyl ether group, and a (meth) acryloyl group is preferred.
  • (meth) acrylic acid and maleic anhydride are preferable, and (meth) acrylic acid is more preferable.
  • the content ratio of the component (A) and the component (B) is such that the total amount of the component (A), the component (B) and the component (C) is 100% by weight, and the component (A) is 40 to 80% by weight and (B
  • the component (A) is 60 to 20% by weight, preferably the component (A) is 50 to 70% by weight, and the component (B) is 30 to 50% by weight. If the proportion of the component (A) is less than 40% by weight, or if the component (B) exceeds 60% by weight, the toughness decreases, and the proportion of the component (A) exceeds 80% by weight, When the component (B) is less than 20% by weight, the rigidity is lowered.
  • Component (C) The present invention essentially comprises the component (A) and the component (B), but the ethylenically unsaturated group other than the component (A) and the component (B) that are the component (C).
  • the containing compound may be included.
  • the ethylenically unsaturated group in component (C) include a (meth) acryloyl group, a vinyl group and a vinyl ether group, and a (meth) acryloyl group is preferred.
  • a styryl group can be preferably used.
  • examples of the compound having one ethylenically unsaturated group include a compound having one (meth) acryloyl group [hereinafter referred to as “monofunctional (meth) acrylate”].
  • monofunctional (meth) acrylates include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylcyclohexyl (meth) acrylate, 1- Adamantyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, tetrahydrofurfuryl (
  • the compound having two or more ethylenically unsaturated groups is a compound having two (meth) acryloyl groups [hereinafter referred to as “bifunctional (meth) acrylate”.
  • a compound having X (meth) acryloyl groups is represented in the same manner as “X-functional (meth) acrylate”.
  • oligomers can be used, and specific examples include polyester (meth) acrylate and epoxy (meth) acrylate.
  • a bifunctional compound having an aliphatic skeleton such as a tri- or higher functional (meth) acrylate or hexanediol di (meth) acrylate because it can impart rigidity and heat resistance
  • Monofunctional (meth) acrylates having an alicyclic skeleton such as (meth) acrylate, isobornyl (meth) acrylate, and dimethylol tricyclodecane di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate and spiroglycol di (meth)
  • Bifunctional (meth) acrylates having an alicyclic skeleton such as acrylate are preferred.
  • the proportion of the component (C) is 0 to 40% by weight, preferably 0 to 30% by weight in 100% by weight of the total amount of the components (A), (B) and (C).
  • the ratio of (C) component exceeds 40 weight%, the balance of toughness and rigidity will fall.
  • the present invention relates to a curable composition for producing a resin sheet that contains the component (A) and the component (B) as essential components and, if necessary, a component (C).
  • a curable composition for producing a resin sheet that contains the component (A) and the component (B) as essential components and, if necessary, a component (C).
  • a manufacturing method of a composition what is necessary is just to follow a conventional method, for example, (A) component and (B) component, (C) component and another component can be manufactured by stirring and mixing as needed.
  • the viscosity of the composition may be appropriately set according to the purpose, and is preferably 50 to 10,000 mPa ⁇ s.
  • the viscosity means a value measured at 25 ° C. using an E-type viscometer.
  • composition of the present invention can be used as an active energy ray-curable composition and a thermosetting composition.
  • the composition of the present invention comprises the component (A) and the component (B) as essential components, and contains the component (C) as necessary, but various components can be blended depending on the purpose.
  • other components include a photopolymerization initiator (hereinafter referred to as “component (D)”), a thermal polymerization initiator (hereinafter referred to as “component (E)”), an organic solvent, a plasticizer, and a polymerization.
  • component (D) photopolymerization initiator
  • component (E) thermal polymerization initiator
  • a component is a photoinitiator.
  • a component is a component mix
  • component (D) examples include benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- 1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, oligo [2-hydroxy-2-methyl-1- [4-1 -(Methylvinyl) phenyl] propanone, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propionyl) benzyl] phenyl] -2-methylpropan-1-one, 2-methyl- 1- [4- (Methylthio)] phenyl] -2-morpholinopropan-1-one 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl)
  • the component (D) it is also possible to use a photopolymerization initiator having a molecular weight of 350 or more in addition to the above.
  • the photopolymerization initiator having a molecular weight of 350 or more does not cause coloring of the resin sheet obtained by the decomposed product after light irradiation, and the decomposed product is a vacuum of the transparent conductor layer when used for the production of a transparent conductive film. Since no outgas is generated at the time of film formation, a high vacuum can be reached in a short time, and it is possible to prevent the film quality of the conductor layer from deteriorating and becoming difficult to reduce resistance.
  • component (D) examples include hydroxyketone polymers and the like, and examples include compounds represented by the following formula (1).
  • the compound is also preferred from the viewpoint of excellent compatibility with the components (A) to (C).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group
  • n represents a number of 2 to 5.
  • n means the average number of repetitions of the above unit.
  • R 2 is preferably a lower alkyl group such as a methyl group, an ethyl group and a propyl group as the alkyl group.
  • ESACURE KIP 150 is a compound represented by the above formula (1), wherein R 1 is a hydrogen atom or a methyl group, R 2 is a methyl group, n is a number from 2 to 3, and [(204.3 ⁇ n + 16.0) Or a compound having a molecular weight of (204.3 ⁇ n + 30.1)].
  • Examples of compounds other than the above include 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, oxyphenylacetic acid and the like.
  • the said compound is marketed and Irgacure 754 (made by BASF) is known.
  • Irgacure 754 is a mixture of oxyphenylacetic acid, 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester and oxyphenylacetic acid, 2- (2-hydroxyethoxy) ethyl ester.
  • the blending ratio of component (D) is based on 100 parts by weight of the total amount of components (A) and (B), or components (A) to (C) (hereinafter collectively referred to as “curable components”).
  • the amount is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight.
  • thermosetting type composition When using a component composition as a thermosetting type composition, (E) component (thermal polymerization initiator) can be mix
  • component (E) various compounds can be used, and organic peroxides and azo initiators are preferable.
  • organic peroxide examples include 1,1-bis (t-butylperoxy) 2-methylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, , 1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, , 2-bis (4,4-di-butylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, dilauroyl peroxide, t-hexylperoxyisopropyl monocarbonate, t-butyl Peroxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy Urate, t-butyl Per
  • azo compound examples include 1,1′-azobis (cyclohexane-1-carbonitrile), 2- (carbamoylazo) isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile. Azodi-t-octane, azodi-t-butane, and the like.
  • an organic peroxide can also be made into a redox reaction by combining with a reducing agent.
  • thermo polymerization initiator As a usage rate of a component, 10 weight part or less is preferable with respect to 100 weight part of sclerosing
  • the thermal polymerization initiator When the thermal polymerization initiator is used alone, it may be carried out in accordance with conventional means of normal radical thermal polymerization. In some cases, the thermal polymerization initiator is used in combination with a photopolymerization initiator and photocured for the purpose of further improving the reaction rate. Curing can also be performed.
  • composition of this invention can mix
  • an organic solvent is preferable.
  • organic solvent examples include hydrocarbon solvents such as n-hexane, benzene, toluene, xylene, ethylbenzene and cyclohexane; Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxymethoxy) ethanol, 2-isopropoxyethanol, 2-butoxy Ethanol, 2-isopentyloxyethanol, 2-hexyloxyethanol, 2-phenoxyethanol, 2-benzyloxyethanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 1 -Methoxy-2-propanol, 1-ethoxy-2-propanol and propylene glycol monomethyl Alcohol solvents such as ether; Ether
  • Ketone solvents Ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate, methyl glycol acetate, propylene glycol monomethyl ether acetate, cellosolve acetate;
  • Examples include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and ⁇ -butyrolactone.
  • the proportion of the organic solvent may be appropriately set, but is preferably 90% by weight or less, more preferably 80% by weight or less in the composition.
  • a plasticizer can be added.
  • the plasticizer include dialkyl phthalates such as dioctyl phthalate and diisononyl phthalate, dialkyl esters of adipic acid such as dioctyl adipate, phosphate esters such as sebacic acid ester, azelaic acid ester and tricresyl phosphate, polypropylene Examples thereof include liquid polyether polyols such as glycol, and liquid polyester polyols such as polycaprolactone diol and 3-methylpentanediol adipate.
  • a soft acrylic polymer having a number average molecular weight of 10,000 or less can be used.
  • the blending ratio of these plasticizers may be set as appropriate, but is preferably 30 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the total of the curable components. By setting it to 30 parts by weight or less, the strength and heat resistance can be improved.
  • polymerization inhibitor or / and antioxidant In order to improve the storage stability, a polymerization inhibitor or / and an antioxidant can be added to the composition of the present invention.
  • a polymerization inhibitor or / and an antioxidant can be added to the composition of the present invention.
  • the polymerization inhibitor hydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, and various phenolic antioxidants are preferable, but sulfur secondary antioxidants, phosphorus secondary antioxidants are preferable. A secondary antioxidant or the like can also be added.
  • the total blending ratio of these polymerization inhibitors and / or antioxidants is preferably 3 parts by weight or less, more preferably 0.5 parts by weight or less with respect to 100 parts by weight of the total amount of the curable components.
  • the composition of the light resistance improver present invention, the light resistance improving agent such as an ultraviolet absorber or a light stabilizer may be added.
  • ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2- (2 Benzotriazole compounds such as'-hydroxy-3'-t-butyl-5'-methylphenyl)benzotriazole; Triazine compounds such as 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-isooctyloxyphenyl) -s-triazine; 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4,4 ' -Trihydroxybenzophenone, 2,2 ', 4,4
  • Examples of the light stabilizer include N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylhexamethylenediamine, bis (1,2,6,6). -Pentamethyl-4-piperidyl) -2- (3,5-ditertiarybutyl-4-hydroxybenzyl) -2-n-butylmalonate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl ) Low molecular weight hindered amine compounds such as sebacate; N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylhexamethylenediamine, bis (1,2, And hindered amine light stabilizers such as high molecular weight hindered amine compounds such as 2,6,6-pentamethyl-4-piperidinyl) sebacate.
  • the blending ratio of the light resistance improver is preferably 0 to 5 parts by weight, and more preferably 0 to 1 part by weight with respect to 100 parts by weight of the total amount of the curable components.
  • Polyfunctional mercaptan can be mix
  • polyfunctional mercaptan various compounds can be used as long as they are compounds having two or more mercapto groups.
  • Examples include pentaerythritol tetrakisthioglycolate, pentaerythritol tetrakisthiopropionate, and the like.
  • the ratio of the polyfunctional mercaptan is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, and particularly preferably 5 parts by weight or less with respect to 100 parts by weight of the curable component. By making this ratio 20 parts by weight or less, it is possible to prevent the heat resistance and rigidity of the obtained cured product from being lowered.
  • an isocyanate compound can be added as a means for improving the adhesion to the base material.
  • Examples of the compound having one ethylenically unsaturated group and one isocyanate group include (meth) acryloyloxyalkyl isocyanate such as 2- (meth) acryloyloxyethyl isocyanate, and these two groups are oxyalkylene.
  • Examples of compounds connected by a skeleton include (meth) acryloyloxyalkoxyalkyl isocyanates such as 2- (meth) acryloyloxyethoxyethyl isocyanate, and compounds in which these two groups are connected by an aromatic hydrocarbon skeleton. Examples include 2- (meth) acryloyloxyphenyl isocyanate.
  • examples of compounds in which these two groups are linked by a branched saturated hydrocarbon skeleton include 1,1-bis [(meta ) Acrylyloxymethyl] ethyl isocyanate.
  • Examples of the compound having two or more isocyanate groups include tolylene diisocyanate, phenylene diisocyanate, chlorophenylene diisocyanate, xylylene diisocyanate, cyclohexane diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, norbornene diisocyanate, isophorone diisocyanate, Examples include xylylene diisocyanate, 4,4′-diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, phthalene diisocyanate, dimethyldiphenyl diisocyanate, dianiline diisocyanate, tetramethylxylylene isocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, and more.
  • Isocyanate Adduct isocyanate compounds obtained by adding compounds to polyfunctional alcohols such as trimethylolpropane, isocyanurate compounds of these isocyanate compounds, burette type compounds, allophanate type compounds and the like, and further known polyether polyols, polyester polyols, Examples thereof include urethane prepolymer type isocyanate compounds obtained by addition reaction of acrylic polyol, polybutadiene polyol, polyisoprene polyol and the like.
  • a release agent can be blended in the composition of the present invention.
  • the mold release agent is blended for the purpose of facilitating mold release from the base material.
  • various surfactants can be used as long as they can be released from the base material and the mixed solution and the cured product are not turbid.
  • anionic surfactants such as alkylbenzene sulfonic acid, cationic surfactants such as alkyl ammonium salts, nonionic surfactants such as polyoxyethylene alkyl ether, amphoteric surfactants such as alkylcarboxybetaine, and fluorine and silicon And surfactants to be included.
  • the filler is blended for the purpose of improving the mechanical properties of the resulting resin sheet.
  • inorganic compounds and organic compounds can be used.
  • the inorganic compound include silica and alumina.
  • a polymer can be used as the organic compound.
  • the filler when the resin sheet obtained from the composition of the present invention is used as an optical application, a filler that does not deteriorate optical properties is preferable.
  • a soluble polymer is mix
  • the soluble polymer means a polymer that dissolves in the composition.
  • a polymer that does not dissolve in the composition is referred to as a filler for distinction.
  • the blending ratio of these other compounds is preferably 20 parts by weight or less and more preferably 10 parts by weight or less with respect to 100 parts by weight of the curable component.
  • the physical properties of the cured product of the composition of the present invention are preferably those having an elastic modulus in a tensile test of the cured product of 0.5 GPa or more and a breaking strain of 5% or more.
  • a cured product having the elastic modulus is excellent in rigidity, and a cured product having the maximum strain is tough.
  • the elastic modulus is more preferably 0.8 GPa or more, and the breaking strain is more preferably 8% or more.
  • the elastic modulus is preferably 10 GPa or less, and more preferably 8 GPa or less.
  • the breaking strain is preferably 2,000% or less, and more preferably 1,000% or less.
  • the elastic modulus in the tensile test refers to a strain of 1% and 2% in a tensile test in which a strip-shaped test piece having a length of 50 mm or more is fixed at 20 mm between jigs and a tensile rate is 40 mm / min. It means the value calculated from the stress.
  • the breaking strain in the present invention means a value calculated from the distance between the jigs broken in the same test and the initial value (20 mm).
  • the glass transition temperature (hereinafter referred to as “Tg”) of the cured product of the composition is preferably 50 to 250 ° C., more preferably 80 to 200 ° C.
  • Tg means a temperature at which the tensile loss coefficient tan ⁇ in the dynamic viscoelastic spectrum measured in the tensile mode is 1 Hz, the temperature rise temperature is 2 ° C./min, and the maximum.
  • the thickness is preferably 100 ⁇ m to 5 mm, more preferably 200 ⁇ m to 3 mm.
  • the thickness is preferably 10 ⁇ m to 2 mm, more preferably 20 ⁇ m to 200 ⁇ m.
  • the “resin sheet” means a resin sheet or a resin film.
  • Manufacturing method 1-1 A method of curing a composition by applying the composition to a substrate and irradiating active energy rays 2)
  • Manufacturing method 1-2 A method of curing a composition by irradiating an active energy ray after applying the composition to a substrate and bonding it to another substrate 3)
  • Manufacturing method 1-3 A method of pouring a composition into a substrate having a space and irradiating active energy rays to cure the composition 4)
  • Manufacturing method 1-4 A method of pouring the composition into a substrate having a space and bonding it to another substrate, and then curing the composition by irradiating active energy rays.
  • heating may be performed after irradiating active energy rays. it can.
  • the above production method 1-4 is preferable.
  • the resin sheet obtained from the composition of the present invention is used in a polarizer protective film, the above production methods 1-1 and 1-2 are preferred.
  • thermosetting composition When using a thermosetting composition as a composition, the following four manufacturing methods are mentioned, for example. 5) Manufacturing method 2-1 Method of applying composition to substrate and heating to cure the composition 6) Manufacturing method 2-2 A method in which a composition is applied to a substrate and bonded to another substrate, and then heated to cure the composition. 7) Manufacturing method 2-3 A method of pouring a composition into a substrate having a space and curing the composition by heating 8) Manufacturing method 2-4 A method of pouring the composition into a base material having a space and pasting it with another base material, followed by heating and curing the composition In the case of using a resin sheet obtained from the composition of the present invention for a glass substitute application The production method 2-4 is preferred. When the resin sheet obtained from the composition of the present invention is used in a polarizer protective film, the above production methods 2-1 and 2-2 are preferable.
  • the polymerization method either a batch method or a continuous method can be adopted.
  • the continuous type include a method of continuously supplying a belt-like base material as a base material to which the composition is applied or poured.
  • a continuous casting method there is a method called a continuous casting method in addition to the above. That is, two continuous mirror surface stainless steel belts are arranged in a caterpillar shape, and the composition is poured between the belts. Polymerization is performed continuously between the belts while slowly moving the belts.
  • the method for producing the sheet include. In the glass substitute application, the batch type is preferable.
  • any of a peelable base material and a base material having no releasability (hereinafter referred to as “non-releasable base material”) can be used.
  • the peelable substrate include metal, glass, a release-treated polymer film, and a surface-untreated polymer film having peelability (hereinafter collectively referred to as “release material”).
  • release material a surface-untreated polymer film having peelability
  • the surface of the substrate can be subjected to a release treatment.
  • the release treatment for example, the surface of the base material may be applied or processed using silicone or the like.
  • release-treated polymer film and the peelable surface untreated polymer film examples include silicone-treated polyethylene terephthalate film, surface untreated polyethylene terephthalate film, surface untreated cycloolefin polymer film, and surface untreated OPP film (polypropylene). Is mentioned.
  • the resin sheet obtained from the composition of the present invention have a low haze or impart surface smoothness
  • a substrate having a surface roughness (centerline average roughness) Ra of 0.15 ⁇ m or less is used.
  • a base material of 0.001 to 0.100 ⁇ m is more preferable.
  • the haze is preferably 3.0% or less.
  • the substrate include glass, polyethylene terephthalate film, cycloolefin polymer film, OPP film (oriented polypropylene), cellulose acetate resins such as polyvinyl alcohol, triacetyl cellulose and diacetyl cellulose, acrylic resin, polyester, polycarbonate, poly Examples thereof include cyclic polyolefin resins having cyclic olefins such as arylate, polyethersulfone and norbornene as monomers.
  • the surface roughness Ra means a value obtained by measuring the surface roughness of the film and calculating an average roughness.
  • non-releasable substrate examples include various plastics other than the above, cellulose acetate resins such as polyvinyl alcohol, triacetyl cellulose and diacetyl cellulose, acrylic resin, polyester, polycarbonate, polyarylate, polyethersulfone, norbornene and the like And cyclic polyolefin resins having a cyclic olefin as a monomer.
  • cellulose acetate resins such as polyvinyl alcohol, triacetyl cellulose and diacetyl cellulose, acrylic resin, polyester, polycarbonate, polyarylate, polyethersulfone, norbornene and the like
  • cyclic polyolefin resins having a cyclic olefin as a monomer When the composition of the present invention is used as a polarizer protective material, a polyvinyl alcohol film stretched after impregnation with iodine or a dye, that is, a polarizer film serves as a base material.
  • the substrate surface can be subjected to physical and chemical treatment including corona discharge treatment.
  • the base material which has a recessed part As a base material which has a space part, the base material which has a recessed part is mentioned.
  • the mold material include a hole having a predetermined shape with a desired film thickness and a recess formed. In this case, after pouring the composition into the substrate having a recess, another substrate can be stacked on the substrate having the recess.
  • a mold member provided with a weir (spacer) so that the cured product has a target film thickness hereinafter referred to as “molding die”
  • another base material can be stacked on the weir.
  • FIG. 1 will be described as an example of the mold.
  • (A1-1) and (a1-2) in FIG. 1 show two substrates [FIG. 1: (1) in (a1-1) and (1) ′ in (a1-2)] Base material excellent in releasability [FIG. 1: (2) of (a1-1) and (2) ′ of (a1-2)] and base material for providing one weir [FIG. 1: (a1- This is an example of a mold composed of (1) (3)].
  • (A2) in FIG. 1 shows two substrates [FIG. 1: (1) and (1) ′ in (a2)] and a substrate for providing one weir [FIG. 1: (a2)] (3)].
  • a substrate having a shape having a hole portion for injecting the composition into the upper portion [ Fig. 1: (a1-1) (3)] and shapes having no voids (Fig. 1: (a1-1) (3) ') etc. Therefore, a shape having a hole for the purpose is preferable.
  • various materials can be used, and silicone rubber can be exemplified.
  • (a1-1) and (a1-2) in FIG. 1 it is composed of two substrates as a substrate, two release-treated films, and a substrate for providing one weir. Molds that can be used.
  • the release-treated film [Fig. 1: (a1-1) (2)] is stacked, and a weir is provided on it.
  • the base material (FIG. 1: (a1-1) (3)) is used as a stack weir (spacer).
  • a film (FIG. 1: (2) ′ of (a1-2)) which has been subjected to release treatment is overlaid thereon, and glass [FIG. 1: (1) ′ of (a1-2)] is overlaid thereon.
  • a mold Use a mold.
  • a specific example of (a2) in FIG. 1 is a case of using a release-treated glass or metal as a base material [(1) and (1) ′ in FIG. 1: (a2)], and a cured product. Therefore, it is not necessary to use the two release processed films in (a1-1) and (a1-2) of FIG. Further, when the cured product of the composition itself is excellent in releasability, glass can also be used as a substrate [(1) and (1) ′ in FIG. 1: (a2)].
  • An example in which the cured product of the composition is excellent in releasability includes an example in which a release agent is blended with the composition.
  • the obtained resin film can be prevented from introducing foreign substances, preventing defects such as voids, or having excellent optical properties. Therefore, it is preferable to use a purified product after stirring and mixing the raw material components.
  • a method for purifying the composition a method of filtering the composition is simple and preferable. Examples of the filtration method include pressure filtration. The filtration accuracy is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. The lower the filtration accuracy, the better. However, if the filter accuracy is too small, the filter is likely to be clogged, and the filter replacement frequency increases and the productivity is lowered. Therefore, the lower limit is preferably 0.1 ⁇ m.
  • defoaming treatment In the production of the resin sheet, it is preferable to carry out defoaming treatment after blending each component in order to prevent bubbles from being contained in the cured product.
  • defoaming treatment include standing, vacuum decompression, centrifugation, cyclone (automatic / revolving mixer), gas-liquid separation membrane, ultrasonic wave, pressure vibration, and defoaming with a multi-screw extruder.
  • a coating method when the composition is applied to the coating or injection base material it may be appropriately set according to the purpose, and conventionally known bar coater, applicator, doctor blade, knife coater, comma coater, reverse roll.
  • the coating method include a coater, a die coater, a lip coater, a gravure coater, and a micro gravure coater.
  • injecting the composition into the substrate having the space a method of injecting the composition into an injection device such as a syringe or an injection device can be used.
  • the thickness is preferably 10 ⁇ m to 2 mm, more preferably 20 ⁇ m to 200 ⁇ m.
  • examples of the active energy ray include ultraviolet rays, visible rays, electron beams, and X-rays, and the cured product can have a film thickness.
  • ultraviolet rays and visible rays are preferable.
  • examples of the ultraviolet irradiation device include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a black light lamp, a UV electrodeless lamp, and an LED. What is necessary is just to set suitably irradiation conditions, such as a dose and irradiation intensity in active energy ray irradiation, according to the composition to be used, a base material, a purpose, etc.
  • the heating temperature is preferably 50 ° C. to 200 ° C., more preferably 100 ° C. to 150 ° C. If the heating temperature is low, the effect of the heat treatment is low, and if it is too high, the toughness may decrease due to a crosslinking reaction or the like.
  • the heating time is preferably 1 hour to 1 day, more preferably 2 hours to 10 hours. If the heating time is short, the effect of the heat treatment is low, and if it is too long, the toughness may decrease due to a crosslinking reaction or the like.
  • thermosetting composition As a heating method in the case of using a thermosetting composition as a heating composition, there are a method of immersing in a heat medium bath such as heat and oil, a method using a heat press, a method of holding in a temperature-controlled thermostat, and the like. Can be mentioned. What is necessary is just to set conditions, such as heating temperature in the case of heating suitably, according to the composition to be used, a base material, the objective, etc. The heating temperature is preferably 40 ° C to 250 ° C. What is necessary is just to set a heat time suitably according to the composition to be used, the target resin sheet, etc., and 3 hours or more are mentioned. The upper limit of the heating time is preferably 24 hours or less in consideration of economy.
  • the heating temperature can be changed according to the purpose.
  • the case where the thermal-polymerization initiator from which decomposition temperature differs is used.
  • Specific examples of the temperature include a method of polymerizing at a relatively low temperature of about 40 ° C. to 80 ° C. for several hours and then polymerizing at a relatively high temperature of 100 ° C. or higher for several hours.
  • the resin sheet produced from the composition of the present invention can be preferably used as an optical sheet.
  • the optical sheet formed from the composition of the present invention can be used for various optical applications. More specifically, it is used for liquid crystal display devices such as polarizer protective films for polarizing plates for liquid crystal displays, circular polarizing plates for organic EL, support films for prism sheets, and light guide films, and touch panel integrated liquid crystal display devices.
  • Sheets various functional films (for example, hard coat sheets, decorative sheets, transparent conductive sheets) and bases with surface shapes (for example, moth-eye type antireflection sheets and sheets with a texture structure for solar cells)
  • Applications include a light-resistant (weather-resistant) sheet for outdoor use such as a sheet and a solar cell, a film for LED lighting or organic EL lighting, and a transparent heat-resistant sheet for flexible electronics.
  • the optical sheet formed from the composition of the present invention is excellent in heat resistance, it can be preferably used for the production of a transparent conductive sheet.
  • the composition used in this application is preferably a solventless composition that does not contain an organic solvent in that outgassing during the vacuum deposition of the transparent conductive layer can be suppressed.
  • the optical sheet of the present invention is excellent in heat resistance even if it is a thick film, it has flexibility and high strength, it can also be used as a transparent conductive sheet substrate for OPS. In this case, an optical sheet having a film thickness of 0.5 mm or more and 1.5 mm or less can be used more preferably.
  • the manufacturing method of a transparent conductive sheet should just follow a conventional method.
  • the metal oxide forming the transparent conductor layer is indium oxide, tin oxide, zinc oxide, titanium oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, indium-zinc composite. Examples thereof include oxides and titanium-niobium composite oxides. Of these, indium-tin composite oxide and indium-zinc composite oxide are preferable from the viewpoint of environmental stability and circuit processability.
  • a method of forming the transparent conductor layer a conventional method may be followed, and a method of forming by sputtering using a vacuum film forming apparatus using the metal oxide, using the optical sheet of the present invention. Etc.
  • the metal oxide is used as a target material, and after dehydration and degassing, the exhaust is evacuated to a vacuum, the optical sheet is set to a predetermined temperature, and then the sputtering apparatus is used to place the optical sheet on the optical sheet.
  • Examples include a method of forming a transparent conductor layer.
  • the polarizing plate of the present invention is preferably a polarizing plate in which a sheet-like cured product of the composition of the present invention is directly formed as a protective film on at least one surface of the polarizer, and is a polarizer formed from a polyvinyl alcohol-based resin. More preferably, the polarizing plate has a sheet-like cured product of the composition of the present invention directly formed on at least one surface thereof as a protective film. Further, the production method of the polarizing plate of the present invention is not particularly limited, but after coating the composition of the present invention on at least one surface of a polarizer formed from a polyvinyl alcohol-based resin, either substrate side It is preferable that the production method irradiates active energy rays.
  • polarizer various materials can be used as long as they have a function of selectively transmitting linearly polarized light in one direction from natural light.
  • an iodine polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film a dye polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol film, a dichroic dye is coated
  • Examples include a fixed coating type polarizer.
  • These iodine-based polarizing films, dye-based polarizing films, and coating-type polarizers have a function of selectively transmitting linearly polarized light in one direction from natural light and absorbing linearly polarized light in the other direction. It is called a polarizer.
  • the thickness of the absorptive polarizer is preferably 5 to 40 ⁇ m.
  • the sheet-like cured product of the composition of the present invention is used as a protective film on one side, and the other side is a protective film other than the sheet-like cured product of the composition of the present invention (hereinafter referred to as “other protective film”).
  • other protective films include cellulose acetate resin films such as triacetyl cellulose and diacetyl cellulose, acrylic resin films, polyester resin films, and cyclic polyolefin resin films containing cyclic olefins such as norbornene as monomers.
  • the film which has phase difference may be sufficient.
  • part means part by weight
  • % means% by weight
  • Component (A) OT-1000 addition reaction product of pentaerythritol triacrylate and hexamethylene diisocyanate (urethane adduct having 6 acryloyl groups in one molecule; hereinafter referred to as “adduct”) and pentaerythritol tetraacrylate (“ PETeA ”) [62:38 (weight ratio)], Aronix OT-1000 manufactured by Toagosei Co., Ltd. * In Example 1 and Comparative Example 1, 30 parts of OT-1000 were used, and in Example 2, 15 parts of OT-1000 were used.
  • adduct corresponding to the component (B) contained in OT-1000 and the PETeA corresponding to the component (C) are shown separately.
  • -HBUA addition reaction product of hexamethylene diisocyanate trimer and hydroxybutyl acrylate (urethane adduct having three acryloyl groups in one molecule)
  • MB-111 polyurethane syrup manufactured by Negami Kogyo Co., Ltd. 60/40 mixture of polyurethane and isobornyl acrylate (IBXA manufactured by Osaka Organic Chemical Industry Co., Ltd.).
  • Component (C) M-309: trimethylolpropane triacrylate, Aronix M-309 manufactured by Toagosei Co., Ltd. HDDA: 1,6-hexanediol diacrylate, Osaka Organic Chemical Industry Co., Ltd. Biscoat # 230
  • DC-1173 2-hydroxy-2-methyl-1-phenylpropan-1-one, DAROCURE 1173 manufactured by BASF Japan Ltd.
  • the obtained mold was irradiated with ultraviolet rays to cure the composition.
  • the ultraviolet irradiation condition is a conveyor type ultraviolet irradiation device manufactured by Eye Graphics Co., Ltd. [Product name: US5-X0602. Metal halide lamp 80W / cm. Hereinafter, it is referred to as “X0602”.
  • the film was cured by passing 20 times under the conditions of an illuminance of about 140 mW / cm 2 , a conveyance speed of 5 m / min, and an integrated light amount of about 400 mJ / cm 2 .
  • the irradiation surface was changed for each irradiation.
  • Viscoelasticity spectrum Using a viscoelasticity measuring device DMS6100 manufactured by Seiko Instruments Inc., the tensile mode was measured at a frequency of 1 Hz and a heating rate of 2 ° C./min. As a measure of the glass transition temperature, the tan ⁇ max temperature was recorded.
  • the resin sheets obtained from the compositions of Examples 1 to 7 according to the present invention have high hardness, and have high elastic modulus and maximum stress in the bending test.
  • the cured product from Example 2 onward did not break at all in the bending test.
  • Tensile tests were also carried out for Examples 2 to 7 because the toughness could not be evaluated without breaking in the bending test.
  • the resin sheets obtained from the compositions of Examples 2 to 7 had excellent results in the tensile test.
  • the resin sheet obtained from the composition of Comparative Example 1 containing no component (B) was 100% broken (non-breakage rate 0%) in the bending test.
  • Examples 8 to 10 and Comparative Example 5 1) Production and evaluation of composition and resin sheet The same method as in Examples 1 to 7 except that the cured product obtained after irradiation with ultraviolet rays was heat-treated in a nitrogen stream at 120 ° C for 5 hours. A resin sheet was manufactured and evaluated. Table 4 shows the composition and the evaluation results. Further, as Comparative Example 4, polycarbonate which is a typical tough thermoplastic resin [Iupilon NF-2000 manufactured by Mitsubishi Gas Chemical Co., Ltd. Hereinafter, it is abbreviated as “EUP”. And was evaluated in the same manner as in Examples 1 to 7. The evaluation results are shown in Table 4.
  • the resin sheet obtained from the composition of Example 8 according to the present invention has high hardness, excellent bending test results, and does not break at all in the bending test.
  • the test results were also excellent.
  • the resin sheet of Example 4 that was not heat-treated and the resin sheet of Example 8 that was heat-treated were compared, the resin sheet of Example 8 that was heat-treated was more rigid (hardness / elastic modulus). And toughness (stress and strain) were further improved.
  • the resin sheets obtained from the compositions of Examples 9 and 10 containing PU (polyurethane) as the component (A) also have high hardness, excellent bending test results, and do not break at all in the bending test. Furthermore, the tensile test result was also excellent.
  • Example 9 containing polyurethane as the component (A) is compared with Example 8 not containing PU (polyurethane) as the component (A), the resin sheet obtained from the composition of Example 9 is On the other hand, the breaking strain of the tensile test was improved.
  • the resin sheets obtained from the compositions of Examples 8 to 10 were more rigid (plastic hardness, tensile modulus, maximum stress) than polycarbonate (EUP), which is a representative tough thermoplastic resin of Comparative Example 5. It was also found that the fracture strain was at the same level.
  • Examples 11 to 12 and Comparative Example 6 ( example with a thickness of 100 ⁇ m) 1) Production and Evaluation of Composition and Resin Sheet Using the composition of the present invention, a comparatively thin resin sheet was produced and evaluated. Compositions were produced in the same manner as in Examples 1 to 7. Using the obtained composition as a base material, a cycloolefin polymer film having a thickness of 100 ⁇ m [manufactured by Nippon Zeon Co., Ltd. Product name: ZEONOR ZF14. Hereinafter, it is referred to as “Zeonor ZF”. ), An applicator was used to form a coating film having a thickness of about 100 ⁇ m, and ZEONOR ZF was covered with care to prevent bubbles from entering the coating film.
  • the laminate was irradiated with ultraviolet rays to cure the composition.
  • ultraviolet irradiation conditions X0602 was used, and was passed five times under the conditions of an illuminance of about 240 mW / cm 2 , a conveyance speed of 5 m / min, and an integrated light amount of about 680 mJ / cm 2 .
  • the resin sheets of Example 11 and 12 made into a film having a thickness of about 100 ⁇ m had high Tg, excellent heat resistance, and excellent tensile test results.
  • the resin sheets of Examples 11 and 12 were tough resins, they could be punched with a punching tool.
  • the resin sheet of Example 11 and 12 is a film excellent in rigidity, toughness and heat resistance as compared with the cycloolefin polymer (Zeonor ZF) which is a representative optical film of Comparative Example 6. I understood.
  • Example 13 Evaluation as a polarizer protective film
  • a polarizer protective film As a polarizer protective film, a compounded liquid obtained by adding 1.2% by weight of Duranate TPA-100 (nurate-type trimer of 1,6-hexamethylene diisocyanate) manufactured by Asahi Kasei Chemicals Corporation as an isocyanate compound to the composition of Example 12 was applied to one side of the polarizer and UV cured in the same manner as in Examples 11 to 12, and a polarizer protective film was formed on the other side of the polarizer in the same manner. Incidentally, corona treatment was performed in advance on any surface of the polarizer.
  • the resin sheet obtained according to the composition of the present invention is a cross-linked resin, and thus a fat sheet having both rigidity and toughness can be easily obtained, and optical It was confirmed that it can be used for applications including sheets or films.
  • the composition of the present invention can be preferably used for the production of a resin sheet, and the obtained resin sheet can be used for various applications, and can be particularly preferably used as an optical sheet or a film.
  • the said optical sheet can be preferably used for manufacture of a transparent conductive sheet, can be used preferably by manufacture of the transparent conductive sheet for touch panels, and can be preferably used for the protective film of a polarizer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polarising Elements (AREA)

Abstract

剛性及び強靭性に加え、耐熱性にも優れる樹脂シート製造用硬化型組成物を提供すること。 下記(A)成分、(B)成分及び任意に(C)成分を含み、(A)成分、(B)成分及び(C)成分の合計量100重量%中に、(A)成分を40~80重量%、(B)成分を60~20重量%及び(C)成分を0~40重量%の割合で含む樹脂シート製造用硬化型組成物。 (A)成分:共役酸のpKaが-3~1である弱塩基性基を有するオリゴマー又はポリマー (B)成分:カルボキシル基及びエチレン性不飽和基を有する化合物 (C)成分:(A)成分及び(B)成分以外のエチレン性不飽和基含有化合物

Description

強靭な硬化物を与える樹脂シート製造用硬化型組成物
 本発明は、簡便かつ短時間に樹脂シートやフィルムを製造可能な硬化型組成物に関し、好ましくは活性エネルギー線硬化型組成物に関し、当該組成物から得られる樹脂シートは、液晶ディスプレイ(LCD)等の光学用基板や偏光子保護膜を始め各種の用途に利用できる。
 尚、本明細書においては、アクリロイル基又はメタクリロイル基を(メタ)アクリロイル基と表し、アクリレート又はメタクリレートを(メタ)アクリレート、及びアクリル酸又はメタクリル酸を(メタ)アクリル酸と表す。
 又、本発明において「樹脂シート」とは、樹脂シート又は樹脂フィルムを意味する。
 近年、スマートフォン、タブレット端末、カーナビゲーションシステム等のモバイル機器に、タッチパネル一体型液晶表示装置又はタッチパネル一体型有機EL表示装置が多く適用されるようになっている。
 従来、タッチパネルの透明導電性薄膜としては、ガラス上に酸化インジウムスズ(以下、「ITO」という)の薄膜を形成した導電性ガラスがよく知られているが、基材がガラスであるために可撓性、加工性に劣る。そのため、用途によっては、可撓性、加工性、耐衝撃性に優れ、軽量である等の利点から、ポリエチレンテレフタレートシートを基材とした透明導電性シートが使用されている。
 一方、タッチパネルの薄型軽量化、透過率の向上、部材のコストダウンに貢献する事が期待される点から、カバーガラスにITO等のタッチセンサを直接形成するカバー一体型タッチパネル、いわゆるOGS(One Glass Solution)が一部採用されている。しかしながら、OGSタイプはカバーガラスが割れてしまうとタッチパネルを操作できなくなってしまう問題を有する。
 そこで、耐衝撃性に優れるカバーの材料として、樹脂シートにITO等のタッチセンサを直接形成する、いわゆるOPS(One Plastic Solution)が提案されている。しかしながら、従来のアクリル系やポリカーネート系シートでは表面硬度が低いため傷つき易く、又、靱性も不足する場合があり外部からの衝撃力で割れる可能性がある。
 特許文献1においては、脂環骨格を有するビスメタクリレート及びメルカプト化合物を含む光硬化型組成物を光硬化して得られる、透明導電膜形成用のプラスチック部材が開示されている。
 特許文献2においては、脂環構造を有する多官能ウレタン(メタ)アクリレート、脂環構造を有する2官能(メタ)アクリレート及び光重合開始剤を含む光硬化型組成物を光硬化して得られる、厚さ50~500μmの透明樹脂成形体が開示されている。
特開2002-161113号公報 特開2007-56180号公報
 しかしながら、特許文献1に記載された発明は、メルカプト化合物を配合することで硬化物に適度な靱性を付与しているものの、組成物の可使時間(ポットライフ)が短くなり組成物の安定性が低下するという問題があった。
 また、特許文献2に記載された発明は、ガラスと同等の剛性を発現することができないため、透明導電膜や金属電極形成プロセスでの加熱工程で外観不具合が生じるという問題があった。又、靱性も不足する場合が多く外部からの衝撃力で割れる可能性がある。
 以上のように、OPS用として満足な性能を有する樹脂シートはこれまでに見出されておらず、とりわけ強靭性に関しては高衝撃の熱可塑性樹脂に優る性能を持った硬化物を与える硬化型組成物脂は得られておらず課題が残されていた。
 一方、偏光板製造における、偏光子保護膜用の樹脂シートとしては、トリアセチルセルロース及びジアセチルセルロース等のセルロースアセテート樹脂、アクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、並びにノルボルネン等の環状オレフィンをモノマーとする環状ポリオレフィン樹脂等が知られている。
 これら樹脂シートは、種々の偏光板の保護膜として従来使用されており、剛性や強靭性に優れるものであるが、さらに耐熱性が要求される用途においては不十分な場合があった。
 本発明者らは、得られる樹脂シートが剛性及び強靭性に優れる硬化型組成物、具体的には曲げ試験において、弾性率、最大応力、破断歪みのいずれの物性にも優れるものとなり、さらには、引張試験においても、弾性率、最大応力及び破断歪みのいずれの物性にも優れる硬化型組成物、さらには偏光子保護膜として使用した場合、剛性及び強靭性に加え、耐熱性にも優れる硬化型組成物を見出すため鋭意検討を行ったのである。
 尚、本発明において、「剛性に優れる」とは、硬化物の硬度が高く、及び曲げ試験や引張試験における弾性率が高いことを意味し、「強靭性に優れる」とは、曲げ試験や引張試験における応力及び歪みが大きい、即ち破断エネルギーが大きいことを意味し、特に破断歪みが大きいことを意味する。
 本発明者らは、前記課題を解決するために種々の検討を行った結果、共有結合以外の分子間相互作用を利用した組成物とすることにより、硬化物の剛性と強靭性が両立できる可能性を見出し、更には、単なる水素結合よりも酸/塩基相互作用の効果が極めて高いことを見出した。
 但し、中和塩が生成するような強い酸/塩基相互作用では硬化物の耐久性や耐熱性が低下するため、むしろ微弱な酸/塩基相互作用が好ましいと考え、酸性のカルボン酸基を含むポリマーと、弱塩基性基を含むポリマーの組合せに着目した。
 官能基の塩基性の尺度である「共役酸のpKa」の文献値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明らは、この表の値をヒントに、カルボン酸基含有ポリマーと適度な相互作用を示す弱塩基性基の組合せを種々検討した結果、共役酸のpKaが-3~1である弱塩基性基が最良である、即ち親和性と安定性のバランスに優れることを発見し、本発明を完成するに至った。
 即ち、本発明は、下記(A)成分、(B)成分及び任意に(C)成分を含み、
(A)成分、(B)成分及び(C)成分の合計量100重量%中に、(A)成分を40~80重量%、(B)成分を60~20重量%及び(C)成分を0~40重量%の割合で含む
樹脂シート製造用硬化型組成物に関する。
(A)成分:共役酸のpKaが-3~1である弱塩基性基を有するオリゴマー又はポリマー
(B)成分:カルボキシル基及びエチレン性不飽和基を有する化合物
(C)成分:(A)成分及び(B)成分以外のエチレン性不飽和基含有化合物
 以下、本発明を詳細に説明する。
 本発明の組成物によれば、剛性と強靭性を両立した樹脂シートを容易に製造することができ、具体的には曲げ試験において、弾性率、最大応力、破断歪みのいずれの物性にも優れるものとなり、さらには、引張試験においても、弾性率、最大応力及び破断歪みのいずれの物性にも優れるものなり、さらには偏光子保護膜として使用した場合、剛性及び強靭性に加え、耐熱性にも優れたものとなる。
図1は、本発明の組成物を使用して樹脂シートを製造する際に使用する成形型の1例を示す図である。
 本発明は、下記(A)成分、(B)成分及び任意に(C)成分を含み、
(A)成分、(B)成分及び(C)成分の合計量100重量%中に、(A)成分を40~80重量%、(B)成分を60~20重量%及び(C)成分を0~40重量%の割合で含む
樹脂シート製造用硬化型組成物である。
(A)成分:共役酸のpKaが-3~1である弱塩基性基を有するオリゴマー又はポリマー
(B)成分:カルボキシル基及びエチレン性不飽和基を有する化合物
(C)成分:(A)成分及び(B)成分以外のエチレン性不飽和基含有化合物
 以下、それぞれの成分及び組成物の詳細について説明する。
1.(A)成分
 (A)成分は、共役酸のpKaが-3~1である弱塩基性基を有するオリゴマー又はポリマーである。
 ここで、共役酸のpKaとは、水素電極法やガラス電極法等の電気化学的方法により測定された値を意味し、電気化学的方法により測定できない場合は、紫外線や可視光及び核磁気共鳴法等の分光的方法で測定した値を意味する。
 オリゴマー又はポリマーであっても、共役酸のpKaが-3に満たないエステル基(pKa=-6.5)やケトン基(pKa=-7)、エーテル基(pKa=-3.5)を有するオリゴマー又はポリマーの場合は、塩基性が弱すぎて(B)成分のカルボキシル基との併用効果が発現しないという問題があり、一方、共役酸のpKaが1を超えるアミン基(アニリン;pKa=4.6、ピリジン;pKa=5.6、2級アミン;pKa=11)を有するオリゴマー又はポリマーの場合は、安定性や耐熱性が低いという問題がある。
 (A)成分の弱塩基性基としては、共役酸のpKaが-3~1を満たすものであれば種々の官能基が使用でき、カルバメート基(pKa=-3)及びアミド基(pKa=0.42)が好ましく用いられ、これらの中でも、カルバメート基が特に好ましい。
 又、(A)成分中の弱塩基性基の濃度は1~10meq/gが好ましい。
 カルバメート基を有する化合物の例としては、ウレタン結合を有する化合物が挙げられる。
 アミド基を有する化合物の例としては、一般にナイロンと総称される脂肪族骨格のポリアミド等が挙げられる。
 本発明において、オリゴマー又はポリマーとしては、分子量500~10,000を有する化合物が好ましい。
 本発明において分子量とは、質量分析で測定可能な絶対分子量を意味し、一方、高分子量体の分子量は、重量平均分子量(以下、「Mw」という)を意味する。
 本発明において、Mwとは、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算のMwを意味する。
 (A)成分としては、エチレン性不飽和基を有する化合物(以下、「(A1)成分」という)及びエチレン性不飽和基を有しない化合物(以下、「(A2)成分」という)のいずれも使用することができる。
 以下、(A1)及び(A2)成分について説明する。
1-1.(A1)成分
 (A1)成分は、前記オリゴマー又はポリマーにおいて、エチレン性不飽和基を有する化合物である。
 1分子中のエチレン性不飽和基の数は2個以上が好ましく、3個以上がより好ましく、3個又は4個であることが特に好ましい。エチレン性不飽和基の濃度は0.3~10meq/gが好ましい。
 エチレン性不飽和基の個数及び濃度がこれらの範囲内にあるものは、得られる硬化物が力学物性、特に剛性と強靭性のバランスが非常に優れたものになる。
 (A1)成分における、エチレン性不飽和基としては、(メタ)アクリロイル基、ビニル基及びビニルエーテル基等が挙げられ、(メタ)アクリロイル基が好ましい。
 (A1)成分としては、ウレタン結合を有し2個以上の(メタ)アクリロイル基を有する化合物〔以下、「(A1-1)成分」という〕が好ましい。(A1-1)成分は、通常ウレタン(メタ)アクリレートと称される化合物である。
 (A1-1)成分としては、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物〔以下、便宜上「ウレタン(メタ)アクリレート」という〕、並びに有機ポリイソシアネートと水酸基含有(メタ)アクリレートの反応物〔以下、「ウレタンアダクト」という〕が挙げられる。
1-1-1.ウレタン(メタ)アクリレート
 ウレタン(メタ)アクリレートは、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物である。
 ウレタン(メタ)アクリレートの原料であるポリオールとしては、ジオールが好ましく、低分子量ジオール、ポリエステル骨格を有するジオール、ポリエーテル骨格を有するジオール及びポリカーボネート骨格を有するジオールが好ましく用いられる。
 低分子量ジオールとしては、エチレングリコール、プロピレングリコール、シクロヘキサンジメタノール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール等が挙げられる。
 ポリエステル骨格を有するジオールとしては、前記低分子量ジオール又はポリカプロラクトンジオール等のジオール成分と、ジカルボン酸又はその無水物等の酸成分とのエステル化反応物等が挙げられる。
 ジカルボン酸又はその無水物としては、アジピン酸、コハク酸、フタル酸、テトラヒドルフタル酸、ヘキサヒドロフタル酸及びテレフタル酸等、並びにこれらの無水物等が挙げられる。
 ポリエーテル骨格を有するジオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリエトラメチレングリコール等が挙げられる。ポリカーボネート骨格を有するジオールとしては、前記低分子量ジオール及びビスフェノールA等のビスフェノールよりなる群から選ばれた少なくとも1種のジオールと、エチレンカーボネート及び炭酸ジブチルエステル等の炭酸ジアルキルエステルの反応物等が挙げられる。
 有機ポリイソシアネートとしては、脂環式基を有しない脂肪族ポリイソシアネート(以下、単に「脂肪族ポリイソシアネート」という)、脂環式基を有する脂肪族ポリイソシアネート(以下、「脂環式ポリイソシアネート」という)、複素環を有するポリイソシアネート及び芳香族ポリイソシアネート等が挙げられる。
 脂肪族ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート及びリジンジイソシアネート等が挙げられる。
 脂環式ポリイソシアネートとしては、水素化トリレンジイソシアネート、水素化4,4’-ジフェニルメタンジイソシアネート、水素化キシレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート及びイソホロンジイソシアネート等が挙げられる。
 複素環を有するポリイソシアネートとしては、ヘキサメチレンジイソシアネート3量体及びイソホロンジイソシアネート3量体等を挙げることができる。
 芳香族ジイソシアネートとしては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、パラフェニレンジイソシアネート及び1,5-ナフタレンジイソシアネート等が挙げられる。
 本発明において好適に使用される有機ポリイソシアネートは、硬化物の物理特性に優れ黄変が少ないという理由で、脂肪族ポリイソシアネート及び複素環を有するポリイソシアネートである。
 水酸基含有(メタ)アクリレートとしては、水酸基含有モノ(メタ)アクリレートが好ましい。水酸基含有モノ(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等が挙げられる。
1-1-2.ウレタンアダクト
 ウレタンアダクトは、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物である。
 (A)成分として、ウレタンアダクトを使用することにより、架橋密度が高くなり、耐熱性が向上するのに加え、(B)成分との併用により強靭性も向上するため好ましい。
 ウレタンアダクトにおいて、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートとしては、前記した化合物が挙げられる。
 ウレタンアダクトにおいては、水酸基含有(メタ)アクリレートとして、水酸基及び2個以上の(メタ)アクリロイル基を有する化合物(以下、「水酸基含有多官能(メタ)アクリレート」という)を使用することもできる。
 ウレタンアダクトとしては、有機ポリイソシアネートと水酸基含有多官能(メタ)アクリレートの反応物〔以下、「ウレタンアダクトP1」という〕を使用すると、架橋密度が高くなり、耐熱性、耐摩耗性及び耐擦傷性にも優れるものとなるため好ましい。
 水酸基含有多官能(メタ)アクリレートとしては、種々の化合物が使用でき、具体的には、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールのジ又はトリ(メタ)アクリレート、ジトリメチロールプロパンのジ又はトリ(メタ)アクリレート及びジペンタエリスリトールのジ、トリ、テトラ又はペンタ(メタ)アクリレート等が挙げられる。
 これらの中でも、硬化膜が耐磨耗性と耐擦傷性に優れる点で、3個以上の(メタ)アクリロイル基を有し、水酸基を1個有する化合物が好ましく、具体的には、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 これら化合物の中でも、得られる硬化物の反りを防止できる点で、ペンタエリスリトールトリ(メタ)アクリレートがより好ましい。
 ウレタンアダクトP1の製造において、原料の水酸基含有多官能(メタ)アクリレートは、通常、水酸基含有多官能(メタ)アクリレートと水酸基を有しない多官能(メタ)アクリレートを含む混合物であるが、ウレタンアダクトP1としては当該混合物を使用して製造されたものも使用することができる。
 具体的には、トリメチロールプロパンジ(メタ)アクリレートとトリメチロールプロパントリ(メタ)アクリレートの混合物、ジトリメチロールプロパントリ(メタ)アクリレートとジトリメチロールプロパンテトラ(メタ)アクリレートの混合物、及びジペンタエリスリトールペンタ(メタ)アクリレートとジペンタエリスリトールヘキサ(メタ)アクリレートの混合物等が挙げられる。
 当該混合物から得られる反応物は、(A)成分と(C)成分の混合物となる。
 ウレタンアダクトの好ましい化合物としては、3個以上のイソシアネート基を有する有機ポリイソシアネートと水酸基含有モノ(メタ)アクリレートの反応物〔以下、「ウレタンアダクトP2」という〕が挙げられる。
 ウレタンアダクトP2における水酸基含有モノ(メタ)アクリレートとしては、前記した化合物と同様の化合物が挙げられる。
 3個以上のイソシアネート基を有する有機ポリイソシアネートの例としては、前記したヘキサメチレンジイソシアネート3量体及びイソホロンジイソシアネート3量体等を挙げることができる。
 ウレタンアダクトP2の好ましい例としては、ヘキサメチレンジイソシアネート3量体とヒドロキシブチルアクリレートの付加反応物等が挙げられる。
1-1-3.好ましい(A1-1)成分
 (A1-1)成分としては、ウレタンアダクトが好ましく、ウレタンアダクトとしては、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物であって、3個以上の(メタ)アクリロイル基を有する化合物がより好ましく、3個又は4個の(メタ)アクリロイル基を有する化合物が特に好ましい。当該化合物は、硬化物の適度な架橋密度によって剛性を維持すると同時に高い強靭性を有するものとなる。
 3個以上の(メタ)アクリロイル基を有するウレタンアクトの例としては、前記したウレタンアダクトP1及びウレタンアダクトP2を挙げることができ、3個又は4個の(メタ)アクリロイル基を有するウレタンアクトとして、ウレタンアダクトP2を挙げることができる。
1-1-4.(A1-1)成分の製造方法
 (A1-1)成分の製造方法としては、ウレタン(メタ)アクリレートにおいては、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの付加反応、ウレタンアダクトにおいては、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの付加反応により製造される。
 この付加反応は無触媒でも可能であるが、反応を効率的に進めるために、ジブチルスズジラウレート等の錫系触媒や、トリエチルアミン等のアミン系触媒、亜鉛錯体や鉄錯体等の金属錯体系触媒等を添加しても良い。
1-2.(A2)成分
 (A2)成分は、共役酸のpKaが-3~1である弱塩基性基を有するオリゴマー又はポリマーであって、エチレン性不飽和基を有しない化合物である。
 (A2)成分としては、ポリウレタン及びポリアミドを挙げることができ、ポリウレタンが好ましく使用できる。
 ポリウレタンとしては、ポリオールとポリイソシアネートとの付加反応物等が挙げられる。
 ポリウレタンの原料における、ポリオール及びポリイソシアネートとしては、前記と同様の化合物を挙げることができる。
 ポリオールとしては、ポリエステル骨格を有するジオール、ポリエーテル骨格を有するジオール及びポリカーボネート骨格を有するジオールが好ましい。
 ポリイソシアネートとしては、脂肪族ジイソシアネート及び脂環式ジイソシアネートが好ましい。
 ポリアミドとしては、ウンデカンラクタムを開環重縮合したポリアミド(ナイロン11)やラウリルラクタムを開環重縮合したポリアミド(ナイロン12)等の炭素数10以上のアルキレン基を有する脂肪族ポリアミドを挙げることができる。
 (A2)成分は単独でも使用できるが、前記(A1)成分と併用して使用することが好ましい。
 この場合の併用割合としては、(A1)及び(A2)成分の合計量100%中に50重量%未満が好ましく、より好ましく2~40重量%である。
 (A1)及び(A2)成分を当該割合で含むことにより、硬化物の破断歪みが向上し強靭性も向上させることができる。
2.(B)成分
 本発明の(B)成分は、カルボキシル基及びエチレン性不飽和基を有する化合物である。
 (B)成分における、エチレン性不飽和基としては、(メタ)アクリロイル基、ビニル基及びビニルエーテル基等が挙げられ、(メタ)アクリロイル基が好ましい。
 (B)成分としては種々の化合物を使用することができ、(メタ)アクリル酸、(メタ)アクリル酸のポリカプロラクトン変性物、(メタ)アクリル酸のマイケル付加型多量体、2-ヒドロキシエチル(メタ)アクリレートと無水フタル酸の付加物、2-ヒドロキシエチル(メタ)アクリレートと無水コハク酸の付加物等のカルボキシル基含有(メタ)アクリレート、マレイン酸、無水マレイン酸、フマル酸、クロトン酸などが使用できる。
 これら化合物の中でも(メタ)アクリル酸及び無水マレイン酸が好ましく、(メタ)アクリル酸が更に好ましい。
 (A)成分及び(B)成分の含有割合は、(A)成分、(B)成分及び(C)成分の合計量100重量%中に、(A)成分が40~80重量%及び(B)成分が60~20重量%であり、好ましくは(A)成分が50~70重量%であり、(B)成分が30~50重量%である。
 (A)成分の割合が40重量%に満たないか、(B)成分が60重量%を超える場合は、強靭性が低下してしまい、(A)成分の割合が80重量%を超えるか、(B)成分が20重量%に満たない場合は、剛性が低下してしまう。
3.(C)成分
 本発明は、前記(A)成分及び(B)成分を必須とするものであるが、(C)成分である前記(A)成分及び(B)成分以外のエチレン性不飽和基含有化合物を含んでいても良い。
 (C)成分における、エチレン性不飽和基としては、(メタ)アクリロイル基、ビニル基及びビニルエーテル基等が挙げられ、(メタ)アクリロイル基が好ましい。但し、(B)成分として無水マレイン酸を用いる場合はスチリル基が好ましく使用できる。
 (C)成分において、エチレン性不飽和基を1個有する化合物としては、1個の(メタ)アクリロイル基を有する化合物〔以下、「単官能(メタ)アクリレート」という〕等が挙げられる。
 単官能(メタ)アクリレートの具体例としては、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、アリル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、о-フェニルフェノールエチレンオキサイド付加物(1~4モル付加物)(メタ)アクリレート、p-クミルフェノールエチレンオキサイド付加物(1~4モル付加物)(メタ)アクリレート、フェニル(メタ)アクリレート、о-フェニルフェニル(メタ)アクリレート、p-クミルフェニル(メタ)アクリレート、2-(2-オキソ-3-オキサゾリジニル)エチルアクリレート、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、N-(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド等が挙げられる。
 (C)成分において、エチレン性不飽和基を2個以上有する化合物としては、2個の(メタ)アクリロイル基を有する化合物〔以下、「2官能(メタ)アクリレート」という。以下、X個の(メタ)アクリロイル基を有する化合物を「X官能(メタ)アクリレート」と同様に表記する。〕としては、ビスフェノールAアルキレンオキサイド付加物のジ(メタ)アクリレート及びビスフェノールAジ(メタ)アクリレート等の芳香族骨格を有する2官能(メタ)アクリレート;
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、ポリ(1-メチルブチレングリコール)ジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート及びネオペンチルグリコールジ(メタ)アクリレート等の脂肪族骨格を有する2官能(メタ)アクリレート;
ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート;
ジメチロールトリシクロデカンジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート及びスピログリコールジ(メタ)アクリレート等の脂環式骨格を有する2官能(メタ)アクリレート;
等が挙げられる。
 尚、上記においてアルキレンオキサイド付加物としては、エチレンオキサイド付加物及びプロピレンオキサイド付加物等が挙げられる。
 (C)成分としては、オリゴマーを使用することもでき、具体的には、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレー等が挙げられる。
 (C)成分としては、1種のみを使用しても、2種以上を併用しても良い。
 (C)成分としては、前記した化合物の中でも、剛性と耐熱性を付与できるという理由で、3官能以上の(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート等の脂肪族骨格を有する2官能(メタ)アクリレート、イソボルニル(メタ)アクリレート等の脂環式骨格を有する単官能(メタ)アクリレート、並びにジメチロールトリシクロデカンジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート及びスピログリコールジ(メタ)アクリレート等の脂環式骨格を有する2官能(メタ)アクリレートが好ましい。
 (C)成分の割合としては、(A)成分、(B)成分及び(C)成分の合計量100重量%中に0~40重量%であり、好ましくは0~30重量%である。(C)成分の割合が40重量%を超えると、強靭性と剛性のバランスが低下してしまう。
4.樹脂シート製造用硬化型組成物
 本発明は、前記(A)成分及び(B)成分を必須成分とし、必要に応じて(C)成分を含む樹脂シート製造用硬化型組成物に関する。
 組成物の製造方法としては、常法に従えば良く、例えば、(A)成分及び(B)成分、必要に応じて(C)成分及びその他の成分を撹拌混合して製造することができる。
 組成物の粘度は目的に応じて適宜設定すれば良く、50~10,000mPa・sが好ましい。
 尚、本発明において粘度とは、E型粘度計を使用して25℃で測定した値を意味する。
 本発明の組成物は、活性エネルギー線硬化型組成物及び熱硬化型組成物として使用することができる。
 本発明の組成物は、前記(A)成分及び(B)成分を必須成分とし、必要に応じて(C)成分を含むものであるが、目的に応じて種々の成分を配合することができる。
 その他の成分としては、具体的には、光重合開始剤〔以下、「(D)成分」という〕、熱重合開始剤〔以下、「(E)成分」という〕、有機溶剤、可塑剤、重合禁止剤、酸化防止剤、耐光性向上剤、2個以上のメルカプト基を有する化合物〔以下、「多官能メルカプタン」という〕、及び、イソシアネート化合物等を挙げることができる。
 以下、これらの成分について説明する。尚、後記する成分は、1種のみ使用しても良く、又2種以上を併用しても良い。
4-1.その他の成分
4-1-1.(D)成分
 (D)成分は、光重合開始剤である。
 (D)成分は、活性エネルギー線として紫外線及び可視光線を用いた場合に配合する成分である。電子線を使用する場合には、必ずしも配合する必要はないが、硬化性を改善させるため必要に応じて少量配合することもできる。
 (D)成分の具体例としては、ベンジルジメチルケタール、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチループロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イルフェニル)ブタン-1-オン、アデカオプトマーN-1414((株)ADEKA製)、フェニルグリオキシリックアシッドメチルエステル、エチルアントラキノン、フェナントレンキノン等の芳香族ケトン化合物;
ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、4-(メチルフェニルチオ)フェニルフェニルメタン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン及び4-メトキシ-4’-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;
ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド化合物;
チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル]オキシ]-2-ヒドロキシプロピル-N,N,N-トリメチルアンモニウムクロライド及びフロロチオキサントン等のチオキサントン系化合物;
アクリドン、10-ブチル-2-クロロアクリドン等のアクリドン系化合物;
1-[4-(フェニルチオ)]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)及び1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)等のオキシムエステル類;
2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-フェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体及び2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;並びに9-フェニルアクリジン及び1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体等が挙げられる。
 (D)成分としては、前記以外にも分子量が350以上の光重合開始剤を使用することも可能である。分子量350以上の光重合開始剤は、光照射後の分解物により得られる樹脂シートが着色を生じることがなく、さらに透明導電性フィルムの製造に使用する場合、分解物が透明導電体層の真空成膜時のアウトガスも発生しないため、短時間で高真空に到達することができ、導電体層の膜質が低下して低抵抗化しにくくなってしまうことを防止することができる。
 (D)成分の具体例としては、ヒドロキシケトンのポリマー等が挙げられ、例えば、下記式(1)で表される化合物等が挙げられる。当該化合物は、(A)成分~(C)成分との相溶性に優れる点でも好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(1)において、R1は水素原子又はメチル基を表し、R2はアルキル基を表し、nは2~5の数を表す。尚、nは、上記単位の平均の繰り返し数を意味する。
 R2はアルキル基としては、メチル基、エチル基及びプロピル基等の低級アルキル基が好ましい。
 式(1)で表される化合物の具体例としては、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン等が挙げられる。
 当該化合物は市販されており、例えば、ESACURE KIP 150(Lamberti社製)が知られている。ESACURE KIP 150は、上記式(1)表される化合物において、R1は水素原子又はメチル基、R2はメチル基、nは2から3の数、かつ[(204.3×n+16.0)又は(204.3×n+30.1)]の分子量を有する化合物である。
 前記以外の化合物としては、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステル、オキシフェニル酢酸等を挙げることができる。
 当該化合物は市販されており、イルガキュア754(BASF社製)が知られている。イルガキュア754は、オキシフェニル酢酸、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステルとオキシフェニル酢酸、2-(2-ヒドロキシエトキシ)エチルエステルの混合物である。
 (D)成分の配合割合としては、(A)及び(B)成分、又は(A)~(C)成分〔以下、これらをまとめて「硬化性成分」という〕の合計量100重量部に対して、0.01~10重量部が好ましく、より好ましくは0.1~5重量部である。
 配合割合を0.01重量%以上とすることにより、適量な紫外線又は可視光線量で組成物を硬化させることができ生産性を向上させることができ、一方10重量部以下とすることで、硬化物の耐候性や透明性に優れたものとすることができる。
4-1-2.(E)成分
 組成物を熱硬化型組成物として使用する場合には、(E)成分(熱重合開始剤)を配合することができる。
 (E)成分としては、種々の化合物を使用することができ、有機過酸化物及びアゾ系開始剤が好ましい。
 有機過酸化物の具体例としては、1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、ジラウロイルパーオキサイド、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジーメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等が挙げられる。
 アゾ系化合物の具体例としては、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、アゾジ-t-オクタン、アゾジ-t-ブタン等が挙げられる。
 これらは単独で用いても良いし、2種以上を併用しても良い。又、有機過酸化物は還元剤と組み合わせることによりレドックス反応とすることも可能である。
 (E)成分の使用割合としては、硬化性成分合計量100重量部に対して、10重量部以下が好ましい。
 熱重合開始剤を単独で用いる場合は、通常のラジカル熱重合の常套手段にしたがって行えばよく、場合によっては光重合開始剤と併用し、光硬化させた後にさらに反応率を向上させる目的で熱硬化を行うこともできる。
4-1-3.有機溶剤
 本発明の組成物は、基材への塗工性を改善する等の目的で、有機溶剤を配合することができる。但し、得られる樹脂シートを透明導電性フィルム用途に使用する場合は、有機溶剤を含まないものが好ましい。
 有機溶剤の具体例としては、n-ヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン及びシクロヘキサン等の炭化水素系溶剤;
メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、2-メトキシエタノール、2-エトキシエタノール、2-(メトキシメトキシ)エタノール、2-イソプロポキシエタノール、2-ブトキシエタノール、2-イソペンチルオキシエタノール、2-ヘキシルオキシエタノール、2-フェノキシエタノール、2-ベンジルオキシエタノール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール及びプロピレングリコールモノメチルエーテル等のアルコール系溶剤;
テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ビス(2-メトキシエチル)エーテル、ビス(2-エトキシエチル)エーテル及びビス(2-ブトキシエチル)エーテル等のエーテル系溶剤;
アセトン、メチルエチルケトン、メチル-n-プロピルケトン、ジエチルケトン、ブチルメチルケトン、メチルイソブチルケトン、メチルペンチルケトン、ジ-n-プロピルケトン、ジイソブチルケトン、ホロン、イソホロン、シクロペンタノン、シクロヘキサノン及びメチルシクロヘキサノン等のケトン系溶剤;
酢酸エチル、酢酸ブチル、酢酸イソブチル、メチルグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸セロソルブ等のエステル系溶剤;
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、γ-ブチロラクトン等の非プロトン性極性溶剤が挙げられる。
 有機溶剤の割合としては、適宜設定すれば良いが、好ましくは組成物中に90重量%以下が好ましく、より好ましくは80重量%以下である。
4-1-4.可塑剤
 硬化物に柔軟性を付与し、脆さを改善する目的で、可塑剤を添加することができる。
 可塑剤の具体例としては、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸ジアルキルエステル、アジピン酸ジオクチル等のアジピン酸ジアルキルエステル、セバシン酸エステル、アゼライン酸エステル、リン酸トリクレシル等のリン酸エステル、ポリプロピレングリコール等の液状ポリエーテルポリオール、ポリカプロラクトンジオール、3-メチルペンタンジオールアジペート等の液状ポリエステルポリオール等が挙げられる。又、数平均分子量10,000以下の軟質アクリル系ポリマー等を挙げることができる。
 これら可塑剤の配合割合としては、適宜設定すれば良いが、硬化性成分の合計100重量部に対して、30重量部以下が好ましく、より好ましくは20重量部以下である。
 30重量部以下にすることにより、強度や耐熱性に優れるものとすることができる。
4-1-5.重合禁止剤又は/及び酸化防止剤
 本発明の組成物には、保存安定性を向上させために、重合禁止剤又は/及び酸化防止剤を添加することができる。
 重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル、2,6-ジ-tert-ブチル-4-メチルフェノール、並びに種々のフェノール系酸化防止剤が好ましいが、イオウ系二次酸化防止剤、リン系二次酸化防止剤等を添加することもできる。
 これら重合禁止剤又は/及び酸化防止剤の総配合割合は、硬化性成分の合計量100重量部に対して、3重量部以下が好ましく、より好ましくは0.5重量部以下である。
4-1-6.耐光性向上剤
 本発明の組成物には、紫外線吸収剤や光安定剤等の耐光性向上剤を添加しても良い。
 紫外線吸収剤としては、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール化合物;
2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソオクチルオキシフェニル)-s-トリアジン等のトリアジン化合物;
2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-メチルベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,3’,4,4’-テトラヒドロキシベンゾフェノン、又は2、2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等のベンゾフェノン化合物等を挙げることができる。
 光安定性剤としては、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルヘキサメチレンジアミン、ビス(1,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジターシャリーブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、等の低分子量ヒンダードアミン化合物;N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルヘキサメチレンジアミン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート等の高分子量ヒンダードアミン化合物等のヒンダードアミン系光安定剤を挙げることができる。
 耐光性向上剤の配合割合は、硬化性成分の合計量100重量部に対して、0~5重量部であることが好ましく、より好ましくは0~1重量部である。
4-1-7.多官能メルカプタン
 多官能メルカプタンは、組成物硬化物の硬化収縮を防止する目的や強靭性を付与する目的で、必要に応じて配合することができる。
 多官能メルカプタンとしては、2個以上のメルカプト基を有する化合物であれば種々の化合物を使用することができる。
 例えば、ペンタエリスルトールテトラキスチオグリコレート、ペンタエリスルトールテトラキスチオプロピオネート等が挙げられる。
 多官能メルカプタンの割合としては、硬化性成分100重量部に対して、20重量部以下が好ましく、10重量部以下がより好ましく、5重量部以下が特に好ましい。この割合を20重量部以下にすることで、得られる硬化物の耐熱性や剛性の低下を防止することができる。
4-1-8.イソシアネート化合物
 ポリビニルルコール等の難接着性基材を用いる場合、基材との密着性を向上する手段としてイソシアネート化合物を添加することができる。
 1個のエチレン性不飽和基と1個のイソシアネート基を有する化合物としては、2-(メタ)アクリロイルオキシエチルイソシアネート等の(メタ)アクリロイルオキシアルキルイソシアネート等が挙げられ、これら2つの基がオキシアルキレン骨格で連結されている化合物の例として、2-(メタ)アクリロイルオキシエトキシエチルイソシアネート等の(メタ)アクリロイルオキシアルコキシアルキルイソシアネート、並びにこれら2つの基が芳香族炭化水素骨格で連結されている化合物の例として、2-(メタ)アクリロイルオキシフェニルイソシアネート等が挙げられる。
 2個のエチレン性不飽和基を有する1個のイソシアネート基を有する化合物としては、これら2つの基が分岐状飽和炭化水素骨格で連結されている化合物の例として、1,1-ビス〔(メタ)アクリロイルオキシメチル〕エチルイソシアネート等が挙げられる。
 2個以上のイソシアネート基を有する化合物としては、トリレンジイソシアネート、フェニレンジイソシアネート、クロロフェニレンジイソシアナート、キシリレンジイソシアネート、シクロヘキサンジイソシアネート、ヘキサメチレンジイソシアナート、テトラメチレンジイソシアナート、ノルボルネンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、フタレンジイソシアネート、ジメチルジフェニルジイソシアネート、ジアニリンジイソシアネート、テトラメチルキシリレンイソシアネート、トリメチルヘキサメチレンジイソシアネート、リシンジイソシアネート等が挙げられ、さらには、これらイソシアネート化合物をトリメチロールプロパンなどの多官能アルコールに付加したアダクト系イソシアネート化合物や、これらイソシアネート化合物のイソシアヌレート化合物、ビュレット型化合物、アロファネート型化合物等が挙げられ、さらには公知のポリエーテルポリオール、ポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、ポリイソプレンポリオールなどを付加反応させたウレタンプレポリマー型のイソシアネート化合物などが挙げられる。
4-1-9.前記以外のその他の成分
 本発明の組成物には、前記したその他の成分以外にも、離型剤、フィラー及び溶解性重合体等を配合することができる。
 離型剤は、得られる樹脂シートを基材からの離型を容易にする目的で配合する。離型剤としては、基材から離型でき、配合液および硬化物が濁らなければ、各種界面活性剤が使用できる。例えば、アルキルベンゼンスルホン酸等のアニオン界面活性剤、アルキルアンモニウム塩等のカチオン界面活性剤、ポリオキシエチレンアルキルエーテル等のノニオン界面活性剤、アルキルカルボキシベタイン等の両性界面活性剤さらには、フッ素やケイ素を含む界面活性剤等が挙げられる。
 フィラーは、得られる樹脂シートの機械物性を向上させる目的で配合する。フィラーとしては、無機化合物及び有機化合物のいずれも使用できる。無機化合物としては、シリカ及びアルミナ等が挙げられる。有機化合物としては重合体を使用することができる。フィラーとしては、本発明の組成物から得られる樹脂シートが光学用途として使用される場合には、光学物性を低下させないものが好ましい。
 溶解性重合体は、得られる樹脂シートの機械物性を向上させる目的で配合する。溶解性重合体とは、組成物に溶解する重合体を意味する。本発明では、組成物に溶解しない重合体をフィラーと称して区別する。
 これらその他の化合物の配合割合としては、硬化性成分100重量部に対して、20重量部以下が好ましく、10重量部以下がより好ましい。
4-2.硬化物の物性
 本発明における組成物の硬化物の物性としては、硬化物の引張試験における弾性率が0.5GPa以上、かつ破断歪みが5%以上であるものが好ましい。
 硬化物が当該弾性率を有するものは、剛性に優れるものとなり、又当該最大歪みを有するものは強靭なものとなる。
 弾性率としては、0.8GPa以上がより好ましく、破断歪みは8%以上がより好ましい。また、弾性率は、10GPa以下が好ましく、8GPa以下がより好ましい。破断歪みは2,000%以下が好ましく、1,000%以下がより好ましい。
 尚、本発明において、引張試験における弾性率とは、長さ50mm以上の短冊形試験片を治具間20mmで固定し、引張速度40mm/分で行った引張試験において、歪み1%と2%の応力から計算した値を意味する。
 又、本発明における破断歪みは、同試験において破断した治具間距離と初期値(20mm)から計算した値を意味する。
 組成物の硬化物のガラス転移温度(以下、「Tg」という)としては、50~250℃が好ましく、より好ましくは80~200℃である。Tgを50℃以上とすることにより、得られる樹脂シートが剛性や耐熱性に優れるものとなり、250℃以下とすることにより、強靭性を保持することができる。
 尚、本発明におけるTgとは、周波数1Hz、昇温温度2℃/分、引張モードで測定した動的粘弾性スペクトルにおける引張損失係数tanδが最大となるときの温度を意味する。
4-3.膜厚
 樹脂シートの膜厚としては、目的に応じて適宜設定すれば良い。
 特にガラス代替用途、好ましくはOPS用途に使用する場合、100μm~5mmが好ましく、より好ましくは200μm~3mmである。
 偏光子保護層として使用する場合、10μm~2mmが好ましく、より好ましくは20μm~200μmである。
5.樹脂シートの製造方法
 本発明の組成物を使用する樹脂シートの製造方法としては、種々の方法を採用することができる。
 尚、本発明に係る樹脂シートの技術分野においては、比較的膜厚の厚い場合をシートと称し、比較的膜厚の薄い場合をフィルムと称する場合が多い。
 前記した通り、本発明において「樹脂シート」とは、樹脂シート又は樹脂フィルムを意味する。
 具体的には、組成物として活性エネルギー線硬化型組成物を使用する場合は、例えば下記4つの製造方法が挙げられる。
1)製法1-1
 基材に組成物を塗工し、活性エネルギー線を照射して組成物を硬化させる方法
2)製法1-2
 基材に組成物を塗工し別の基材と貼り合せた後、活性エネルギー線を照射して組成物を硬化させる方法
3)製法1-3
 空間部を有する基材に組成物を流し込み、活性エネルギー線を照射して組成物を硬化させる方法
4)製法1-4
 空間を有する基材に組成物を流し込み別の基材と貼り合せた後、活性エネルギー線を照射して組成物を硬化させる方法
 これら製造方法の場合、活性エネルギー線を照射した後に加熱することもできる。
 本発明の組成物から得られる樹脂シートをガラス代替用途で使用する場合においては、上記製法1-4が好ましい。
 本発明の組成物から得られる樹脂シートを偏光子保護フィルムで使用する場合においては、上記製法1-1及び1-2が好ましい。
 組成物として熱硬化型組成物を使用する場合は、例えば下記4つの製造方法が挙げられる。
5)製法2-1
 基材に組成物を塗工し、加熱して組成物を硬化させる方法
6)製法2-2
 基材に組成物を塗工し別の基材と貼り合せた後、加熱して組成物を硬化させ方法
7)製法2-3
 空間部を有する基材に組成物を流し込み、加熱して組成物を硬化させる方法
8)製法2-4
 空間部を有する基材に組成物を流し込み別の基材と貼り合せた後、加熱して組成物を硬化させる方法
 本発明の組成物から得られる樹脂シートをガラス代替用途で使用する場合においては、上記製法2-4が好ましい。
 本発明の組成物から得られる樹脂シートを偏光子保護フィルムで使用する場合においては、上記製法2-1及び2-2が好ましい。
 重合方式としては、バッチ式及び連続式のいずれも採用することができる。
 連続式の例としては、組成物を塗工又は流し込み基材として、ベルト状の基材を連続供給する方法等が挙げられる。
 連続式の別の例としては、上記以外にも連続キャスト法と称される方法が挙げられる。即ち、連続した鏡面ステンレスのベルトをキャタピラ状に上下に2枚並べ、そのベルトとベルトの間に組成物を流し入れ、ゆっくりとベルトを動かしながら連続的にベルトとベルトの間で重合を行い、樹脂シートを製造方法等が挙げられる。
 ガラス代替用途においては、バッチ式が好ましい。
5-1.基材
 基材としては、剥離可能な基材及び離型性を有しない基材(以下、「非離型性基材」という)のいずれも使用することができる。
 剥離可能な基材としては、金属、ガラス、離型処理されたポリマーフィルム及び剥離性を有する表面未処理ポリマーフィルム(以下、まとめて「離型材」という)等が挙げられる。
 硬化物の離型を容易にする目的で、基材表面を離形処理することもできる。離形処理としては、例えばシリコーン等を用いて基材表面に塗工又は処理すればよい。
 離型処理されたポリマーフィルム及び剥離性を有する表面未処理ポリマーフィルムとしては、シリコーン処理ポリエチレンテレフタレートフィルム、表面未処理ポリエチレンテレフタレートフィルム、表面未処理シクロオレフィンポリマーフィルム及び表面未処理OPPフィルム(ポリプロピレン)等が挙げられる。
 本発明の組成物から得られる樹脂シートに対して、低いヘイズにしたり表面平滑性を付与するためには、表面粗さ(中心線平均粗さ)Raが0.15μm以下の基材を使用することが好ましく、0.001~0.100μmの基材がより好ましい。さらに、ヘイズとしては3.0%以下が好ましい。
 当該基材の具体例としては、ガラス、ポリエチレンテレフタレートフィルムやシクロオレフィンポリマーフィルム、OPPフィルム(配向ポリプロピレン)、ポリビニルアルコール、トリアセチルセルロース及びジアセチルセルロース等のセルロースアセテート樹脂、アクリル樹脂、ポリエステル、ポリカーボネート、ポリアリレート、ポリエーテルサルホン、ノルボルネン等の環状オレフィンをモノマーとする環状ポリオレフィン樹脂等が挙げられる。
 尚、本発明において表面粗さRaとは、フィルムの表面の凹凸を測定し、平均の粗さを計算したものを意味する。
 非離型性基材としては、前記以外の各種プラスチックが挙げられ、ポリビニルアルコール、トリアセチルセルロース及びジアセチルセルロース等のセルロースアセテート樹脂、アクリル樹脂、ポリエステル、ポリカーボネート、ポリアリレート、ポリエーテルサルホン、ノルボルネン等の環状オレフィンをモノマーとする環状ポリオレフィン樹脂等が挙げられる。
 本発明の組成物を偏光子保護材として利用する場合、ヨウ素や染料を含浸後延伸したポリビニルアルコール膜、即ち偏光子フィルムが基材となる。
 硬化性組成物の重合物である樹脂シートまたはフィルムを基材から剥離させることなく、基材と硬化層が一体化した状態で実用に供する用途の場合、両層の接着性を向上する目的で、コロナ放電処理を始めとする物理的・化学的処理を基材表面の施すことができる。
 空間部を有する基材としては、凹部を有する基材が挙げられる。型枠材に目的の膜厚とする所定の形状の穴を空け、凹部を形成したものが挙げられる。
 この場合、凹部を有する基材に組成物を流し込んだ後、当該凹部を有する基材の上に、別の基材を重ねることもできる。
 空間部を有する基材の他の例としては、型枠材上に、硬化物が目的の膜厚となるように堰(スペーサー)を設けたもの(以下、「成形型」という)等も挙げられる。この場合も、堰の上に、別の基材を重ねることもできる。
 成形型の例として、図1を挙げ説明する。
 図1の(a1-1)及び(a1-2)は、2枚の基材〔図1:(a1-1)の(1)及び(a1-2)の(1)’〕、2枚の離型性に優れる基材〔図1:(a1-1)の(2)及び(a1-2)の(2)’〕及び1枚の堰を設けるための基材〔図1:(a1-1)の(3)〕から構成される成形型の例である。
 図1の(a2)は、2枚の基材〔図1:(a2)の(1)及び(1)’〕、及び1枚の堰を設けるための基材〔図1:(a2)の(3)〕から構成される成形型の例である。
 堰を設けるための基材としては、図1に示す通り、上部に組成物を注入するための空孔部〔図1:(a1-1)の(3-1)〕を有する形状のもの〔図1:(a1-1)の(3)〕及び空孔部を有しない形状のもの〔図1:(a1-1)の(3)'〕等が挙げられ、上部に組成物を注入するための空孔部を有する形状のものが好ましい。当該堰を設けるための基材としては、種々の材料が使用でき、シリコーンゴム等を挙げることができる。
 図1の(a1-1)及び(a1-2)の具体例としては、基材として2枚のガラス、2枚の離型処理されたフィルム及び1枚の堰を設けるための基材から構成される成形型が挙げられる。
 ガラス〔図1:(a1-1)の(1)〕の上に、離型処理されたフィルム〔図1:(a1-1)の(2)〕を重ね、その上に堰を設けるための基材〔図1:(a1-1)の(3)〕を重ね堰(スペーサー)とする。さらにその上に、離型処理されたフィルム〔図1:(a1-2)の(2)’〕を重ね、その上にガラス〔図1:(a1-2)の(1)’〕を重ね成形型とする。
 図1の(a2)の具体例としては、基材〔図1:(a2)の(1)及び(1)’〕として、離型処理されたガラスや金属を使用する場合であり、硬化物の離型性に優れるため、図1の(a1-1)や(a1-2)における2枚の離型処理されたフィルムは不要である。
 又、組成物の硬化物自体が離型性に優れる場合には、基材〔図1:(a2)の(1)及び(1)’〕として、ガラスを使用することもできる。組成物の硬化物自体が離型性に優れる例としては、組成物に離型剤を配合した例が挙げられる。
5-2.組成物の事前処理
 本発明の組成物の塗工又は注入に当たって、組成物としては、得られる樹脂フィルムを、異物の混入防止や空隙等の欠陥の発生を防止したり、光学物性の優れたものとするため、原料成分を撹拌・混合した後、精製したものを使用することが好ましい。
 組成物の精製方法としては、組成物をろ過する方法が簡便であり好ましい。ろ過の方法としては、加圧ろ過等が挙げられる。
 ろ過精度は、好ましくは10μm以下、より好ましくは5μm以下である。ろ過精度は小さいほど好ましいが、小さすぎるとフィルターが目詰まりし易くなり、フィルターの交換頻度が増え生産性が低下するため、下限は0.1μmが好ましい。
 樹脂シートの製造に当たっては、硬化物中に気泡を含むことを防止するため、各成分を配合した後に脱泡処理することが好ましい。脱泡処理の方法としては、静置、真空減圧、遠心分離、サイクロン(自転・公転ミキサー)、気液分離膜、超音波、圧力振動及び多軸押出機による脱泡等が挙げられる。
5-3.塗工又は注入
 基材に組成物を塗工する場合の塗工方法としては、目的に応じて適宜設定すれば良く、従来公知のバーコーター、アプリケーター、ドクターブレード、ナイフコーター、コンマコーター、リバースロールコーター、ダイコーター、リップコーター、グラビアコーター及びマイクログラビアコーター等で塗工する方法が挙げられる。
 空間部を有する基材に組成物を注入する場合は、組成物を注射器等の注入機器や注入装置に入れ注入する方法等が挙げられる。
 この場合の膜厚としては、前記した樹脂シートの目的とする膜厚に応じて適宜設定すれば良い。
 特にガラス代替用途、好ましくはOPS用途に使用する場合、100μm~5mmが好ましく、より好ましくは200μm~3mmであり、特に好ましくは300μm~2mmである。
 偏光子保護層として使用する場合、10μm~2mmが好ましく、より好ましくは20μm~200μmである。
5-4.活性エネルギー線照射
 組成物として活性エネルギー線硬化型組成物を使用する場合の活性エネルギー線としては、紫外線、可視光線、電子線及びX線等が挙げられ、硬化物を膜厚とすることができる点で紫外線及び可視光線が好ましい。紫外線照射装置としては、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ブラックライトランプ、UV無電極ランプ、LED等が挙げられる。
 活性エネルギー線照射における、線量や照射強度等の照射条件は、使用する組成物、基材及び目的等に応じて適宜設定すれば良い。
 この場合、活性エネルギー線を照射した後に加熱することができる。当該加熱の方法としては後記と同様の方法が挙げられる。加熱処理によって分子鎖再配列による安定化、重合反応の進行、凍結したラジカルのカップリング反応などが起き、耐熱性や光学的性質の向上が期待できる。
 加熱温度は50℃~200℃が好ましく、100℃~150℃が更に好ましい。加熱温度が低いと加熱処理の効果が低く、高すぎると架橋反応等によって強靭性が低下する恐れがある。加熱時間は1時間~1日が好ましく、2時間~10時間が更に好ましい。加熱時間が短いと加熱処理の効果が低く、長すぎると架橋反応等によって強靭性が低下する恐れがある。
5-5.加熱
 組成物として熱硬化型組成物を使用する場合の加熱方法としては、熱及びオイル等の熱媒浴に浸漬する方法、熱プレスを用いる方法、並びに温調式恒温槽内に保持する方法等が挙げられる。
 加熱する場合の加熱温度等の条件は、使用する組成物、基材及び目的等に応じて適宜設定すれば良い。加熱温度としては40℃~250℃が好ましい。加熱時間は使用する組成物、及び目的とする樹脂シート等に応じて適宜設定すれば良く、3時間以上が挙げられる。加熱時間の上限は、経済性を考慮し24時間以下が好ましい。
 又、目的に応じて加熱温度を変更することもできる。例えば、分解温度の異なる熱重合開始剤を使用した場合等が挙げられる。具体的な温度としては、例えば、40℃~80℃程度の比較的低温で数時間重合した後、100℃以上の比較的高温で数時間重合する方法等が挙げられる。
6.樹脂シートの用途
 本発明の組成物から製造される樹脂シートは、特に光学シートとして好ましく使用することができる。
 本発明の組成物から形成される光学シートは、種々の光学用途に使用できるものである。より具体的には、液晶ディスプレイ用偏光板の偏光子保護フィルム、有機EL用円偏板の保護フィルム、プリズムシート用支持フィルム及び導光フィルム等の液晶表示装置やタッチパネル一体型液晶表示装置に使用されるシート、各種機能性フィルム(例えば、ハードコートシート、加飾シート、透明導電性シート)及び表面形状を付したシート(例えば、モスアイ型反射防止シートや太陽電池用テクスチャー構造付きシート)のベースシート、太陽電池等屋外用の耐光性(耐候性)シート、LED照明又は有機EL照明用フィルム、フレキシブルエレクトロニクス用透明耐熱シート等の用途が挙げられる。
 本発明の組成物から形成される光学シートは、耐熱性に優れるため、透明導電性シートの製造に好ましく使用することができる。この用途で使用する組成物としては、透明導電性体層の真空成膜時のアウトガス発生を抑制できる点で、有機溶剤を含まない無溶剤型組成物が好ましい。
 さらに、本発明の光学シートは、厚膜であっても耐熱性に優れるうえ可撓性を有しかつ高強度であるため、OPS用の透明導電性シート基材として使用することもでき、この場合、膜厚が0.5mm以上1.5mm以下の光学シートをより好ましく使用することができる。
 透明導電性シートの製造方法は、常法に従えば良い。
 透明導電体層を形成する金属酸化物としては、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタン、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物、チタン-ニオブ複合酸化物等が挙げられる。これらのうち、環境安定性や回路加工性の観点から、インジウム-スズ複合酸化物、インジウム-亜鉛複合酸化物が好ましい。
 透明導電体層を形成する方法としては、常法に従えば良く、本発明の光学シートを使用して、前記金属酸化物を使用して真空成膜装置を使用してスパッタ法により形成する方法等が挙げられる。
 より具体的には、前記金属酸化物をターゲット材料とし、脱水及び脱ガスを行った後、排気して真空にし、光学シートを所定の温度とした後、スパッタ装置を使用して光学シート上に透明導電体層を形成する方法等が挙げられる。
 本発明の偏光板は、偏光子の少なくとも片面に、保護膜として本発明の組成物のシート状硬化物が直接形成された偏光板であることが好ましく、ポリビニルアルコール系樹脂から形成される偏光子の少なくとも片面に、保護膜として本発明の組成物のシート状硬化物が直接形成された偏光板であることがより好ましい。
 また、本発明の偏光板の製造方法は、特に制限はないが、ポリビニルアルコール系樹脂から形成される偏光子の少なくとも片面に、本発明の組成物を塗工した後、いずれかの基材側から活性エネルギー線を照射する製造方法であることが好ましい。
 偏光子としては、自然光からある一方向の直線偏光を選択的に透過する機能を有するものであれば種々の材料が使用できる。
 例えば、ポリビニルアルコール系フィルムにヨウ素を吸着及び配向させたヨウ素系偏光フィルム、ポリビニルアルコール系フィルムに二色性の染料を吸着・配向させた染料系偏光フィルム、二色性染料をコーティングし、配向及び固定化した塗布型偏光子等が挙げられる。これら、ヨウ素系偏光フィルム、染料系偏光フィルム及び塗布型偏光子は、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を吸収する機能を有するもので、吸収型偏光子と呼ばれている。これらの偏光子の中でも、視認性に優れている吸収型偏光子を用いるのが好ましい。吸収型偏光子の厚みは、5~40μmが好ましい。
 偏光子の両面に保護フィルムを有する場合、本発明の保護フィルムを両面に有するものが最も好ましい。但し、必要に応じて本発明の組成物のシート状硬化物を保護フィルムとして片面に使用し、もう片面には本発明の組成物のシート状硬化物以外の保護フィルム(以下、「その他保護フィルム」という)を使用することもできる。
 その他保護フィルムとしては、例えば、トリアセチルセルロースやジアセチルセルロースのようなセルロースアセテート樹脂フィルム、アクリル樹脂フィルム、ポリエステル樹脂フィルム、ノルボルネンのような環状オレフィンをモノマーとする環状ポリオレフィン樹脂フィルム等が挙げられる。又、これらをディスプレイ側の保護フィルムとして使用する場合には位相差を有するフィルムであっても良い。
 以下に、実施例及び比較例を示し、本発明をより具体的に説明する。
 又、以下において「部」とは重量部を意味し、「%」とは重量%を意味する。
1.実施例1~同7、比較例1~同4
1)組成物の製造
 下記表1~3に示す各成分を表示した割合で配合し、さらに自転・公転ミキサー〔(株)シンキー製 あわとり練太郎 ARE-250〕を使用して混合(1,800rpm×4分)及び脱泡(2,000rpm×1分)した。
 尚、表1~表6における略号は、以下を意味する。
(A)成分
・OT-1000:ペンタエリスリトールトリアクリレートとヘキサメチレンジイソシアネートの付加反応物(1分子中に6個のアクリロイル基を有するウレタンアダクト。以下、「アダクト」という)とペンタエリスリトールテトラアクリレート(「PETeA」という)の混合物〔62:38(重量比)〕、東亞合成(株)製アロニックスOT-1000
※実施例1及び比較例1では、OT-1000を30部使用し、実施例2では、OT-1000を15部使用した。表1においては、OT-1000に含まれる(B)成分に該当するアダクトと(C)成分に該当するPETeAを分けて記載した。
・HBUA:ヘキサメチレンジイソシアネート3量体とヒドロキシブチルアクリレートの付加反応物(1分子中に3個のアクリロイル基を有するウレタンアダクト)
・MB-111: 根上工業(株)製 ポリウレタンシロップ ポリウレタンとイソボルニルアクリレート(大阪有機化学工業(株)製IBXA)の60/40混合物。重量平均分子量65,000、数平均分子量33,000
※後記表3及び4においては、MB-111に含まれる(A)成分に該当するポリウレタンをPUとして記載し、HBUAに含まれる(C)成分に該当するイソボルニルアクリレートをIBXAと分けて記載した。
(B)成分
・AA:アクリル酸、東亞合成(株)製
・MAA:メタクリル酸、三菱レーヨン(株)製
(C)成分
・M-309:トリメチロールプロパントリアクリレート、東亞合成(株)製アロニックスM-309
・HDDA:1,6-ヘキサンジオールジアクリレート、大阪有機化学工業(株)製ビスコート#230
(D)成分
・DC-1173:2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、BASFジャパン(株)製ダロキュアー1173
 樹脂シートを製造するための成形型として、図1の(a1-1)及び(a1-2)示す成形型を使用した。堰を形成する基材としては、(3)'を使用した。
 2枚のガラス板〔100mm×100mm、厚さ1mm〕、2枚の離形処理ポリエチレンテレフタレート(PET)フィルム〔100mm×100mm、東レ(株)製セラピールMFA〕及び1枚の軟質塩ビ製型枠(厚さ1.0mm)を用意した。
 ガラス板の上〔図1の(a1-1):(1)〕に、離形処理PETフィルム〔図1の(a1-1):(2)〕を重ね、その上に軟質塩ビ製型枠〔図1の(a1-1):(3)'〕を重ね堰(スペーサー)とした。型枠内に上記で得られた組成物を、スポイドを用いて注液し、その上に泡が入らないよう注意しながら離形処理PETフィルム〔図1の(a1-2):(2)'〕を重ね、その上にガラス板〔図1の(a1-2):(1)'〕を乗せて全体をクリップで留め成形型とした。
 得られた成形型に対して、紫外線を照射し、組成物を硬化させた。
 紫外線照射条件は、アイグラフィックス(株)製コンベアー型紫外線照射装置〔標品名:US5-X0602。メタルハライドランプ80W/cm。以下、「X0602」という。〕を用い、照度約140mW/cm2、搬送速度5m/分、積算光量約400mJ/cm2の条件で20回通して硬化させた。1回の照射毎に照射面を替えた。
 紫外線照射の後、成形型からガラスを外し、離形処理PETフィルムを剥離して硬化物を取り出し、樹脂シートを得た。
 得られた樹脂シートについて、下記方法に従い、塑性硬度、曲げ特性及び引張特性を評価した。それらの結果を表2及び表3に示す。
3)評価方法
(1)塑性硬度
 微小硬度計(フィッシャー・インストルメンツ社製 フィッシャースコープ H100CS)を用い、ビッカース圧子を用いて所定の押込み条件(0~300mN/10sec→5sec保持→300~0mN/10sec)で測定し、塑性硬度(HUpl値)を求めた。
(2)曲げ特性
 樹脂シートをレーザーカッターで長さ60(mm)×幅10(mm)のサイズに切り出し、メタノールで汚れを取り除いたものを試験片として使用した。
 曲げ試験は、インストロン社製5566Aを用いて、支点間距離30mm、曲げ速度5.0mm/秒、23℃で行った。曲げ弾性率(GPa)は、歪み0.1%と1%の応力から計算した。繰り返し5回測定し平均値を示した。表中の破断歪みにおいて、曲げ試験で破壊しなかったものについては「-」と記載した。
 尚、表中の非破壊率とは、曲げ試験で破壊しなかった試料数/全試料数を意味する。
(3)引張特性
 引張試験は、上記の曲げ試験で非破壊率100%の試料についてのみ実施した。
 曲げ試験と同じサイズの短冊形試験片を用い、インストロン5566Aを用いて、治具間距離20mm、引張速度40mm/分、23℃で行った。歪みは治具間の樹脂のみが伸長したと仮定し、初期長20mmで計算した。
 引張弾性率は、歪み1%と2%の応力から計算した。繰り返し5回測定し平均値を示した。
(4)粘弾性スペクトル
 セイコーインスツルメンツ(株)製粘弾性測定装置DMS6100を使用し、引張モードで周波数1HZ、昇温速度2℃/分で測定した。
 ガラス転移温度の目安として、tanδmax温度を記録した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
4)総括
 表2及び表3の結果から、本発明である実施例1~同7の組成物から得られた樹脂シートは、高硬度であり、曲げ試験の弾性率や最大応力が高く、実施例2以降の硬化物は曲げ試験で全く破壊しなかった。
 曲げ試験で破壊せず強靭性の評価が不可能なレベルに達したため、実施例2~同7については、引張試験も実施した。その結果は表3に示す通り、実施例2~同7の組成物から得られた樹脂シートは、引張試験においても優れた結果を有していた。
 これに対して、(B)成分を含まない比較例1の組成物から得られた樹脂シートは、曲げ試験で100%破壊(非破断率0%)した。(B)成分の割合が本発明の下限に満たない比較例2の組成物から得られた樹脂シートは、40%の試験片が破壊した(非破断率60%)。(B)成分を含まない比較例3の組成物から得られた樹脂シートは、曲げ試験で80%の試験片が破壊した(非破断率20%)。(B)成分の割合が本発明の上限を超える比較例4の組成物から得られた樹脂シートは、曲げ試験で100%破壊した(非破断率0%)。
2.実施例8~同10、比較例5
1)組成物及び樹脂シートの製造、評価
 紫外線照射後に得られた硬化物を、窒素気流中、120℃、5時間の条件で熱処理を行うこと以外は、実施例1~同7と同様の方法で樹脂シートを製造し、評価した。配合組成と評価結果を表4に示す。
 又、比較例4として、代表的な強靭性熱可塑性樹脂であるポリカーボネート〔三菱ガス化学(株)製ユーピロンNF-2000。以下、「EUP」と略す。〕を使用し、実施例1~同7と同様の方法で評価した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
2)総括
 表4の結果から、本発明である実施例8の組成物から得られた樹脂シートは、高硬度であり、曲げ試験の結果に優れ、しかも曲げ試験で全く破壊せず、さらに引張試験結果も優れるものであった。
 さらに、熱処理を実施しなかった実施例4の樹脂シートと熱処理を実施した実施例8の樹脂シートを対比すると、熱処理を行った実施例8の樹脂シートの方が、剛性(硬度・弾性率)や強靭性(応力・歪み)がさらに向上していた。
 又、(A)成分としてPU(ポリウレタン)を含む実施例9及び同10の組成物から得られた樹脂シートも、高硬度であり、曲げ試験の結果に優れ、しかも曲げ試験で全く破壊せず、さらに引張試験結果も優れるものであった。
 (A)成分としてポリウレタンを含む実施例9と、(A)成分としてPU(ポリウレタン)を含まない実施例8を対比すると、実施例9の組成物から得られた樹脂シートは、実施例8に対して、引張試験の破断歪みが向上していた。
 実施例8~同10の組成物から得られた樹脂シートは、比較例5の代表的な強靭性熱可塑性樹脂であるポリカーボネート(EUP)と比較し、剛性(塑性硬度・引張弾性率・最大応力)が高く、破断歪みが同レベルにあることも分かった。
3.実施例11~同12、比較例6(厚さ100μmの例)
1)組成物及び樹脂シートの製造、評価
 本発明の組成物を使用して、比較的薄膜の樹脂シートを製造して評価を行った。
 実施例1~同7と同様の方法で組成物を製造した。
 得られた組成物を、基材として厚み100μmのシクロオレフィンポリマーフィルム〔日本ゼオン(株)製。商品名:ZEONOR ZF14。以下、「ゼオノアZF」という。)を使用し、アプリケーターを用いて厚み約100μmの塗膜を形成し、更にその上に泡が入らぬよう注意しながらゼオノアZFを被せた。
 この積層物に対して、紫外線を照射し、組成物を硬化させた。
 紫外線照射条件は、X0602を用い、照度約240mW/cm2、搬送速度5m/分、積算光量約680mJ/cm2の条件で5回通した。
 紫外線照射の後、積層物からゼオノアZFを外し、硬化物を取り出した。
 得られた硬化物を、窒素気流中、120℃、5時間の条件で熱処理を行い、樹脂シートを得た。
 得られた樹脂シートを使用し、粘弾性スペクトル測定と引張試験を行った。
 粘弾性スペクトル測定は、前記と同様の方法で実施した。
 引張試験は樹脂フィルムを6号ダンベル打ち抜き具でダンベル型試験片を作成し、インストロン5566Aを用いて、治具間距離40mm、引張速度40mm/分、23℃で行った。歪みは、試験片中央部の幅4mm長さ20mmの部分のみが伸長したと仮定し、初期長20mmで計算した。引張弾性率は歪み1%と2%の応力から計算した。繰り返し5回測定し平均値を示した。
 配合組成と評価結果を表5に示す。
 又。比較例6として、代表的な光学フィルムであるゼオノアZFを使用し、上記と同様に評価した。評価結果を表5に示す。尚、表5ではゼオノアZFを「ZEO」と表記した。
Figure JPOXMLDOC01-appb-T000006
2)総括
 表5の結果から、厚み約100μmのフィルムにした実施例11及び同12の樹脂シートは、高いTgを有しており耐熱性に優れ、さらに引張試験結果も優れるものであった。
 又、実施例11及び同12の樹脂シートは、強靭な樹脂であるため割れるこことなく打ち抜き具で打ち抜くことができた。
 さらに、実施例11及び同12の樹脂シートは、比較例6の代表的な光学フィルムであるシクロオレフィンポリマー(ゼオノアZF)と比較し、剛性、強靭性及び耐熱性に優れたフィルムであることが分かった。
4.実施例13(偏光子保護膜としての評価)
 厚さ80μmのポリビニルアルコールフィルムを、30℃の水浴で膨潤させた後、5重量%(重量比:ヨウ素/ヨウ化カリウム=1/10)のヨウ素水溶液中で染色した。次いで、3重量%のホウ酸及び2重量%ヨウ化カリウムを含む水溶液に浸漬し、さらに55℃の4重量%のホウ酸及び3重量%のヨウ化カリウムを含む水溶液中で5.5倍まで一軸延伸した後、5重量%のヨウ化カリウム水溶液に浸漬した。その後、70℃のオーブンで1分間乾燥を行い、厚さ30μmの偏光子を得た。
 偏光子保護膜として実施例12の組成物にイソシアネート化合物として旭化成ケミカルズ(株)製デュラネートTPA-100(1,6-ヘキサメチレンジイソシアネートのヌレート型三量体)を1.2重量%添加した配合液を、実施例11~同12と同様の方法で偏光子の片面に塗布・紫外線硬化し、更に、偏光子のもう一方の面にも同様にして偏光子保護膜を形成した。
 尚、偏光子のいずれの面に対しても事前にコロナ処理を行なった。
 硬化物と偏光子の接着性について、押切りカッターを用いて50mm×50mmのサイズに裁断した時の端部剥がれの有無を観察した結果、硬化物と偏光子とが一体化して剥がれが認められなかった。更に、偏光板を60℃90%RHの恒温恒湿槽に120時間放置した後、ヨウ素脱色の有無を調べたところ、ヨウ素脱色は見られなかった。
 以上の結果より、本発明の組成物を保護膜に用いれば、耐湿熱性と接着性が良好な偏光板が得られることが分かった。
 以上の実施例の結果から明らかな通り、本発明の組成物によれば得られる樹脂シートが架橋型樹脂であるにも関わらず、剛性と強靭性を両立した脂シートが容易に得られ、光学シート又はフィルムを始めとする用途に使用できることが確認された。
 本発明の組成物は、樹脂シートの製造に好ましく使用することができ、得られた樹脂シートは、種々の用途に使用することができ、特に光学シートやフィルムとして好ましく使用することができる。当該光学シートは、透明導電性シートの製造に好ましく使用することができ、タッチパネル用透明導電性シートの製造により好ましく使用することができ、又、偏光子の保護フィルムに好ましく使用することができる。

Claims (22)

  1.  下記(A)成分、(B)成分及び任意に(C)成分を含み、
     (A)成分、(B)成分及び(C)成分の合計量100重量%中に、(A)成分を40~80重量%、(B)成分を60~20重量%及び(C)成分を0~40重量%の割合で含む
     樹脂シート製造用硬化型組成物。
    (A)成分:共役酸のpKaが-3~1である弱塩基性基を有するオリゴマー又はポリマー
    (B)成分:カルボキシル基及びエチレン性不飽和基を有する化合物
    (C)成分:(A)成分及び(B)成分以外のエチレン性不飽和基含有化合物
  2.  (A)成分の弱塩基性基が、カルバメート基及びアミド基よりなる群から選ばれた基である請求項1に記載の樹脂シート製造用硬化型組成物。
  3.  (A)成分が分子量500~10,000のオリゴマー又はポリマーである請求項1又は請求項2に記載の樹脂シート製造用硬化型組成物。
  4.  (A)成分が(A1)エチレン性不飽和基を含むオリゴマー又はポリマーを含む請求項1~請求項3のいずれか1項に記載の樹脂シート製造用硬化型組成物。
  5.  (A1)成分が、ウレタン結合を有し2個以上の(メタ)アクリロイル基を有する化合物である請求項4に記載の樹脂シート製造用硬化型組成物。
  6.  (A1)成分が、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物である請求項5に記載の樹脂シート製造用硬化型組成物。
  7.  (A1)成分が、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物であって、3個以上の(メタ)アクリロイル基を有する化合物である請求項6に記載の樹脂シート製造用硬化型組成物。
  8.  (A1)成分が、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物であって、3個又は4個の(メタ)アクリロイル基を有する化合物である請求項7に記載の樹脂シート製造用硬化型組成物。
  9.  (A)成分が、(A1)成分と(A2)エチレン性不飽和基を有しないオリゴマー又はポリマーを含み、(A1)成分と(A2)成分の合計量100重量%中に(A2)成分を0重量%を超え50重量%未満の割合で含むものである請求項4~請求項8のいずれか1項に記載の樹脂シート製造用硬化型組成物。
  10.  (A2)成分が、ポリウレタンである請求項9に記載の樹脂シート製造用硬化型組成物。
  11.  (B)成分が、(メタ)アクリル酸である請求項1~請求項10のいずれか1項に記載の樹脂シート製造用硬化型組成物。
  12.  さらに、光重合開始剤を含む請求項1~請求項11のいずれか1項に記載の樹脂シート製造用硬化型組成物。
  13.  さらに、熱重合開始剤を含む請求項1~請求項11のいずれか1項に記載の樹脂シート製造用硬化型組成物。
  14.  硬化物の引張試験における弾性率が0.5GPa以上、かつ破断歪みが5%以上である請求項1~請求項13のいずれか1項に記載の樹脂シート製造用硬化型組成物。
  15.  請求項1~請求項14のいずれか1項に記載の組成物の硬化物からなる樹脂シート。
  16.  基材、堰を設けるための基材及び基材を少なくともこの順で有する成形型の中に、請求項1~請求項12のいずれか1項に記載の組成物を流し込んだ後、いずれかの基材側から活性エネルギー線を照射する樹脂シートの製造方法。
  17.  活性エネルギー線を照射した後、加熱する請求項16記載の樹脂シートの製造方法。
  18.  基材に、請求項1~請求項12のいずれか1項に記載の組成物を塗工した後、活性エネルギー線を照射する樹脂シートの製造方法。
  19.  活性エネルギー線を照射した後、加熱する請求項18記載の樹脂シートの製造方法。
  20.  基材、堰を設けるための基材及び基材を少なくともこの順で有する成形型の中に、請求項1~請求項11及び請求項13のいずれか1項に記載の組成物を流し込んだ後、加熱する樹脂シートの製造方法。
  21.  ポリビニルアルコール系樹脂から形成される偏光子の少なくとも片面に、保護膜として請求項1~請求項12のいずれか1項に記載の組成物のシート状硬化物が直接形成された偏光板。
  22.  ポリビニルアルコール系樹脂から形成される偏光子の少なくとも片面に、請求項1~請求項12のいずれか1項に記載の組成物を塗工した後、いずれかの基材側から活性エネルギー線を照射する偏光板の製造方法。
PCT/JP2017/008476 2016-03-04 2017-03-03 強靭な硬化物を与える樹脂シート製造用硬化型組成物 WO2017150701A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187025102A KR20180119161A (ko) 2016-03-04 2017-03-03 강인한 경화물을 부여하는 수지 시트 제조용 경화형 조성물
JP2018503415A JP6780698B2 (ja) 2016-03-04 2017-03-03 樹脂シートの製造方法
CN201780014392.9A CN108699343B (zh) 2016-03-04 2017-03-03 提供强韧的固化物的树脂片制造用固化型组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-042013 2016-03-04
JP2016042013 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017150701A1 true WO2017150701A1 (ja) 2017-09-08

Family

ID=59742966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008476 WO2017150701A1 (ja) 2016-03-04 2017-03-03 強靭な硬化物を与える樹脂シート製造用硬化型組成物

Country Status (5)

Country Link
JP (1) JP6780698B2 (ja)
KR (1) KR20180119161A (ja)
CN (1) CN108699343B (ja)
TW (1) TW201800505A (ja)
WO (1) WO2017150701A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019107888A (ja) * 2017-12-18 2019-07-04 株式会社リコー 3次元曲面状の積層基板及びその製造方法
US11833800B2 (en) 2017-12-18 2023-12-05 Ricoh Company, Ltd. Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292051B2 (ja) * 2019-02-22 2023-06-16 住友化学株式会社 フレキシブル積層体、およびそれを備えた画像表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015831A1 (en) * 1989-06-16 1990-12-27 Dai Nippon Insatsu Kabushiki Kaisha Soft coated film
JP2012162652A (ja) * 2011-02-07 2012-08-30 Toagosei Co Ltd プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
JP2015021089A (ja) * 2013-07-22 2015-02-02 東亞合成株式会社 活性エネルギー線硬化型組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697240B2 (en) * 2009-07-22 2014-04-15 Hitachi Chemical Company, Ltd. Photocurable resin composition and cured product of same, resin sheet and production method for same, and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015831A1 (en) * 1989-06-16 1990-12-27 Dai Nippon Insatsu Kabushiki Kaisha Soft coated film
JP2012162652A (ja) * 2011-02-07 2012-08-30 Toagosei Co Ltd プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
JP2015021089A (ja) * 2013-07-22 2015-02-02 東亞合成株式会社 活性エネルギー線硬化型組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019107888A (ja) * 2017-12-18 2019-07-04 株式会社リコー 3次元曲面状の積層基板及びその製造方法
JP7151437B2 (ja) 2017-12-18 2022-10-12 株式会社リコー 3次元曲面状の積層基板及びその製造方法
US11833800B2 (en) 2017-12-18 2023-12-05 Ricoh Company, Ltd. Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate

Also Published As

Publication number Publication date
TW201800505A (zh) 2018-01-01
KR20180119161A (ko) 2018-11-01
CN108699343B (zh) 2021-10-01
JP6780698B2 (ja) 2020-11-04
CN108699343A (zh) 2018-10-23
JPWO2017150701A1 (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6127490B2 (ja) 偏光板
JP5983098B2 (ja) 偏光板
JP5880304B2 (ja) 光学フィルム又はシートの製造方法
JP6094193B2 (ja) 光学フィルム又はシート形成用活性エネルギー線硬化型組成物及び光学フィルム又はシート及び偏光板
JP6493699B2 (ja) 樹脂シート及びその製造方法
JP6519729B2 (ja) 樹脂シート及びその製造方法
WO2013081101A1 (ja) 光学フィルム形成用活性エネルギー線硬化型組成物、光学フィルム、偏光子保護フィルム及び偏光板
JP6780698B2 (ja) 樹脂シートの製造方法
WO2014092095A1 (ja) 光学フィルム形成用活性エネルギー線硬化型組成物、光学フィルム及び偏光板
JP2013141820A (ja) 光学フィルム又はシートの製造方法
JP6418053B2 (ja) 樹脂シートの製造方法
KR102488416B1 (ko) 열경화형 조성물
JP5891972B2 (ja) 光学フィルム又はシート、偏光子保護フィルム及び偏光板
JP7120240B2 (ja) 樹脂シート及びこれを製造するための硬化型組成物
WO2018092700A1 (ja) 樹脂シート製造用硬化型組成物
WO2016104555A1 (ja) 樹脂シートの製造方法
JPWO2015152339A1 (ja) 樹脂フィルム又はシート形成用光硬化型組成物
JP6292406B2 (ja) 樹脂シートの製造方法
JP6866606B2 (ja) 樹脂シートの製造方法
WO2021149763A1 (ja) 樹脂シート製造用硬化型組成物
JP2017193127A (ja) 樹脂シートの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025102

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018503415

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760163

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760163

Country of ref document: EP

Kind code of ref document: A1