WO2017150300A1 - ポリエーテルゴムの製造方法 - Google Patents

ポリエーテルゴムの製造方法 Download PDF

Info

Publication number
WO2017150300A1
WO2017150300A1 PCT/JP2017/006593 JP2017006593W WO2017150300A1 WO 2017150300 A1 WO2017150300 A1 WO 2017150300A1 JP 2017006593 W JP2017006593 W JP 2017006593W WO 2017150300 A1 WO2017150300 A1 WO 2017150300A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether rubber
rubber
mol
parts
polyether
Prior art date
Application number
PCT/JP2017/006593
Other languages
English (en)
French (fr)
Inventor
林 敦
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201780012491.3A priority Critical patent/CN108699235B/zh
Priority to KR1020187025834A priority patent/KR20180115277A/ko
Priority to US16/079,267 priority patent/US10738136B2/en
Priority to EP17759766.3A priority patent/EP3424979B1/en
Priority to JP2018503068A priority patent/JP6816754B2/ja
Publication of WO2017150300A1 publication Critical patent/WO2017150300A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/325Polymers modified by chemical after-treatment with inorganic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • C08G65/24Epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33317Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/267Magnesium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a method for producing a polyether rubber, and more specifically to a method for producing a polyether rubber having a group containing a cationic nitrogen-containing aromatic heterocycle.
  • conductive members such as conductive rolls, conductive blades, and conductive belts are used as mechanisms that require semiconductivity. .
  • Such a conductive member has a desired range of conductivity (electric resistance value and its variation, environmental dependency, voltage dependency), non-contamination, low hardness, dimensional stability, etc., depending on the application. Various performances are required.
  • Patent Document 1 a polyether rubber containing an epihalohydrin monomer unit of 0.1 mol% or more and a nitrogen atom-containing aromatic heterocyclic compound are mixed with 100 weight of polyether rubber.
  • a polyether rubber obtained by kneading using an extrusion kneader in the presence of an acid acceptor such as magnesium oxide and calcium carbonate in a proportion of 2.4 to 6.4 parts by weight with respect to parts is disclosed. Yes.
  • the present inventors have compared a polyether rubber containing 0.1 mol% or more of an epihalohydrin monomer unit with a nitrogen atom-containing aromatic heterocyclic compound. It has been found that a polyether rubber having the above characteristics can be produced with high production efficiency by kneading and reacting in the presence of an acid acceptor containing at least hydrotalcite whose surface area is controlled within a predetermined range. The present invention has been completed.
  • a + is a group containing a cationic nitrogen-containing aromatic heterocycle.
  • the group containing the cationic nitrogen-containing aromatic heterocycle is the cationic nitrogen-containing aromatic heterocycle. It is bonded to the carbon atom at the position “2” shown in the general formula (1) through one of nitrogen atoms constituting the heterocyclic ring.
  • X ⁇ is an arbitrary counter anion.
  • the amount of the hydrotalcite used is 0.1 to 15 parts by weight with respect to 100 parts by weight of the polyether rubber containing 0.1 mol% or more of the epihalohydrin monomer unit. It is preferable that In the method for producing a polyether rubber according to the present invention, the hydrotalcite preferably contains at least Mg and Al. In the method for producing a polyether rubber according to the present invention, the nitrogen atom-containing aromatic heterocyclic compound is preferably a 5-membered heterocyclic compound or a 6-membered heterocyclic compound.
  • the acid acceptor at least one oxide, hydroxide, and / or carbonate selected from magnesium, calcium, and barium is further added to the epihalohydrin monomer. You may use together in the ratio of 0.1-5 weight part with respect to 100 weight part of polyether rubbers containing 0.1 mol% or more of a body unit.
  • magnesium oxide is further added in an amount of 0.1 to 100 parts by weight of the polyether rubber containing 0.1 mol% or more of the epihalohydrin monomer unit. You may use together in the ratio of -2 weight part.
  • the present invention is used for a rubber cross-linked product that is excellent in processability, has little variation in electric resistance value, has a low electric resistance value, and can suppress an increase in electric resistance value even when continuously used.
  • a method for producing a polyether rubber can be provided.
  • the method for producing a polyether rubber of the present invention is a method for producing a polyether rubber containing a unit represented by the following general formula (1) in an amount of 0.1 mol% or more and less than 30 mol%, and an epihalohydrin monomer At least hydrotalcite having a nitrogen adsorption specific surface area of 10 m 2 / g or more measured by the BET method, comprising a polyether rubber containing 0.1 mol% or more of a unit and a nitrogen atom-containing aromatic heterocyclic compound.
  • a + is a group containing a cationic nitrogen-containing aromatic heterocycle.
  • the group containing the cationic nitrogen-containing aromatic heterocycle is the cationic nitrogen-containing aromatic heterocycle. It is bonded to the carbon atom at the position “2” shown in the general formula (1) through one of nitrogen atoms constituting the heterocyclic ring.
  • X ⁇ is an arbitrary counter anion.
  • group containing a cationic nitrogen-containing aromatic heterocycle may be referred to as an “onium ion-containing group”.
  • the onium ion-containing group means a group containing an onium ion structure or a group forming an onium ion structure.
  • a polyether rubber containing 0.1 mol% or more of epihalohydrin monomer unit used in the present invention can be obtained by ring-opening polymerization of an epihalohydrin monomer by a solution polymerization method or a solvent slurry polymerization method.
  • the polyether rubber containing 0.1 mol% or more of the epihalohydrin monomer unit used in the present invention contains an ethylene oxide monomer and an unsaturated oxide monomer in addition to the epihalohydrin monomer.
  • a copolymer obtained by ring-opening polymerization is preferred. However, it is necessary that the epihalohydrin monomer is subjected to copolymerization by 0.1 mol% or more.
  • the epihalohydrin monomer constituting the epihalohydrin monomer unit is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, epiiodohydrin, epifluorohydrin, and the like. Epichlorohydrin is preferred. An epihalohydrin monomer may be used individually by 1 type, and may use 2 or more types together.
  • the polymerization catalyst used for ring-opening polymerization of the epihalohydrin monomer is not particularly limited as long as it is a general polyether polymerization catalyst.
  • the polymerization catalyst include a catalyst obtained by reacting water and acetylacetone with organoaluminum (Japanese Patent Publication No. 35-15797); a catalyst obtained by reacting phosphoric acid and triethylamine with triisobutylaluminum (Japanese Patent Publication No. 46-27534). Catalyst obtained by reacting triazabutylaluminum with an organic acid salt of diazaviacycloundecene and phosphoric acid (Japanese Patent Publication No.
  • a catalyst comprising a partially hydrolyzed aluminum alkoxide and an organic zinc compound Japanese Examined Patent Publication No. 43-2945
  • a catalyst comprising an organic zinc compound and a polyhydric alcohol Japanese Examined Patent Publication No. 45-7751
  • a catalyst comprising a dialkylzinc and water Japanese Examined Patent Publication No. 36-3394
  • tributyl A catalyst comprising tin chloride and tributyl phosphate Patent No. 322397
  • the polymerization solvent is not particularly limited as long as it is an inert solvent.
  • aromatic hydrocarbons such as benzene and toluene
  • linear saturated hydrocarbons such as n-pentane and n-hexane
  • cyclopentane And cyclic saturated hydrocarbons such as cyclohexane
  • aromatic hydrocarbons more preferably toluene, from the viewpoint of the solubility of the polyether rubber.
  • the polymerization reaction temperature is preferably 20 to 150 ° C, more preferably 40 to 130 ° C.
  • the polymerization mode can be carried out by any method such as batch system, semi-batch system, and continuous system.
  • the polyether rubber containing 0.1 mol% or more of epihalohydrin monomer units may be any copolymer type of block copolymer or random copolymer, but a random copolymer is preferable.
  • the method for recovering the polyether rubber containing 0.1 mol% or more of epihalohydrin monomer unit from the solvent is not particularly limited, and for example, it is performed by appropriately combining coagulation, filtration and drying methods.
  • a method for coagulating the polyether rubber from the solvent in which the polyether rubber is dissolved for example, a conventional method such as steam stripping or a precipitation method using a poor solvent can be used.
  • a method of filtering the polyether rubber from the slurry containing the polyether rubber a method using a sieve such as a rotary screen or a vibrating screen; a centrifugal dehydrator; Can do.
  • a method for drying the polyether rubber for example, a method of dehydrating using a compressed water squeezing machine such as a roll, a Banbury dehydrator, a screw extruder dehydrator; a screw type extruder, a kneader type dryer, Examples include a method using a dryer such as an expander dryer, a hot air dryer, and a vacuum dryer. These compressed water squeezers and dryers are used singly or in combination of two or more.
  • a polyether rubber containing 0.1 mol% or more of such an epihalohydrin monomer unit and a nitrogen atom-containing aromatic heterocyclic compound are measured by nitrogen measured by the BET method.
  • an acid acceptor containing at least hydrotalcite having an adsorption specific surface area of 10 m 2 / g or more at least part of the halogen atoms constituting the epihalohydrin monomer unit is converted to a cation.
  • the structural unit represented by the above general formula (1) is introduced into the polyether rubber by substitution with a group containing a natural nitrogen-containing aromatic heterocycle.
  • reacting by kneading in the presence of an acid acceptor containing at least hydrotalcite means a polyether rubber containing 0.1 mol% or more of an epihalohydrin monomer unit, and a nitrogen atom-containing aromatic Meaning that the step of reacting the heterocyclic compound includes the step of kneading the polyether rubber and the nitrogen atom-containing aromatic heterocyclic compound in the presence of an acid acceptor containing at least hydrotalcite.
  • the reaction may proceed simultaneously with the kneading, or the reaction may proceed after the kneading.
  • a solvent or the like when kneading and reacting a polyether rubber containing an epihalohydrin monomer unit of 0.1 mol% or more and a nitrogen atom-containing aromatic heterocyclic compound, a solvent or the like is not used. It is preferable to perform kneading in this manner, whereby these reactions can be carried out in a relatively short reaction time, so that it is possible to produce with high production efficiency.
  • the kneader used for kneading is not particularly limited, and any dry kneader such as a kneader, banbury, open roll, calender roll, biaxial kneader or a combination of one or more can be used.
  • a polyether rubber containing an epihalohydrin monomer unit of 0.1 mol% or more, a nitrogen atom-containing aromatic heterocyclic compound, and hydrotalcite It is preferable to use a kneader.
  • the reaction between the polyether rubber containing the epihalohydrin monomer unit of 0.1 mol% or more and the nitrogen atom-containing aromatic heterocyclic compound may be performed simultaneously with the kneading, or the kneading. It may be performed separately later.
  • a polyether rubber containing an epihalohydrin monomer unit of 0.1 mol% or more, a nitrogen atom-containing aromatic heterocyclic compound (hereinafter sometimes referred to as “onium agent”), and a BET method is not particularly limited, and may be an embodiment in which these are continuously charged separately. Alternatively, these may be mixed in advance, and the resulting mixture may be charged.
  • hydrotalcite is hydrogen chloride produced as a by-product when a polyether rubber containing an epihalohydrin monomer unit of 0.1 mol% or more and a nitrogen atom-containing aromatic heterocyclic compound are reacted. It acts as an acid acceptor for trapping hydrogen halides in the reaction, whereby a polyether rubber containing 0.1 mol% or more of an epihalohydrin monomer unit and a nitrogen atom-containing aromatic heterocyclic compound are reacted.
  • decomposition of the polyether rubber during the reaction can be suppressed, and corrosion of the kneader during kneading using the kneader can be prevented.
  • the obtained polyether rubber after introduction of the onium ion structure is added to a cross-linking agent, and is used for rubber kneading and processing into a sheet when cross-linking is performed. Since the adhesiveness to the roll to be used is reduced, and the sticking of the polyether rubber to the roll can be prevented, the processability of the polyether rubber can be improved. Further, by using hydrotalcite as the acid acceptor, it is possible to suppress an increase in electrical resistance when the obtained rubber cross-linked product is continuously used.
  • M 1 2+ and M 2 2+ are each independently 2 such as Mg, Zn, Ca, Sr, Cu, Fe, Mn, Co, Ni, Sn, Pb, Cd and Ba.
  • -valent metal M x 3+ is, Al, represents a trivalent metal such as Fe, a n-represents an n-valent anion.
  • n- anion e.g., chloride ion, carbonate ion and organic acid ions.
  • x, y1, y2 and m are each preferably values represented by the following formulas (3) to (5).
  • Y2 may be 0. 0 ⁇ x ⁇ 0.5 (3) 0.5 ⁇ y1 + y2 ⁇ 1 (4) 0 ⁇ m ⁇ 2 (5)
  • the hydrotalcite represented by the general formula (2) preferably contains at least Mg and Al. That is, in the hydrotalcite represented by the general formula (2), M 1 2+ is preferably Mg 2+ and does not contain M 2 2+ (in the general formula (2), y2 is 0). Is preferred. Further, M x 3+ is preferably Al 3+ . In the hydrotalcite represented by the general formula (2), when M 1 2+ is Mg 2+ and does not contain M 2 2+ and M x 3+ is Al 3+ , Al contained in the hydrotalcite The atomic ratio of Mg to Mg (Mg / Al) is preferably 2 to 4.
  • the specific surface area of the hydrotalcite used in the present invention a nitrogen adsorption specific surface area measured by the BET method in accordance with ASTM D3037-81, as long 10 m 2 / g or more, more 12m 2 / g are preferred, 14m 2 / g or more is more preferable.
  • the obtained polyether rubber (containing the unit represented by the above general formula (1) is contained in an amount of 0.1 mol% or more and less than 30 mol%.
  • the Mooney viscosity can be set to an appropriate range, sticking of the polyether rubber to the roll can be suppressed, and the processability of the polyether rubber can be remarkably improved.
  • the upper limit of the specific surface area of the hydrotalcite used by this invention is not specifically limited, 200 m ⁇ 2 > / g or less is preferable at the nitrogen adsorption specific surface area measured by BET method, and 150 m ⁇ 2 > / g or less is more preferable.
  • the upper limit of the specific surface area of the hydrotalcite is within the above range and the particle size of the hydrotalcite is controlled to an appropriate size.
  • hydrotalcite represented by the general formula (2) and having a specific surface area within the above range examples include, for example, the trade name “KYOWARD 500SH” (manufactured by Kyowa Chemical Industry Co., Ltd.) and the trade name “DHT-4C” (Kyowa). Chemical Industry Co., Ltd.) and trade name “DHT-4A-2” (Kyowa Chemical Industry Co., Ltd.).
  • the amount of hydrotalcite used is not particularly limited, but is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 10 parts by weight, still more preferably 100 parts by weight of the polyether rubber used. 1 to 5 parts by weight. If the amount of hydrotalcite used is too small, the resulting polyether rubber will become more sticky, making it easier for the polyether rubber to stick to the roll and reducing the anti-corrosion effect of the kneader. On the other hand, if too much, the rubber may become too hard.
  • Acid acceptors that can be used in combination with hydrotalcite include, for example, magnesium oxide, calcium oxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, calcium carbonate, calcium borate, calcium phthalate, Periodic table group 2 metal oxides such as calcium phosphate, calcium silicate, magnesium silicate, magnesium borate, magnesium metaborate, calcium metaborate, barium metaborate, hydroxide, carbonate, carboxylate, Silicates, borates, phosphites, metaborates, etc .; Group 12 metal oxides, hydroxides, carbonates, carboxylates, silicates, borates, such as zinc stearate and zinc oxide , Phosphites, metaborates, etc .; tin oxide, basic tin carbonate, tin stearate, basic phosphorous acid , Basic t
  • the acid acceptor which can be used together with such a hydrotalcite can be used individually by 1 type or in combination of 2 or more types.
  • these acid acceptors that can be used in combination with hydrotalcite even when added in a small amount, the effect of preventing corrosion is large, so magnesium, calcium, barium oxides, hydroxides and carbonates are preferred. Oxides and carbonates are more preferable, and magnesium oxide is particularly preferable from the viewpoint of being inexpensive and advantageous in terms of cost.
  • the effect of using hydrotalcite as an acid acceptor by using a compound other than the cheaper hydrotalcite by using a compound other than the cheaper hydrotalcite (during the reaction)
  • the amount of hydrotalcite used is reduced while maintaining the effect of inhibiting the degradation of the polyether rubber and the effect of preventing the kneader from corroding when the resulting polyether rubber is kneaded with a kneader. This is advantageous in terms of cost, and the processability of the obtained polyether rubber can be improved.
  • the amount of the compound other than hydrotalcite is preferably based on 100 parts by weight of the polyether rubber to be used. Is 0.1 to 6 parts by weight, more preferably 0.1 to 4 parts by weight, still more preferably 0.1 to 2 parts by weight.
  • the ratio of the amount of the compound other than hydrotalcite to the hydrotalcite is (Use The ratio of the weight of compound other than hydrotalcite / weight of hydrotalcite used is preferably 0.01 to 10, more preferably 0.01 to 5, and still more preferably 0.01 to 1.
  • the nitrogen atom-containing aromatic heterocyclic compound used in the present invention (hereinafter sometimes referred to as “onium agent”) is not particularly limited as long as it is an aromatic heterocyclic compound containing a nitrogen atom,
  • nitrogen agent an aromatic heterocyclic compound containing a nitrogen atom
  • five-membered heterocyclic compounds such as imidazole, 1-methylimidazole, pyrrole, 1-methylpyrrole, thiazole, oxazole, pyrazole, isoxazole; pyridine, pyrazine, pyrimidine, pyridazine, triazine, 2,6-lutidine, etc.
  • 6-membered heterocyclic compounds condensed heterocyclic compounds such as quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, purine, indole, isoindole, benzimidazole, benzoxazole, and benzisoxazole;
  • 5-membered heterocyclic compounds and 6-membered heterocyclic compounds are preferable, and 1-methylimidazole is more preferable from the viewpoint of substance stability after the reaction.
  • the amount of the onium agent used is not particularly limited, it depends on the structure of the onium agent used or the polyether rubber, the substitution rate of the onium ion-containing group in the target polyether rubber, etc. What is necessary is just to determine in the range from which the content rate of the unit represented becomes 0.1 mol% or more and less than 30 mol%. Specifically, the amount of the oniumizing agent used is usually 0.1 to 50 mol, preferably 0.1 to 30 mol, relative to 1 mol of the halogen atom constituting the epihalohydrin monomer unit of the polyether rubber to be used. Range.
  • the amount of the onium agent is too small, the substitution reaction is slow, and there is a possibility that a polyether rubber having an onium ion-containing group having a desired composition (hereinafter also referred to as “cationized polyether rubber”) cannot be obtained.
  • cationized polyether rubber a polyether rubber having an onium ion-containing group having a desired composition
  • the amount of the onium agent is too large, it may be difficult to remove the unreacted onium agent from the obtained cationized polyether rubber.
  • the reaction temperature at the time of reaction with a kneader or the like is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, and further preferably 170 ° C. or higher. And the upper limit of reaction temperature becomes like this. Preferably it is 250 degrees C or less, More preferably, it is 200 degrees C or less.
  • the reaction time is preferably 1 to 120 minutes, more preferably 1 to 60 minutes.
  • a reaction between a polyether rubber containing an epihalohydrin monomer unit of 0.1 mol% or more and an onium forming agent is carried out using a kneader or the like in the presence of an acid acceptor containing at least hydrotalcite.
  • a polyether rubber having an onium ion-containing group having a desired composition can be obtained without corroding the kneader or the like even when the reaction is performed in a relatively high temperature and in a short time as described above.
  • the reaction temperature and reaction time are preferably within the above ranges. If the reaction temperature is too low, the substitution reaction may be slow, and a cationized polyether rubber having a desired composition may not be obtained. On the other hand, if the reaction temperature is too high, decomposition of the polyether rubber used or volatilization of the onium-containing agent may occur. May occur.
  • reaction time is too short, the reaction may be incomplete and a cationized polyether rubber having a desired composition may not be obtained.
  • reaction time is too long, production efficiency may be reduced.
  • the polyether rubber may be decomposed.
  • the heating temperature of the kneading machine is adjusted in consideration of such heat generation. It is desirable that the reaction temperature is a desired temperature.
  • the reaction temperature when kneading and reacting with a kneader can be determined, for example, by measuring the temperature of the cationized polyether rubber immediately after being discharged from the kneader.
  • a polyether rubber (cationized polyether rubber) containing 0.1 to 30 mol% of the unit represented by the general formula (1) is obtained.
  • the polyether rubber obtained by the production method of the present invention contains the unit represented by the above general formula (1) in an amount of 0.1 mol% or more and less than 30 mol%, and therefore obtained by the production method of the present invention.
  • the cross-linked rubber obtained by using the polyether rubber has a small variation in electric resistance value, a low electric resistance value, and can suppress an increase in electric resistance value even when continuously used.
  • a + is a group containing a cationic nitrogen-containing aromatic heterocyclic ring.
  • the group containing the cationic nitrogen-containing aromatic heterocyclic ring is located at the position “2” shown in the general formula (1) through one of the nitrogen atoms constituting the cationic nitrogen-containing aromatic heterocyclic ring. It is bonded to a carbon atom.
  • the nitrogen-containing aromatic heterocyclic ring in the cationic nitrogen-containing aromatic heterocyclic ring in the group containing the cationic nitrogen-containing aromatic heterocyclic ring has a nitrogen atom in the ring and is particularly aromatic if it has aromaticity. It is not limited.
  • the heterocyclic ring in addition to the nitrogen atom bonded to the carbon atom at the position “2” shown in the general formula (1), it may have another nitrogen atom, an oxygen atom, a sulfur atom, etc. And may have a heteroatom other than a nitrogen atom, and a part of the atoms constituting the heterocyclic ring may be substituted with a substituent. Further, it may have a polycyclic structure in which two or more rings are condensed.
  • nitrogen-containing aromatic heterocycle examples include five-membered heterocycles such as imidazole ring, pyrrole ring, thiazole ring, oxazole ring, pyrazole ring, isoxazole ring; pyridine ring, pyrazine ring, pyrimidine ring, 6-membered heterocycles such as pyridazine ring and triazine ring; quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, cinnoline ring, purine ring, indole ring, isoindole ring, benzimidazole ring, benzoxazole ring, benzoisoxazole ring, etc.
  • five-membered heterocycles such as imidazole ring, pyrrole ring, thiazole ring, oxazole ring, pyrazole ring, isoxazole ring
  • a + in the unit represented by the general formula (1) is independent, and the polyether rubber contains two or more kinds of cationic nitrogen-containing aromatic heterocycles. Groups may be present.
  • the substituent of the nitrogen-containing aromatic heterocycle is not particularly limited, and examples thereof include an alkyl group; a cycloalkyl group; an alkenyl group; an aryl group; an arylalkyl group; an alkylaryl group; an alkoxyl group; Alkanol group; hydroxyl group; carbonyl group; alkoxycarbonyl group; amino group; imino group; nitrile group; alkylsilyl group; halogen atom;
  • the group containing a cationic nitrogen-containing aromatic heterocycle represented by A + in the general formula (1) is preferably a group represented by the following general formula (6).
  • N— represented in the general formula (6) is bonded to the carbon atom at the position “2” shown in the general formula (1) in the general formula (1).
  • R represented in the general formula (6) represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R represented in the general formula (6) is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group.
  • the content ratio of the unit represented by the general formula (1) is 0.1 mol% or more and less than 30 mol% in all monomer units, The amount is preferably from 0.1 to 20 mol%, particularly preferably from 0.1 to 5 mol%.
  • the rubber cross-linkage is low in compression set, low in electrical resistance, and capable of suppressing an increase in energization of the volume resistivity.
  • a polyether rubber capable of providing a product is obtained.
  • the arbitrary counter anion represented by X ⁇ in the above general formula (1) is a compound or atom having a negative charge bonded to A + through an ionic bond, and other than having a negative charge Is not particularly limited. Since the counter anion forms an ionizing ionic bond, at least a part of the counter anion can be exchanged with an arbitrary counter anion by a known ion exchange reaction.
  • X in the above general formula (1) is a halogen atom, but a known anion exchange reaction may be performed on a halide ion which is a counter anion of A + .
  • the anion exchange reaction can be performed by mixing an ionic compound having ionization properties with a polyether rubber having an onium ion-containing group.
  • the conditions for carrying out the anion exchange reaction are not particularly limited, but may be determined according to the structure of the ionic compound or polyether rubber used, the substitution rate of the target A + counter anion, and the like.
  • the reaction may be performed only with an ionic compound and a polyether rubber having an onium ion-containing group, or may contain other compounds such as an organic solvent.
  • the amount of the ionic compound to be used is not particularly limited, but is usually 0.01 to 100 mol, preferably 0.02 to 50 mol, more preferably relative to 1 mol of the halogen atom constituting the epihalohydrin monomer unit to be used. The range is 0.03 to 10 mol. If the amount of the ionic compound is too small, the substitution reaction may be difficult to proceed. On the other hand, if the amount is too large, it may be difficult to remove the ionic compound.
  • the pressure during the anion exchange reaction is usually from 0.1 to 50 MPa, preferably from 0.1 to 10 MPa, more preferably from 0.1 to 5 MPa.
  • the temperature during the reaction is usually ⁇ 30 to 200 ° C., preferably ⁇ 15 to 180 ° C., more preferably 0 to 150 ° C.
  • the reaction time is usually 1 minute to 1000 hours, preferably 3 minutes to 100 hours, more preferably 5 minutes to 10 hours, and further preferably 5 minutes to 3 hours.
  • the anion species of the counter anion is not particularly limited.
  • halide ions such as fluoride ion, chloride ion, bromide ion and iodide ion; sulfate ion; sulfite ion; hydroxide ion; carbonate ion; Ion; nitrate ion; acetate ion; perchlorate ion; phosphate ion; alkyloxy ion; trifluoromethanesulfonate ion; bistrifluoromethanesulfonimide ion; hexafluorophosphate ion; tetrafluoroborate ion; .
  • onium ion unit content As a method for examining the content ratio of the unit represented by the general formula (1) in the polyether rubber obtained by the production method of the present invention (hereinafter also referred to as “onium ion unit content”), a known method is known. A method may be used. In order to easily and quantitatively determine the onium ion unit content, the content of the onium ion-containing group can be quantified by performing 1 H-NMR measurement on the polyether rubber obtained by the production method of the present invention. it can. Specifically, first, the number of moles B1 of all monomer units (including onium ion units) in the polymer is calculated from the integral value of protons derived from the polyether chain which is the main chain of the cationized polyether rubber. To do.
  • the number of moles B2 of the introduced onium ion unit (unit represented by the general formula (1)) is calculated from the integral value of protons derived from the onium ion-containing group.
  • the molar amount of the onium agent consumed is the substitution mole of the halogen atom's onium ion-containing group. Equal to the amount. Therefore, the consumed molar amount of the onium agent is calculated by subtracting the residual molar amount A2 after the completion of the reaction from the added molar amount A1 before the start of the reaction, and the polyether rubber (hereinafter referred to as the onium agent) before reacting with the onium agent.
  • the onium ion unit content can also be calculated by the following formula by dividing by the molar amount P of all the monomer units of “base polyether rubber”.
  • Onium ion unit content (mol%) 100 ⁇ (A1-A2) / P
  • a known measurement method may be used.
  • the reaction rate is measured using a gas chromatography (GC) equipped with a capillary column and a flame ionization detector (FID). can do.
  • GC gas chromatography
  • FID flame ionization detector
  • the polyether rubber obtained by the production method of the present invention essentially comprises the unit represented by the above general formula (1), the unit represented by the above general formula (1), and the [epihalohydrin monomer unit] And / or a copolymer containing an unsaturated oxide monomer unit], a unit represented by the above general formula (1), an ethylene oxide monomer unit, and an [epihalohydrin monomer] More preferably a copolymer containing a unit and / or an unsaturated oxide monomer unit], a unit represented by the general formula (1), an ethylene oxide monomer unit, an epihalohydrin monomer unit, And a copolymer containing unsaturated oxide monomer units.
  • the polyether rubber obtained by the production method of the present invention preferably contains a crosslinkable monomer unit.
  • the crosslinkable monomer unit is preferably an epihalohydrin monomer unit and / or an unsaturated oxide monomer unit.
  • the epihalohydrin monomer As the epihalohydrin monomer, the epihalohydrin monomer that can be used in the polyether rubber containing 0.1 mol% or more of the epihalohydrin monomer unit described above can be used.
  • the content ratio of the epihalohydrin monomer unit in the polyether rubber obtained by the production method of the present invention is preferably 99.9 to 0 mol%, and 78.5 to 10 mol in all monomer units. % Is more preferable, and 57.3 to 15 mol% is particularly preferable.
  • a polyether rubber capable of giving a rubber cross-linked product capable of suppressing an increase in current flow of the volume resistivity can be obtained.
  • the content ratio of the epihalohydrin monomer unit is too large, the volume specific resistance value of the resulting rubber cross-linked product may increase. If it is too low, the resulting cross-linked rubber cross-linked product will be insufficiently cross-linked. It may be difficult to maintain the shape of the object.
  • the unsaturated oxide monomer forming the unsaturated oxide monomer unit includes at least one carbon-carbon unsaturated bond (excluding the aromatic carbon-carbon unsaturated bond) in the molecule and at least one epoxy.
  • alkenyl glycidyl ethers such as allyl glycidyl ether and butenyl glycidyl ether; 3,4-epoxy-1-butene, 1,2-epoxy-5 Alkene epoxides such as hexene and 1,2-epoxy-9-decene; Among these, alkenyl glycidyl ethers are preferable, and allyl glycidyl ether is more preferable.
  • An unsaturated oxide monomer may be used individually by 1 type, and may use 2 or more types together.
  • the content ratio of the unsaturated oxide monomer units in the polyether rubber obtained by the production method of the present invention is preferably 15 to 0 mol%, and 12 to 1 mol% in all monomer units. More preferably, it is 10 to 2 mol%.
  • the content ratio of the unsaturated oxide monomer unit in the polyether rubber is within the above range, a polyether rubber having excellent crosslinkability can be obtained.
  • the content ratio of the unsaturated oxide monomer unit is too small, the compression set of the resulting rubber cross-linked product may deteriorate.
  • the content ratio of the unsaturated oxide monomer unit is too large, a gelling reaction (three-dimensional crosslinking reaction) or the like in the polymer molecule or between the polymer molecules is likely to occur during the polymerization reaction, and the molding processability is improved. May decrease.
  • the polyether rubber obtained by the production method of the present invention is used as a material for a conductive member, particularly a conductive roll
  • the polyether rubber obtained by the production method of the present invention is made of ethylene from the viewpoint of low electrical resistance. It preferably contains an oxide monomer unit.
  • the ethylene oxide monomer unit is a unit formed by an ethylene oxide monomer.
  • the content ratio of the ethylene oxide monomer units in the polyether rubber obtained by the production method of the present invention is preferably 90 to 0 mol%, and preferably 80 to 20 mol% in all monomer units. More preferably, the content is 75 to 40 mol%.
  • the content ratio of the ethylene oxide monomer unit in the polyether rubber is within the above range, a polyether rubber excellent in low electrical resistance can be obtained.
  • the content ratio of the ethylene oxide monomer unit is too small, it is difficult to obtain an effect of reducing the electric resistance value of the obtained rubber cross-linked product.
  • there is too much content rate of an ethylene oxide monomer unit there exists a possibility that manufacture of polyether rubber may become difficult.
  • the polyether rubber obtained by the production method of the present invention is necessary in addition to the unit represented by the general formula (1), the epihalohydrin monomer unit, the unsaturated oxide monomer unit, and the ethylene oxide monomer unit.
  • it may be a copolymer containing the unit represented by the general formula (1) and another monomer unit copolymerizable with the monomer unit.
  • alkylene oxide monomer units excluding ethylene oxide are preferred.
  • the alkylene oxide monomer forming the alkylene oxide monomer unit excluding ethylene oxide is not particularly limited, and examples thereof include propylene oxide, 1,2-epoxybutane, 1,2-epoxy-4-chloropentane, 1,2-epoxyhexane, 1,2-epoxyoctane, 1,2-epoxydecane, 1,2-epoxyoctadecane, 1,2-epoxyeicosane, 1,2-epoxyisobutane, 2,3-epoxyisobutane, etc.
  • cyclic alkylene oxides such as 1,2-epoxycyclopentane, 1,2-epoxy
  • linear alkylene oxide is preferable, and propylene oxide is more preferable.
  • alkylene oxide monomers may be used individually by 1 type, and may use 2 or more types together.
  • the content of alkylene oxide monomer units excluding ethylene oxide is preferably 30 mol% or less, and 20 mol% in all monomer units. More preferably, it is more preferably 10 mol% or less. If the content ratio of the alkylene oxide monomer unit excluding ethylene oxide in the polyether rubber is too large, the volume specific resistance value of the resulting rubber cross-linked product may increase.
  • other copolymerizable monomers excluding the alkylene oxide monomer are not particularly limited, and examples thereof include aryl epoxides such as styrene oxide and phenyl glycidyl ether.
  • the content ratio of other copolymerizable monomer units excluding the alkylene oxide monomer is preferably 20 mol% or less in all monomer units. 10 mol% or less is more preferable and 5 mol% or less is still more preferable.
  • the weight average molecular weight of the polyether rubber obtained by the production method of the present invention is preferably 200,000 to 2,000,000, and more preferably 400,000 to 1,500,000. If the weight average molecular weight is too high, the Mooney viscosity becomes high and the molding process may be difficult (for example, when the obtained polyether rubber is processed by pressing, injection molding, etc., the polyether rubber becomes difficult to flow, There is a risk that it will not be possible to mold the same as the mold.) On the other hand, if the weight average molecular weight is too low, the compression set of the resulting rubber cross-linked product may be deteriorated.
  • the Mooney viscosity (polymer Mooney viscosity, ML1 + 4, 100 ° C.) of the polyether rubber obtained by the production method of the present invention is preferably 10 to 120, and more preferably 20 to 90. If the Mooney viscosity is too high, the processability will be inferior (for example, when the obtained polyether rubber is processed by pressing, injection molding, etc., the polyether rubber will not flow easily, and there is a risk that it will not be possible to mold as usual. ), It becomes difficult to form the conductive member. Furthermore, swell (the diameter of the extrudate becomes larger than the diameter of the die at the time of extrusion) may occur, and the dimensional stability may be reduced.
  • the mechanical strength of the resulting rubber cross-linked product may decrease.
  • the obtained polyether rubber is a roll-shaped rubber cross-linked product, When polishing the surface, it may be difficult to finish the surface smoothly.
  • ⁇ Crosslinkable rubber composition> it can be set as a crosslinkable rubber composition by mix
  • the cross-linking agent used in the present invention may be appropriately selected depending on the presence / absence of the cross-linkable monomer unit described above and the type thereof, as long as it can cross-link the polyether rubber obtained by the production method of the present invention.
  • a crosslinking agent include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur monochloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, caprolactam.
  • Sulfur-containing compounds such as disulfides, phosphorus-containing polysulfides and polymer polysulfides; organic peroxides such as dicumyl peroxide and ditertiarybutyl peroxide; p-quinone dioxime, p, p'-dibenzoylquinone dioxime, etc. Quinonedioxime; organic polyvalent amine compounds such as triethylenetetramine, hexamethylenediamine carbamate, 4,4'-methylenebis-o-chloroaniline; triazine compounds such as s-triazine-2,4,6-trithiol; methylol Group One alkylphenol resin; and the like.
  • sulfur, a sulfur-containing compound, and a triazine compound are preferable, and when an unsaturated oxide monomer is used as the crosslinkable monomer, sulfur and a sulfur-containing compound are more preferable.
  • These crosslinking agents are used alone or in combination of two or more.
  • the blending ratio of the crosslinking agent is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 7 parts by weight, with respect to 100 parts by weight of the polyether rubber obtained by the production method of the present invention. More preferred is ⁇ 5 parts by weight.
  • the blending amount of the crosslinking agent is too small, the crosslinking speed becomes slow, and the productivity of the resulting rubber cross-linked product may decrease, or the abrasiveness may decrease when the rubber cross-linked product is used after being polished. .
  • the hardness of the rubber crosslinked material obtained may become high, or a crosslinking agent may bloom.
  • crosslinking accelerator When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking accelerator in combination.
  • the crosslinking acceleration aid is not particularly limited, and examples thereof include zinc white and stearic acid.
  • group; Accelerators can be used.
  • One crosslinking accelerator and one crosslinking accelerator may be used alone, or two or more thereof may be used in combination.
  • the amount of each of the crosslinking accelerator and the crosslinking accelerator used is not particularly limited, but is preferably 0.01 to 15 parts by weight with respect to 100 parts by weight of the polyether rubber obtained by the production method of the present invention. 1 to 10 parts by weight is more preferable. If the amount of the crosslinking accelerator and the crosslinking accelerator used is too large, the crosslinking rate may become too fast or the surface of the resulting rubber crosslinked product may bloom. On the other hand, when the amount is too small, the crosslinking rate is slow and the productivity is inferior, or the crosslinking does not proceed sufficiently, and the resulting rubber cross-linked product may be inferior in mechanical properties.
  • the crosslinkable rubber composition includes butadiene rubber, styrene butadiene rubber, chloroprene rubber, isoprene rubber, natural rubber, acrylonitrile butadiene rubber, butyl rubber, and partially hydrogenated products of these rubbers (for example, within the range not impairing the effects of the present invention).
  • Diene rubbers such as ethylene propylene rubber, acrylic rubber, polyether rubber (excluding the polyether rubber obtained by the production method of the present invention), fluorine rubber, silicone rubber and other diene rubbers
  • Rubbers such as olefin-based thermoplastic elastomers, styrene-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers; May contain; polyvinyl chloride, coumarone resin, resins such as phenol resin.
  • thermoplastic elastomers, and resins can be used alone or in combination of two or more, and the total content thereof is based on 100 parts by weight of the polyether rubber obtained by the production method of the present invention. 100 parts by weight or less, more preferably 50 parts by weight or less, and particularly preferably 20 parts by weight or less.
  • the crosslinkable rubber composition may contain other additives usually blended in known rubbers in addition to the additives described above.
  • additives include, but are not limited to, fillers; acid acceptors; reinforcing agents; anti-aging agents; ultraviolet absorbers; light stabilizers; tackifiers; surfactants; Examples include electrolyte substances; colorants (dyes and pigments); flame retardants; antistatic agents;
  • the crosslinkable rubber composition can be prepared by mixing and kneading the polyether rubber obtained by the production method of the present invention with a crosslinking agent and each additive used as necessary by a desired method.
  • a crosslinkable rubber composition can be obtained by kneading an additive excluding a crosslinking agent and a crosslinking accelerator and a polyether rubber and then mixing the mixture with the crosslinking agent and the crosslinking accelerator.
  • kneading and molding machines such as a kneader, a banbury, an open roll, a calender roll, and an extruder may be used for kneading and molding.
  • the kneading temperature of the additive excluding the crosslinking agent and crosslinking accelerator and the polyether rubber is preferably 20 to 200 ° C., more preferably 20 to 150 ° C., and the kneading time is preferably 30 seconds to 30 minutes.
  • the mixing temperature of the product, the crosslinking agent and the crosslinking accelerator is preferably 100 ° C. or less, more preferably 0 to 80 ° C.
  • ⁇ Rubber cross-linked product> it can be set as a rubber crosslinked material by bridge
  • the method of cross-linking the cross-linkable rubber composition is not particularly limited, but it may be performed at the same time as forming and cross-linking or after forming.
  • the molding temperature is preferably 20 to 200 ° C, more preferably 40 to 180 ° C.
  • the heating temperature at the time of crosslinking is preferably from 130 to 200 ° C, more preferably from 140 to 200 ° C. If the temperature at the time of crosslinking is too low, the crosslinking time may be required for a long time, or the crosslinking density of the resulting rubber crosslinked product may be lowered. On the other hand, if the temperature at the time of crosslinking is too high, there is a risk of forming defects.
  • the crosslinking time varies depending on the crosslinking method, crosslinking temperature, shape, etc., but a range of 1 minute or more and 5 hours or less is preferable from the viewpoint of crosslinking density and production efficiency.
  • a heating method a method such as press heating, oven heating, steam heating, hot air heating, and microwave heating may be appropriately selected.
  • secondary cross-linking may be performed by heating.
  • the heating temperature in performing the secondary crosslinking is preferably 100 to 220 ° C, more preferably 130 to 210 ° C.
  • the heating time is preferably 30 minutes to 5 hours.
  • the volume specific resistance value of the rubber cross-linked product thus obtained is usually 1 at a value of 30 V from the start of voltage application under the measurement environment at a temperature of 23 ° C. and a humidity of 50%.
  • the volume specific resistance value of the rubber cross-linked product is too high, a higher voltage must be applied in order to pass the same current, and the amount of power consumption increases, which is not suitable for a conductive member.
  • the volume specific resistance value of the rubber cross-linked product is too low, a current flows in an unintended direction other than the voltage application direction, which may impair the function as a conductive member.
  • the energization increase value of the volume resistivity value of the rubber cross-linked product obtained in this way is from log 10 (volume resistivity value) 15 minutes after the start of voltage application under the measurement conditions of the volume resistivity value.
  • log 10 (volume resistivity) after 30 seconds from the start of voltage application is reduced, it is preferably in the range of 0 to 1.
  • the rubber cross-linked product thus obtained has little variation in electrical resistance value, low electrical resistance value, and suppresses an increase in electrical resistance value even when continuously used. It can use suitably for the conductive member used for the above, especially a conductive roll.
  • the onium ion unit content was measured as follows using a nuclear magnetic resonance apparatus ( 1 H-NMR). After the oniumation reaction, 30 mg of the obtained cationized polyether rubber was added to 1.0 ml of dimethyl sulfoxide-d6 and shaken for 1 hour to dissolve uniformly. This solution was subjected to 1 H-NMR measurement to calculate the onium ion unit content. First, from the integral value of protons derived from the polyether chain which is the main chain of the cationized polyether rubber, the number of moles B1 of all monomer units (including onium ion units) in the polymer was calculated.
  • the number of moles B2 of the introduced onium ion unit (unit represented by the general formula (1)) was calculated from the integral value of protons derived from the onium ion-containing group.
  • the mole number B2 of the introduced onium ion unit (unit represented by the general formula (1)) is divided by the mole number B1 of all monomer units (including the onium ion unit) in the polymer.
  • the onium ion unit content was calculated by the following formula.
  • Onium ion unit content (mol%) 100 ⁇ B2 / B1
  • the rubber composition was molded and crosslinked by pressing at a temperature of 160 ° C. for 30 minutes to obtain a sheet-like rubber crosslinked product (sheet-shaped test piece) having a length of 15 cm, a width of 10 cm, and a thickness of 2 mm. And the volume specific resistance value was measured using the obtained sheet-like rubber crosslinked material. The measured value of the volume resistivity value was a value of log 10 . The volume resistivity is measured using a Hiresta-UP / URS probe (manufactured by Mitsubishi Analitech Co., Ltd.).
  • the measurement conditions are an applied voltage of 100 V (measurement condition 2 is 10 V), and measurement condition 1: Temperature 23 ° C., humidity 50% RH, measurement condition 2: temperature 32 ° C., humidity 80% RH, measurement condition 3: temperature 10 ° C., humidity 20% RH, 30 seconds after voltage application is started Each subsequent value was measured. Further, the difference between the volume specific resistance value measured under the measurement condition 3 and the volume specific resistance value measured under the measurement condition 2 was calculated.
  • volume specific resistance energization increase value (23 ° C., 50% RH)
  • the energization increase value of the volume resistivity value is calculated from the log 10 (volume resistivity value) 15 minutes after the start of voltage application under the above-described volume resistivity measurement condition (measurement condition 1).
  • the log 10 (volume resistivity value) 30 seconds after the start of the application of was reduced.
  • Example 1 (Production of cationized polyether rubber 1) 100 parts of polyether rubber (a1) (epichlorohydrin rubber containing 0.1 mol% or more of epichlorohydrin monomer unit of trade name “Hydrin T3106”, manufactured by Nippon Zeon Co., Ltd.) in an open roll at 25 ° C., 4 , 4'-thiobis (3-methyl-6-t-butylphenol) 2 parts, hydrotalcite (b1) (trade name “KYOWARD 500SH”, specific surface area measured by BET method is 102 m 2 / g, Kyowa 2.7 parts of Chemical Industry Co., Ltd.), 0.5 parts of magnesium oxide and 1.69 parts of 1-methylimidazole were added and kneaded for 5 minutes to obtain a sheet-like rubber composition.
  • a1 polyether rubber containing 0.1 mol% or more of epichlorohydrin monomer unit of trade name “Hydrin T3106”, manufactured by Nippon Zeon Co., Ltd.
  • hydrotalcite
  • the sheet-like rubber composition obtained above is subjected to a heat reaction with a press molding machine at 175 ° C. for 20 minutes to react the polyether rubber (a1) with 1-methylimidazole to be cationized.
  • Polyether rubber 1 was obtained.
  • the rubber composition 0.5 parts of sulfur as a crosslinking agent (trade name “Sulfax PMC”, manufactured by Tsurumi Chemical Co., Ltd.) and morpholine disulfide as a crosslinking agent (trade name “ Barnock R “(manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.), 1 part, tetraethylthiuram disulfide (trade name” Noxeller TET “, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) as a crosslinking accelerator and dibenzothiazyl disulfide (trade name) 1.5 parts of “Noxeller DM” (manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) was added and kneaded for 10 minutes to prepare a sheet-like rubber composition 1.
  • “Noxeller DM” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • This rubber composition 1 is press-crosslinked at 160 ° C. for 30 minutes to produce a rubber cross-linked product 1 (test piece 1).
  • the test piece 1 has a compression set, a volume specific resistance value, and a volume specific resistance value.
  • the energization increase value was evaluated. The results are shown in Table 1.
  • Example 2 instead of hydrotalcite (b1), 1.8 parts of hydrotalcite (b2) (trade name “DHT-4C”, specific surface area measured by BET method is 15 m 2 / g, manufactured by Kyowa Chemical Industry Co., Ltd.) A cationized polyether rubber 2 was obtained in the same manner as in Example 1 except that it was used. And using the obtained cationized polyether rubber 2, it carried out similarly to Example 1, and obtained the rubber composition 2 and the rubber crosslinked material 2, and evaluated similarly. The results are shown in Table 1.
  • Example 3 The cationized polyether rubber 3 was obtained in the same manner as in Example 2 except that the amount of the hydrotalcite (b2) was changed from 1.8 parts to 2.4 parts and no magnesium oxide was added. . And using the obtained cationized polyether rubber 3, it carried out similarly to Example 1, and obtained the rubber composition 3 and the rubber crosslinked material 3, and evaluated similarly. The results are shown in Table 1.
  • Example 4 The cationized polyether rubber 4 was obtained in the same manner as in Example 1 except that the amount of hydrotalcite (b1) was changed from 2.7 parts to 3.6 parts and no magnesium oxide was added. . And using the obtained cationized polyether rubber 4, it carried out similarly to Example 1, obtained the rubber composition 4 and the rubber crosslinked material 4, and evaluated similarly. The results are shown in Table 1.
  • Example 5 Instead of polyether rubber (a1), 100 parts of polyether rubber (a2) (epichlorohydrin rubber containing 0.1 mol% or more of epichlorohydrin monomer unit of trade name “Hydrin T3108”, manufactured by Nippon Zeon Co., Ltd.) A cationized polyether rubber 5 was obtained in the same manner as in Example 3 except that was used. And using the obtained cationized polyether rubber 5, it carried out similarly to Example 1, and obtained the rubber composition 5 and the rubber crosslinked material 5, and evaluated similarly. The results are shown in Table 1.
  • Example 6 A cationized polyether rubber 6 was obtained in the same manner as in Example 1 except that the amount of 1-methylimidazole was changed from 1.69 parts to 0.99 parts. And using the obtained cationized polyether rubber 6, it carried out similarly to Example 1, and obtained the rubber composition 6 and the rubber crosslinked material 6, and evaluated similarly. The results are shown in Table 1.
  • Example 7 Example 1 except that the amount of 1-methylimidazole was changed from 1.69 parts to 2.63 parts, and the amount of hydrotalcite (b1) was changed from 2.7 parts to 4.0 parts. Similarly, cationized polyether rubber 7 was obtained. And using the obtained cationized polyether rubber
  • Example 8 Instead of the polyether rubber (a1), 100 parts of the polyether rubber (a2) was used, and the blending amount of 1-methylimidazole was changed from 1.69 parts to 0.30 parts, and the hydrotalcite (b1) Cationic polyether rubber in the same manner as in Example 1 except that the blending amount was changed from 2.7 parts to 0.5 parts and the blending amount of magnesium oxide was changed from 0.5 parts to 0.1 parts. 8 was obtained. And using the obtained cationized polyether rubber 8, it carried out similarly to Example 1, and obtained the rubber composition 8 and the rubber crosslinked material 8, and evaluated similarly. The results are shown in Table 1.
  • Example 9 The amount of 1-methylimidazole was changed from 0.30 parts to 0.60 parts, the amount of hydrotalcite (b1) was changed from 0.5 parts to 1.5 parts, and no magnesium oxide was added. Except for the above, a cationized polyether rubber 9 was obtained in the same manner as in Example 8. And using the obtained cationized polyether rubber 9, it carried out similarly to Example 8, and obtained the rubber composition 9 and the rubber crosslinked material 9, and evaluated similarly. The results are shown in Table 1.
  • Example 10 The amount of 1-methylimidazole was changed from 0.30 parts to 1.00 parts, the amount of hydrotalcite (b1) was changed from 0.5 parts to 1.6 parts, and the amount of magnesium oxide was changed.
  • a cationized polyether rubber 10 was obtained in the same manner as in Example 8 except that the amount was changed from 0.1 part to 0.3 part. And using the obtained cationized polyether rubber
  • Example 11 instead of hydrotalcite (b1), hydrotalcite (b3) (trade name “DHT-4A-2”, specific surface area measured by BET method is 13 m 2 / g, manufactured by Kyowa Chemical Industry Co., Ltd.) 2.4
  • a cationized polyether rubber 11 was obtained in the same manner as in Example 1 except that no magnesium oxide was added. And using the obtained cationized polyether rubber
  • hydrotalcite (b4) (trade name “Mugceller”, specific surface area measured by BET method is 9 m 2 / g, manufactured by Kyowa Chemical Industry Co., Ltd.) 2.4
  • a cationized polyether rubber 13 was obtained in the same manner as in Example 1 except that no magnesium oxide was added. And the rubber composition 13 was obtained like Example 1 using the obtained cationized polyether rubber
  • a specific surface area of 10 m 2 / g or more as an acid acceptor comprising a polyether rubber containing an epihalohydrin monomer unit of 0.1 mol% or more and a nitrogen atom-containing aromatic heterocyclic compound.
  • the obtained cationized polyether rubber had excellent roll processability (Examples 1 to 11).
  • the rubber cross-linked product obtained using this cationized polyether rubber was more specific to the volume when the temperature and humidity were changed as compared with the rubber cross-linked product of Comparative Example 1.
  • the difference in resistance value (the difference between the volume resistivity value measured under measurement condition 3 and the volume resistivity value measured under measurement condition 2) is small, and the energization increase value of the volume resistivity value is also suppressed. It was confirmed that In addition, the rubber cross-linked products of Examples 1 to 7 have a low compression set compared to Examples 8 to 11 in which the amount of 1-methylimidazole is reduced and the onium ion unit content is reduced, Excellent compression set resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dispersion Chemistry (AREA)

Abstract

エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、BET法により測定される窒素吸着比表面積が10m/g以上であるハイドロタルサイトを少なくとも含む受酸剤の存在下で、混練して反応させることにより得られる、下記一般式(1)で表される単位を、0.1モル%以上30モル%未満含有するポリエーテルゴムの製造方法を提供する。(上記一般式(1)中、Aは、カチオン性含窒素芳香族複素環を含有する基であり、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。Xは任意の対アニオンである。)

Description

ポリエーテルゴムの製造方法
 本発明は、ポリエーテルゴムの製造方法に関し、より具体的には、カチオン性含窒素芳香族複素環を含有する基を有しているポリエーテルゴムの製造方法に関する。
 プリンタ、電子写真複写機、およびファクシミリ装置などの画像形成装置において、半導電性が必要とされる機構には、導電性ロール、導電性ブレード、導電性ベルトなどの導電性部材が用いられている。
 このような導電性部材は、その用途に応じて、所望の範囲の導電性(電気抵抗値とそのばらつき、環境依存性、電圧依存性)、非汚染性、低硬度、および寸法安定性などの種々の性能が要求されている。
 このような導電性部材の一部を構成するゴムとしては、ゴム自体に半導電性を有する、ポリエーテルゴムなどが用いられてきた。しかしながら、近年、画像形成装置においては高速化が要求され、導電性部材、特に、導電性ロールには更なる低電気抵抗化が望まれている。
 また、従来より、ポリエーテルゴムなどが用いられている導電性部材に電圧を印加すると、連続使用により導電性部材が通電劣化し、これにより、導電性部材の電気抵抗値が上昇してしまい、画像形成装置用途に用いた場合に、画像品質が低下してしまうという問題があった。このような問題に対し、たとえば、特許文献1では、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、ポリエーテルゴム100重量部に対して、2.4~6.4重量部の割合の酸化マグネシウム、炭酸カルシウム等の受酸剤の存在下で、押出混練機を用いて混練させて得られるポリエーテルゴムが開示されている。
 しかしながら、受酸剤として酸化マグネシウムや炭酸カルシウム等を、このように比較的多い配合割合にて用いると、得られるポリエーテルゴムは、架橋剤を添加し、架橋するために混練する場合に、混練に用いるロールへの粘着性が高くなってしまい、加工性に劣るという問題や、得られるゴム架橋物の、連続使用時における電気抵抗値の上昇の抑制効果が十分でないという問題があった。
国際公開第2015/099027号
 本発明の目的は、加工性に優れ、しかも、電気抵抗値のばらつきが少なく、電気抵抗値が低く、かつ、連続使用した場合でも電気抵抗値の上昇を抑制することのできるゴム架橋物に用いられるポリエーテルゴムの製造方法を提供することにある。
 本発明者等は、上記目的を達成するために鋭意研究した結果、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、比表面積が所定範囲に制御されたハイドロタルサイトを少なくとも含む受酸剤の存在下で、混練して反応させることにより、上記特性を有するポリエーテルゴムを、高い生産効率で製造することができることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、下記一般式(1)で表される単位を、0.1モル%以上30モル%未満含有するポリエーテルゴムを製造する方法であって、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、BET法により測定される窒素吸着比表面積が10m/g以上であるハイドロタルサイトを少なくとも含む受酸剤の存在下で、混練機を用いて混練して反応させることにより、前記エピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、カチオン性含窒素芳香族複素環を含有する基に置換することを特徴とするポリエーテルゴムの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(1)中、Aは、カチオン性含窒素芳香族複素環を含有する基である。前記カチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。Xは任意の対アニオンである。)
 本発明のポリエーテルゴムの製造方法において、前記エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴム100重量部に対する、前記ハイドロタルサイトの使用量が、0.1~15重量部であることが好ましい。
 本発明のポリエーテルゴムの製造方法において、前記ハイドロタルサイトが、少なくともMgおよびAlを含有することが好ましい。
 本発明のポリエーテルゴムの製造方法において、前記窒素原子含有芳香族複素環式化合物が、五員複素環式化合物または六員複素環式化合物であることが好ましい。
 本発明のポリエーテルゴムの製造方法において、前記受酸剤として、さらにマグネシウム、カルシウム、およびバリウムから選択される少なくとも一種の酸化物、水酸化物、および/または、炭酸塩を、前記エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴム100重量部に対して、0.1~5重量部の割合で併用してもよい。
 本発明のポリエーテルゴムの製造方法において、前記受酸剤として、さらに酸化マグネシウムを、前記エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴム100重量部に対して、0.1~2重量部の割合で併用してもよい。
 本発明によれば、加工性に優れ、しかも、電気抵抗値のばらつきが少なく、電気抵抗値が低く、かつ、連続使用した場合でも電気抵抗値の上昇を抑制することのできるゴム架橋物に用いられるポリエーテルゴムの製造方法を提供することができる。
<ポリエーテルゴムの製造方法>
 本発明のポリエーテルゴムの製造方法は、下記一般式(1)で表される単位を、0.1モル%以上30モル%未満含有するポリエーテルゴムを製造する方法であり、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、BET法により測定される窒素吸着比表面積が10m/g以上であるハイドロタルサイトを少なくとも含む受酸剤の存在下で、混練して反応させることにより、前記エピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、カチオン性含窒素芳香族複素環を含有する基に置換することを特徴とするものである。
Figure JPOXMLDOC01-appb-C000003
 (上記一般式(1)中、Aは、カチオン性含窒素芳香族複素環を含有する基である。前記カチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。Xは任意の対アニオンである。)
 なお、以下において、「カチオン性含窒素芳香族複素環を含有する基」を、「オニウムイオン含有基」と記す場合がある。なお、オニウムイオン含有基とは、オニウムイオン構造を含有する基、あるいは、オニウムイオン構造を形成する基を意味する。
 本発明で用いるエピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムは、溶液重合法または溶媒スラリー重合法などにより、エピハロヒドリン単量体を開環重合することにより得ることができる。なお、後述するように、本発明で用いるエピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムは、エピハロヒドリン単量体以外に、エチレンオキサイド単量体、不飽和オキサイド単量体を開環重合した共重合体であることが好ましい。但し、エピハロヒドリン単量体が0.1モル%以上共重合に供されることが必要である。
 エピハロヒドリン単量体単位を構成するエピハロヒドリン単量体としては、特に限定されないが、たとえば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、エピフルオロヒドリンなどが挙げられ、これらのなかでも、エピクロロヒドリンが好ましい。エピハロヒドリン単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。
 エピハロヒドリン単量体を開環重合する際に用いる重合触媒としては、一般のポリエーテル重合用触媒であれば、特に限定されない。重合触媒としては、たとえば、有機アルミニウムに水とアセチルアセトンを反応させた触媒(特公昭35-15797号公報);トリイソブチルアルミニウムにリン酸とトリエチルアミンを反応させた触媒(特公昭46-27534号公報);トリイソブチルアルミニウムにジアザビアシクロウンデセンの有機酸塩とリン酸とを反応させた触媒(特公昭56-51171号公報);アルミニウムアルコキサイドの部分加水分解物と有機亜鉛化合物とからなる触媒(特公昭43-2945号公報);有機亜鉛化合物と多価アルコールとからなる触媒(特公昭45-7751号公報);ジアルキル亜鉛と水とからなる触媒(特公昭36-3394号公報);トリブチル錫クロライドとトリブチルホスフェートとからなる触媒(特許第3223978号公報);などが挙げられる。
 重合溶媒としては、不活性溶媒であれば、特に限定されないが、たとえば、ベンゼン、トルエンなどの芳香族炭化水素;n-ペンタン、n-へキサンなどの直鎖状飽和炭化水素類;シクロペンタン、シクロヘキサンなどの環状飽和炭化水素類;などが用いられる。これらのなかでも、溶液重合法により開環重合する場合は、ポリエーテルゴムの溶解性の観点から、芳香族炭化水素を用いることが好ましく、トルエンがより好ましい。
 重合反応温度は、20~150℃が好ましく、40~130℃がより好ましい。重合様式は、回分式、半回分式、連続式などの任意の方法で行うことができる。
 エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムは、ブロック共重合、ランダム共重合のいずれの共重合タイプでも構わないが、ランダム共重合体が好ましい。
 エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムを溶媒から回収する方法は、特に限定されないが、たとえば、凝固・ろ別・乾燥方法を適宜組合わせることにより行う。ポリエーテルゴムが溶解している溶媒から、ポリエーテルゴムを凝固させる方法としては、たとえば、常法であるスチームストリッピングや貧溶媒を用いた析出方法などを用いることができる。また、ポリエーテルゴムを含むスラリーから、ポリエーテルゴムをろ別する方法としては、必要に応じて、たとえば、回転式スクリーン、振動スクリーンなどの篩;遠心脱水機;などを用いる方法などを挙げることができる。さらに、ポリエーテルゴムの乾燥方法としては、たとえば、ロール、バンバリー式脱水機、スクリュー押出機式脱水機などの圧縮水絞機を用いて脱水する方法;スクリュー型押出乾燥機、ニーダー型乾燥機、エキスパンダー乾燥機、熱風乾燥機、減圧乾燥機などの乾燥機を用いる方法;などを挙げることができる。これらの圧縮水絞機および乾燥機は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。
 そして、本発明の製造方法では、このようなエピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、BET法により測定される窒素吸着比表面積が10m/g以上であるハイドロタルサイトを少なくとも含む受酸剤の存在下で、混練して反応させることにより、エピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、カチオン性含窒素芳香族複素環を含有する基に置換することで、ポリエーテルゴムに、上記一般式(1)で表される構造単位を導入するものである。
 前記の「ハイドロタルサイトを少なくとも含む受酸剤の存在下で、混練して反応させる」とは、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを反応させる工程において、前記ポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、少なくともハイドロタルサイトを含む受酸剤の存在下で混練する工程を含むことを意味する。ここで、反応は混練と同時に進行してもよいし、混練後に反応が進行してもよい。
 本発明においては、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを混練して反応させる際においては、溶剤等を使用せずに混練を行うことが好ましく、これにより、これらの反応を比較的短い反応時間にて行うことができるため、高い生産効率にて製造することが可能となる。なお、混練に用いる混練機としては、特に限定されず、ニーダー、バンバリー、オープンロール、カレンダーロール、二軸混練機などの任意の乾式混練機を一つまたは複数組合わせて用いることができるが、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物と、ハイドロタルサイトの存在下で、簡便かつ良好に混練することができるという観点より、ニーダーを用いることが好ましい。
 尚、前述したように、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物との反応は、混練と同時に行ってもよいし、混練後に別途行ってもよい。別途反応させる場合は、上述した任意の乾式混練機をそのまま継続して用いてもよいし、オーブン、プレス成型機を用いて反応させてもよい。
 また、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴム、窒素原子含有芳香族複素環式化合物(以下、「オニウム化剤」と記す場合がある。)、およびBET法により測定される窒素吸着比表面積が10m/g以上であるハイドロタルサイトを少なくとも含む受酸剤の混練機への投入方法は特に限定されず、これらを別々に連続的に投入するような態様としてもよいし、あるいは、これらを予め混合し、得られた混合物を投入するような態様としてもよい。
 本発明においては、ハイドロタルサイトは、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを反応させる際に副生する塩化水素などのハロゲン化水素を捕捉する受酸剤として作用し、これにより、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと窒素原子含有芳香族複素環式化合物とを反応させる際における、反応中のポリエーテルゴムの分解を抑制することができ、しかも、混練機を用いて混練を行う際における、混練機の腐食を防止することができる。
 本発明においては、受酸剤としてハイドロタルサイトを用いることにより、得られるオニウムイオン構造導入後のポリエーテルゴムは、架橋剤を添加し、架橋する際における、ゴム練りやシート状への加工に用いるロールへの粘着性が低下し、これにより、ポリエーテルゴムのロールへの貼り付きを防止することができるため、ポリエーテルゴムの加工性を向上させることができる。また、受酸剤としてハイドロタルサイトを用いることにより、得られるゴム架橋物を、連続使用した場合における電気抵抗値の上昇が抑えられたものとすることができる。
 本発明で用いるハイドロタルサイトとしては、特に限定されないが、たとえば下記一般式(2)で表される化合物を用いることができる。
 [(M 2+y1(M 2+y21-x 3+(OH)n- x/n・mHO   (2)
 上記一般式(2)中、M 2+およびM 2+は、それぞれ独立して、Mg、Zn、Ca、Sr、Cu、Fe、Mn、Co、Ni、Sn、Pb、CdおよびBa等の2価金属を表し、M 3+は、Al、Fe等の3価金属を表し、An-は、n価のアニオンを表す。An-のアニオンとしては、たとえば、塩素イオン、炭酸イオン、有機酸イオンなどが挙げられる。x、y1、y2およびmは、それぞれ、下記式(3)~(5)で表される値であることが好ましい。なお、y2は0であってもよい。
 0<x<0.5       (3)
 0.5≦y1+y2<1   (4)
 0≦m<2         (5)
 一般式(2)で表されるハイドロタルサイトは、少なくともMgおよびAlを含有することが好ましい。すなわち、一般式(2)で表されるハイドロタルサイトにおいては、M 2+はMg2+であることが好ましく、かつ、M 2+を含有しない(一般式(2)中、y2が0である)ことが好ましい。また、M 3+はAl3+であることが好ましい。一般式(2)で表されるハイドロタルサイトにおいて、M 2+はMg2+であり、M 2+を含有せず、M 3+はAl3+である場合には、ハイドロタルサイトに含まれるAlに対するMgの原子数比(Mg/Al)は、好ましくは2~4である。
 本発明で用いるハイドロタルサイトの比表面積は、ASTM D3037-81に準じてBET法で測定される窒素吸着比表面積で、10m/g以上であればよく、12m/g以上が好ましく、14m/g以上がより好ましい。ハイドロタルサイトの比表面積を上記範囲とすることにより、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと窒素原子含有芳香族複素環式化合物とを反応させる際における、反応中のポリエーテルゴムの分解をより有効に抑制することができ、これにより、得られるポリエーテルゴム(上記一般式(1)で表される単位を、0.1モル%以上30モル%未満含有するポリエーテルゴム)について、ムーニー粘度を適度な範囲とすることができ、ポリエーテルゴムのロールへの貼り付きを抑制し、ポリエーテルゴムの加工性を顕著に向上させることが可能となる。なお、本発明で用いるハイドロタルサイトの比表面積の上限は、特に限定されないが、BET法で測定される窒素吸着比表面積で、200m/g以下が好ましく、150m/g以下がより好ましい。なお、粒子の比表面積を大きくする方法としては、一般的に粒子の粒径を小さくする方法が知られているが、通常、粒子の粒径が小さくなるほど、粒子が微粉化して取扱いが難しくなるとともに、ある程度以上の微粉化は工業的に困難となる傾向にあるため、ハイドロタルサイトの比表面積の上限を上記範囲とし、ハイドロタルサイトの粒径を適度な大きさに制御することが好ましい。
 一般式(2)で表され、かつ、比表面積が上記範囲であるハイドロタルサイトとしては、たとえば、商品名「キョーワード500SH」(協和化学工業社製)、商品名「DHT-4C」(協和化学工業社製)、商品名「DHT-4A-2」(協和化学工業社製)などが挙げられる。
 ハイドロタルサイトの使用量は、特に限定されないが、用いるポリエーテルゴム100重量部に対して、好ましくは0.1~15重量部であり、より好ましくは0.5~10重量部、さらに好ましくは1~5重量部である。ハイドロタルサイトの使用量が少なすぎると、得られるポリエーテルゴムの粘着性が高くなり、ポリエーテルゴムがロールに貼り付きやすいものとなってしまうとともに、混練機の腐食防止効果が低下してしまうおそれがあり、一方、多すぎると、ゴムが硬くなりすぎるおそれがある。
 なお、本発明においては、受酸剤として、上述したハイドロタルサイトに加えて、ハイドロタルサイト以外の化合物を併用してもよい。ハイドロタルサイトと併用可能な受酸剤としては、たとえば、酸化マグネシウム、酸化カルシウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸マグネシウム、炭酸バリウム、炭酸カルシウム、硼酸カルシウム、フタル酸カルシウム、亜燐酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、ホウ酸マグネシウム、メタホウ酸マグネシウム、メタホウ酸カルシウム、メタホウ酸バリウムなどの周期律表第2族金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、珪酸塩、硼酸塩、亜燐酸塩、メタホウ酸塩など;ステアリン酸亜鉛、酸化亜鉛などの周期律表第12族金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、珪酸塩、硼酸塩、亜燐酸塩、メタホウ酸塩など;酸化錫、塩基性炭酸錫、ステアリン酸錫、塩基性亜燐酸錫、塩基性亜硫酸錫、酸化ケイ素、ステアリン酸ケイ素などの周期律表第14族金属の酸化物、塩基性炭酸塩、塩基性カルボン酸塩、塩基性亜燐酸塩、塩基性亜硫酸塩など;水酸化アルミニウムゲル化合物;などが挙げられる。そして、このようなハイドロタルサイトと併用可能な受酸剤は、1種単独で、又は2種以上を組み合わせて使用することができる。
 これらハイドロタルサイトと併用可能な受酸剤のなかでも、少量の添加でも、腐食防止効果が大きいことから、マグネシウム、カルシウム、バリウムの酸化物、水酸化物および炭酸塩が好ましく、マグネシウム、カルシウムの酸化物および炭酸塩がより好ましく、安価でありコスト的に有利になるという観点より、酸化マグネシウムが特に好ましい。
 本発明においては、受酸剤として、上述したハイドロタルサイトに加えて、より安価なハイドロタルサイト以外の化合物を併用することにより、受酸剤としてハイドロタルサイトを用いることによる効果(反応中のポリエーテルゴムの分解を抑制する効果や、得られるポリエーテルゴムを混練機により混練を行う際における、混練機の腐食を防止する効果等)を維持したまま、ハイドロタルサイトの使用量を低減することが可能となり、コスト的に有利になるととともに、得られるポリエーテルゴムの加工性を優れたものとすることができる。
 受酸剤として、上述したハイドロタルサイトに加えて、ハイドロタルサイト以外の化合物を併用する場合には、ハイドロタルサイト以外の化合物の使用量は、用いるポリエーテルゴム100重量部に対して、好ましくは0.1~6重量部であり、より好ましくは0.1~4重量部、さらに好ましくは0.1~2重量部である。ハイドロタルサイト以外の化合物の使用量を上記範囲とすることにより、得られるポリエーテルゴムのロールへの貼り付きの発生を有効に防止しながら、得られるゴム架橋物の各種特性を良好なものとすることができる。
 また、受酸剤として、上述したハイドロタルサイトに加えて、ハイドロタルサイト以外の化合物を併用する場合には、ハイドロタルサイトに対する、ハイドロタルサイト以外の化合物の使用量の割合は、(使用するハイドロタルサイト以外の化合物の重量/使用するハイドロタルサイトの重量)の比で、好ましくは0.01~10、より好ましくは0.01~5、さらに好ましくは0.01~1である。
 本発明で用いる窒素原子含有芳香族複素環式化合物(以下、「オニウム化剤」と記す場合がある。)は、窒素原子を含有する芳香族複素環式化合物であれば、特に限定されず、たとえば、イミダゾール、1-メチルイミダゾール、ピロール、1-メチルピロール、チアゾール、オキサゾール、ピラゾール、イソオキサゾールなどの五員複素環式化合物;ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、2,6-ルチジンなどの六員複素環式化合物;キノリン、イソキノリン、キノキサリン、キナゾリン、シンノリン、プリン、インドール、イソインドール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾールなどの縮合複素環式化合物;などを挙げることができる。これらのなかでも、五員複素環式化合物および六員複素環式化合物が好ましく、反応後の物質安定性の観点から、1-メチルイミダゾールがより好ましい。
 オニウム化剤の使用量は、特に限定されないが、用いるオニウム化剤やポリエーテルゴムの構造、目的とするポリエーテルゴム中のオニウムイオン含有基の置換率などに応じ、上記一般式(1)で表される単位の含有割合が0.1モル%以上30モル%未満となるような範囲で決定すればよい。具体的には、オニウム化剤の使用量は、用いるポリエーテルゴムのエピハロヒドリン単量体単位を構成するハロゲン原子1モルに対し、通常、0.1~50モル、好ましくは0.1~30モルの範囲である。オニウム化剤の量が少なすぎると、置換反応が遅く、所望の組成のオニウムイオン含有基を有するポリエーテルゴム(以下、「カチオン化ポリエーテルゴム」とも記す。)が得られなくなるおそれがあり、一方、オニウム化剤の量が多すぎると、得られたカチオン化ポリエーテルゴムから未反応のオニウム化剤を除去することが困難になるおそれがある。
 混練機等で反応する際の反応温度は、好ましくは150℃以上、より好ましくは160℃以上、さらに好ましくは170℃以上である。そして、反応温度の上限は、好ましくは250℃以下、より好ましくは200℃以下である。また、反応時間は、好ましくは1~120分、より好ましくは1~60分である。本発明においては、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、オニウム化剤との反応を、少なくともハイドロタルサイトを含む受酸剤の存在下、混練機等を用いて行うため、上記のように比較的高い温度にて、かつ、短時間で反応を行った場合でも、混練機等を腐食させることなく、所望の組成のオニウムイオン含有基を有するポリエーテルゴムを得ることができる。そのため、反応温度、反応時間は上記範囲とすることが好ましい。反応温度が低すぎると、置換反応が遅く、所望の組成のカチオン化ポリエーテルゴムが得られなくなるおそれがあり、一方、反応温度が高すぎると、用いるポリエーテルゴムの分解やオニウム化剤の揮発が起こるおそれがある。また、反応時間が短すぎると、反応が不完全となり、所望の組成のカチオン化ポリエーテルゴムが得られなくなるおそれがあり、一方、反応時間が長すぎると、生産効率が低下してしまうおそれがある他、ポリエーテルゴムの分解が起こるおそれもある。
 なお、本発明において、混練機で混練および反応を行う際には、混練により混練物自体の発熱も発生するため、このような発熱を考慮して、混練機の加熱温度を調整し、これにより、反応温度を所望の温度とすることが望ましい。混練機で混練および反応を行う際における反応温度は、たとえば、混練機から排出される排出直後のカチオン化ポリエーテルゴムの温度を測定することにより求めることができる。
 以上のようにして、本発明によれば、上記一般式(1)で表される単位を、0.1モル%以上30モル%未満含有するポリエーテルゴム(カチオン化ポリエーテルゴム)を得ることができる。本発明の製造方法により得られるポリエーテルゴムは、上記一般式(1)で表される単位を、0.1モル%以上30モル%未満含有するものであるため、本発明の製造方法により得られるポリエーテルゴムを用いて得られるゴム架橋物は、電気抵抗値のばらつきが少なく、電気抵抗値が低く、かつ、連続使用した場合でも電気抵抗値の上昇を抑制できるものである。
 上記一般式(1)で表される単位中、Aは、カチオン性含窒素芳香族複素環を含有する基である。このカチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。カチオン性含窒素芳香族複素環を含有する基中のカチオン性含窒素芳香族複素環における含窒素芳香族複素環は、環中に窒素原子を有し、芳香族性を有するものならば、特に限定されない。たとえば、複素環中に、上記一般式(1)に示す「2」の位置の炭素原子と結合する窒素原子以外に、別の窒素原子を有していてもよいし、酸素原子、硫黄原子など、窒素原子以外のヘテロ原子を有していてもよいし、また、複素環を構成する原子のうち一部は置換基により置換されていてもよい。また、二環以上が縮合した多環構造をとっていてもよい。このような含窒素芳香族複素環の構造としては、たとえば、イミダゾール環、ピロール環、チアゾール環、オキサゾール環、ピラゾール環、イソオキサゾール環などの五員複素環;ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環などの六員複素環;キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、シンノリン環、プリン環、インドール環、イソインドール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾイソオキサゾール環などの縮合複素環;などが挙げられる。これらのなかでも、五員複素環および六員複素環が好ましく、イミダゾール環がより好ましい。ポリエーテルゴムにおいて、上記一般式(1)で表される単位中のAは、それぞれ独立しており、ポリエーテルゴム中に、2種以上の、カチオン性含窒素芳香族複素環を含有する基が存在していてもよい。
 上記含窒素芳香族複素環の置換基としては、特に限定されないが、たとえば、アルキル基;シクロアルキル基;アルケニル基;アリール基;アリールアルキル基;アルキルアリール基;アルコキシル基;アルコキシアルキル基;アリールオキシ基;アルカノール基;水酸基;カルボニル基;アルコキシカルボニル基;アミノ基;イミノ基;ニトリル基;アルキルシリル基;ハロゲン原子;などが挙げられる。
 本発明において、上記一般式(1)中のAで表されるカチオン性含窒素芳香族複素環を含有する基としては、下記一般式(6)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 (上記一般式(6)中に表されているN-は、上記一般式(1)において、上記一般式(1)に示す「2」の位置の炭素原子と結合している。また、上記一般式(6)中に表されているRは、水素原子、または炭素数1~20の炭化水素基を表す。)
 上記一般式(6)中に表されているRは、炭素数1~10のアルキル基であることが好ましく、メチル基であることがより好ましい。
 本発明の製造方法により得られるポリエーテルゴム中における、上記一般式(1)で表される単位の含有割合は、全単量体単位中、0.1モル%以上30モル%未満であり、0.1~20モル%であることが好ましく、0.1~5モル%であることがが特に好ましい。上記一般式(1)で表される単位の含有割合が前記範囲内にあると、圧縮永久歪率が小さく、電気抵抗値が低く、かつ、体積固有抵抗値の通電上昇を抑制可能なゴム架橋物を与えることができるポリエーテルゴムが得られる。一方、上記一般式(1)で表される単位の含有割合が少なすぎると、得られるゴム架橋物の体積固有抵抗値が高くなり、連続して電圧を印加した場合に電気抵抗値が上昇する場合がある。また、上記一般式(1)で表される単位の含有割合が多すぎると、ポリエーテルゴムが硬くなり、ゴム弾性体としての特質が失われる場合がある。
 上記一般式(1)のXで表される任意の対アニオンとは、イオン結合にて、Aと結合している負の電荷を有する化合物または原子であり、負の電荷を持つこと以外は特に限定されない。対アニオンは、電離性のイオン結合を形成するものであるため、公知のイオン交換反応により、少なくとも一部を、任意の対アニオンにアニオン交換することができる。上記オニウム化剤と、エピハロヒドリン単量体単位を0.1モル%以上含有しているポリエーテルゴムとを、少なくともハイドロタルサイトを含む受酸剤の存在下、混練機等にて混練し、反応させ、反応が終了した段階においては、上記一般式(1)のXはハロゲン原子であるが、Aの対アニオンであるハロゲン化物イオンに対し、公知のアニオン交換反応を行ってもよい。アニオン交換反応は、オニウムイオン含有基を有するポリエーテルゴムに対し、電離性を有するイオン性化合物を混合することで行うことができる。アニオン交換反応を行う条件は、特に限定されないが、用いるイオン性化合物やポリエーテルゴムの構造、目的とするAの対アニオンの置換率などに応じて決定すればよい。反応は、イオン性化合物と、オニウムイオン含有基を有するポリエーテルゴムのみで行っても構わないし、有機溶媒などのその他の化合物を含んでいても構わない。イオン性化合物の使用量は、特に限定されないが、用いるエピハロヒドリン単量体単位を構成するハロゲン原子1モルに対し、通常、0.01~100モル、好ましくは0.02~50モル、より好ましくは0.03~10モルの範囲である。イオン性化合物の量が少なすぎると、置換反応が進行しにくくなるおそれがあり、一方、多すぎると、イオン性化合物の除去が困難になるおそれがある。
 アニオン交換反応時の圧力は、通常、0.1~50MPaであり、好ましくは0.1~10MPaであり、より好ましくは0.1~5MPaである。反応時の温度は、通常、-30~200℃、好ましくは-15~180℃、より好ましくは0~150℃である。反応時間は、通常、1分~1000時間であり、好ましくは3分~100時間であり、より好ましくは5分~10時間であり、さらに好ましくは5分~3時間である。
 対アニオンのアニオン種は、特に限定されないが、たとえば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン;硫酸イオン;亜硫酸イオン;水酸化物イオン;炭酸イオン;炭酸水素イオン;硝酸イオン;酢酸イオン;過塩素酸イオン;リン酸イオン;アルキルオキシイオン;トリフルオロメタンスルホン酸イオン;ビストリフルオロメタンスルホンイミドイオン;ヘキサフルオロリン酸イオン;テトラフルオロホウ酸イオン;などが挙げられる。
 上記一般式(1)で表される単位の、本発明の製造方法により得られるポリエーテルゴム中の含有割合(以下、「オニウムイオン単位含有率」とも記す。)を調べる方法としては、公知の方法を用いればよい。オニウムイオン単位含有率を簡便かつ定量的に求めるためには、本発明の製造方法により得られるポリエーテルゴムについてH-NMR測定を行うことにより、オニウムイオン含有基の含有量を定量することができる。具体的には、まず、カチオン化ポリエーテルゴムの主鎖であるポリエーテル鎖に由来するプロトンの積分値から、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1を算出する。次に、オニウムイオン含有基に由来するプロトンの積分値から、導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を算出する。導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1で除することにより、オニウムイオン単位含有率を、下記式により算出することができる。
  オニウムイオン単位含有率(モル%)=100×B2/B1
 また、用いるオニウム化剤が、上述した反応条件において、オニウムイオン含有基の置換反応以外の反応で消費されない場合には、オニウム化剤の消費モル量は、ハロゲン原子のオニウムイオン含有基の置換モル量と等しくなる。そのため、オニウム化剤の消費モル量を、反応開始前の添加モル量A1から反応終了後の残留モル量A2を減じることにより算出し、これをオニウム化剤と反応させる前のポリエーテルゴム(以下、「ベースポリエーテルゴム」とも記す。)の全単量体単位のモル量Pにて除することにより、オニウムイオン単位含有率を、下記式により算出することもできる。
  オニウムイオン単位含有率(モル%)=100×(A1-A2)/P
 消費モル量の測定に関しては、公知の測定方法を用いて構わないが、たとえば、その反応率をキャピラリーカラムと水素炎イオン化型検出器(FID)とを装備したガスクロマトグラフィー(GC)を用いて測定することができる。
 また、本発明の製造方法により得られるポリエーテルゴムは、上記一般式(1)で表される単位を必須とし、上記一般式(1)で表される単位、ならびに、[エピハロヒドリン単量体単位、および/または不飽和オキサイド単量体単位]を含有する共重合体であることが好ましく、上記一般式(1)で表される単位、エチレンオキサイド単量体単位、ならびに、[エピハロヒドリン単量体単位および/または不飽和オキサイド単量体単位]を含有する共重合体であることがより好ましく、上記一般式(1)で表される単位、エチレンオキサイド単量体単位、エピハロヒドリン単量体単位、および不飽和オキサイド単量体単位を含有する共重合体であることがさらに好ましい。
 本発明の製造方法により得られるポリエーテルゴムは、架橋性単量体単位を含有することが好ましい。架橋性単量体単位としては、エピハロヒドリン単量体単位および/または不飽和オキサイド単量体単位が好ましい。
 エピハロヒドリン単量体としては、上述した、エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムに使用することができるエピハロヒドリン単量体を用いることができる。本発明の製造方法により得られるポリエーテルゴム中における、エピハロヒドリン単量体単位の含有割合は、全単量体単位中、99.9~0モル%であることが好ましく、78.5~10モル%であることがより好ましく、57.3~15モル%であることが特に好ましい。エピハロヒドリン単量体単位の含有割合が前記範囲内にあると、体積固有抵抗値の通電上昇を抑制可能なゴム架橋物を与えることができるポリエーテルゴムが得られる。一方、エピハロヒドリン単量体単位の含有割合が多すぎると、得られるゴム架橋物の体積固有抵抗値が上昇する場合があり、少なすぎると、得られるゴム架橋物の架橋が不十分となり、ゴム架橋物の形状維持が困難になる場合がある。
 不飽和オキサイド単量体単位を形成する不飽和オキサイド単量体としては、分子内に少なくとも一つの炭素-炭素不飽和結合(芳香環の炭素-炭素不飽和結合は除く)と、少なくとも一つのエポキシ基とを含有する化合物であれば、特に限定されないが、たとえば、アリルグリシジルエーテル、ブテニルグリシジルエーテルなどのアルケニルグリシジルエーテル類;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド類;などが挙げられる。これらのなかでも、アルケニルグリシジルエーテル類が好ましく、アリルグリシジルエーテルがより好ましい。不飽和オキサイド単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。本発明の製造方法により得られるポリエーテルゴム中における、不飽和オキサイド単量体単位の含有割合は、全単量体単位中、15~0モル%であることが好ましく、12~1モル%であることがより好ましく、10~2モル%であることが特に好ましい。ポリエーテルゴム中における、不飽和オキサイド単量体単位の含有割合が前記範囲内にあると、架橋性に優れたポリエーテルゴムが得られる。一方、不飽和オキサイド単量体単位の含有割合が少なすぎると、得られるゴム架橋物の圧縮永久歪が悪化する場合がある。また、不飽和オキサイド単量体単位の含有割合が多すぎると、重合反応中に、ポリマー分子中あるいはポリマー分子間のゲル化反応(3次元架橋反応)などを起こし易くなって、成形加工性が低下するおそれがある。
 また、本発明の製造方法により得られるポリエーテルゴムを導電性部材、特に導電性ロールの材料として用いる場合、本発明の製造方法により得られるポリエーテルゴムは、低電気抵抗性の観点から、エチレンオキサイド単量体単位を含有していることが好ましい。
 エキレンオキサイド単量体単位は、エチレンオキサイド単量体により形成される単位である。本発明の製造方法により得られるポリエーテルゴム中における、エチレンオキサイド単量体単位の含有割合は、全単量体単位中、90~0モル%であることが好ましく、80~20モル%であることがより好ましく、75~40モル%であることが特に好ましい。ポリエーテルゴム中における、エチレンオキサイド単量体単位の含有割合が前記範囲内にあると、低電気抵抗性に優れたポリエーテルゴムが得られる。一方、エチレンオキサイド単量体単位の含有割合が少なすぎると、得られるゴム架橋物の電気抵抗値の低減効果が得難くなる。また、エチレンオキサイド単量体単位の含有割合が多すぎると、ポリエーテルゴムの製造が困難になるおそれがある。
 本発明の製造方法により得られるポリエーテルゴムは、上記一般式(1)で表される単位、エピハロヒドリン単量体単位、不飽和オキサイド単量体単位、エチレンオキサイド単量体単位に加えて、必要に応じて、上記一般式(1)で表される単位および前記単量体単位と共重合可能なその他の単量体単位を含有する共重合体であってもよい。その他の単量体単位のなかでも、エチレンオキサイドを除いたアルキレンオキサイド単量体単位が好ましい。エチレンオキサイドを除いたアルキレンオキサイド単量体単位を形成するアルキレンオキサイド単量体としては、特に限定されないが、例えば、プロピレンオキサイド、1,2-エポキシブタン、1,2-エポキシ-4-クロロペンタン、1,2-エポキシヘキサン、1,2-エポキシオクタン、1,2-エポキシデカン、1,2-エポキシオクタデカン、1,2-エポキシエイコサン、1,2-エポキシイソブタン、2,3-エポキシイソブタンなどの直鎖状または分岐鎖状アルキレンオキサイド;1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロドデカンなどの環状アルキレンオキサイド;ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、2-メチルオクチルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテルなどのアルキル直鎖または分岐鎖を有するグリシジルエーテル;エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルなどのオキシエチレン側鎖を有するグリシジルエーテル;などが挙げられる。これらのなかでも、直鎖状アルキレンオキサイドが好ましく、プロピレンオキサイドがより好ましい。これらアルキレンオキサイド単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。本発明の製造方法により得られるポリエーテルゴム中における、エチレンオキサイドを除いたアルキレンオキサイド単量体単位の含有割合は、全単量体単位中、30モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。ポリエーテルゴム中における、エチレンオキサイドを除いたアルキレンオキサイド単量体単位の含有割合が多すぎると、得られるゴム架橋物の体積固有抵抗値が上昇するおそれがある。
 また、アルキレンオキサイド単量体を除く、その他の共重合可能な単量体としては、特に限定されないが、たとえば、スチレンオキサイド、フェニルグリシジルエーテルなどのアリールエポキシド類;などが挙げられる。本発明の製造方法により得られるポリエーテルゴム中における、アルキレンオキサイド単量体を除く、その他の共重合可能な単量体単位の含有割合は、全単量体単位中、20モル%以下が好ましく、10モル%以下がより好ましく、5モル%以下がさらに好ましい。
 本発明の製造方法により得られるポリエーテルゴムの重量平均分子量は、20万~200万であることが好ましく、40万~150万であることがより好ましい。重量平均分子量が高すぎると、ムーニー粘度が高くなり、成形加工が難しくなるおそれがある(たとえば、得られるポリエーテルゴムをプレス、射出成型等により加工する際において、ポリエーテルゴムが流れにくくなり、型どおりのものが成形できなるおそれがある。)。一方、重量平均分子量が低すぎると、得られるゴム架橋物の圧縮永久歪が悪化するおそれがある。
 本発明の製造方法により得られるポリエーテルゴムのムーニー粘度(ポリマームーニー粘度・ML1+4,100℃)は、10~120であることが好ましく、20~90であることがより好ましい。ムーニー粘度が高すぎると、成形加工性に劣り(たとえば、得られるポリエーテルゴムをプレス、射出成型等により加工する際において、ポリエーテルゴムが流れにくくなり、型どおりのものが成形できなるおそれがある。)、導電性部材用途への成形がし難くなる。さらに、スウェル(押し出し成形時にダイの径より押出物の径が大きくなること)が発生し、寸法安定性が低下するおそれがある。一方、ムーニー粘度が低すぎると、得られるゴム架橋物の機械的強度が低下するおそれがあるとともに、たとえば、得られるポリエーテルゴムをロール状のゴム架橋物とした場合に、該ゴム架橋物の表面を研磨する際に表面を滑らかに仕上げることが難しくなるおそれがある。
<架橋性ゴム組成物>
 また、本発明においては、本発明の製造方法により得られるポリエーテルゴムに、架橋剤を配合することで、架橋性ゴム組成物とすることができる。
 本発明で用いる架橋剤としては、上述した架橋性単量体単位の有無、およびその種類などにより適宜選択すればよいが、本発明の製造方法により得られるポリエーテルゴムを架橋可能なものであれば、特に限定されない。このような架橋剤としては、たとえば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などの硫黄;一塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、カプロラクタムジスルフィド、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;ジクミルペルオキシド、ジターシャリブチルペルオキシドなどの有機過酸化物;p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシムなどのキノンジオキシム;トリエチレンテトラミン、ヘキサメチレンジアミンカルバメート、4,4’-メチレンビス-o-クロロアニリンなどの有機多価アミン化合物;s-トリアジン-2,4,6-トリチオールなどのトリアジン系化合物;メチロール基を持つアルキルフェノール樹脂;などが挙げられる。これらのなかでも、硫黄、含硫黄化合物、トリアジン系化合物が好ましく、架橋性単量体として、不飽和オキサイド単量体を用いる場合は、硫黄、含硫黄化合物がより好ましい。これらの架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋剤の配合割合は、本発明の製造方法により得られるポリエーテルゴム100重量部に対し、好ましくは0.1~10重量部であり、0.2~7重量部がより好ましく、0.3~5重量部がさらに好ましい。架橋剤の配合量が少なすぎると、架橋速度が遅くなり、得られるゴム架橋物の生産性が低下したり、ゴム架橋物を研磨して使用する場合に研磨性が低下したりするおそれがある。一方、架橋剤の配合量が多すぎると、得られるゴム架橋物の硬度が高くなったり、架橋剤がブルームしたりする可能性がある。
 架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進助剤、および架橋促進剤を併用することが好ましい。架橋促進助剤としては、特に限定されないが、たとえば、亜鉛華、ステアリン酸などが挙げられる。架橋促進剤としては、特に限定されないが、たとえば、グアニジン系;アルデヒド-アミン系;アルデヒド-アンモニア系;チアゾール系;スルフェンアミド系;チオ尿素系;チウラム系;ジチオカルバミン酸塩系;などの各架橋促進剤を用いることができる。架橋促進助剤および架橋促進剤は、それぞれ1種を単独で使用してもよく、2種以上併用して用いてもよい。
 架橋促進助剤および架橋促進剤の各使用量は、特に限定されないが、本発明の製造方法により得られるポリエーテルゴム100重量部に対して、それぞれ0.01~15重量部が好ましく、0.1~10重量部がより好ましい。架橋促進助剤および架橋促進剤の使用量が多すぎると、架橋速度が早くなりすぎたり、得られるゴム架橋物の表面にブルームしたりするおそれがある。一方、少なすぎる場合は、架橋速度が遅くて生産性に劣ったり、架橋が十分に進行せず、得られるゴム架橋物の機械的特性が劣るおそれがある。
 架橋性ゴム組成物には、本発明の効果を損なわない範囲で、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、イソプレンゴム、天然ゴム、アクリロニトリルブタジエンゴム、ブチルゴム、およびこれらゴムの部分水素添加物(たとえば、水素化ニトリルゴム)などのジエン系ゴム;エチレンプロピレンゴム、アクリルゴム、ポリエーテル系ゴム(本発明の製造方法で得られるポリエーテルゴムを除く)、フッ素ゴム、シリコーンゴムなどのジエン系ゴム以外のゴム;オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマー;ポリ塩化ビニル、クマロン樹脂、フェノール樹脂などの樹脂;を含有していてもよい。これらのゴム、熱可塑性エラストマー、および樹脂は、単独で、あるいは2種以上組み合わせて用いることができ、これらの合計含有量は、本発明の製造方法により得られるポリエーテルゴム100重量部に対して、100重量部以下が好ましく、50重量部以下がより好ましく、20重量部以下が特に好ましい。
 さらに、架橋性ゴム組成物は、上述した添加剤以外に、公知のゴムに通常配合されるその他の添加剤を含有していてもよい。このような添加剤としては、特に限定されないが、たとえば、充填剤;受酸剤;補強剤;老化防止剤;紫外線吸収剤;耐光安定剤;粘着付与剤;界面活性剤;導電性付与剤;電解質物質;着色剤(染料・顔料);難燃剤;帯電防止剤;などが挙げられる。
 架橋性ゴム組成物は、本発明の製造方法により得られるポリエーテルゴムに、架橋剤、および必要に応じて用いられる各添加剤を、所望の方法により調合、混練することにより調製することができる。たとえば、架橋剤および架橋促進剤を除く添加剤と、ポリエーテルゴムとを混練後、その混合物に架橋剤および架橋促進剤を混合して、架橋性ゴム組成物を得ることができる。調合、混練に際しては、たとえば、ニーダー、バンバリー、オープンロール、カレンダーロール、押出機など任意の混練成形機を一つあるいは複数組み合わせて用いて混練成形してもよい。架橋剤および架橋促進剤を除く添加剤と、ポリエーテルゴムとの混練温度は、20~200℃が好ましく、20~150℃がより好ましく、その混練時間は、30秒~30分が好ましく、混練物と、架橋剤および架橋促進剤との混合温度は、100℃以下が好ましく、0~80℃がより好ましい。
<ゴム架橋物>
 また、本発明においては、上記のようにして得られる架橋性ゴム組成物を架橋することで、ゴム架橋物とすることができる。
 架橋性ゴム組成物を架橋する方法は、特に限定されないが、成形と架橋を同時に行っても、成形後に架橋してもよい。成形時の温度は、20~200℃が好ましく、40~180℃がより好ましい。架橋時の加熱温度は、130~200℃が好ましく、140~200℃がより好ましい。架橋時の温度が低すぎると、架橋時間が長時間必要となったり、得られるゴム架橋物の架橋密度が低くなったりするおそれがある。一方、架橋時の温度が高すぎると、成形不良となるおそれがある。架橋時間は、架橋方法、架橋温度、形状などにより異なるが、1分以上、5時間以下の範囲が架橋密度と生産効率の面から好ましい。加熱方法としては、プレス加熱、オーブン加熱、蒸気加熱、熱風加熱、およびマイクロ波加熱などの方法を適宜選択すればよい。
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。二次架橋を行う際における、加熱温度は、100~220℃が好ましく、130~210℃がより好ましい。加熱時間は、30分~5時間が好ましい。
 このようにして得られるゴム架橋物の体積固有抵抗値は、温度23℃、湿度50%とした測定環境にて、印加電圧を100Vとし、電圧印加開始から30秒後の値において、通常、1×104.0~1×109.5Ω・cmであり、好ましくは1×104.5~1×108.0Ω・cmであり、より好ましくは1×105.0~1×107.2Ω・cmである。ゴム架橋物の体積固有抵抗値が前記範囲内にあると、低電気抵抗性に優れた導電性部材が得られる。一方、ゴム架橋物の体積固有抵抗値が高すぎると、同じ電流を流すためにより高い電圧を印加しなければならず、消費電力量が多くなることから導電性部材には不向きである。また、ゴム架橋物の体積固有抵抗値が低すぎると、電圧印加方向以外の意図しない方向に電流が流れてしまい、導電性部材としての機能を損ねるおそれがある。
 また、このようにして得られるゴム架橋物の体積固有抵抗値の通電上昇値は、前記体積固有抵抗値の測定条件において、電圧印加開始から15分後のlog10(体積固有抵抗値)から、電圧印加開始から30秒後のlog10(体積固有抵抗値)を減じたものにおいて、0~1の範囲にあることが好ましい。
 このようにして得られるゴム架橋物は、電気抵抗値のばらつきが少なく、電気抵抗値が低く、かつ、連続使用した場合でも電気抵抗値の上昇を抑制するものであるため、複写機や印刷機などに使用される導電性部材、特に、導電性ロールに好適に用いることができる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の「部」は、特に断りのない限り、重量基準である。
 各種の物性については、以下の方法に従って評価した。
[オニウムイオン単位含有率]
 オニウムイオン単位含有率の測定は、核磁気共鳴装置(H-NMR)を用いて、以下のように行った。オニウム化反応後、得られたカチオン化ポリエーテルゴム30mgを、1.0mlのジメチルスルホキシド-d6に加え、1時間振とうすることにより均一に溶解させた。この溶液を、H-NMR測定することによりオニウムイオン単位含有率を算出した。まず、カチオン化ポリエーテルゴムの主鎖であるポリエーテル鎖に由来するプロトンの積分値から、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1を算出した。次に、オニウムイオン含有基に由来するプロトンの積分値から、導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を算出した。そして、導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1で除することにより、オニウムイオン単位含有率を、下記式により算出した。
  オニウムイオン単位含有率(モル%)=100×B2/B1
[ムーニー粘度(ポリマームーニー)]
 オニウム化反応後、得られたカチオン化ポリエーテルゴムについて、JIS K6300-1に従ってムーニー粘度(ポリマー・ムーニー)を測定した(単位は〔ML1+4、100℃〕)。
[ロール加工性の評価]
 ゴム組成物と架橋剤とをオープンロールにて混練し、シート状のゴム組成物を調製する際に、ゴム組成物のオープンロールへの粘着性を、目視にて、以下の基準で観察することで、ロール加工性の評価を行った。
 A:ゴム組成物にべとつきがなく、オープンロールから容易に剥離できた。
 B:ゴム組成物に若干べとつきがあるが、停止せずにオープンロールから剥離はできた。
 C:ゴム組成物にべとつきがあり、停止しないとオープンロールからの剥離はできなかった。
 D:ゴム組成物のべとつきがひどく、オープンロールから剥離できず、混練不能であった。
[圧縮永久歪率の測定]
 ゴム組成物を温度160℃、30分間のプレスによって成形、架橋し、直径29mm、高さ12.7mmの円柱型のゴム架橋物(円柱型試験片)を得た。そして、JIS K6262に従い、得られたゴム架橋物を25%圧縮させた状態で、70℃の環境下で22時間放置した後、圧縮を解放して圧縮永久歪率を測定した。圧縮永久歪率は、数値が小さいほど、ゴム弾性を保持しており、ゴムとして優れている。
[体積固有抵抗値]
 ゴム組成物を温度160℃、30分間のプレスによって成形、架橋し、縦15cm、横10cm、厚さ2mmのシート状のゴム架橋物(シート状試験片)を得た。そして、得られたシート状のゴム架橋物を用いて、体積固有抵抗値を測定した。体積固有抵抗値の測定値は、log10での値を得た。なお、体積固有抵抗値の測定は、ハイレスタ-UP/URSプローブ(三菱アナリテック社製)を使用して行い、測定条件は、印加電圧を100V(測定条件2は10V)とし、測定条件1:温度23℃、湿度50%RH、測定条件2:温度32℃、湿度80%RH、測定条件3:温度10℃、湿度20%RHの各条件にて、電圧の印加を開始してから30秒後の値をそれぞれ測定した。また、測定条件3にて測定した体積固有抵抗値と、測定条件2にて測定した体積固有抵抗値との差分を算出した。
[体積固有抵抗値の通電上昇値(23℃、50%RH)]
 体積固有抵抗値の通電上昇値は、上記の体積固有抵抗値の測定条件(測定条件1)にて、電圧の印加を開始してから15分後のlog10(体積固有抵抗値)から、電圧の印加を開始してから30秒後のlog10(体積固有抵抗値)を減じたものとした。
〔実施例1〕
(カチオン化ポリエーテルゴム1の製造)
 25℃のオープンロールに、ポリエーテルゴム(a1)(商品名「Hydrin T3106」のエピクロルヒドリン単量体単位を0.1モル%以上含有するエピクロロヒドリンゴム、日本ゼオン社製)100部と、4,4‘-チオビス(3-メチル-6-t-ブチルフェノール)2部と、ハイドロタルサイト(b1)(商品名「キョーワード500SH」、BET法で測定される比表面積が102m/g、協和化学工業社製)2.7部、酸化マグネシウム0.5部と、1-メチルイミダゾール1.69部とを投入し、5分間混練し、シート状のゴム組成物を得た。
 次いで、上記にて得られたシート状のゴム組成物を、175℃、20分間、プレス成型機で加熱反応させることで、ポリエーテルゴム(a1)と1-メチルイミダゾールとを反応させ、カチオン化ポリエーテルゴム1を得た。
 そして、得られたカチオン化ポリエーテルゴム1について、上述した方法に従って、H-NMR測定することにより、オニウムイオン単位含有率を算出した。さらに、上述した方法に従って、ムーニー粘度(ポリマームーニー)の測定を行った。結果を表1に示す。
(ゴム組成物1、およびゴム架橋物1の製造)
 バンバリーミキサーに、上記にて得られたカチオン化ポリエーテルゴム1 100部、充填剤としてカーボンブラック(商品名「シーストSO」、東海カーボン社製)10部、架橋促進助剤としての亜鉛華1号(商品名「ZnO#1」、正同化学社製)5部、架橋促進助剤としてのステアリン酸0.5部を投入し、50℃で5分間混練りした後、バンバリーミキサーからゴム組成物を排出させた。次いで、50℃のオープンロールに、このゴム組成物と、架橋剤としての硫黄(商品名「サルファックスPMC」、鶴見化学工業社製)0.5部、架橋剤としてのモルホリンジスルフィド(商品名「バルノックR」、大内新興化学工業社製)1部、架橋促進剤としての、テトラエチルチウラムジスルフィド(商品名「ノクセラーTET」、大内新興化学工業社製)1部およびジベンゾチアジルジスルフィド(商品名「ノクセラーDM」、大内新興化学工業社製)1.5部とを投入し、10分間混練りすることで、シート状のゴム組成物1を調製した。このゴム組成物1を、160℃で30分間プレス架橋してゴム架橋物1(試験片1)を作製し、この試験片1について、圧縮永久歪率、体積固有抵抗値、体積固有抵抗値の通電上昇値の評価を行った。結果を表1に示す。
〔実施例2〕
 ハイドロタルサイト(b1)に代えて、ハイドロタルサイト(b2)(商品名「DHT-4C」、BET法で測定される比表面積が15m/g、協和化学工業社製)1.8部を用いた以外は、実施例1と同様にして、カチオン化ポリエーテルゴム2を得た。そして、得られたカチオン化ポリエーテルゴム2を用いて、実施例1と同様にして、ゴム組成物2、ゴム架橋物2を得て、同様に評価を行った。結果を表1に示す。
〔実施例3〕
 ハイドロタルサイト(b2)の配合量を1.8部から2.4部へ変更し、酸化マグネシウムを配合しなかった以外は、実施例2と同様にして、カチオン化ポリエーテルゴム3を得た。そして、得られたカチオン化ポリエーテルゴム3を用いて、実施例1と同様にして、ゴム組成物3、ゴム架橋物3を得て、同様に評価を行った。結果を表1に示す。
〔実施例4〕
 ハイドロタルサイト(b1)の配合量を2.7部から3.6部へ変更し、酸化マグネシウムを配合しなかった以外は、実施例1と同様にして、カチオン化ポリエーテルゴム4を得た。そして、得られたカチオン化ポリエーテルゴム4を用いて、実施例1と同様にして、ゴム組成物4、ゴム架橋物4を得て、同様に評価を行った。結果を表1に示す。
〔実施例5〕
 ポリエーテルゴム(a1)に代えて、ポリエーテルゴム(a2)(商品名「Hydrin T3108」のエピクロルヒドリン単量体単位を0.1モル%以上含有するエピクロロヒドリンゴム、日本ゼオン社製)100部を用いた以外は、実施例3と同様にして、カチオン化ポリエーテルゴム5を得た。そして、得られたカチオン化ポリエーテルゴム5を用いて、実施例1と同様にして、ゴム組成物5、ゴム架橋物5を得て、同様に評価を行った。結果を表1に示す。
〔実施例6〕
 1-メチルイミダゾールの配合量を1.69部から0.99部に変更した以外は、実施例1と同様にして、カチオン化ポリエーテルゴム6を得た。そして、得られたカチオン化ポリエーテルゴム6を用いて、実施例1と同様にして、ゴム組成物6、ゴム架橋物6を得て、同様に評価を行った。結果を表1に示す。
〔実施例7〕
 1-メチルイミダゾールの配合量を1.69部から2.63部に変更し、ハイドロタルサイト(b1)の配合量を2.7部から4.0部へ変更した以外は、実施例1と同様にして、カチオン化ポリエーテルゴム7を得た。そして、得られたカチオン化ポリエーテルゴム7を用いて、実施例1と同様にして、ゴム組成物7、ゴム架橋物7を得て、同様に評価を行った。結果を表1に示す。
〔実施例8〕
 ポリエーテルゴム(a1)に代えて、ポリエーテルゴム(a2)100部を使用し、1-メチルイミダゾールの配合量を1.69部から0.30部に変更し、ハイドロタルサイト(b1)の配合量を2.7部から0.5部に変更し、酸化マグネシウムの配合量を0.5部から0.1部に変更した以外は、実施例1と同様にして、カチオン化ポリエーテルゴム8を得た。そして、得られたカチオン化ポリエーテルゴム8を用いて、実施例1と同様にして、ゴム組成物8、ゴム架橋物8を得て、同様に評価を行った。結果を表1に示す。
〔実施例9〕
 1-メチルイミダゾールの配合量を0.30部から0.60部に変更し、ハイドロタルサイト(b1)の配合量を0.5部から1.5部に変更し、酸化マグネシウムを配合しなかった以外は、実施例8と同様にして、カチオン化ポリエーテルゴム9を得た。そして、得られたカチオン化ポリエーテルゴム9を用いて、実施例8と同様にして、ゴム組成物9、ゴム架橋物9を得て、同様に評価を行った。結果を表1に示す。
〔実施例10〕
 1-メチルイミダゾールの配合量を0.30部から1.00部に変更し、ハイドロタルサイト(b1)の配合量を0.5部から1.6部に変更し、酸化マグネシウムの配合量を0.1部から0.3部に変更した以外は、実施例8と同様にして、カチオン化ポリエーテルゴム10を得た。そして、得られたカチオン化ポリエーテルゴム10を用いて、実施例8と同様にして、ゴム組成物10、ゴム架橋物10を得て、同様に評価を行った。結果を表1に示す。
〔実施例11〕
 ハイドロタルサイト(b1)に代えて、ハイドロタルサイト(b3)(商品名「DHT-4A-2」、BET法で測定される比表面積が13m/g、協和化学工業社製)2.4部を用い、酸化マグネシウムを配合しなかった以外は、実施例1と同様にして、カチオン化ポリエーテルゴム11を得た。そして、得られたカチオン化ポリエーテルゴム11を用いて、実施例1と同様にして、ゴム組成物11、ゴム架橋物11を得て、同様に評価を行った。結果を表1に示す。
〔比較例1〕
 ハイドロタルサイト(b1)2.7部および酸化マグネシウム0.5部に代えて、酸化マグネシウム2.4部および炭酸カルシウム4部を用いた以外は、実施例1と同様にして、カチオン化ポリエーテルゴム12を得た。そして、得られたカチオン化ポリエーテルゴム12を用いて、実施例1と同様にして、ゴム組成物12、ゴム架橋物12を得て、同様に評価を行った。結果を表1に示す。
〔比較例2〕
 ハイドロタルサイト(b1)2.7部に代えて、ハイドロタルサイト(b4)(商品名「マグセラー」、BET法で測定される比表面積が9m/g、協和化学工業社製)2.4部を用い、酸化マグネシウムを配合しなかった以外は、実施例1と同様にして、カチオン化ポリエーテルゴム13を得た。そして、得られたカチオン化ポリエーテルゴム13を用いて、実施例1と同様にして、ゴム組成物13を得て、同様に評価を行った。なお、比較例2においては、ゴム架橋物の製造および評価は行わなかった。結果を表1に示す。
〔比較例3〕
 ハイドロタルサイト(b1)2.7部に代えて、ハイドロタルサイト(b5)(商品名「アルカマイザー」、BET法で測定される比表面積が8m/g、協和化学工業社製)2.4部を用い、酸化マグネシウムを配合しなかった以外は、実施例1と同様にして、カチオン化ポリエーテルゴム14を得た。そして、得られたカチオン化ポリエーテルゴム14を用いて、実施例1と同様にして、ゴム組成物14を得て、同様に評価を行った。なお、比較例3においては、ゴム架橋物の製造および評価は行わなかった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1に示すようにエピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、受酸剤としての比表面積が10m/g以上であるハイドロタルサイトの存在下で、オニウム化反応を進行させた場合には、得られたカチオン化ポリエーテルゴムは、ロール加工性に優れたものであった(実施例1~11)。しかも、実施例1~11においては、このカチオン化ポリエーテルゴムを用いて得られたゴム架橋物は、比較例1のゴム架橋物と比較して、温度および湿度を変化させた場合の体積固有抵抗値の差(測定条件3にて測定した体積固有抵抗値と、測定条件2にて測定した体積固有抵抗値との差)が小さく、かつ、体積固有抵抗値の通電上昇値も抑制されていることが確認された。また、実施例1~7のゴム架橋物は、1-メチルイミダゾールの使用量を低減させ、オニウムイオン単位含有率を低下させた実施例8~11と比較して、圧縮永久歪率が低く、耐圧縮永久ひずみ性にも優れていた。
 一方、受酸剤としてのハイドロタルサイトを配合せずに、ポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とのオニウム化反応を進行させて得られたカチオン化ポリエーテルゴムは、ロール加工性に劣るものであった(比較例1)。また、比較例1においては、このカチオン化ポリエーテルゴムを用いて得られたゴム架橋物は、温度および湿度を変化させた場合の体積固有抵抗値の差が大きく、かつ、体積固有抵抗値の通電上昇値も大きかった。
 また、受酸剤としてのハイドロタルサイトを配合した場合であっても、使用したハイドロタルサイトの比表面積が小さすぎる場合には、得られたカチオン化ポリエーテルゴムは、ロール加工性に劣るものであった(比較例2,3)。

Claims (6)

  1.  下記一般式(1)で表される単位を、0.1モル%以上30モル%未満含有するポリエーテルゴムを製造する方法であって、
     エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴムと、窒素原子含有芳香族複素環式化合物とを、BET法により測定される窒素吸着比表面積が10m/g以上であるハイドロタルサイトを少なくとも含む受酸剤の存在下で、混練して反応させることにより、前記エピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、カチオン性含窒素芳香族複素環を含有する基に置換することを特徴とするポリエーテルゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)中、Aは、カチオン性含窒素芳香族複素環を含有する基である。前記カチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。Xは任意の対アニオンである。)
  2.  前記エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴム100重量部に対する、前記ハイドロタルサイトの使用量が、0.1~15重量部である請求項1に記載のポリエーテルゴムの製造方法。
  3.  前記ハイドロタルサイトが、少なくともMgおよびAlを含有する請求項1または2に記載のポリエーテルゴムの製造方法。
  4.  前記窒素原子含有芳香族複素環式化合物が、五員複素環式化合物または六員複素環式化合物である請求項1~3のいずれかに記載のポリエーテルゴムの製造方法。
  5.  前記受酸剤として、さらにマグネシウム、カルシウム、およびバリウムから選択される少なくとも一種の酸化物、水酸化物、および/または、炭酸塩を、前記エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴム100重量部に対して、0.1~5重量部の割合で用いる請求項1~4のいずれかに記載のポリエーテルゴムの製造方法。
  6.  前記受酸剤として、さらに酸化マグネシウムを、前記エピハロヒドリン単量体単位を0.1モル%以上含有するポリエーテルゴム100重量部に対して、0.1~2重量部の割合で用いる請求項1~4のいずれかに記載のポリエーテルゴムの製造方法。
PCT/JP2017/006593 2016-02-29 2017-02-22 ポリエーテルゴムの製造方法 WO2017150300A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780012491.3A CN108699235B (zh) 2016-02-29 2017-02-22 聚醚橡胶的制造方法
KR1020187025834A KR20180115277A (ko) 2016-02-29 2017-02-22 폴리에테르 고무의 제조 방법
US16/079,267 US10738136B2 (en) 2016-02-29 2017-02-22 Method of producing polyether rubber
EP17759766.3A EP3424979B1 (en) 2016-02-29 2017-02-22 Method for producing polyether rubber
JP2018503068A JP6816754B2 (ja) 2016-02-29 2017-02-22 ポリエーテルゴムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-037055 2016-02-29
JP2016037055 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150300A1 true WO2017150300A1 (ja) 2017-09-08

Family

ID=59742850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006593 WO2017150300A1 (ja) 2016-02-29 2017-02-22 ポリエーテルゴムの製造方法

Country Status (6)

Country Link
US (1) US10738136B2 (ja)
EP (1) EP3424979B1 (ja)
JP (1) JP6816754B2 (ja)
KR (1) KR20180115277A (ja)
CN (1) CN108699235B (ja)
WO (1) WO2017150300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116391A1 (ja) * 2018-12-07 2020-06-11 日本ゼオン株式会社 エピハロヒドリン系ゴム組成物、ゴム架橋物、ゴム積層体、およびホース

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136272A1 (ja) * 2007-04-26 2008-11-13 Toagosei Co., Ltd. ハイドロタルサイト化合物およびその製造方法、無機イオン捕捉剤、組成物、電子部品封止用樹脂組成物
WO2012057299A1 (ja) * 2010-10-29 2012-05-03 日本ゼオン株式会社 ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材
JP2013209434A (ja) * 2012-03-30 2013-10-10 Nippon Zeon Co Ltd ゴム架橋物の製造方法
WO2015099027A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 ポリエーテルゴムの製造方法
JP2015124274A (ja) * 2013-12-26 2015-07-06 日本ゼオン株式会社 ポリエーテルゴムの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188681B2 (ja) * 2006-04-14 2013-04-24 住友ゴム工業株式会社 半導電性ゴム部材および該ゴム部材からなる現像ローラ
JP5021354B2 (ja) * 2006-04-28 2012-09-05 住友ゴム工業株式会社 ゴム部材および該ゴム部材からなる現像ローラ
JP4234751B2 (ja) * 2006-11-02 2009-03-04 住友ゴム工業株式会社 半導電性ゴムロール
JP4160613B2 (ja) * 2006-11-10 2008-10-01 住友ゴム工業株式会社 発泡ゴムロール
JP4630887B2 (ja) * 2007-05-31 2011-02-09 住友ゴム工業株式会社 画像形成部材の再生方法
JP4373462B2 (ja) * 2007-08-03 2009-11-25 住友ゴム工業株式会社 画像形成装置用部材
JP4456641B2 (ja) * 2008-03-14 2010-04-28 住友ゴム工業株式会社 導電性ロール
JP4681039B2 (ja) * 2008-12-04 2011-05-11 住友ゴム工業株式会社 導電性ロール
JP4738498B2 (ja) * 2009-02-06 2011-08-03 住友ゴム工業株式会社 半導電性ゴム組成物とそれを用いた半導電性ゴムローラ
CN102712752B (zh) * 2009-12-29 2015-07-08 日本瑞翁株式会社 聚醚橡胶、橡胶组合物、交联橡胶和导电部件
KR101927242B1 (ko) * 2012-03-27 2018-12-10 제온 코포레이션 고무 가교물의 제조 방법
DE102012012061A1 (de) * 2012-06-15 2013-12-19 Automatik Plastics Machinery Gmbh Vorrichtung zum Granulieren von Schmelzematerial
CN109563258A (zh) * 2016-05-13 2019-04-02 瑞翁化学有限合伙公司 导电聚合物组合物和应用
JP7049578B2 (ja) * 2018-01-22 2022-04-07 住友ゴム工業株式会社 ゴム組成物、ゴムローラおよび画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136272A1 (ja) * 2007-04-26 2008-11-13 Toagosei Co., Ltd. ハイドロタルサイト化合物およびその製造方法、無機イオン捕捉剤、組成物、電子部品封止用樹脂組成物
WO2012057299A1 (ja) * 2010-10-29 2012-05-03 日本ゼオン株式会社 ポリエーテルゴム、ゴム組成物、ゴム架橋物、および導電性部材
JP2012107230A (ja) * 2010-10-29 2012-06-07 Nippon Zeon Co Ltd ポリエーテルゴムの製造方法
JP2013209434A (ja) * 2012-03-30 2013-10-10 Nippon Zeon Co Ltd ゴム架橋物の製造方法
WO2015099027A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 ポリエーテルゴムの製造方法
JP2015124274A (ja) * 2013-12-26 2015-07-06 日本ゼオン株式会社 ポリエーテルゴムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3424979A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116391A1 (ja) * 2018-12-07 2020-06-11 日本ゼオン株式会社 エピハロヒドリン系ゴム組成物、ゴム架橋物、ゴム積層体、およびホース
CN113056371A (zh) * 2018-12-07 2021-06-29 日本瑞翁株式会社 表卤代醇系橡胶组合物、橡胶交联物、橡胶层叠体及软管
JP7415945B2 (ja) 2018-12-07 2024-01-17 日本ゼオン株式会社 エピハロヒドリン系ゴム組成物、ゴム架橋物、ゴム積層体、およびホース

Also Published As

Publication number Publication date
EP3424979A4 (en) 2019-11-27
US10738136B2 (en) 2020-08-11
EP3424979A1 (en) 2019-01-09
JPWO2017150300A1 (ja) 2018-12-20
CN108699235A (zh) 2018-10-23
KR20180115277A (ko) 2018-10-22
US20190048103A1 (en) 2019-02-14
JP6816754B2 (ja) 2021-01-20
EP3424979B1 (en) 2020-07-29
CN108699235B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
JP5776494B2 (ja) ポリエーテルゴムの製造方法
JP6459982B2 (ja) ポリエーテルゴムの製造方法
JP5971332B2 (ja) ゴム架橋物の製造方法
JP5786716B2 (ja) ゴム組成物、ゴム架橋物、および導電性部材
JP6083228B2 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JP2013227432A (ja) ゴム架橋物および導電性部材
WO2017150300A1 (ja) ポリエーテルゴムの製造方法
WO2018061866A1 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JP5835060B2 (ja) ゴム架橋物の製造方法
JP2015124274A (ja) ポリエーテルゴムの製造方法
JP6981420B2 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JP2018016700A (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187025834

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017759766

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759766

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759766

Country of ref document: EP

Kind code of ref document: A1