WO2018061866A1 - 架橋性ゴム組成物、ゴム架橋物、および導電性部材 - Google Patents

架橋性ゴム組成物、ゴム架橋物、および導電性部材 Download PDF

Info

Publication number
WO2018061866A1
WO2018061866A1 PCT/JP2017/033712 JP2017033712W WO2018061866A1 WO 2018061866 A1 WO2018061866 A1 WO 2018061866A1 JP 2017033712 W JP2017033712 W JP 2017033712W WO 2018061866 A1 WO2018061866 A1 WO 2018061866A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
general formula
rubber composition
polyether
polyether rubber
Prior art date
Application number
PCT/JP2017/033712
Other languages
English (en)
French (fr)
Inventor
郁哉 召田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP17855821.9A priority Critical patent/EP3521370A4/en
Priority to KR1020197010313A priority patent/KR20190059926A/ko
Priority to CN201780055821.7A priority patent/CN109715729A/zh
Priority to US16/334,690 priority patent/US20200362165A1/en
Priority to JP2018542422A priority patent/JPWO2018061866A1/ja
Publication of WO2018061866A1 publication Critical patent/WO2018061866A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33317Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • C08G65/24Epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/40Thiurams, i.e. compounds containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/405Thioureas; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/006Rubber characterised by functional groups, e.g. telechelic diene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide

Definitions

  • the present invention relates to a crosslinkable rubber composition, a rubber cross-linked product obtained by cross-linking the cross-linkable rubber composition, and a conductive member having the rubber cross-linked product.
  • conductive members such as conductive rolls, conductive blades, and conductive belts are used as mechanisms that require semiconductivity. .
  • Such a conductive member has a desired range of conductivity (electric resistance value and its variation, environmental dependency, voltage dependency), non-contamination, low hardness, dimensional stability, etc., depending on the application. Various performances are required.
  • Patent Document 1 a monomer unit having an onium ion introduced into a polyether rubber using a nitrogen atom-containing aromatic heterocyclic compound such as 1-methylimidazole as an onium agent.
  • a technique that contains is disclosed.
  • the present invention has been made in view of such a situation, and can provide a rubber cross-linked product having excellent scorch stability and sufficient cross-linking property, and having a low electric resistance value.
  • An object is to provide a crosslinkable rubber composition.
  • Another object of the present invention is to provide a crosslinked rubber and a conductive member obtained using such a crosslinkable rubber composition.
  • the present inventor has a specific unit containing a group containing a cationic nitrogen-containing aromatic heterocycle and an unsaturated oxide monomer unit containing a specific ratio. It has been found that the above object can be achieved by a crosslinkable rubber composition obtained by blending a polyether rubber with a crosslinking agent and calcium hydroxide, and has completed the present invention.
  • a polyether rubber containing 0.1 to 30 mol% of a unit represented by the following general formula (1) and 1 to 15 mol% of an unsaturated oxide monomer unit, and a crosslinking agent And a crosslinkable rubber composition comprising calcium hydroxide.
  • a + is a group containing a cationic nitrogen-containing aromatic heterocycle.
  • the group containing the cationic nitrogen-containing aromatic heterocycle is the cationic nitrogen-containing aromatic heterocycle. It is bonded to the carbon atom at the position “2” shown in the general formula (1) through one of nitrogen atoms constituting the heterocyclic ring.
  • X ⁇ is an arbitrary counter anion.
  • the group containing a cationic nitrogen-containing aromatic heterocycle represented by A + in the general formula (1) is a group represented by the following general formula (2).
  • N— represented in the general formula (2) is bonded to the carbon atom at the position “2” in the general formula (1) in the general formula (1).
  • R represented in the general formula (2) represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • the polyether rubber further contains an epihalohydrin monomer unit.
  • the polyether rubber further contains an ethylene oxide monomer unit.
  • the crosslinking agent is a sulfur-containing compound.
  • the calcium hydroxide content is 0.01 to 15 parts by weight with respect to 100 parts by weight of the polyether rubber.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) is preferably 10 to 53.
  • the cross-linking agent and the calcium hydroxide are added to the polyether rubber and kneaded.
  • a method for producing the crosslinkable rubber composition wherein the step of obtaining the polyether rubber and the polyether rubber are added with the crosslinking agent and the calcium hydroxide and kneaded. And a manufacturing method including the steps.
  • crosslinking the said crosslinkable rubber composition is provided. Furthermore, according to this invention, the electroconductive member which has the said rubber crosslinked material is provided.
  • a crosslinkable rubber composition capable of providing a rubber cross-linked product having excellent scorch stability and sufficient cross-linkability and having a low electric resistance value, and the cross-linkability A rubber cross-linked product and a conductive member obtained by using the rubber composition can be provided.
  • the crosslinkable rubber composition of the present invention comprises a polyether rubber containing 0.1 to 30 mol% of a unit represented by the following general formula (1) and 1 to 15 mol% of an unsaturated oxide monomer unit; , Which contains a crosslinking agent and calcium hydroxide.
  • the polyether rubber used in the present invention contains at least 0.1 to 30 mol% of a unit represented by the following general formula (1) and 1 to 15 mol% of an unsaturated oxide monomer unit.
  • a + is a group containing a cationic nitrogen-containing aromatic heterocycle.
  • the group containing the cationic nitrogen-containing aromatic heterocycle is the cationic nitrogen-containing aromatic heterocycle. It is bonded to the carbon atom at the position “2” shown in the general formula (1) through one of nitrogen atoms constituting the heterocyclic ring.
  • X ⁇ is an arbitrary counter anion.
  • a + is a group containing a cationic nitrogen-containing aromatic heterocyclic ring.
  • the group containing the cationic nitrogen-containing aromatic heterocyclic ring is located at the position “2” shown in the general formula (1) through one of the nitrogen atoms constituting the cationic nitrogen-containing aromatic heterocyclic ring. It is bonded to a carbon atom.
  • the nitrogen-containing aromatic heterocyclic ring in the cationic nitrogen-containing aromatic heterocyclic ring in the group containing the cationic nitrogen-containing aromatic heterocyclic ring has a nitrogen atom in the ring and is particularly aromatic if it has aromaticity. It is not limited.
  • the heterocyclic ring in addition to the nitrogen atom bonded to the carbon atom at the position “2” shown in the general formula (1), it may have another nitrogen atom, an oxygen atom, a sulfur atom, etc. And may have a heteroatom other than a nitrogen atom, and a part of the atoms constituting the heterocyclic ring may be substituted with a substituent. Further, it may have a polycyclic structure in which two or more rings are condensed.
  • nitrogen-containing aromatic heterocycle examples include five-membered heterocycles such as imidazole ring, pyrrole ring, thiazole ring, oxazole ring, pyrazole ring, isoxazole ring; pyridine ring, pyrazine ring, pyrimidine ring, 6-membered heterocycles such as pyridazine ring and triazine ring; quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, cinnoline ring, purine ring, indole ring, isoindole ring, benzimidazole ring, benzoxazole ring, benzoisoxazole ring, etc.
  • five-membered heterocycles such as imidazole ring, pyrrole ring, thiazole ring, oxazole ring, pyrazole ring, isoxazole ring
  • a + in the unit represented by the general formula (1) is independent, and the polyether rubber contains two or more kinds of cationic nitrogen-containing aromatic heterocycles. Groups may be present.
  • the substituent of the nitrogen-containing aromatic heterocycle is not particularly limited, and examples thereof include an alkyl group; a cycloalkyl group; an alkenyl group; an aryl group; an arylalkyl group; an alkylaryl group; an alkoxyl group; Alkanol group; hydroxyl group; carbonyl group; alkoxycarbonyl group; amino group; imino group; nitrile group; alkylsilyl group; halogen atom;
  • the group containing a cationic nitrogen-containing aromatic heterocycle represented by A + in the general formula (1) is preferably a group represented by the following general formula (2).
  • N— represented in the general formula (2) is bonded to the carbon atom at the position “2” in the general formula (1) in the general formula (1).
  • R represented in the general formula (2) represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R R represented in the general formula (2) is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group.
  • the content ratio of the unit represented by the general formula (1) in the polyether rubber used in the present invention is 0.1 to 30 mol%, and 0.5 to 25 mol% in all monomer units. Preferably, it is 0.7 to 12 mol%.
  • a polyether rubber capable of giving a rubber cross-linked product having a low compression set and a low electric resistance value can be obtained.
  • the content ratio of the unit represented by the general formula (1) is too small, the volume specific resistance value of the obtained rubber cross-linked product may be increased.
  • polyether rubber will become hard and the characteristic as a rubber elastic body may be lost.
  • the unit represented by the general formula (1) is usually a cationic nitrogen-containing fragrance containing at least part of the halogen atoms constituting the epihalohydrin monomer unit in the polyether rubber containing the epihalohydrin monomer unit. It is obtained by substituting with a group containing a heterocyclic group.
  • the epihalohydrin monomer constituting the epihalohydrin monomer unit is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, epiiodohydrin, epifluorohydrin and the like. Of these, epichlorohydrin is preferable.
  • An epihalohydrin monomer may be used individually by 1 type, and may use 2 or more types together.
  • the epihalohydrin monomer unit constitutes the unit represented by the general formula (1) by substituting at least a part of the halogen atom with a group containing a cationic nitrogen-containing aromatic heterocycle. However, some of them may remain without being substituted with a group containing a cationic nitrogen-containing aromatic heterocycle.
  • a compound (hereinafter referred to as “onium agent”) used to replace at least part of the halogen atoms constituting the epihalohydrin monomer unit in the polyether rubber with a group containing a cationic nitrogen-containing aromatic heterocycle Is not particularly limited as long as it is a nitrogen atom-containing aromatic heterocyclic compound, and examples thereof include imidazole, 1-methylimidazole, pyrrole, 1-methylpyrrole, thiazole, oxazole, pyrazole, isoxazole and the like.
  • 6-membered heterocyclic compounds such as pyridine, pyrazine, pyrimidine, pyridazine, triazine, 2,6-lutidine; quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, purine, indole, isoindole, benzimidazole, Benzoxazole, benzoisooxy Fused heterocyclic compounds, such as tetrazole; and the like.
  • 5-membered heterocyclic compounds and 6-membered heterocyclic compounds are preferable, and 1-methylimidazole is more preferable from the viewpoint of substance stability after the reaction.
  • At least a part of the halogen atoms constituting the epihalohydrin monomer unit in the polyether rubber is a group containing a cationic nitrogen-containing aromatic heterocycle (hereinafter sometimes referred to as “onium ion-containing group”).
  • onium ion-containing group a group containing a cationic nitrogen-containing aromatic heterocycle
  • the substitution method is an application of a known onium reaction, and the known onium reaction is described in Japanese Patent Laid-Open Nos. 50-33271, 51-69434, and 52-52. No. 42481 and the like.
  • the above-described onium agent and a polyoxyethylene containing an epihalohydrin monomer unit can be used as a method of substituting at least a part of the halogen atoms constituting the epihalohydrin monomer unit in the polyether rubber with an onium ion-containing group.
  • a method of substitution by mixing and reacting with ether rubber may be mentioned.
  • the mixing method of the onium agent and the polyether rubber is not particularly limited. For example, a method of mixing these using a solvent through a solvent, a method of mixing substantially without using a solvent, or the like. Can be mentioned. Among these methods, a method of mixing without substantially intervening a solvent is preferable from the viewpoint that the oniumation reaction easily proceeds and the reaction time can be shortened.
  • a method of mixing substantially without using a solvent for example, a polyether rubber containing an epihalohydrin monomer unit and an oniumizing agent are kneaded substantially without using a solvent. And the method of making these react is mentioned.
  • “performing an oniumation reaction substantially without a solvent” does not mean that the oniumation reaction is carried out without using any solvent, and contains an epihalohydrin monomer unit. It means that a solvent may be used to such an extent that the polyether rubber and the onium forming agent can be kneaded.
  • the kneading method of the polyether rubber containing the epihalohydrin monomer unit and the onium agent is not particularly limited, but any dry type such as a kneader, a banbury, an open roll, a calender roll, a biaxial kneader, etc. It is preferable to mix uniformly by combining one or more kneaders.
  • the oniumation reaction between the polyether rubber containing the epihalohydrin monomer unit and the onium forming agent may be performed simultaneously with the kneading or separately after the kneading.
  • the temperature during the reaction is 40 to 200 ° C., preferably 60 to 190 ° C., more preferably 80 to 180 ° C. If the reaction temperature is too low, the substitution reaction may not proceed. On the other hand, if the reaction temperature is too high, the polyether rubber may be decomposed or the onium agent may be volatilized.
  • the reaction time is not particularly limited, and is usually 1 minute to 10 days, preferably 5 minutes to 1 day. If the reaction time is too short, the substitution reaction may be incomplete. On the other hand, if the reaction time is too long, the polyether rubber may be decomposed.
  • the method of mixing the polyether rubber containing the epihalohydrin monomer unit and the oniumizing agent is not particularly limited.
  • the polyether rubber is used as a solvent.
  • a method of adding and mixing an oniumizing agent to a solution obtained by dissolving in a solution a method of adding and mixing a polyether rubber into a solution obtained by dissolving an oniumizing agent in a solvent, and both an oniumizing agent and a polyether rubber.
  • a solution prepared by dissolving in a solvent and mixing both solutions may be used.
  • the polyether rubber or onium agent may be dispersed in a solvent, and it does not matter whether the polyether rubber or onium agent is dissolved or dispersed in the solvent.
  • an inert solvent is preferably used, which may be nonpolar or polar.
  • Nonpolar solvents include, for example, aromatic hydrocarbons such as benzene and toluene; chain saturated hydrocarbons such as n-pentane and n-hexane; alicyclic saturated hydrocarbons such as cyclopentane and cyclohexane; It is done.
  • Polar solvents include ethers such as tetrahydrofuran, anisole and diethyl ether; esters such as ethyl acetate and ethyl benzoate; ketones such as acetone, 2-butanone and acetophenone; aprotic polar solvents such as acetonitrile, dimethylformamide and dimethyl sulfoxide Protic polar solvents such as ethanol, methanol, water; and the like.
  • a mixed solvent of these is also preferably used.
  • the amount of the solvent used is not particularly limited, but it is preferably used so that the concentration of the polyether rubber containing the epihalohydrin monomer unit is 1 to 50% by weight, and 3 to 40% by weight. More preferably, it is used.
  • the reaction temperature is preferably 20 to 170 ° C.
  • the reaction time is preferably 1 minute to 500 hours.
  • the amount of the onium agent used is not particularly limited, but may be determined according to the structure of the onium agent used or the polyether rubber, the substitution rate of the onium ion-containing group in the target polyether rubber, and the like. Specifically, the amount of the oniumizing agent used is usually 0.01 to 100 mol, preferably 0.02 to 50 mol, more preferably relative to 1 mol of the halogen atom constituting the epihalohydrin monomer unit to be used. The range is from 0.03 to 10 mol, more preferably from 0.05 to 2 mol.
  • the amount of the onium agent is too small, the substitution reaction is slow, and there is a possibility that a polyether rubber having an onium ion-containing group having a desired composition (hereinafter also referred to as “cationized polyether rubber”) cannot be obtained.
  • cationized polyether rubber a polyether rubber having an onium ion-containing group having a desired composition
  • the amount of the onium agent is too large, it may be difficult to remove the unreacted onium agent from the obtained cationized polyether rubber.
  • a cyclic secondary amine such as pyrrole
  • a cyclic secondary amine is a nitrogen atom-containing aromatic heterocyclic compound, which is bonded to a nitrogen atom in the ring.
  • the amount of the onium agent used is usually 0 with respect to 1 mol of the halogen atom constituting the epihalohydrin monomer unit to be used. The range is from 0.01 to 2 mol, preferably from 0.02 to 1.5 mol, more preferably from 0.03 to 1 mol. If the amount of cyclic secondary amines is too small, the substitution reaction may be slow, and a cationized polyether rubber having a desired composition may not be obtained.
  • the hydrogen atom bonded to the nitrogen atom in the ring bonded to the carbon atom at the position “2” shown in the general formula (1) is substituted with a desired group. You can also.
  • the base is then mixed, the proton bonded to the nitrogen atom is eliminated, and further, for example, an alkyl halide is mixed and added.
  • a desired substituent can be introduced.
  • R ′ represents an alkyl group having 1 to 10 carbon atoms
  • X ′ represents a halogen atom.
  • the arbitrary counter anion represented by X ⁇ in the above general formula (1) is a compound or atom having a negative charge bonded to A + through an ionic bond, and other than having a negative charge Is not particularly limited. Since the counter anion is an ionizable ionic bond, at least a part of the counter anion can be exchanged for an arbitrary counter anion by a known ion exchange reaction. At the stage where the reaction is completed by mixing the oniumizing agent and the polyether rubber containing the epihalohydrin monomer unit, X in the general formula (1) is a halogen atom, but the pair of A + You may perform a well-known anion exchange reaction with respect to the halide ion which is an anion.
  • the anion exchange reaction can be performed by mixing an ionic compound having ionization properties with a polyether rubber having an onium ion-containing group.
  • the conditions for carrying out the anion exchange reaction are not particularly limited, but may be determined according to the structure of the ionic compound or polyether rubber used, the substitution rate of the target A + counter anion, and the like.
  • the reaction may be carried out only with an ionic compound and a polyether rubber having an onium ion-containing group, or may contain other compounds such as an organic solvent.
  • the amount of the ionic compound to be used is not particularly limited, but is usually 0.01 to 100 mol, preferably 0.02 to 50 mol, more preferably relative to 1 mol of the halogen atom constituting the epihalohydrin monomer unit to be used.
  • the range is 0.03 to 10 mol. If the amount of the ionic compound is too small, the substitution reaction may be difficult to proceed. On the other hand, if the amount is too large, it may be difficult to remove the ionic compound.
  • the pressure during the anion exchange reaction is usually from 0.1 to 50 MPa, preferably from 0.1 to 10 MPa, more preferably from 0.1 to 5 MPa.
  • the temperature during the reaction is usually ⁇ 30 to 200 ° C., preferably ⁇ 15 to 180 ° C., more preferably 0 to 150 ° C.
  • the reaction time is usually 1 minute to 1000 hours, preferably 3 minutes to 100 hours, more preferably 5 minutes to 10 hours, and further preferably 5 minutes to 3 hours.
  • the anion species of the counter anion is not particularly limited.
  • halide ions such as fluoride ion, chloride ion, bromide ion and iodide ion; sulfate ion; sulfite ion; hydroxide ion; carbonate ion; Ion; nitrate ion; acetate ion; perchlorate ion; phosphate ion; alkyloxy ion; trifluoromethanesulfonate ion; bistrifluoromethanesulfonimide ion; hexafluorophosphate ion; tetrafluoroborate ion; .
  • onium ion unit content As a method for examining the content ratio of the unit represented by the general formula (1) in the polyether rubber used in the present invention (hereinafter also referred to as “onium ion unit content”), a known method may be used. Good.
  • the content of the onium ion-containing group can be quantified by performing 1 H-NMR measurement on the polyether rubber used in the present invention. Specifically, first, the number of moles B1 of all monomer units (including onium ion units) in the polymer is calculated from the integral value of protons derived from the polyether chain which is the main chain of the cationized polyether rubber. To do.
  • the number of moles B2 of the introduced onium ion unit (unit represented by the general formula (1)) is calculated from the integral value of protons derived from the onium ion-containing group.
  • the molar amount of the onium agent consumed is the substitution mole of the halogen atom's onium ion-containing group. Equal to the amount. Therefore, the consumed molar amount of the onium agent is calculated by subtracting the residual molar amount A2 after the completion of the reaction from the added molar amount A1 before the start of the reaction, and the polyether rubber (hereinafter referred to as the onium agent) before reacting with the onium agent.
  • the onium ion unit content can also be calculated by the following formula by dividing by the molar amount P of all the monomer units of “base polyether rubber”.
  • Onium ion unit content (mol%) 100 ⁇ (A1-A2) / P
  • a known measurement method may be used.
  • the reaction rate is measured using a gas chromatography (GC) equipped with a capillary column and a flame ionization detector (FID). can do.
  • GC gas chromatography
  • FID flame ionization detector
  • the polyether rubber used in the present invention contains an unsaturated oxide monomer unit in addition to the unit represented by the general formula (1).
  • the unsaturated oxide monomer unit mainly functions as a crosslinkable monomer unit.
  • the unsaturated oxide monomer forming the unsaturated oxide monomer unit includes at least one carbon-carbon unsaturated bond (excluding the aromatic carbon-carbon unsaturated bond) in the molecule and at least one epoxy.
  • alkenyl glycidyl ethers such as allyl glycidyl ether and butenyl glycidyl ether; 3,4-epoxy-1-butene, 1,2-epoxy-5 Alkene epoxides such as hexene and 1,2-epoxy-9-decene; Among these, alkenyl glycidyl ethers are preferable, and allyl glycidyl ether is more preferable.
  • An unsaturated oxide monomer may be used individually by 1 type, and may use 2 or more types together.
  • the content ratio of the unsaturated oxide monomer unit in the polyether rubber is 1 to 15 mol%, preferably 1 to 12 mol%, more preferably 2 to 10 mol%. If the content ratio of the unsaturated oxide monomer unit is too small, crosslinking may be insufficient, and the mechanical properties of the resulting rubber crosslinked product may be deteriorated. Further, if the content ratio of the unsaturated oxide monomer unit is too large, a gelling reaction (three-dimensional crosslinking reaction) or the like in the polymer molecule or between the polymer molecules is likely to occur during the polymerization reaction, and the molding processability is improved. May decrease.
  • the halogen atoms constituting the epihalohydrin monomer unit in the polyether rubber containing the epihalohydrin monomer unit is usually cationized.
  • the unit represented by the general formula (1) is introduced by substitution with a group containing a nitrogen-containing aromatic heterocyclic ring. In this case, some of the epihalohydrin monomer units are The group containing a cationic nitrogen-containing aromatic heterocycle may remain without being substituted.
  • the content ratio of the epihalohydrin monomer unit is preferably 0 to 98.9 mol%, more preferably 10 to 78.5 mol%, based on all monomer units, It is particularly preferably 15 to 57.3 mol%.
  • the volume resistivity value can be more appropriately reduced.
  • the polyether rubber used in the present invention preferably contains an ethylene oxide monomer unit from the viewpoint of low electrical resistance in addition to the above monomer units.
  • the ethylene oxide monomer unit is a unit formed by an ethylene oxide monomer.
  • the content ratio of the ethylene oxide monomer unit in the polyether rubber used in the present invention is preferably 0 to 90 mol%, more preferably 20 to 80 mol%, and more preferably 40 to 75 mol%. It is particularly preferred. By making the content rate of the ethylene oxide monomer unit in the polyether rubber within the above range, the polyether rubber can be made excellent in low electrical resistance.
  • the polyether rubber used in the present invention is a copolymer containing units of other monomers that can be copolymerized with the monomers forming the respective monomer units, as necessary. Also good. Among other monomer units, an alkylene oxide monomer unit excluding ethylene oxide is preferable.
  • the alkylene oxide monomer that forms the alkylene oxide monomer unit excluding ethylene oxide is not particularly limited, and examples thereof include propylene oxide, 1,2-epoxybutane, 1,2-epoxy-4-chloropentane, 1,2-epoxyhexane, 1,2-epoxyoctane, 1,2-epoxydecane, 1,2-epoxyoctadecane, 1,2-epoxyeicosane, 1,2-epoxyisobutane, 2,3-epoxyisobutane, etc.
  • cyclic alkylene oxides such as 1,2-epoxycyclopentane, 1,2-e
  • linear alkylene oxide is preferable, and propylene oxide is more preferable.
  • alkylene oxide monomers may be used individually by 1 type, and may use 2 or more types together.
  • the content of the alkylene oxide monomer unit excluding ethylene oxide is preferably 30 mol% or less, more preferably 20 mol% or less, in all monomer units, More preferably, it is 10 mol% or less. If the content ratio of the alkylene oxide monomer unit excluding ethylene oxide in the polyether rubber is too large, the volume specific resistance value of the resulting rubber cross-linked product may increase.
  • copolymerizable monomers excluding the alkylene oxide monomer are not particularly limited, and examples thereof include aryl epoxides such as styrene oxide and phenyl glycidyl ether.
  • the content of other copolymerizable monomer units excluding the alkylene oxide monomer in the polyether rubber used in the present invention is preferably 20 mol% or less, and preferably 10 mol% in all monomer units. The following is more preferable, and 5 mol% or less is more preferable.
  • the base polyether rubber can be obtained by ring-opening polymerization of the respective monomers by a solution polymerization method or a solvent slurry polymerization method.
  • the polymerization catalyst is not particularly limited as long as it is a general polyether rubber polymerization catalyst.
  • the polymerization catalyst include a catalyst obtained by reacting water and acetylacetone with organoaluminum (Japanese Patent Publication No. 35-15797); a catalyst obtained by reacting phosphoric acid and triethylamine with triisobutylaluminum (Japanese Patent Publication No. 46-27534).
  • a catalyst obtained by reacting an organic acid salt of diazabicycloundecene with phosphoric acid with triisobutylaluminum Japanese Patent Publication No.
  • a catalyst comprising a partial hydrolyzate of aluminum alkoxide and an organic zinc compound Japanese Examined Patent Publication No. 43-2945
  • a catalyst comprising an organic zinc compound and a polyhydric alcohol Japanese Examined Patent Publication No. 45-7751
  • a catalyst comprising a dialkylzinc and water Japanese Examined Patent Publication No. 36-3394
  • tributyl A catalyst comprising tin chloride and tributyl phosphate Japanese Patent No. 3223978
  • the polymerization solvent is not particularly limited as long as it is an inert solvent.
  • aromatic hydrocarbons such as benzene and toluene
  • linear saturated hydrocarbons such as n-pentane and n-hexane
  • cyclopentane And cyclic saturated hydrocarbons such as cyclohexane
  • aromatic hydrocarbons are preferably used from the viewpoint of solubility of the base polyether rubber, and toluene is more preferable.
  • the polymerization reaction temperature is preferably 20 to 150 ° C, more preferably 50 to 130 ° C.
  • the polymerization mode can be carried out by any method such as batch system, semi-batch system, and continuous system.
  • the base polyether rubber may be either a block copolymer type or a random copolymer type, but in particular, when ethylene oxide is used as the monomer, the random copolymer provides more crystallinity of polyethylene oxide. It is preferable because the rubber elasticity is lowered and the rubber elasticity is not easily lost.
  • the method for recovering the base polyether rubber from the solvent is not particularly limited.
  • the base polyether rubber is obtained by appropriately combining coagulation, filtration, dehydration, and drying methods.
  • a method for solidifying the base polyether rubber from the solution in which the base polyether rubber is dissolved for example, a conventional method such as steam stripping or a precipitation method using a poor solvent can be used.
  • examples of the method for filtering the base polyether rubber from the slurry containing the base polyether rubber include a method using a sieve such as a rotary screen or a vibrating screen, if necessary.
  • examples of the method for dehydrating the base polyether rubber include a method of dewatering using a centrifugal separator; a compressed water squeezer such as a roll, a Banbury dehydrator, a screw extruder dehydrator, or the like.
  • examples of the method for drying the base polyether rubber include a method using a dryer such as a kneader-type dryer, an expander dryer, a hot air dryer, and a vacuum dryer. These methods and the devices to be used are used alone or in combination of two or more.
  • the weight average molecular weight of the polyether rubber used in the present invention is preferably 200,000 to 2,000,000, and more preferably 400,000 to 1,500,000. If the weight average molecular weight is too high, the Mooney viscosity becomes high and molding may be difficult. On the other hand, if the weight average molecular weight is too low, the compression set of the resulting rubber cross-linked product may be deteriorated.
  • the Mooney viscosity (polymer Mooney viscosity / ML1 + 4, 100 ° C.) of the polyether rubber used in the present invention is preferably 10 to 120. If the Mooney viscosity is too high, the molding processability is inferior and it is difficult to form the conductive member. Furthermore, swell (the diameter of the extrudate becomes larger than the diameter of the die at the time of extrusion) may occur, and the dimensional stability may be reduced. On the other hand, if the Mooney viscosity is too low, the mechanical strength of the resulting rubber cross-linked product may be reduced.
  • the crosslinking agent used in the present invention is not particularly limited as long as the above-described polyether rubber can be crosslinked.
  • examples of such a crosslinking agent include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur monochloride, sulfur dichloride, sulfur-containing morpholine compounds (for example, 4,4 ′ -Dithiodimorpholine, 4,4'-tetrathiodimorpholine, 4-morpholinyl morpholinodithioformate), thiourea compounds (eg trimethylthiourea, diethylthiourea, dibutylthiourea, dilaurylthiourea, diphenylthiourea, ethylenethiourea, thiocarbanilide ), 1,1′-dithiobis (hexahydro-2H-azepin-2-one), phosphorus-containing polysulfides, polymer polys
  • Sulfur-containing compounds Sulfur-containing compounds; dicumyl peroxide, ditertiary butyl Organic peroxides such as peroxides; quinone dioximes such as p-quinonedioxime and p, p'-dibenzoylquinonedioxime; triethylenetetramine, hexamethylenediamine carbamate, 4,4'-methylenebis-o-chloroaniline Organic polyamine compounds such as, alkylphenol resins having a methylol group, and the like.
  • sulfur and a sulfur-containing compound are preferable, and a sulfur-containing compound is more preferable from the viewpoint that the scorch stability can be further improved.
  • the content of the crosslinking agent in the crosslinkable rubber composition of the present invention is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 0.2 parts by weight based on 100 parts by weight of the polyether rubber used in the present invention. 7 parts by weight, more preferably 0.3 to 5 parts by weight.
  • the crosslinkable rubber composition of the present invention contains calcium hydroxide in addition to the above-described polyether rubber and crosslinker.
  • calcium hydroxide Ca (OH) 2
  • acts as a crosslinking accelerator or crosslinking accelerator and in the present invention, calcium hydroxide is used.
  • the crosslinkable rubber composition can have excellent scorch stability while having sufficient crosslinkability, and can lower the electrical resistance value of the resulting rubber cross-linked product. .
  • a scorch as a crosslinkable rubber composition can be obtained by using calcium hydroxide instead of zinc oxide conventionally used as a crosslinking accelerator or crosslinking accelerator.
  • the stability can be increased, and furthermore, the electrical resistance value of the resulting rubber cross-linked product can be reduced, and thus the present invention has been completed.
  • the calcium hydroxide when calcium hydroxide is present when reacting the onium agent with the base polyether rubber, the calcium hydroxide may be deactivated by side reaction, so that the crosslinkability is sufficient.
  • the scorch stability may not be improved. Therefore, even when calcium hydroxide is present before the reaction, it is possible to further add calcium hydroxide to the polyether rubber obtained by the reaction and knead the crosslinkable rubber composition of the present invention. It is preferable as a manufacturing method.
  • the crosslinkable rubber composition of the present invention is obtained by adding the crosslinker and the calcium hydroxide to the polyether rubber and kneading the mixture so that the crosslinkability is sufficient.
  • the scorch stability can be improved.
  • the method for producing the crosslinkable rubber composition of the present invention will be described later.
  • the content of calcium hydroxide in the crosslinkable rubber composition of the present invention is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 100 parts by weight of the polyether rubber used in the present invention. -10 parts by weight, more preferably 1-8 parts by weight.
  • the crosslinkable rubber composition of the present invention may contain a compound that acts as a crosslinking accelerator or a crosslinking acceleration aid other than calcium hydroxide, and contains sulfur atoms in the chemical structure. Agents, stearic acid and the like.
  • sulfur-containing crosslinking accelerator containing a sulfur atom in the chemical structure examples include thiuram crosslinking accelerators, thiazole crosslinking accelerators, sulfenamide crosslinking accelerators, dithiocarbamate crosslinking accelerators, and the like. .
  • thiuram crosslinking accelerators include tetramethylthiuram monosulfide, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, dipentamethylenethiuram tetrasulfide and the like.
  • Specific examples of the thiazole crosslinking accelerator include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc, (dinitrophenyl) mercaptobenzothiazole, (N, N-diethyl). And dithiocarbamoyl) benzothiazole.
  • sulfenamide-based crosslinking accelerator examples include N-ethyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazylsulfenamide, N-oxydiethylene-2-benzothia Zolylsulfenamide, N-cyclohexyl-2-benzothiazylsulfenamide, N, N-diisopropyl-2-benzothiazylsulfenamide, N, N-dicyclohexyl-2-benzothiazylsulfenamide, etc. It is done.
  • dithiocarbamate crosslinking accelerators include lead dimethyldithiocarbamate, lead diamyldithiocarbamate, zinc dimethyldithiocarbamate, zinc diamyldithiocarbamate, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, zinc dibenzyldithiocarbamate , Zinc pentamethylenedithiocarbamate, zinc ethylphenyldithiocarbamate, sodium dimethyldithiocarbamate, sodium diethyldithiocarbamate, sodium dibutyldithiocarbamate, selenium dimethyldithiocarbamate, selenium diethyldithiocarbamate, tellurium diethyldithiocarbamate, cadmium diethyldithiocarbamate, dimethyldithiocarbamine Acid copper, iron dimethyldithiocarbamate, dimethylmethyld
  • the content of a compound that acts as a crosslinking accelerator other than calcium hydroxide or a crosslinking acceleration assistant is preferably 0. 0 parts by weight with respect to 100 parts by weight of the polyether rubber used in the present invention.
  • the amount is from 01 to 15 parts by weight, more preferably from 0.1 to 10 parts by weight, still more preferably from 0.5 to 3 parts by weight.
  • Zinc oxide also acts as a crosslinking accelerator or crosslinking accelerator.
  • the content of zinc oxide in the crosslinkable rubber composition of the present invention is preferably limited to 5 parts by weight or less with respect to 100 parts by weight of the polyether rubber used in the present invention. It is more preferable to limit to the following, and it is particularly preferable that zinc oxide is not substantially contained.
  • the crosslinkable rubber composition of the present invention may further contain a filler in addition to the above components.
  • a filler For example, carbon black, a silica, a carbon nanotube, a graphene, etc. are mentioned. These fillers can be used alone or in combination of two or more.
  • the blending ratio of the filler is not particularly limited, but is preferably 0.01 to 150 parts by weight, more preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the polyether rubber used in the present invention. Part by weight is particularly preferred.
  • the blending ratio is 0.01 to 100 parts by weight with respect to 100 parts by weight of the polyether rubber used in the present invention. 60 parts by weight is preferable, 0.1 to 40 parts by weight is more preferable, and 1 to 30 parts by weight is particularly preferable.
  • crosslinkable rubber composition of the present invention is a butadiene rubber, styrene butadiene rubber, chloroprene rubber, isoprene rubber, natural rubber, acrylonitrile butadiene rubber, butyl rubber, and partial hydrogen of these rubbers within the range not impairing the effects of the present invention.
  • Diene rubbers such as additives (for example, hydrogenated nitrile rubber); rubbers other than diene rubbers such as ethylene propylene rubber, acrylic rubber, polyether rubber (excluding the above-mentioned polyether rubber), fluorine rubber, and silicone rubber
  • Thermoplastic elastomers such as olefin thermoplastic elastomers, styrene thermoplastic elastomers, vinyl chloride thermoplastic elastomers, polyester thermoplastic elastomers, polyamide thermoplastic elastomers, polyurethane thermoplastic elastomers; poly salts May contain, vinyl, coumarone resins, resins such as phenol resin.
  • thermoplastic elastomers, and resins can be used alone or in combination of two or more, and the total content thereof is 100 parts by weight with respect to 100 parts by weight of the polyether rubber used in the present invention. Or less, more preferably 70 parts by weight or less, and particularly preferably 50 parts by weight or less.
  • thermoplastic elastomers, and resins acrylonitrile butadiene rubber is included from the viewpoint of improving processability when preparing a crosslinkable rubber composition, particularly processability during roll kneading. Is preferred.
  • the crosslinkable rubber composition of the present invention may contain other additives that are usually blended with known rubbers.
  • additives include, but are not limited to, acid acceptors; reinforcing agents; anti-aging agents; ultraviolet absorbers; light-resistant stabilizers; tackifiers; surfactants; Colorants (dyes and pigments); flame retardants; antistatic agents;
  • the crosslinkable rubber composition of the present invention has a Mooney viscosity (compound Mooney viscosity ⁇ ML1 + 4, 100 ° C.) of preferably 10 to 53, more preferably 15 to 50, and more preferably 25 to 50. Further preferred. When the compound Mooney viscosity is within the above range, good moldability can be obtained.
  • the crosslinkable rubber composition of the present invention is prepared by blending and kneading the above-mentioned polyether rubber with a crosslinking agent, calcium hydroxide, and each additive used as necessary by a desired method.
  • a crosslinking agent for example, an additive excluding a crosslinking agent, calcium hydroxide, a crosslinking accelerator other than calcium hydroxide added if necessary, or a compound that acts as a crosslinking promotion aid, and polyether rubber are kneaded and then mixed into the mixture.
  • the crosslinking rubber composition of the present invention can be obtained by mixing a crosslinking agent, calcium hydroxide, a compound that acts as a crosslinking accelerator other than calcium hydroxide, or a compound that acts as a crosslinking accelerator, if necessary. .
  • a crosslinking agent for example, one or a combination of any kneading and molding machines such as a kneader, a banbury, an open roll, a calender roll, and an extruder may be used for kneading and molding.
  • the kneading temperature of the polyether rubber with an additive excluding a crosslinking agent, calcium hydroxide, a crosslinking accelerator other than calcium hydroxide added as necessary, or a compound acting as a crosslinking promotion aid, and the polyether rubber is 20 to 200 ° C. 20 to 150 ° C. is more preferable, and the kneading time is preferably 30 seconds to 30 minutes.
  • the mixing temperature with the compound acting as a crosslinking accelerating aid is preferably 100 ° C. or less, more preferably 0 to 80 ° C.
  • the production method of the present invention is a method for producing the above-described crosslinkable rubber composition of the present invention, wherein the step of obtaining the polyether rubber, and the crosslinking agent and the calcium hydroxide are added to the polyether rubber. And a kneading step.
  • the step of obtaining the polyether rubber may be a step of mixing and reacting the above-described onium agent and polyether rubber containing an epihalohydrin monomer unit. Further, this step may be performed in the presence of calcium hydroxide. In this case, the calcium hydroxide may be deactivated by a side reaction, and sufficient crosslinkability and excellent scorch stability may not be obtained. .
  • calcium hydroxide is added to a polyether rubber obtained by reacting an onium agent and a base polyether rubber. It is possible to improve the scorch stability while maintaining the crosslinkability without losing the activity.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the cross-linkable rubber composition of the present invention described above.
  • the method for cross-linking the cross-linkable rubber composition of the present invention is not particularly limited, but it may be formed and cross-linked simultaneously or after forming.
  • the molding temperature is preferably 20 to 200 ° C, more preferably 40 to 180 ° C.
  • the heating temperature at the time of crosslinking is preferably from 130 to 200 ° C, more preferably from 140 to 200 ° C. If the temperature at the time of crosslinking is too low, the crosslinking time may be required for a long time, or the crosslinking density of the resulting rubber crosslinked product may be lowered. On the other hand, if the temperature at the time of crosslinking is too high, there is a risk of forming defects.
  • the crosslinking time varies depending on the crosslinking method, crosslinking temperature, shape, etc., but a range of 1 minute or more and 5 hours or less is preferable from the viewpoint of crosslinking density and production efficiency.
  • a heating method a method such as press heating, oven heating, steam heating, hot air heating, and microwave heating may be appropriately selected.
  • secondary cross-linking may be performed by heating.
  • the heating temperature in performing the secondary crosslinking is preferably 100 to 220 ° C, more preferably 130 to 210 ° C.
  • the heating time is preferably 30 minutes to 5 hours.
  • the volume specific resistance value of the rubber cross-linked product of the present invention is usually at a value of 30 seconds from the start of voltage application under the measurement environment with a temperature of 23 ° C. and a humidity of 50% under two conditions of applied voltage of 100 V and 250 V. 1 ⁇ 10 5.0 to 1 ⁇ 10 9.5 ⁇ ⁇ cm, preferably 1 ⁇ 10 5.2 to 1 ⁇ 10 8.0 ⁇ ⁇ cm, more preferably 1 ⁇ 10 5.5. ⁇ 1 ⁇ 10 7.5 ⁇ ⁇ cm.
  • a conductive member excellent in low electrical resistance can be obtained.
  • the volume specific resistance value of the rubber cross-linked product is too high, a higher voltage must be applied in order to pass the same current, and the amount of power consumption increases, which is not suitable for a conductive member.
  • the volume specific resistance value of the rubber cross-linked product is too low, a current flows in an unintended direction other than the voltage application direction, which may impair the function as a conductive member.
  • the rubber cross-linked product of the present invention thus obtained is obtained using the cross-linkable rubber composition of the present invention described above, it has a low electrical resistance value and can be suitably used for various conductive applications. Is.
  • the conductive member of the present invention has the rubber cross-linked product of the present invention.
  • the rubber cross-linked product of the present invention is useful as a material for various industrial rubber products, taking advantage of its properties, for example, conductive rolls, conductive blades, conductive belts and the like used in copying machines and printing machines.
  • the rubber cross-linked product of the present invention has a characteristic of low electric resistance, it can be suitably used for conductive members used in copying machines, printing machines, etc., particularly conductive rolls.
  • the onium ion unit content was measured using a nuclear magnetic resonance apparatus ( 1 H-NMR) as follows. After the onium reaction, 30 mg of cationized polyether rubber obtained by coagulation and drying was added to 1.0 ml of dimethyl sulfoxide, and the mixture was shaken for 1 hour to be uniformly dissolved. This solution was subjected to 1 H-NMR measurement to calculate the onium ion unit content. First, from the integral value of protons derived from the polyether chain which is the main chain of the cationized polyether rubber, the number of moles B1 of all monomer units (including onium ion units) in the polymer was calculated.
  • the number of moles B2 of the introduced onium ion unit (unit represented by the general formula (1)) was calculated from the integral value of protons derived from the onium ion-containing group.
  • the mole number B2 of the introduced onium ion unit (unit represented by the general formula (1)) is divided by the mole number B1 of all monomer units (including the onium ion unit) in the polymer.
  • the onium ion unit content was calculated by the following formula.
  • Onium ion unit content (mol%) 100 ⁇ B2 / B1
  • Mooney scorch time (t 5, t 35) The Mooney scorch time (t 5 , t 35 ) of the crosslinkable rubber composition was measured at 125 ° C. using an L-shaped rotor according to JIS K6300.
  • the Mooney scorch time (t 5 ) is the time until the Mooney viscosity increases by 5 points from the minimum value
  • the Mooney scorch time (t 35 ) is the time until the Mooney viscosity increases by 35 points from the minimum value. is there.
  • the larger the Mooney scorch time (t 5 , t 35 ) the better the scorch stability.
  • Vm minimum Mooney viscosity in the Mooney scorch test was also measured.
  • the crosslinkable rubber composition was molded and cross-linked by pressing at a temperature of 170 ° C. for 20 minutes to obtain a sheet-like rubber cross-linked product (sheet-shaped test piece) having a length of 15 cm, a width of 10 cm, and a thickness of 2 mm. And the volume specific resistance value was measured using the obtained sheet-like rubber crosslinked material.
  • the volume resistivity is measured in accordance with the K6271 double ring electrode method.
  • the measurement conditions are a temperature of 23 ° C. and a humidity of 50%, and the applied voltage is two conditions of 100 V and 250 V. The value 30 seconds after starting was measured. The smaller the numerical value of the volume resistivity, the better the conductivity.
  • the monomer composition ratio of the polyether rubber was 40 mol% epichlorohydrin monomer unit, 56 mol% ethylene oxide monomer unit, allyl glycidyl ether monomer unit. It was 4 mol%.
  • the Mooney viscosity of the obtained polyether rubber was 60 [ML1 + 4, 100 ° C.].
  • the monomer composition ratio of the obtained cationized polyether rubber was as follows: epichlorohydrin monomer unit 38.8 mol%, ethylene oxide monomer unit 56 mol%, onium ion unit (general formula (1 ) Units) 1.2 mol%, allyl glycidyl ether monomer unit 4 mol%. Further, the Mooney viscosity of the obtained cationized polyether rubber was 54 [ML1 + 4, 100 ° C.].
  • Example 1 To an open roll at 40 ° C., 100 parts of the cationized polyether rubber obtained in Production Example 3, 4,4′-dithiodimorpholine (trade name “Barnock R”, manufactured by Ouchi Shinsei Chemical Co., Ltd., sulfur-containing morpholine series Compound) 2 parts, trimethylthiourea (trade name “Noxeller TMU”, manufactured by Ouchi Shinsei Chemical Co., Ltd., thiourea-based crosslinking agent) 1 part, calcium hydroxide 5 parts, carbon black (trade name “Thermax N990”, Tokai A crosslinkable rubber composition was prepared by adding 20 parts of carbon (manufactured by Carbon Co., Ltd., MT carbon black, filler) and 1 part of stearic acid (crosslinking acceleration aid) and kneading and mixing for 10 minutes.
  • 4,4′-dithiodimorpholine trade name “Barnock R”, manufactured by Ouchi Shinsei Chemical Co., Ltd., sulfur-
  • Example 2 A crosslinkable rubber composition was obtained and evaluated in the same manner as in Example 1 except that 4,4′-dithiodimorpholine was not used. The results are shown in Table 1.
  • Example 3 Instead of 2 parts of 4,4′-dithiodimorpholine and 1 part of trimethylthiourea, 0.5 part of sulfur (trade name “Sulfax PMC, manufactured by Tsurumi Chemical Co., Ltd.”) and tetraethylthiuram disulfide (trade name “Noxeller TET”) A crosslinkable rubber composition was obtained and evaluated in the same manner as in Example 1 except that 1 part of Ouchi Shinsei Chemical Industry Co., Ltd., a thiuram crosslinking accelerator) was used. The results are shown in Table 1.
  • Example 2 A crosslinkable rubber composition was obtained in the same manner as in Example 3 except that 5 parts of zinc oxide (trade name “ZnO # 1”, manufactured by Shodo Chemical Co., Ltd.) was used instead of 5 parts of calcium hydroxide. The same evaluation was performed. The results are shown in Table 1.
  • a specific unit having a group containing a cationic nitrogen-containing aromatic heterocycle and an unsaturated oxide monomer unit, a polyether rubber containing a specific ratio, a crosslinking agent As shown in Table 1, a specific unit having a group containing a cationic nitrogen-containing aromatic heterocycle and an unsaturated oxide monomer unit, a polyether rubber containing a specific ratio, a crosslinking agent,
  • the crosslinkable rubber composition blended with calcium hydroxide has a long Mooney scorch time (t 5 ) and a Mooney scorch time (t 35 ), and a low minimum Mooney viscosity (Vm).
  • the rubber cross-linked product obtained had excellent electrical resistance and low electrical resistance (Examples 1 to 3).
  • the Mooney scorch time (t 5 ) and the Mooney scorch time (t 35 ) while exhibiting sufficient crosslinkability, and the resulting rubber cross-linked product has an electric resistance value.
  • the effect of being able to be kept low is a polyether containing a specific unit having a group containing a cationic nitrogen-containing aromatic heterocycle and a specific proportion of an unsaturated oxide monomer unit. It can be confirmed that the effect can be achieved only by adding calcium hydroxide to the rubber.
  • the Mooney scorch time (t 5 ) can be lengthened, whereby the advantageous effect that molding defects in mold molding, extrusion molding, and the like can be prevented can be achieved. Since the scorch time (t 35 ) can be increased, the advantageous effect that the cross-linking unevenness of the molded product after cross-linking is reduced can be exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

下記一般式(1)で表される単位0.1~30モル%、および不飽和オキサイド単量体単位1~15モル%を含有するポリエーテルゴムと、架橋剤と、水酸化カルシウムとを含む架橋性ゴム組成物を提供する。 (上記一般式(1)中、Aは、カチオン性含窒素芳香族複素環を含有する基である。前記カチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。)

Description

架橋性ゴム組成物、ゴム架橋物、および導電性部材
 本発明は、架橋性ゴム組成物、および該架橋性ゴム組成物を架橋してなるゴム架橋物、ならびに該ゴム架橋物を有している導電性部材に関する。
 プリンタ、電子写真複写機、およびファクシミリ装置などの画像形成装置において、半導電性が必要とされる機構には、導電性ロール、導電性ブレード、導電性ベルトなどの導電性部材が用いられている。
 このような導電性部材は、その用途に応じて、所望の範囲の導電性(電気抵抗値とそのばらつき、環境依存性、電圧依存性)、非汚染性、低硬度、および寸法安定性などの種々の性能が要求されている。
 このような導電性部材の一部を構成するゴムとしては、ゴム自体に半導電性を有する、ポリエーテルゴムなどが用いられてきた。しかしながら、近年、画像形成装置においては高速化が要求され、導電性部材、特に、導電性ロールには更なる低電気抵抗化が望まれている。
 これに対し、たとえば、特許文献1では、ポリエーテルゴムに、1-メチルイミダゾールなどの窒素原子含有芳香族複素環式化合物をオニウム化剤として用いて導入されたオニウムイオンを有する単量体の単位を含有させてなる技術が開示されている。
特開2014-70137号公報
 この特許文献1に記載のポリエーテルゴムは、架橋剤を添加し、架橋性のゴム組成物とし、これを架橋することでゴム架橋物とした場合に、得られるゴム架橋物を電気抵抗値を低く抑えられたものとすることができる。しかし、特許文献1の技術では、架橋性のゴム組成物とした場合において、従来から使用されているポリエーテルゴムに比べ、スコーチが起こりやすいものであり、そのため、加工作業性の観点から、スコーチ安定性の改善が望まれていた。
 本発明は、このような実状に鑑みてなされたものであり、優れたスコーチ安定性、および、十分な架橋性を備え、かつ、電気抵抗値が低く抑えられたゴム架橋物を与えることのできる架橋性ゴム組成物を提供することを目的とする。また、本発明は、このような架橋性ゴム組成物を用いて得られるゴム架橋物および導電性部材を提供することも目的とする。
 本発明者は、上記目的を達成するために鋭意研究した結果、カチオン性含窒素芳香族複素環を含有する基を有している特定の単位および不飽和オキサイド単量体単位を、特定割合含有するポリエーテルゴムに、架橋剤と、水酸化カルシウムとを配合してなる架橋性ゴム組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、下記一般式(1)で表される単位0.1~30モル%、および不飽和オキサイド単量体単位1~15モル%を含有するポリエーテルゴムと、架橋剤と、水酸化カルシウムとを含む架橋性ゴム組成物が提供される。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)中、Aは、カチオン性含窒素芳香族複素環を含有する基である。前記カチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。Xは任意の対アニオンである。)
  好ましくは、上記一般式(1)中のAで表されるカチオン性含窒素芳香族複素環を含有する基が、下記一般式(2)で表される基である。
Figure JPOXMLDOC01-appb-C000004
 (上記一般式(2)中に表されているN-は、上記一般式(1)において、上記一般式(1)に示す「2」の位置の炭素原子と結合している。また、上記一般式(2)中に表されているRは、水素原子、または炭素数1~20の炭化水素基を表す。)
 好ましくは、前記ポリエーテルゴムが、さらに、エピハロヒドリン単量体単位を含有する。
 好ましくは、前記ポリエーテルゴムが、さらに、エチレンオキサイド単量体単位を含有する。
 好ましくは、前記架橋剤が、含硫黄化合物である。
 好ましくは、前記水酸化カルシウムの含有量が、前記ポリエーテルゴム100重量部に対し、0.01~15重量部である。
 好ましくは、ムーニー粘度(ML1+4,100℃)が10~53である。
 好ましくは、前記ポリエーテルゴムに、前記架橋剤、および前記水酸化カルシウムを添加し、混練することにより得られる。
 また、本発明によれば、上記架橋性ゴム組成物の製造方法であって、前記ポリエーテルゴムを得る工程と前記ポリエーテルゴムに、前記架橋剤、および前記水酸化カルシウムを添加し、混練する工程と、を含む製造方法が提供される。
 また、本発明によれば、上記架橋性ゴム組成物を架橋してなるゴム架橋物が提供される。
 さらに、本発明によれば、上記ゴム架橋物を有している導電性部材が提供される。
 本発明によれば、優れたスコーチ安定性、および、十分な架橋性を備え、かつ、電気抵抗値が低く抑えられたゴム架橋物を与えることのできる架橋性ゴム組成物、ならびに、該架橋性ゴム組成物を用いて得られるゴム架橋物および導電性部材を提供することができる。
 本発明の架橋性ゴム組成物は、後述する一般式(1)で表される単位0.1~30モル%、および不飽和オキサイド単量体単位1~15モル%を含有するポリエーテルゴムと、架橋剤と、水酸化カルシウムとを含むものである。
<ポリエーテルゴム>
 本発明で用いるポリエーテルゴムは、下記一般式(1)で表される単位0.1~30モル%、および不飽和オキサイド単量体単位1~15モル%を少なくとも含有する。
Figure JPOXMLDOC01-appb-C000005
 (上記一般式(1)中、Aは、カチオン性含窒素芳香族複素環を含有する基である。前記カチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。Xは任意の対アニオンである。)
 上記一般式(1)で表される単位中、Aは、カチオン性含窒素芳香族複素環を含有する基である。このカチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。カチオン性含窒素芳香族複素環を含有する基中のカチオン性含窒素芳香族複素環における含窒素芳香族複素環は、環中に窒素原子を有し、芳香族性を有するものならば、特に限定されない。たとえば、複素環中に、上記一般式(1)に示す「2」の位置の炭素原子と結合する窒素原子以外に、別の窒素原子を有していてもよいし、酸素原子、硫黄原子など、窒素原子以外のヘテロ原子を有していてもよいし、また、複素環を構成する原子のうち一部は置換基により置換されていてもよい。また、二環以上が縮合した多環構造をとっていてもよい。このような含窒素芳香族複素環の構造としては、たとえば、イミダゾール環、ピロール環、チアゾール環、オキサゾール環、ピラゾール環、イソオキサゾール環などの五員複素環;ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環などの六員複素環;キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、シンノリン環、プリン環、インドール環、イソインドール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾイソオキサゾール環などの縮合複素環;などが挙げられる。これらのなかでも、五員複素環および六員複素環が好ましく、イミダゾール環がより好ましい。ポリエーテルゴムにおいて、上記一般式(1)で表される単位中のAは、それぞれ独立しており、ポリエーテルゴム中に、2種以上の、カチオン性含窒素芳香族複素環を含有する基が存在していてもよい。
 上記含窒素芳香族複素環の置換基としては、特に限定されないが、たとえば、アルキル基;シクロアルキル基;アルケニル基;アリール基;アリールアルキル基;アルキルアリール基;アルコキシル基;アルコキシアルキル基;アリールオキシ基;アルカノール基;水酸基;カルボニル基;アルコキシカルボニル基;アミノ基;イミノ基;ニトリル基;アルキルシリル基;ハロゲン原子;などが挙げられる。
 本発明において、上記一般式(1)中のAで表されるカチオン性含窒素芳香族複素環を含有する基としては、下記一般式(2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 (上記一般式(2)中に表されているN-は、上記一般式(1)において、上記一般式(1)に示す「2」の位置の炭素原子と結合している。また、上記一般式(2)中に表されているRは、水素原子、または炭素数1~20の炭化水素基を表す。)
 上記一般式(2)中に表されているRは、炭素数1~10のアルキル基であることが好ましく、メチル基であることがより好ましい。
 本発明で用いるポリエーテルゴム中における、上記一般式(1)で表される単位の含有割合は、全単量体単位中、0.1~30モル%であり、0.5~25モル%であることが好ましく、0.7~12モル%であることがより好ましい。上記一般式(1)で表される単位の含有割合が前記範囲内にあると、圧縮永久歪率が小さく、電気抵抗値が低いゴム架橋物を与えることができるポリエーテルゴムが得られる。一方、上記一般式(1)で表される単位の含有割合が少なすぎると、得られるゴム架橋物の体積固有抵抗値が高くなる場合がある。また、上記一般式(1)で表される単位の含有割合が多すぎると、ポリエーテルゴムが硬くなり、ゴム弾性体としての特質が失われる場合がある。
 上記一般式(1)で表される単位は、通常、エピハロヒドリン単量体単位を含有するポリエーテルゴム中の、エピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、カチオン性含窒素芳香族複素環を含有する基に置換することで得られる。
 エピハロヒドリン単量体単位を構成するエピハロヒドリン単量体としては、特に限定されないが、たとえば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、エピフルオロヒドリンなどが挙げられる。これらのなかでも、エピクロロヒドリンが好ましい。エピハロヒドリン単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。なお、エピハロヒドリン単量体単位は、ハロゲン原子の少なくとも一部が、カチオン性含窒素芳香族複素環を含有する基に置換されることにより、上記一般式(1)で表される単位を構成することとなるが、その一部については、カチオン性含窒素芳香族複素環を含有する基に置換されずに、残存していてもよい。
 ポリエーテルゴム中のエピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、カチオン性含窒素芳香族複素環を含有する基に置換するために用いられる化合物(以下、「オニウム化剤」と記す。)は、窒素原子含有芳香族複素環式化合物であれば、特に限定されず、たとえば、イミダゾール、1-メチルイミダゾール、ピロール、1-メチルピロール、チアゾール、オキサゾール、ピラゾール、イソオキサゾールなどの五員複素環式化合物;ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、2,6-ルチジンなどの六員複素環式化合物;キノリン、イソキノリン、キノキサリン、キナゾリン、シンノリン、プリン、インドール、イソインドール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾールなどの縮合複素環式化合物;などを挙げることができる。これらのなかでも、五員複素環式化合物および六員複素環式化合物が好ましく、反応後の物質安定性の観点から、1-メチルイミダゾールがより好ましい。
 ポリエーテルゴム中のエピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、カチオン性含窒素芳香族複素環を含有する基(以下、「オニウムイオン含有基」と記す場合がある。)に置換する方法は、公知のオニウム化反応を応用したものであるが、公知のオニウム化反応については、特開昭50-33271号公報、特開昭51-69434号公報、および特開昭52-42481号公報などに開示されている。
 ポリエーテルゴム中のエピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、オニウムイオン含有基に置換する方法としては、上述したオニウム化剤と、エピハロヒドリン単量体単位を含有しているポリエーテルゴムとを混合し反応させることで、置換する方法などが挙げられる。オニウム化剤と、ポリエーテルゴムとの混合方法は、特に限定されず、たとえば、溶媒を用いて、溶媒を介してこれらを混合する方法や、実質的に溶媒を介さずに混合する方法などが挙げられる。これらの方法のうち、オニウム化反応が進行し易く、反応時間を短縮することができという点より、実質的に溶媒を介さずに混合する方法が好ましい。
 このような実質的に溶媒を介さずに混合する方法としては、たとえば、エピハロヒドリン単量体単位を含有しているポリエーテルゴムと、オニウム化剤とを、実質的に溶媒を介さずに混練し、かつ、これらを反応させる方法が挙げられる。なお、本明細書において、「オニウム化反応を実質的に溶媒を介さずに行なう」とは、溶媒を一切使用しないでオニウム化反応を行なうという限定的意味ではなく、エピハロヒドリン単量体単位を含有しているポリエーテルゴムと、オニウム化剤とを混練できる程度に、溶媒が使用されていてもよいことを含んだ意味である。
 また、エピハロヒドリン単量体単位を含有しているポリエーテルゴムと、オニウム化剤との混練方法は、特に限定されないが、ニーダー、バンバリー、オープンロール、カレンダーロール、二軸混練機などの任意の乾式混練機を一つまたは複数組合せて、均一に混合することが好ましい。
 さらに、エピハロヒドリン単量体単位を含有しているポリエーテルゴムと、オニウム化剤とのオニウム化反応は、混練と同時に行なってもよいし、混練後に別途行なってもよい。別途反応させる場合は、上述した任意の乾式混練機をそのまま継続して用いてもよいし、オーブン、プレス成形機などの加熱機を用いて反応させてもよい。
 反応時の温度は、40~200℃であり、好ましくは60~190℃、より好ましくは80~180℃である。反応温度が低すぎると、置換反応が進まないおそれがあり、一方、反応温度が高すぎると、ポリエーテルゴムの分解やオニウム化剤の揮発が起こるおそれがある。また、反応時間は、特に限定されず、通常、1分~10日、好ましくは5分~1日である。反応時間が短すぎると、置換反応が不完全となるおそれがあり、一方、反応時間が長すぎると、ポリエーテルゴムの分解が起こるおそれがある。
 一方、溶媒を用いて混合を行う方法において、エピハロヒドリン単量体単位を含有しているポリエーテルゴムと、オニウム化剤とを混合する方法としては、特に限定されず、例えば、ポリエーテルゴムを溶媒に溶解してなる溶液にオニウム化剤を添加し混合する方法、オニウム化剤を溶媒に溶解してなる溶液にポリエーテルゴムを添加し混合する方法、オニウム化剤とポリエーテルゴムとの両方を溶媒に溶解して溶液として調製しておき、両溶液を混合する方法などが挙げられる。なお、ポリエーテルゴムやオニウム化剤は、溶媒中に分散していてもよく、ポリエーテルゴムやオニウム化剤が溶媒に溶解しているか、分散しているかは問わない。
 溶媒としては、不活性の溶媒が好適に用いられ、非極性であっても極性であってもよい。非極性溶媒としては、たとえば、ベンゼン、トルエンなどの芳香族炭化水素;n-ペンタン、n-へキサンなどの鎖状飽和炭化水素;シクロペンタン、シクロヘキサンなどの脂環式飽和炭化水素;などが挙げられる。極性溶媒としては、テトラヒドロフラン、アニソール、ジエチルエーテルなどのエーテル;酢酸エチル、安息香酸エチルなどのエステル;アセトン、2-ブタノン、アセトフェノンなどのケトン;アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシドなどの非プロトン性極性溶媒;エタノール、メタノール、水などのプロトン性極性溶媒;などが挙げられる。溶媒としては、これらの混合溶媒も好適に用いられる。溶媒の使用量は、特に限定されないが、エピハロヒドリン単量体単位を含有しているポリエーテルゴムの濃度が1~50重量%となるように用いることが好ましく、3~40重量%になるように用いることがより好ましい。
 溶媒を用いた場合の反応時の温度は、好ましくは20~170℃であり、反応時間は、好ましくは1分~500時間である。
 オニウム化剤の使用量は、特に限定されないが、用いるオニウム化剤やポリエーテルゴムの構造、目的とするポリエーテルゴム中のオニウムイオン含有基の置換率などに応じて決定すればよい。具体的には、オニウム化剤の使用量は、用いるエピハロヒドリン単量体単位を構成するハロゲン原子1モルに対し、通常、0.01~100モル、好ましくは0.02~50モル、より好ましくは0.03~10モル、さらに好ましくは0.05~2モルの範囲である。オニウム化剤の量が少なすぎると、置換反応が遅く、所望の組成のオニウムイオン含有基を有するポリエーテルゴム(以下、「カチオン化ポリエーテルゴム」とも記す。)が得られなくなるおそれがあり、一方、オニウム化剤の量が多すぎると、得られたカチオン化ポリエーテルゴムから未反応のオニウム化剤を除去することが困難になるおそれがある。
 また、オニウム化剤として、ピロールのような環状第2級アミン類(本発明において、環状第2級アミン類とは、窒素原子含有芳香族複素環式化合物であって、環中の窒素原子に水素原子が1つ結合しているものを言う。以下、同様。)を使用する場合、オニウム化剤の使用量は、用いるエピハロヒドリン単量体単位を構成するハロゲン原子1モルに対し、通常、0.01~2モル、好ましくは0.02~1.5モル、より好ましくは0.03~1モルの範囲である。環状第2級アミン類の量が少なすぎると、置換反応が遅く、所望の組成のカチオン化ポリエーテルゴムが得られなくなるおそれがあり、一方、環状第2級アミン類の量が多すぎると、ハロゲン原子に対して過剰量となっている未反応の環状第2級アミン類の影響により、カチオン化ポリエーテルゴム中のオニウムイオン含有基の置換率の制御が困難になるおそれがある。
 続いて、必要に応じて、上記一般式(1)に示す「2」の位置の炭素原子と結合している環中の窒素原子と結合している水素原子を、所望の基に置換することもできる。ポリエーテルゴムと環状第2級アミン類との反応後、次に、塩基を混合し、窒素原子と結合しているプロトンを脱離させ、さらに、たとえば、ハロゲン化アルキルを混合し付加させることにより、下記式(3)のように、所望の置換基を導入することができる。
Figure JPOXMLDOC01-appb-C000007
 (上記一般式(3)中、R’は炭素数1~10のアルキル基を示し、X’はハロゲン原子を表す。)
 上記一般式(1)のXで表される任意の対アニオンとは、イオン結合にて、Aと結合している負の電荷を有する化合物または原子であり、負の電荷を持つこと以外は特に限定されない。対アニオンは、電離性のイオン結合であるため、公知のイオン交換反応により、少なくとも一部を、任意の対アニオンにアニオン交換することができる。上記オニウム化剤と、エピハロヒドリン単量体単位を含有しているポリエーテルゴムとを混合し反応が終了した段階においては、上記一般式(1)のXはハロゲン原子であるが、Aの対アニオンであるハロゲン化物イオンに対し、公知のアニオン交換反応を行ってもよい。アニオン交換反応は、オニウムイオン含有基を有するポリエーテルゴムに対し、電離性を有するイオン性化合物を混合することで行うことができる。アニオン交換反応を行う条件は、特に限定されないが、用いるイオン性化合物やポリエーテルゴムの構造、目的とするAの対アニオンの置換率などに応じて決定すればよい。反応には、イオン性化合物と、オニウムイオン含有基を有するポリエーテルゴムとのみで行っても構わないし、有機溶媒などのその他の化合物を含んでいても構わない。イオン性化合物の使用量は、特に限定されないが、用いるエピハロヒドリン単量体単位を構成するハロゲン原子1モルに対し、通常、0.01~100モル、好ましくは0.02~50モル、より好ましくは0.03~10モルの範囲である。イオン性化合物の量が少なすぎると、置換反応が進行しにくくなるおそれがあり、一方、多すぎると、イオン性化合物の除去が困難になるおそれがある。
 アニオン交換反応時の圧力は、通常、0.1~50MPaであり、好ましくは0.1~10MPaであり、より好ましくは0.1~5MPaである。反応時の温度は、通常、-30~200℃、好ましくは-15~180℃、より好ましくは0~150℃である。反応時間は、通常、1分~1000時間であり、好ましくは3分~100時間であり、より好ましくは5分~10時間であり、さらに好ましくは5分~3時間である。
 対アニオンのアニオン種は、特に限定されないが、たとえば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン;硫酸イオン;亜硫酸イオン;水酸化物イオン;炭酸イオン;炭酸水素イオン;硝酸イオン;酢酸イオン;過塩素酸イオン;リン酸イオン;アルキルオキシイオン;トリフルオロメタンスルホン酸イオン;ビストリフルオロメタンスルホンイミドイオン;ヘキサフルオロリン酸イオン;テトラフルオロホウ酸イオン;などが挙げられる。
 上記一般式(1)で表される単位の、本発明で用いるポリエーテルゴム中の含有割合(以下、「オニウムイオン単位含有率」とも記す。)を調べる方法としては、公知の方法を用いればよい。オニウムイオン単位含有率を簡便かつ定量的に求めるためには、本発明で用いるポリエーテルゴムについてH-NMR測定を行うことにより、オニウムイオン含有基の含有量を定量することができる。具体的には、まず、カチオン化ポリエーテルゴムの主鎖であるポリエーテル鎖に由来するプロトンの積分値から、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1を算出する。次に、オニウムイオン含有基に由来するプロトンの積分値から、導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を算出する。導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1で除することにより、オニウムイオン単位含有率を、下記式により算出することができる。
  オニウムイオン単位含有率(モル%)=100×B2/B1
 また、用いるオニウム化剤が、上述した反応条件において、オニウムイオン含有基の置換反応以外の反応で消費されない場合には、オニウム化剤の消費モル量は、ハロゲン原子のオニウムイオン含有基の置換モル量と等しくなる。そのため、オニウム化剤の消費モル量を、反応開始前の添加モル量A1から反応終了後の残留モル量A2を減じることにより算出し、これをオニウム化剤と反応させる前のポリエーテルゴム(以下、「ベースポリエーテルゴム」とも記す。)の全単量体単位のモル量Pにて除することにより、オニウムイオン単位含有率を、下記式により算出することもできる。
  オニウムイオン単位含有率(モル%)=100×(A1-A2)/P
 消費モル量の測定に関しては、公知の測定方法を用いて構わないが、たとえば、その反応率をキャピラリーカラムと水素炎イオン化型検出器(FID)とを装備したガスクロマトグラフィー(GC)を用いて測定することができる。
 また、本発明で用いるポリエーテルゴムは、上記一般式(1)で表される単位に加えて、不飽和オキサイド単量体単位を含有する。不飽和オキサイド単量体単位は、主として架橋性の単量体単位として作用する。
 不飽和オキサイド単量体単位を形成する不飽和オキサイド単量体としては、分子内に少なくとも一つの炭素-炭素不飽和結合(芳香環の炭素-炭素不飽和結合は除く)と、少なくとも一つのエポキシ基とを含有する化合物であれば、特に限定されないが、たとえば、アリルグリシジルエーテル、ブテニルグリシジルエーテルなどのアルケニルグリシジルエーテル類;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド類;などが挙げられる。これらのなかでも、アルケニルグリシジルエーテル類が好ましく、アリルグリシジルエーテルがより好ましい。不飽和オキサイド単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。ポリエーテルゴム中における、不飽和オキサイド単量体単位の含有割合は、1~15モル%であり、好ましくは1~12モル%、より好ましくは2~10モル%である。不飽和オキサイド単量体単位の含有割合が少なすぎると、架橋が不十分になり、得られるゴム架橋物の機械的特性が低下してしまう場合がある。また、不飽和オキサイド単量体単位の含有割合が多すぎると、重合反応中に、ポリマー分子中あるいはポリマー分子間のゲル化反応(3次元架橋反応)などを起こし易くなって、成形加工性が低下するおそれがある。
 また、本発明で用いるポリエーテルゴムにおいては、上述したように、通常、エピハロヒドリン単量体単位を含有するポリエーテルゴム中の、エピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、カチオン性含窒素芳香族複素環を含有する基に置換することで、上記一般式(1)で表される単位を導入するものであるが、この場合において、エピハロヒドリン単量体単位のうち一部は、カチオン性含窒素芳香族複素環を含有する基に置換されずに、残存していてもよい。そして、この場合における、エピハロヒドリン単量体単位の含有割合は、全単量体単位中、0~98.9モル%であることが好ましく、10~78.5モル%であることがより好ましく、15~57.3モル%であることが特に好ましい。エピハロヒドリン単量体単位の含有割合が上記範囲内にあると、体積固有抵抗値をより適切に低減することができる。
 また、本発明で用いるポリエーテルゴムは、上記した各単量体単位に加えて、低電気抵抗性の観点から、エチレンオキサイド単量体単位を含有していることが好ましい。エキレンオキサイド単量体単位は、エチレンオキサイド単量体により形成される単位である。本発明で用いるポリエーテルゴム中における、エチレンオキサイド単量体単位の含有割合は、0~90モル%であることが好ましく、20~80モル%であることがより好ましく、40~75モル%であることが特に好ましい。ポリエーテルゴム中における、エチレンオキサイド単量体単位の含有割合を上記範囲内とすることにより、ポリエーテルゴムを低電気抵抗性に優れたものとすることができる。
 また、本発明で用いるポリエーテルゴムは、必要に応じて、上記した各単量体単位を形成する単量体と共重合可能なその他の単量体の単位を含有する共重合体であってもよい。その他の単量体の単位のなかでも、エチレンオキサイドを除いたアルキレンオキサイド単量体単位が好ましい。エチレンオキサイドを除いたアルキレンオキサイド単量体単位を形成するアルキレンオキサイド単量体としては、特に限定されないが、たとえば、プロピレンオキサイド、1,2-エポキシブタン、1,2-エポキシ-4-クロロペンタン、1,2-エポキシヘキサン、1,2-エポキシオクタン、1,2-エポキシデカン、1,2-エポキシオクタデカン、1,2-エポキシエイコサン、1,2-エポキシイソブタン、2,3-エポキシイソブタンなどの直鎖状または分岐鎖状アルキレンオキサイド;1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,2-エポキシシクロドデカンなどの環状アルキレンオキサイド;ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、2-メチルオクチルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテルなどのアルキル直鎖または分岐鎖を有するグリシジルエーテル;エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルなどのオキシエチレン側鎖を有するグリシジルエーテル;などが挙げられる。これらのなかでも、直鎖状アルキレンオキサイドが好ましく、プロピレンオキサイドがより好ましい。これらアルキレンオキサイド単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。ポリエーテルゴム中における、エチレンオキサイドを除いたアルキレンオキサイド単量体単位の含有割合は、全単量体単位中、30モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。ポリエーテルゴム中における、エチレンオキサイドを除いたアルキレンオキサイド単量体単位の含有割合が多すぎると、得られるゴム架橋物の体積固有抵抗値が上昇するおそれがある。
 また、アルキレンオキサイド単量体を除く、その他の共重合可能な単量体としては、特に限定されないが、たとえば、スチレンオキサイド、フェニルグリシジルエーテルなどのアリールエポキシド類;などが挙げられる。本発明で用いるポリエーテルゴム中における、アルキレンオキサイド単量体を除く、その他の共重合可能な単量体単位の含有割合は、全単量体単位中、20モル%以下が好ましく、10モル%以下がより好ましく、5モル%以下がさらに好ましい。
 ベースポリエーテルゴムは、溶液重合法または溶媒スラリー重合法などにより、前記各単量体を開環重合することにより得ることができる。
 重合触媒としては、一般のポリエーテルゴム重合用触媒であれば、特に限定されない。重合触媒としては、たとえば、有機アルミニウムに水とアセチルアセトンを反応させた触媒(特公昭35-15797号公報);トリイソブチルアルミニウムにリン酸とトリエチルアミンを反応させた触媒(特公昭46-27534号公報);トリイソブチルアルミニウムにジアザビシクロウンデセンの有機酸塩とリン酸とを反応させた触媒(特公昭56-51171号公報);アルミニウムアルコキサイドの部分加水分解物と有機亜鉛化合物とからなる触媒(特公昭43-2945号公報);有機亜鉛化合物と多価アルコールとからなる触媒(特公昭45-7751号公報);ジアルキル亜鉛と水とからなる触媒(特公昭36-3394号公報);トリブチル錫クロライドとトリブチルホスフェートとからなる触媒(特許第3223978号公報);などが挙げられる。
 重合溶媒としては、不活性溶媒であれば、特に限定されないが、たとえば、ベンゼン、トルエンなどの芳香族炭化水素;n-ペンタン、n-へキサンなどの直鎖状飽和炭化水素類;シクロペンタン、シクロヘキサンなどの環状飽和炭化水素類;などが用いられる。これらのなかでも、溶液重合法により開環重合する場合は、ベースポリエーテルゴムの溶解性の観点から、芳香族炭化水素を用いることが好ましく、トルエンがより好ましい。
 重合反応温度は、20~150℃が好ましく、50~130℃がより好ましい。重合様式は、回分式、半回分式、連続式などの任意の方法で行うことができる。
 ベースポリエーテルゴムは、ブロック共重合、ランダム共重合のいずれの共重合タイプでも構わないが、特に、単量体にエチレンオキサイドを用いる場合、ランダム共重合体の方がよりポリエチレンオキサイドの結晶性を低下させ、ゴム弾性を損ないにくいために好ましい。
 ベースポリエーテルゴムを溶媒から回収する方法は、特に限定されないが、例えば、凝固・ろ別・脱水・乾燥方法を適宜組合せることにより行う。ベースポリエーテルゴムが溶解している溶液から、ベースポリエーテルゴムを凝固させる方法としては、例えば、常法であるスチームストリッピングや貧溶媒を用いた析出方法などを用いることができる。また、ベースポリエーテルゴムを含むスラリーから、ベースポリエーテルゴムをろ別する方法としては、必要に応じて、例えば、回転式スクリーン、振動スクリーンなどの篩を用いる方法などを挙げることができる。更に、ベースポリエーテルゴムの脱水方法としては、例えば、遠心分離機;ロール、バンバリー式脱水機、スクリュー押出機式脱水機などの圧縮水絞機;などを用いて脱水する方法を挙げることができる。更に、ベースポリエーテルゴムの乾燥方法としては、ニーダー型乾燥機、エキスパンダー乾燥機、熱風乾燥機、減圧乾燥機などの乾燥機を用いる方法;などを挙げることができる。これら上述した方法および用いる機器などは、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。
 本発明で用いるポリエーテルゴムの重量平均分子量は、20万~200万であることが好ましく、40万~150万であることがより好ましい。重量平均分子量が高すぎると、ムーニー粘度が高くなり、成形加工が難しくなるおそれがある。一方、重量平均分子量が低すぎると、得られるゴム架橋物の圧縮永久歪が悪化するおそれがある。
 本発明で用いるポリエーテルゴムのムーニー粘度(ポリマームーニー粘度・ML1+4,100℃)は、10~120であることが好ましい。ムーニー粘度が高すぎると、成形加工性に劣り、導電性部材用途への成形がし難くなる。さらに、スウェル(押し出し成形時にダイの径より押出物の径が大きくなること)が発生し、寸法安定性が低下するおそれがある。一方、ムーニー粘度が低すぎると、得られるゴム架橋物の機械的強度が低下するおそれがある。
<架橋剤>
 本発明で用いる架橋剤としては、上述したポリエーテルゴムを架橋可能なものであれば、特に限定されない。
 このような架橋剤としては、たとえば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などの硫黄;一塩化硫黄、二塩化硫黄、硫黄含有モルホリン系化合物(たとえば、4,4’-ジチオジモルホリン、4,4’-テトラチオジモルホリン、モルホリノジチオ蟻酸4-モルホリニル)、チオウレア系化合物(たとえば、トリメチルチオ尿素、ジエチルチオ尿素、ジブチルチオ尿素、ジラウリルチオ尿素、ジフェニルチオ尿素、エチレンチオ尿素、チオカルバニリド)、1,1’-ジチオビス(ヘキサヒドロ-2H-アゼピン-2-オン)、含リンポリスルフィド、高分子多硫化物、トリアジン系化合物(たとえば、s-トリアジン-2,4,6-トリチオール)などの含硫黄化合物;ジクミルペルオキシド、ジターシャリブチルペルオキシドなどの有機過酸化物;p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシムなどのキノンジオキシム;トリエチレンテトラミン、ヘキサメチレンジアミンカルバメート、4,4’-メチレンビス-o-クロロアニリンなどの有機多価アミン化合物;メチロール基を持つアルキルフェノール樹脂;などが挙げられる。これらのなかでも、硫黄、含硫黄化合物が好ましく、スコーチ安定性をより高めることができるという点より、含硫黄化合物がより好ましく、一塩化硫黄、二塩化硫黄、硫黄含有モルホリン系化合物、チオウレア系化合物、1,1’-ジチオビス(ヘキサヒドロ-2H-アゼピン-2-オン)、含リンポリスルフィドおよび高分子多硫化物がさらに好ましく、硫黄含有モルホリン系化合物およびチオウレア系化合物がなおさらに好ましく、チオウレア系化合物が特に好ましい。これらの架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。
 本発明の架橋性ゴム組成物中における、架橋剤の含有量は、本発明で用いるポリエーテルゴム100重量部に対し、好ましくは0.1~10重量部であり、より好ましくは0.2~7重量部、さらに好ましくは0.3~5重量部である。架橋剤の含有量を上記範囲とすることにより、ゴム架橋物を得る際における架橋速度を十分なものとしながら、得られるゴム架橋物の硬度を適切なものとすることができる。
<水酸化カルシウム>
 また、本発明の架橋性ゴム組成物は、上述したポリエーテルゴムおよび架橋剤に加えて、水酸化カルシウムを含有する。本発明の架橋性ゴム組成物において、水酸化カルシウム(Ca(OH))は、架橋促進剤あるいは架橋促進助剤として作用するものであり、本発明においては、水酸化カルシウムを使用することで、架橋性ゴム組成物を、十分な架橋性を備えながら、優れたスコーチ安定性を有するものとすることができ、しかも、得られるゴム架橋物の電気抵抗値を低下させることができるものである。特に、本発明者等の知見によれば、架橋促進剤あるいは架橋促進助剤として従来より使用されている酸化亜鉛に代えて、水酸化カルシウムを使用することにより、架橋性ゴム組成物としてのスコーチ安定性を高めることができること、さらには、得られるゴム架橋物の電気抵抗値を低下させることができることを見出したものであり、これにより、本発明を完成させるに至ったものである。なお、オニウム化剤と、ベースポリエーテルゴムとを反応させる際に、水酸化カルシウムを存在させると、水酸化カルシウムが副反応により失活するおそれがあることから、架橋性を十分なものとしつつ、スコーチ安定性を高めることができないおそれがある。したがって、水酸化カルシウムを反応前に存在させた場合であっても、反応により得られるポリエーテルゴムに、さらに、水酸化カルシウムを添加し、混練することが、本発明の架橋性ゴム組成物の製造方法として好ましい。すなわち、本発明の架橋性ゴム組成物は、前記ポリエーテルゴムに、前記架橋剤、および前記水酸化カルシウムを添加し、混練することにより得られるものであることが、架橋性を十分なものとしながら、スコーチ安定性を高められることから好ましい。本発明の架橋性ゴム組成物の製造方法については後述する。
 本発明の架橋性ゴム組成物中における、水酸化カルシウムの含有量は、本発明で用いるポリエーテルゴム100重量部に対し、好ましくは0.01~15重量部であり、より好ましくは0.1~10重量部、さらに好ましくは1~8重量部である。水酸化カルシウムの含有量を上記範囲とすることにより、架橋性ゴム組成物の架橋性を十分なものとしながら、スコーチ安定性をより適切に高めることができ、しかも、得られるゴム架橋物の電気抵抗値をより適切に低下させることができる。
 また、本発明の架橋性ゴム組成物は、水酸化カルシウム以外の架橋促進剤または架橋促進助剤として作用する化合物を含有していてもよく、化学構造中に硫黄原子を含有する含硫黄架橋促進剤、ステアリン酸などが挙げられる。
 また、化学構造中に硫黄原子を含有する含硫黄架橋促進剤としては、チウラム系架橋促進剤、チアゾール系架橋促進剤、スルフェンアミド系架橋促進剤、ジチオカルバミン酸塩系架橋促進剤などが挙げられる。
 チウラム系架橋促進剤の具体例としては、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィドなどが挙げられる。また、チアゾール系架橋促進剤の具体例としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾール亜鉛、(ジニトロフェニル)メルカプトベンゾチアゾール、(N,N-ジエチルジチオカルバモイル)ベンゾチアゾールなどが挙げられる。スルフェンアミド系架橋促進剤の具体例としては、N-エチル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアジルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N,N-ジイソプロピル-2-ベンゾチアジルスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミドなどが挙げられる。ジチオカルバミン酸塩系架橋促進剤の具体例としては、ジメチルジチオカルバミン酸鉛、ジアミルジチオカルバミン酸鉛、ジメチルジチオカルバミン酸亜鉛、ジアミルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ペンタメチレンジチオカルバミン酸亜鉛、エチルフェニルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム、ジブチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸セレン、ジエチルジチオカルバミン酸セレン、ジエチルジチオカルバミン酸テルル、ジエチルジチオカルバミン酸カドミウム、ジメチルジチオカルバミン酸銅、ジメチルジチオカルバミン酸鉄、ジメチルジチオカルバミン酸ビスマス、ジメチルジチオカルバミン酸ジメチルアンモニウム、ペンタメチレンジチオカルバミン酸ピペリジン、メチルペンタメチレンジチオカルバミン酸ピペコリンなどが挙げられる。
 本発明の架橋性ゴム組成物中における、水酸化カルシウム以外の架橋促進剤または架橋促進助剤として作用する化合物の含有量は、本発明で用いるポリエーテルゴム100重量部に対し、好ましくは0.01~15重量部であり、より好ましくは0.1~10重量部、さらに好ましくは0.5~3重量部である。水酸化カルシウム以外の架橋促進剤または架橋促進助剤として作用する化合物の含有量を上記範囲とすることにより、スコーチ安定性の向上効果を十分なものとしながら、架橋性ゴム組成物の架橋性をより高めることができる。
 なお、酸化亜鉛も架橋促進剤あるいは架橋促進助剤として作用するものであるが、酸化亜鉛を配合すると、スコーチ安定性が低下したり、得られるゴム架橋物における電気抵抗値の低減効果が得られなくなってしまうため、本発明の架橋性ゴム組成物中における、酸化亜鉛の含有量は、本発明で用いるポリエーテルゴム100重量部に対し、5重量部以下に制限することが好ましく、1重量部以下に制限することがより好ましく、酸化亜鉛を実質的に含有しないものとすることが特に好ましい。
<その他の配合剤>
 また、本発明の架橋性ゴム組成物は、上記各成分に加えて、充填剤をさらに含有していてもよい。充填剤としては、特に限定されないが、たとえば、カーボンブラック、シリカ、カーボンナノチューブ、およびグラフェンなどが挙げられる。これらの充填剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。充填剤の配合割合は、特に限定されないが、本発明で用いるポリエーテルゴム100重量部に対して、0.01~150重量部が好ましく、0.1~100重量部がより好ましく、1~60重量部が特に好ましい。これら充填剤のなかでも、カーボンブラック、カーボンナノチューブ、グラフェンなどの導電性充填剤を使用する場合には、その配合割合は、本発明で用いるポリエーテルゴム100重量部に対して、0.01~60重量部が好ましく、0.1~40重量部がより好ましく、1~30重量部が特に好ましい。
 また、本発明の架橋性ゴム組成物は、本発明の効果を損なわない範囲で、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、イソプレンゴム、天然ゴム、アクリロニトリルブタジエンゴム、ブチルゴム、およびこれらゴムの部分水素添加物(たとえば、水素化ニトリルゴム)などのジエン系ゴム;エチレンプロピレンゴム、アクリルゴム、ポリエーテル系ゴム(上述したポリエーテルゴムを除く)、フッ素ゴム、シリコーンゴムなどのジエン系ゴム以外のゴム;オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマー;ポリ塩化ビニル、クマロン樹脂、フェノール樹脂などの樹脂;を含有していてもよい。これらのゴム、熱可塑性エラストマー、および樹脂は、単独で、あるいは2種以上組み合わせて用いることができ、これらの合計含有量は、本発明で用いるポリエーテルゴム100重量部に対して、100重量部以下が好ましく、70重量部以下がより好ましく、50重量部以下が特に好ましい。これらのゴム、熱可塑性エラストマー、および樹脂の中でも、架橋性ゴム組成物を調製する際における加工性、特に、ロール混練時の加工性を高めることができるという観点より、アクリロニトリルブタジエンゴムを含有させることが好ましい。
 さらに、本発明の架橋性ゴム組成物には、上述した添加剤以外に、公知のゴムに通常配合されるその他の添加剤を含有していてもよい。このような添加剤としては、特に限定されないが、たとえば、受酸剤;補強剤;老化防止剤;紫外線吸収剤;耐光安定剤;粘着付与剤;界面活性剤;導電性付与剤;電解質物質;着色剤(染料・顔料);難燃剤;帯電防止剤;などが挙げられる。
 本発明の架橋性ゴム組成物のムーニー粘度(配合物ムーニー粘度・ML1+4,100℃)は、10~53であることが好ましく、15~50であることがより好ましく、25~50であることがさらに好ましい。配合物ムーニー粘度が上記範囲内にあると、良好な成形加工性を得ることができる。
 本発明の架橋性ゴム組成物は、上述したポリエーテルゴムに、架橋剤、および水酸化カルシウム、ならびに、必要に応じて用いられる各添加剤を、所望の方法により調合、混練することにより調製することができる。たとえば、架橋剤や水酸化カルシウム、必要に応じて添加される水酸化カルシウム以外の架橋促進剤または架橋促進助剤として作用する化合物を除く添加剤と、ポリエーテルゴムとを混練後、その混合物に、架橋剤、水酸化カルシウム、必要に応じて添加される水酸化カルシウム以外の架橋促進剤または架橋促進助剤として作用する化合物を混合して、本発明の架橋性ゴム組成物を得ることができる。調合、混練に際しては、たとえば、ニーダー、バンバリー、オープンロール、カレンダーロール、押出機など任意の混練成形機を一つあるいは複数組み合わせて用いて混練成形してもよい。架橋剤、水酸化カルシウム、必要に応じて添加される水酸化カルシウム以外の架橋促進剤または架橋促進助剤として作用する化合物を除く添加剤と、ポリエーテルゴムとの混練温度は、20~200℃が好ましく、20~150℃がより好ましく、その混練時間は、30秒~30分が好ましく、混練物と、架橋剤、水酸化カルシウム、必要に応じて添加される水酸化カルシウム以外の架橋促進剤または架橋促進助剤として作用する化合物との混合温度は、100℃以下が好ましく、0~80℃がより好ましい。
 本発明の製造方法は、上述した本発明の架橋性ゴム組成物の製造方法であって、前記ポリエーテルゴムを得る工程と、前記ポリエーテルゴムに、前記架橋剤、および前記水酸化カルシウムを添加し、混練する工程と、を含む製造方法である。前記ポリエーテルゴムを得る工程は、上述したオニウム化剤と、エピハロヒドリン単量体単位を含有しているポリエーテルゴムとを混合し反応させる工程であってよい。また、この工程を水酸化カルシウムの存在下で行ってもよく、この場合、副反応により該水酸化カルシウムが失活して、十分な架橋性および優れたスコーチ安定性が得られないおそれがある。本発明の製造方法は、オニウム化剤とベースポリエーテルゴムとを反応させて得られたポリエーテルゴムに、水酸化カルシウムを添加するものであるので、架橋性ゴム組成物中で水酸化カルシウムの活性が失われておらず、架橋性を十分なものとしながら、スコーチ安定性を高めることが可能である。
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明の架橋性ゴム組成物を架橋してなるものである。
 本発明の架橋性ゴム組成物を架橋する方法は、特に限定されないが、成形と架橋を同時に行っても、成形後に架橋してもよい。成形時の温度は、20~200℃が好ましく、40~180℃がより好ましい。架橋時の加熱温度は、130~200℃が好ましく、140~200℃がより好ましい。架橋時の温度が低すぎると、架橋時間が長時間必要となったり、得られるゴム架橋物の架橋密度が低くなったりするおそれがある。一方、架橋時の温度が高すぎると、成形不良となるおそれがある。架橋時間は、架橋方法、架橋温度、形状などにより異なるが、1分以上、5時間以下の範囲が架橋密度と生産効率の面から好ましい。加熱方法としては、プレス加熱、オーブン加熱、蒸気加熱、熱風加熱、およびマイクロ波加熱などの方法を適宜選択すればよい。
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。二次架橋を行う際における、加熱温度は、100~220℃が好ましく、130~210℃がより好ましい。加熱時間は、30分~5時間が好ましい。
 本発明のゴム架橋物の体積固有抵抗値は、温度23℃、湿度50%とした測定環境にて、印加電圧を100Vおよび250Vの2条件とし、電圧印加開始から30秒後の値において、通常、1×105.0~1×109.5Ω・cmであり、好ましくは1×105.2~1×108.0Ω・cmであり、より好ましくは1×105.5~1×107.5Ω・cmである。ゴム架橋物の体積固有抵抗値が前記範囲内にあると、低電気抵抗性に優れた導電性部材が得られる。一方、ゴム架橋物の体積固有抵抗値が高すぎると、同じ電流を流すためにより高い電圧を印加しなければならず、消費電力量が多くなることから導電性部材には不向きである。また、ゴム架橋物の体積固有抵抗値が低すぎると、電圧印加方向以外の意図しない方向に電流が流れてしまい、導電性部材としての機能を損ねるおそれがある。
 このようにして得られる本発明のゴム架橋物は、上述した本発明の架橋性ゴム組成物を用いて得られるものであるため、電気抵抗値が低く、各種導電用途に好適に用いることのできるものである。
<導電性部材>
 本発明の導電性部材は、本発明のゴム架橋物を有しているものである。
 本発明のゴム架橋物は、その特性を活かして、各種工業ゴム製品用材料として有用であり、たとえば、複写機や印刷機などに使用される、導電性ロール、導電性ブレード、導電性ベルトなどの導電性部材;靴底やホース用材料;コンベアーベルトやエスカレータのハンドレールなどのベルト用材料;シール、パッキン用材料;などとして用いることができる。特に、本発明のゴム架橋物は、電気抵抗値が低いという特性を有するため、複写機や印刷機などに使用される導電性部材、特に、導電性ロールに好適に用いることができる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の「部」は、特に断りのない限り、重量基準である。
 各種の物性については、以下の方法に従って評価した。
[オニウムイオン単位含有率]
 実施例におけるオニウムイオン単位含有率の測定は、核磁気共鳴装置(H-NMR)を用いて、以下のように行った。オニウム化反応後、凝固乾燥して得られたカチオン化ポリエーテルゴム30mgを、1.0mlのジメチルスルホキシドに加え、1時間振とうすることにより均一に溶解させた。この溶液を、H-NMR測定することによりオニウムイオン単位含有率を算出した。まず、カチオン化ポリエーテルゴムの主鎖であるポリエーテル鎖に由来するプロトンの積分値から、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1を算出した。次に、オニウムイオン含有基に由来するプロトンの積分値から、導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を算出した。そして、導入されているオニウムイオン単位(上記一般式(1)で表される単位)のモル数B2を、ポリマー中の全単量体単位(オニウムイオン単位を含む)のモル数B1で除することにより、オニウムイオン単位含有率を、下記式により算出した。
  オニウムイオン単位含有率(モル%)=100×B2/B1
[配合物ムーニー粘度(ML1+4,100℃)]
 架橋性ゴム組成物のムーニー粘度(配合物ムーニー粘度、ML1+4,100℃)は、JIS K6300に従って、100℃で測定した。
[ムーニースコーチ時間(t、t35)]
 架橋性ゴム組成物のムーニースコーチ時間(t、t35)は、JIS K6300に従って、L形ロータを用いて125℃で測定した。なお、ムーニースコーチ時間(t)は、ムーニー粘度が最小値から5ポイント増加するまでの時間であり、ムーニースコーチ時間(t35)は、ムーニー粘度が最小値から35ポイント増加するまでの時間である。ムーニースコーチ時間(t、t35)の値が大きいほど、スコーチ安定性に優れる。また、本試験においては、ムーニースコーチ試験における最低ムーニー粘度(Vm)も測定した。
[架橋性試験]
 架橋性ゴム組成物について、ゴム加硫試験機(ムービングダイレオメータMDR、アルファテクノロジーズ社製)を用い、170℃、20分の条件で架橋性試験を行った。そして、架橋性試験の結果から、最小トルク「ML」(単位は、dN・m)、最大トルク「MH」(単位は、dN・m)、T10(単位は、min.)およびT90(単位は、min.)を測定した。なお、T10およびT90は、「最大トルクMH-最小トルクML」を100%としたときに、トルクが最小トルクMLから、それぞれ、10%上昇するのに要する時間、および90%上昇するのに要する時間を意味し、T90の値が小さいほど架橋速度が速いと判断できる。
[体積固有抵抗値(23℃、50%RH)]
 架橋性ゴム組成物を温度170℃、20分間のプレスによって成形、架橋し、縦15cm、横10cm、厚さ2mmのシート状のゴム架橋物(シート状試験片)を得た。そして、得られたシート状のゴム架橋物を用いて、体積固有抵抗値を測定した。なお、体積固有抵抗値の測定は、K6271の2重リング電極法に準拠して行い、測定条件は、温度23℃、湿度50%とし、印加電圧は100Vおよび250Vの2条件とし、電圧の印加を開始してから30秒後の値を測定した。体積固有抵抗値は、数値が小さいほど、導電性に優れている。
(製造例1、重合触媒の製造)
 密閉した耐圧ガラス容器を窒素置換して、トルエン200部およびトリイソブチルアルミニウム60部を供給した。このガラス容器を氷水に浸漬して冷却後、ジエチルエーテル230部を添加し、攪拌した。次に、氷水で冷却しながら、リン酸13.6部を添加し、さらに攪拌した。この時、トリイソブチルアルミニウムとリン酸との反応により、容器内圧が上昇するので適時脱圧を実施した。次いで、得られた反応混合物を60℃の温水浴内で1時間熟成反応させて触媒溶液を得た。
(製造例2、ポリエーテルゴムの製造)
 オートクレーブにエピクロロヒドリン223.5部、アリルグリシジルエーテル27.5部、エチレンオキサイド19.7部、トルエン2585部を入れ、窒素雰囲気下で攪拌しながら内溶液を50℃に昇温し、上記で得た触媒溶液11.6部を添加して反応を開始した。次に、反応開始からエチレンオキサイド129.3部をトルエン302部に溶解した溶液を5時間かけて等速度で連続添加した。また、反応開始後30分毎に触媒溶液6.2部ずつを5時間にわたり添加した。次いで、水15部を添加して攪拌し、反応を終了させた。ここにさらに、老化防止剤として4,4’-チオビス-(6-tert-ブチル-3-メチルフェノール)の5%トルエン溶液45部を添加し、攪拌した。スチームストリッピングを実施してトルエンを除去し、上澄み水を除去後、60℃にて真空乾燥し、ポリエーテルゴム400部を得た。このポリエーテルゴムの単量体組成比は、H-NMRにより測定した結果、エピクロロヒドリン単量体単位40モル%、エチレンオキサイド単量体単位56モル%、アリルグリシジルエーテル単量体単位4モル%であった。また、得られたポリエーテルゴムのムーニー粘度は60[ML1+4,100℃]であった。
(製造例3、カチオン化ポリエーテルゴムの製造)
 25℃のオープンロールに、製造例2で得られたポリエーテルゴム100部と、1-メチルイミダゾール1.5部とを投入し、5分間混練した後、その混合物を、100℃に加熱した加圧成型機にセットし、24時間反応させた。その後、オーブンから、反応により得られたカチオン化ポリエーテルゴムを、収量101.5部にて回収した。得られたカチオン化ポリエーテルゴムを、上述した方法に従って、H-NMR測定することにより、オニウムイオン単位含有率を算出した。得られたカチオン化ポリエーテルゴムのオニウムイオン単位含有率は1.2モル%であった。すなわち、得られたカチオン化ポリエーテルゴムの単量体組成比は、エピクロロヒドリン単量体単位38.8モル%、エチレンオキサイド単量体単位56モル%、オニウムイオン単位(一般式(1)で表される単位)1.2モル%、アリルグリシジルエーテル単量体単位4モル%であった。また、得られたカチオン化ポリエーテルゴムのムーニー粘度は54[ML1+4,100℃]であった。
〔実施例1〕
 40℃のオープンロールに、製造例3で得られたカチオン化ポリエーテルゴム100部、4,4’-ジチオジモルホリン(商品名「バルノックR」、大内新興化学工業社製、硫黄含有モルホリン系化合物)2部、トリメチルチオ尿素(商品名「ノクセラーTMU」、大内新興化学工業社製、チオウレア系架橋剤)1部、水酸化カルシウム5部、カーボンブラック(商品名「サーマックスN990」、東海カーボン社製、MTカーボンブラック、充填剤)20部、およびステアリン酸(架橋促進助剤)1部を投入し、10分間混練し混合することにより、架橋性ゴム組成物を調製した。そして、得られた架橋性ゴム組成物を用いて、上記した方法にしたがって、配合物ムーニー粘度(ML1+4,100℃)、ムーニースコーチ時間(t、t35)、最低ムーニー粘度(Vm)、架橋性試験、体積固有抵抗値の各測定・評価を行った。結果を表1に示す。
〔実施例2〕
 4,4’-ジチオジモルホリンを使用しなかった以外は、実施例1と同様にして、架橋性ゴム組成物を得て、同様に評価を行った。結果を表1に示す。
〔実施例3〕
 4,4’-ジチオジモルホリン2部およびトリメチルチオ尿素1部に代えて、硫黄(商品名「サルファックスPMC、鶴見化学工業社製」)0.5部およびテトラエチルチウラムジスルフィド(商品名「ノクセラーTET」、大内新興化学工業社製、チウラム系架橋促進剤)1部を使用した以外は、実施例1と同様にして、架橋性ゴム組成物を得て、同様に評価を行った。結果を表1に示す。
〔比較例1〕
 水酸化カルシウム5部に代えて、酸化亜鉛(商品名「ZnO#1」、正同化学社製)5部を使用するとともに、4,4’-ジチオジモルホリンの配合量を2部から1部に変更した以外は、実施例1と同様にして、架橋性ゴム組成物を得て、同様に評価を行った。結果を表1に示す。
〔比較例2〕
 水酸化カルシウム5部に代えて、酸化亜鉛(商品名「ZnO#1」、正同化学社製)5部を使用した以外は、実施例3と同様にして、架橋性ゴム組成物を得て、同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 表1中、ムーニースコーチ時間t35における「>30」は、ムーニースコーチ時間t35が30分以上であったことを意味する。
 表1に示すように、カチオン性含窒素芳香族複素環を含有する基を有している特定の単位および不飽和オキサイド単量体単位を、特定割合含有するポリエーテルゴムに、架橋剤と、水酸化カルシウムとを配合してなる架橋性ゴム組成物は、ムーニースコーチ時間(t)、およびムーニースコーチ時間(t35)のいずれも長く、また、最低ムーニー粘度(Vm)も低く、スコーチ安定性に優れ、さらには十分な架橋性を示すものであり、また、得られるゴム架橋物は、電気抵抗値が低いものであった(実施例1~3)。
 一方、水酸化カルシウムの代わりに、酸化亜鉛を使用した場合には、ムーニースコーチ時間(t)、およびムーニースコーチ時間(t35)のいずれも短く、スコーチ安定性に劣るものであった(比較例1,2)。
 以上の結果より、十分な架橋性を示しながら、ムーニースコーチ時間(t)、およびムーニースコーチ時間(t35)のいずれをも長くすることができ、しかも得られるゴム架橋物を電気抵抗値が低く抑えられたものとすることができるという効果は、カチオン性含窒素芳香族複素環を含有する基を有している特定の単位および不飽和オキサイド単量体単位を、特定割合含有するポリエーテルゴムに、水酸化カルシウムを配合することにより初めて達成できる効果であることが確認できる。そして、本発明の架橋性ゴム組成物によれば、ムーニースコーチ時間(t)を長くすることができることにより、型成形や押し出し成形などにおける成形不良を防ぐことができるという有利な効果を、ムーニースコーチ時間(t35)を長くすることができることにより、架橋後の成形品の架橋ムラが少なくなるという有利な効果を、それぞれ奏することができる。
 また、架橋剤として、同じ架橋剤を使用した実施例1と比較例1とを比較することにより、水酸化カルシウムを使用することで、スコーチ安定性を向上させることができるという効果に加えて、酸化亜鉛を使用した場合と比べて、得られるゴム架橋物の電気抵抗値を下げることができるという効果を奏することができるものであることが確認できる。そして、このような効果は、架橋剤として、同じ架橋剤を使用した実施例3と比較例2とを比較することによっても、同様に確認することができる。

Claims (11)

  1.  下記一般式(1)で表される単位0.1~30モル%、および不飽和オキサイド単量体単位1~15モル%を含有するポリエーテルゴムと、架橋剤と、水酸化カルシウムとを含む架橋性ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)中、Aは、カチオン性含窒素芳香族複素環を含有する基である。前記カチオン性含窒素芳香族複素環を含有する基は、該カチオン性含窒素芳香族複素環を構成する窒素原子の1つを介して、上記一般式(1)に示す「2」の位置の炭素原子と結合している。Xは任意の対アニオンである。)
  2.   上記一般式(1)中のAで表されるカチオン性含窒素芳香族複素環を含有する基が、下記一般式(2)で表される基である請求項1記載の架橋性ゴム組成物。
    Figure JPOXMLDOC01-appb-C000002
     (上記一般式(2)中に表されているN-は、上記一般式(1)において、上記一般式(1)に示す「2」の位置の炭素原子と結合している。また、上記一般式(2)中に表されているRは、水素原子、または炭素数1~20の炭化水素基を表す。)
  3.  前記ポリエーテルゴムが、さらに、エピハロヒドリン単量体単位を含有する請求項1または2のいずれかに記載の架橋性ゴム組成物。
  4.  前記ポリエーテルゴムが、さらに、エチレンオキサイド単量体単位を含有する請求項1~3のいずれかに記載の架橋性ゴム組成物。
  5.  前記架橋剤が、含硫黄化合物である請求項1~4のいずれかに記載の架橋性ゴム組成物。
  6.  前記水酸化カルシウムの含有量が、前記ポリエーテルゴム100重量部に対し、0.01~15重量部である請求項1~5のいずれかに記載の架橋性ゴム組成物。
  7.  ムーニー粘度(ML1+4,100℃)が10~53である請求項1~6のいずれかに記載の架橋性ゴム組成物。
  8.  前記ポリエーテルゴムに、前記架橋剤、および前記水酸化カルシウムを添加し、混練することにより得られる請求項1~7のいずれかに記載の架橋性ゴム組成物。
  9.  請求項1~8のいずれかに記載の架橋性ゴム組成物の製造方法であって、
     前記ポリエーテルゴムを得る工程と、
     前記ポリエーテルゴムに、前記架橋剤、および前記水酸化カルシウムを添加し、混練する工程と、
     を含む製造方法。
  10.  請求項1~8のいずれかに記載の架橋性ゴム組成物を架橋してなるゴム架橋物。
  11.  請求項10に記載のゴム架橋物を有している導電性部材。
PCT/JP2017/033712 2016-09-28 2017-09-19 架橋性ゴム組成物、ゴム架橋物、および導電性部材 WO2018061866A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17855821.9A EP3521370A4 (en) 2016-09-28 2017-09-19 CROSSLINKABLE RUBBER COMPOSITION, CROSSLINKED RUBBER, AND ELECTROCONDUCTIVE ELEMENT
KR1020197010313A KR20190059926A (ko) 2016-09-28 2017-09-19 가교성 고무 조성물, 고무 가교물, 및 도전성 부재
CN201780055821.7A CN109715729A (zh) 2016-09-28 2017-09-19 交联性橡胶组合物、橡胶交联物和导电性构件
US16/334,690 US20200362165A1 (en) 2016-09-28 2017-09-19 Crosslinkable rubber composition, crosslinked rubber, and electroconductive member
JP2018542422A JPWO2018061866A1 (ja) 2016-09-28 2017-09-19 架橋性ゴム組成物、ゴム架橋物、および導電性部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016189631 2016-09-28
JP2016-189631 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018061866A1 true WO2018061866A1 (ja) 2018-04-05

Family

ID=61759593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033712 WO2018061866A1 (ja) 2016-09-28 2017-09-19 架橋性ゴム組成物、ゴム架橋物、および導電性部材

Country Status (6)

Country Link
US (1) US20200362165A1 (ja)
EP (1) EP3521370A4 (ja)
JP (1) JPWO2018061866A1 (ja)
KR (1) KR20190059926A (ja)
CN (1) CN109715729A (ja)
WO (1) WO2018061866A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404863B2 (ja) * 2019-12-25 2023-12-26 住友ゴム工業株式会社 導電性ゴム組成物、導電性ゴムローラ、画像形成装置
CN113943418A (zh) * 2021-11-12 2022-01-18 天津大学 一种橡胶基离聚物及以此离聚物为基体的磁性复合材料和制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097414A (ja) * 2003-09-25 2005-04-14 Daiso Co Ltd 耐酸性に優れた加硫用ゴム組成物およびその加硫ゴム材料
WO2011108599A1 (ja) * 2010-03-03 2011-09-09 ダイソー株式会社 難燃性加硫用ゴム組成物
JP2013209434A (ja) * 2012-03-30 2013-10-10 Nippon Zeon Co Ltd ゴム架橋物の製造方法
JP2013227432A (ja) * 2012-04-26 2013-11-07 Nippon Zeon Co Ltd ゴム架橋物および導電性部材
WO2015099027A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 ポリエーテルゴムの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243108B2 (en) * 2012-03-27 2016-01-26 Zeon Corporation Method of production of cross-linked rubber
JP5971062B2 (ja) 2012-09-28 2016-08-17 日本ゼオン株式会社 ゴム組成物、ゴム架橋物、および導電性部材
JP6083228B2 (ja) * 2012-12-14 2017-02-22 日本ゼオン株式会社 架橋性ゴム組成物、ゴム架橋物、および導電性部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097414A (ja) * 2003-09-25 2005-04-14 Daiso Co Ltd 耐酸性に優れた加硫用ゴム組成物およびその加硫ゴム材料
WO2011108599A1 (ja) * 2010-03-03 2011-09-09 ダイソー株式会社 難燃性加硫用ゴム組成物
JP2013209434A (ja) * 2012-03-30 2013-10-10 Nippon Zeon Co Ltd ゴム架橋物の製造方法
JP2013227432A (ja) * 2012-04-26 2013-11-07 Nippon Zeon Co Ltd ゴム架橋物および導電性部材
WO2015099027A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 ポリエーテルゴムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521370A4 *

Also Published As

Publication number Publication date
EP3521370A1 (en) 2019-08-07
JPWO2018061866A1 (ja) 2019-07-11
EP3521370A4 (en) 2020-06-03
KR20190059926A (ko) 2019-05-31
US20200362165A1 (en) 2020-11-19
CN109715729A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
JP5776494B2 (ja) ポリエーテルゴムの製造方法
JP5971332B2 (ja) ゴム架橋物の製造方法
JP5786716B2 (ja) ゴム組成物、ゴム架橋物、および導電性部材
JP6083228B2 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JP6459982B2 (ja) ポリエーテルゴムの製造方法
JP6171267B2 (ja) ゴム架橋物および導電性部材
WO2018061866A1 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JP5835060B2 (ja) ゴム架橋物の製造方法
JP6981420B2 (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JP2015124274A (ja) ポリエーテルゴムの製造方法
JP2018016700A (ja) 架橋性ゴム組成物、ゴム架橋物、および導電性部材
JPWO2017150300A1 (ja) ポリエーテルゴムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010313

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017855821

Country of ref document: EP

Effective date: 20190429