WO2017149864A1 - 燃料集合体及びそれを装荷する炉心 - Google Patents

燃料集合体及びそれを装荷する炉心 Download PDF

Info

Publication number
WO2017149864A1
WO2017149864A1 PCT/JP2016/084878 JP2016084878W WO2017149864A1 WO 2017149864 A1 WO2017149864 A1 WO 2017149864A1 JP 2016084878 W JP2016084878 W JP 2016084878W WO 2017149864 A1 WO2017149864 A1 WO 2017149864A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
rod
end region
effective portion
region
Prior art date
Application number
PCT/JP2016/084878
Other languages
English (en)
French (fr)
Inventor
道隆 小野
岳 光安
肇男 青山
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2017149864A1 publication Critical patent/WO2017149864A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/326Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/326Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
    • G21C3/328Relative disposition of the elements in the bundle lattice
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a fuel assembly, and more particularly, to a fuel assembly for a nuclear reactor suitable for application to a boiling water reactor and a core for loading the same.
  • a plurality of fuel assemblies are loaded in a core provided in a reactor pressure vessel.
  • These fuel assemblies consist of a plurality of fuel rods filled with a plurality of fuel pellets made of nuclear fuel material containing uranium, a lower tie plate that supports the lower ends of these fuel rods, and an upper portion that holds the upper ends of the fuel rods.
  • the tie plate has a channel box that is a square tube having a square cross section (horizontal cross section) attached to the tie plate and extending toward the lower tie plate.
  • the plurality of fuel rods are bundled by a fuel spacer that maintains a predetermined width between each other, and are arranged in the channel box.
  • Recent nuclear fuel assemblies have natural uranium blankets at their upper and lower ends. By providing a natural uranium blanket, leakage of neutrons in the vertical direction is suppressed and neutron economy is improved.
  • the natural uranium fuel is provided at the upper and lower ends, so that the output at the upper and lower ends decreases and the axial output peaking increases, and the average enrichment of the usable fuel has an upper limit. Therefore, the average enrichment of the fuel assembly cannot be increased by providing the natural uranium region.
  • Patent Document 1 a technique disclosed in Patent Document 1 has been proposed.
  • the fuel assembly has a region that does not contain a flammable poison on at least one of the upper end and lower end side of the effective fuel portion, and the average concentration in the region of 1/24 of the effective fuel length from the upper end.
  • a configuration in which the degree is 2.10 wt% is described.
  • the ratio of the length of the region not including gadolinia to the effective fuel length is set to 2/24, and the part-length fuel rods are arranged so as to be adjacent to the outer peripheral portion excluding the outermost periphery and the water rod.
  • This is intended to improve fuel economy.
  • the average enrichment of the fuel assembly increases as the burnup increases.
  • the absolute value of the void coefficient increases (increases).
  • four or more and 16 or less water rods are arranged in a 10 ⁇ 10 square lattice fuel assembly, and in the upper 1/12 to 2/12 region of the effective fuel length, etc. Distribute a fuel with a lower enrichment than the area.
  • the water-to-uranium ratio is 3.0 or more in volume ratio, and the absolute value of the void coefficient due to high enrichment. It is possible to suppress the increase of.
  • the burnup of the fuel assembly is increased by increasing the average enrichment of the fuel assembly as much as possible.
  • the void coefficient of the core whose absolute value increases with increasing enrichment.
  • the present invention provides a fuel assembly capable of suppressing an increase in the absolute value of the void coefficient while maintaining a desired fuel loading amount, and a core for loading the fuel assembly.
  • a fuel assembly according to the present invention is a fuel assembly in which a first fuel rod containing a flammable poison and a second fuel rod not containing a flammable poison are bundled and accommodated in a channel box.
  • the first fuel rod has a fuel effective portion upper end region not containing the combustible poison at the upper end portion of the fuel effective portion, and the fuel effective portion upper end region not containing the combustible poison and the second fuel rod.
  • the average concentration of the upper end region of the fuel effective portion is 2.0 wt% or more and 2.5 wt% or less, and the ratio of the length of the upper end region of the fuel effective portion to the axial length of the effective fuel portion is 0 .16 or more and 0.21 or less.
  • the core of the present invention is a core of a nuclear reactor loaded with a plurality of fuel assemblies, wherein the fuel assembly includes a first fuel rod containing a combustible poison and a first fuel rod containing no combustible poison.
  • the fuel assembly includes a first fuel rod containing a combustible poison and a first fuel rod containing no combustible poison.
  • Two fuel rods are bundled and accommodated in a channel box, and the first fuel rod has an upper end region of the fuel effective portion that does not contain the combustible poison at the upper end portion of the fuel effective portion, and does not contain the combustible poison.
  • the average enrichment of the fuel effective portion upper end region and the fuel effective portion upper end region of the second fuel rod is not less than 2.0 wt% and not more than 2.5 wt%, and the fuel occupies the axial length of the fuel effective portion
  • the effective portion upper end region has a length ratio of 0.16 to 0.21.
  • FIG. 1 is an overall schematic configuration diagram of a fuel assembly of Example 1 according to an example of the present invention.
  • FIG. FIG. 2 is an AA cross-sectional view (horizontal cross-sectional view) of the fuel assembly shown in FIG. 1 and a diagram showing the enrichment of each fuel rod.
  • It is a schematic block diagram of the improved boiling water reactor provided with the core which loads the fuel assembly shown in FIG. It is a figure which shows the void coefficient of the core using the fuel which each provided the natural uranium fuel, the low enrichment fuel which does not contain a combustible poison, and the high enrichment fuel in 4 nodes of the fuel region upper end part region.
  • the present inventors have obtained new knowledge for reducing the absolute value of the void coefficient of the fuel assembly of a boiling water reactor.
  • a natural uranium fuel region is provided at the upper end or lower end of a fuel assembly loaded in the core. This is because the natural uranium fuel having low reactivity is provided at the end of the effective fuel portion, thereby suppressing the amount of neutrons leaking from the core and improving the neutron economy.
  • the absolute value of the void coefficient tends to increase.Therefore, by providing a natural uranium fuel region with a low enrichment at the upper or lower end of the fuel assembly, the absolute value of the void coefficient of the fuel assembly is increased. I expect the value to decrease.
  • FIG. 4 shows the void coefficient of the core using fuels provided with natural uranium fuel, low enrichment fuel not containing flammable poisons, and high enrichment fuel at four nodes in the upper end region of the fuel region.
  • the horizontal axis represents the average enrichment (wt%) of the fuel region provided at the upper end (four nodes of the upper end region of the fuel region), and the vertical axis represents the void coefficient of the core ⁇ 10 ⁇ 3 (% dk / k). /% Void) for low-concentration fuels that do not contain flammable poisons, the enrichment is 2.5 wt%, and for highly concentrated fuels that contain combustible poisons, the enrichment is 4.6 wt%.
  • the high enrichment fuel refers to a fuel assembly having an average enrichment of 3.0 wt% or more.
  • the low enrichment fuel that does not contain combustible poisons among the 24 nodes in the axial direction, the other 20 nodes excluding the 4 nodes in the upper end region of the fuel region are regarded as highly enriched fuels.
  • the absolute value of the void coefficient of the core is not reduced. That is, it can be seen that the effect of improving the void coefficient (the effect of reducing the absolute value of the void coefficient of the core) cannot be achieved even if natural uranium fuel is provided at the four nodes in the upper end region of the fuel region.
  • the absolute value of the void coefficient of the core is not reduced.
  • FIG. 5 is a diagram showing the axial power distribution of the core using fuels provided with natural uranium fuel, low-concentration fuel that does not contain flammable poisons, and high-concentration fuel, respectively, at the four nodes in the upper end region of the fuel region. It is.
  • the horizontal axis represents the axial output distribution
  • the vertical axis represents the axial node position
  • the low enrichment fuel that does not contain combustible poisons has a concentration of 2.5 wt%.
  • the axial power distribution at the end of the cycle of the equilibrium core when the enrichment is 4.6 wt% is shown.
  • the reactivity is small through combustion. Therefore, the high enrichment provided below the natural uranium region at the end of the equilibrium core cycle. It has the feature that the output of the fuel area becomes large.
  • the absolute value of the void coefficient tends to increase as the void ratio increases.
  • the void power coefficient of the core is not improved, and the axial power distribution increases in the region indicated by the dotted line A. In other words, this is because the contribution of the void coefficient of the highly enriched fuel provided in the upper part where the nodes 16 to 20 are located is increased.
  • the reactivity is large at the initial stage of combustion. Therefore, as shown in FIG. 5, in the axial power distribution at the end of the cycle of the equilibrium core, 16 to node 20), an increase in the output of the highly enriched fuel region is suppressed. Therefore, as shown in FIG. 4 described above, by providing a low-concentration fuel that does not contain a flammable poison in the upper end region of the fuel region (hereinafter sometimes referred to as an upper end region of the fuel effective portion), a highly concentrated fuel is provided.
  • the void coefficient improving effect of reducing the absolute value of the void coefficient of the core can be obtained.
  • providing a low enrichment fuel in the lower end region of the effective fuel portion is an increase in the output of the highly enriched fuel region provided in the upper part (nodes 16 to 20) in the axial power distribution at the end of the cycle of the equilibrium core. Since it does not contribute to suppression, the effect of improving the void coefficient (the effect of reducing the absolute value of the void coefficient of the core) is not brought about.
  • the effect of improving the void coefficient (the effect of reducing the absolute value of the void coefficient of the core) can be obtained by providing the low enriched fuel that does not contain flammable poisons in the upper end region of the fuel effective part. .
  • FIG. 6 is a diagram showing the relationship between the number of nodes and the void coefficient in a low-concentration fuel region that does not contain combustible poisons.
  • the horizontal axis represents the number of nodes in the axial direction of the fuel region (fuel effective part) that does not contain flammable poisons
  • the vertical axis represents the void factor of the core ⁇ 10 ⁇ 3 (% dk / k /% void). It is assumed that the fuel region (fuel effective portion) that does not contain a flammable poison is divided into 24 nodes in the axial direction. As shown in FIG.
  • the number of nodes that can maximize the effect of improving the void coefficient is 4 nodes or 5 nodes among the 24 effective fuel portions of the low enrichment fuel that does not contain the flammable poison.
  • the ratio of the length of the region not containing the flammable poison to the axial length (24 nodes) of the effective fuel portion is 0.16 or more and 0.21 or less. It is possible to maximize.
  • the fuel region (fuel effective portion) is divided into 24 nodes in the axial direction will be described as an example.
  • the number of nodes to be divided is not limited to this, and the fuel region (fuel effective portion) is not limited thereto.
  • FIG. 7 is a diagram showing the relationship between the average enrichment of the low enrichment fuel region and the void coefficient when the low enrichment fuel not containing a flammable poison is provided at the four nodes in the upper end region of the fuel region.
  • the horizontal axis indicates the average enrichment (wt%) of the low enrichment fuel region
  • the vertical axis indicates the core void coefficient ⁇ 10 ⁇ 3 (% dk / k /% void). Is shown.
  • the fuel region (effective fuel portion) is divided into 24 nodes in the axial direction, and low-concentration fuel that does not contain flammable poisons is added to four nodes in the upper end region of the fuel region (upper end region of the effective fuel portion).
  • the other region that is, 20 nodes, was used as a highly enriched fuel.
  • the average concentration in the low enrichment fuel region is less than 2.0 wt%, the effect of improving the void system coefficient (the effect of reducing the absolute value of the void coefficient of the core) is drastically decreased. is doing. For this reason, it is necessary to set the average enrichment of the low enrichment fuel that does not include the combustible poison provided at the four nodes in the upper end region of the fuel region to 2.0% or more.
  • the lower limit value of the average enrichment of the low enrichment fuel that does not include the combustible poison provided at the four nodes in the upper end region of the fuel region is 2.0 wt%.
  • FIG. 8 is a diagram showing the relationship between the enrichment of the horizontal cross section of the fuel assembly and the moderator void coefficient when low enrichment fuel that does not contain combustible poisons is provided at the four nodes in the upper end region of the fuel region.
  • the horizontal axis represents the enrichment (average enrichment) (wt%) of the fuel assembly horizontal section
  • the vertical axis represents the moderator void coefficient of the fuel assembly horizontal section ⁇ 10 ⁇ 3 (% dk / k / % Void) to show these correlations.
  • the fuel region (effective fuel portion) is divided into 24 nodes in the axial direction, and low-concentration fuel that does not contain flammable poisons is added to the four nodes in the upper end region (upper fuel region) of the fuel region.
  • the other region that is, 20 nodes, was used as a highly enriched fuel.
  • the enrichment (average enrichment) of the fuel assembly horizontal section decreases, the moderator void coefficient value of the fuel assembly horizontal section decreases, and the amount of change in the moderator void coefficient increases. Show the trend.
  • the enrichment of the horizontal cross section of the fuel assembly to 2.5 wt% or less, the moderator void coefficient can be reduced to half or less of the highly enriched fuel.
  • the upper limit value of the average enrichment of the low enrichment fuel that does not include the combustible poison provided at the four nodes in the upper end region of the fuel region is 2.5 wt%.
  • the ratio of the length of the region not containing the flammable poison (the fuel effective portion upper end region) to the axial length of the fuel effective portion is set to 0.16 or more and 0.21 or less, and the fuel region upper end region
  • FIG. 1 shows an overall schematic configuration diagram of a fuel assembly of Example 1 according to one embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the fuel assembly shown in FIG. ) And a diagram showing the enrichment of each fuel rod
  • FIG. 3 shows a schematic configuration diagram of an improved boiling water reactor equipped with a core loaded with the fuel assembly shown in FIG.
  • an improved boiling water reactor 10 having a core in which a fuel assembly (described later in detail) of this embodiment is loaded has a cylindrical core shroud 16 in a reactor pressure vessel 11.
  • a core 12 which is an initial loading core in which a plurality of fuel assemblies (not shown) are loaded, is provided in the core shroud 16.
  • a shroud head 20 that covers the core 12, a steam / water separator 18 attached to the shroud 20 and extending upward, and a steam dryer disposed above the steam / water separator 18. 19 is provided.
  • the upper grid plate 14 is disposed in the core shroud 16 below the shroud head 20, is attached to the core shroud 16, and is positioned at the upper end portion of the core 12.
  • a core support plate 13 is disposed in the core shroud 16 at the lower end of the core 12 and is installed in the core shroud 16.
  • a plurality of fuel support fittings 15 are installed on the core support plate 13.
  • a control rod guide tube 22 is provided in the reactor pressure vessel 11 so that a plurality of cross-shaped control rods (not shown) can be inserted into the core 12 in order to control the nuclear reaction of the fuel assembly. It has been.
  • a control rod drive mechanism housing (not shown) installed below the bottom of the reactor pressure vessel 11 is provided with a control rod drive mechanism 23, and the control rod is connected to the control rod drive mechanism 23.
  • a plurality of internal pumps 21 are installed in the lower mirror 24, which is the bottom of the reactor pressure vessel 11, so as to penetrate the reactor pressure vessel 11 from below.
  • the plurality of internal pumps 21 are outside the outermost peripheral portion of the plurality of control rod guide tubes 22, are annularly spaced from each other at a predetermined interval, and a plurality of units are arranged. Thereby, the internal pump 21 does not interfere with the control rod guide tube 22 or the like.
  • the impeller of each internal pump 21 is positioned in an annular downcomer 17 formed between the cylindrical core shroud 16 and the inner surface of the reactor pressure vessel 11. Cooling water in the reactor pressure vessel 11 is supplied to the core 12 from the lower mirror 24 side via the downcomer 17 by the impellers of the internal pumps 21.
  • the cooling water flowing into the reactor core 12 is heated by a nuclear reaction of a fuel assembly (not shown) to become a gas-liquid two-phase flow and flows into the steam-water separator 18.
  • the gas-liquid two-phase flow flowing through the steam separator 18 is separated into moisture-containing steam (gas phase) and water (liquid phase), and the liquid phase again falls to the downcomer 17 as cooling water.
  • the steam (gas phase) is introduced into the steam dryer 19 and moisture is removed, and then supplied to the turbine (not shown) through the main steam pipe 25.
  • Cooling water that flows into the reactor pressure vessel 11 from the water supply pipe 26 via a condenser or the like flows (drops) downward in the downcomer 17.
  • the internal pump 21 forcibly circulates cooling water to the core 12 in order to efficiently cool the heat generated in the core 12.
  • FIG. 1 shows an overall schematic configuration diagram of the fuel assembly 1 loaded in the core 12.
  • the fuel assembly 1 includes an upper tie plate 5, a lower tie plate 7, a plurality of fuel rods 3 held at both ends by these tie plates, and a water rod 2 (also referred to as a water channel). ), A fuel spacer 9 that bundles these fuel rods 3, and a channel box 4 that surrounds the fuel rod bundle bundled by the fuel spacer 9 and is attached to the upper tie plate 5.
  • a handle 6 is fastened to the upper tie plate 5, and when the handle 6 is lifted, the entire fuel assembly 1 can be pulled up.
  • the fuel rod 3 has a partial-length fuel rod whose height does not reach the upper tie plate 5 at a part thereof.
  • the partial-length fuel rod is a fuel rod having a shorter effective fuel length filled inside than the full-length fuel rod reaching the upper tie plate 5.
  • the plurality of fuel rods 3 are filled with a large number of cylindrical fuel pellets manufactured using a nuclear fuel material containing a fissile material (uranium 235). The lower end portion of each fuel rod 3 is supported by the lower tie plate 7, and the upper end portion of each fuel rod 3 is held by the upper tie plate 5.
  • the plurality of fuel spacers 9 are arranged at predetermined intervals in the axial direction of the fuel assembly 1 and hold the plurality of fuel rods 3 so as to have a predetermined interval between the fuel rods.
  • FIG. 2 is a cross-sectional view taken along the line AA (horizontal cross-sectional view) of the fuel assembly 1 shown in FIG. 1 and the concentration of each fuel rod.
  • the full length fuel rods 31 a are arranged in a 10 ⁇ 10 square lattice formed in the channel box 4 in the horizontal cross section of the fuel assembly 1.
  • 31c, a partial-length fuel rod 41, a water rod (WR) 2, and a full-length fuel rod 51 containing a flammable poison are examples of the fuel rods 31 a.
  • Two water rods (WR) 2 having a cross-sectional area that occupies a region where four fuel rods can be arranged are arranged at the center of the horizontal cross section (transverse cross section) of the fuel assembly 1.
  • the water rod (WR) 2 is a large diameter water rod having a cross-sectional area that occupies a region where at least two fuel rods can be arranged.
  • the full length fuel rod 31a has an average enrichment of 2.50 wt% at four nodes in the upper end region of the fuel region (upper region of the effective fuel portion), that is, the nodes 21 to 24.
  • the low-concentration fuel does not contain any flammable poison, and the low-concentration fuel does not contain any flammable poison having an average enrichment of 2.80 wt% at nodes 1 to 20.
  • Four full length fuel rods 31 a are respectively arranged at the lattice positions of the outermost four corners (four corner portions) in the horizontal cross section of the fuel assembly 1.
  • the full length fuel rod 31b is composed of four nodes in the upper end region of the fuel region (the upper end region of the fuel effective portion), that is, the low enriched fuel not containing a flammable poison having an average enrichment of 2.50 wt% in the nodes 21 to 24.
  • Node 1 to Node 20 have highly enriched fuel that does not contain flammable poisons with an average enrichment of 3.90 wt%.
  • Eight full-length fuel rods 31b are positioned at the outermost grid position so as to be adjacent to the full-length fuel rods 31a arranged at the grid positions at the four outermost corners (four corners) in the horizontal cross section of the fuel assembly 1. It is arranged.
  • the full length fuel rod 31c is a low-concentration fuel not containing a flammable poison having an average enrichment of 2.50 wt% in four nodes in the upper end region of the fuel region (upper region of the effective fuel portion), that is, the nodes 21 to 24.
  • Node 1 to Node 20 have highly enriched fuel that does not contain flammable poisons with an average enrichment of 4.90 wt%.
  • 52 full length fuel rods 31c are arranged in the horizontal cross section of the fuel assembly 1 at the outermost periphery, one layer inside from the outermost periphery, two layers inside from the outermost periphery, three layers inside from the outermost periphery, and a water rod (WR) 2. It is arranged at the lattice position so as to be adjacent to.
  • WR water rod
  • the partial-length fuel rod 41 has a highly enriched fuel that does not contain a flammable poison having an average enrichment of 4.90 wt% at the nodes 1 to 14.
  • Fourteen partial-length fuel rods 41 are arranged at lattice positions in the horizontal cross section of the fuel assembly 1 so as to be adjacent to the innermost layer and the water rod (WR) 2 from the outermost periphery.
  • the full length fuel rod 51 containing the flammable poison is low in 4 nodes in the upper end region of the fuel region (upper region of the fuel effective portion), that is, the low concentration not including the flammable poison having an average enrichment of 2.50 wt% in the nodes 21 to 24.
  • Concentrated fuel is contained, and nodes 1 to 20 have highly enriched fuel having an average enrichment of 4.90 wt%.
  • the concentration of gadolinia (Gd), which is a flammable poison contained in the highly enriched fuel of the nodes 1 to 20, is 9.0 wt%.
  • Fourteen full-length fuel rods 51 containing flammable poisons are disposed at lattice positions so as to be adjacent to the innermost layer and the water rod (WR) 2 from the outermost periphery in the horizontal cross section of the fuel assembly 1.
  • the fuel effective portion excluding the fuel region upper end region (fuel effective portion upper end region) of the full length fuel rods 31b and 31c and the full length fuel rod 51 containing the combustible poison is a highly enriched fuel. , Fuel economy can be improved.
  • FIG. 9 is a horizontal sectional view of the fuel assembly of Example 2 according to another embodiment of the present invention and a diagram showing the enrichment of each fuel rod.
  • the present embodiment is different from the first embodiment in that the partial-length fuel rods are arranged adjacent to the outermost peripheral portion and the water rod (WR) 2 in the horizontal cross section of the fuel assembly.
  • the overall schematic configuration of the fuel assembly in the present embodiment is the same as the configuration shown in FIG. 2 described in the first embodiment, and the fuel assembly of the present embodiment has the improved boiling water shown in FIG. It is loaded into the core of the type reactor (ABWR).
  • the full length fuel rods 32a are arranged in a 10 ⁇ 10 square lattice formed in the channel box 4 in the horizontal cross section of the fuel assembly 1a.
  • 32c a partial length fuel rod 42, a water rod (WR) 2 and a full length fuel rod 52 containing a combustible poison are disposed.
  • Two water rods (WR) 2 having a cross-sectional area that occupies a region where four fuel rods can be arranged are arranged at the center of the horizontal cross section (transverse cross section) of the fuel assembly 1a.
  • the water rod (WR) 2 is a large diameter water rod having a cross-sectional area that occupies a region where at least two fuel rods can be arranged.
  • the full length fuel rod 32a has an average enrichment of 2.50 wt% at four nodes in the upper end region of the fuel region (upper region of the effective fuel portion), that is, the nodes 21 to 24.
  • the low-concentration fuel does not contain any flammable poison, and the low-concentration fuel does not contain any flammable poison having an average enrichment of 2.80 wt% at nodes 1 to 20.
  • Four full length fuel rods 32a are respectively arranged at the lattice positions of the four corners (four corners) on the outermost periphery in the horizontal cross section of the fuel assembly 1a.
  • the full length fuel rod 32b is composed of four nodes in the upper end region of the fuel region (the upper end region of the fuel effective portion), that is, the low enriched fuel not containing a flammable poison having an average enrichment of 2.50 wt% in the nodes 21 to 24.
  • Node 1 to Node 20 have highly enriched fuel that does not contain flammable poisons with an average enrichment of 3.90 wt%.
  • the eight full length fuel rods 32b are positioned at the outermost lattice position so as to be adjacent to the full length fuel rods 32a disposed at the lattice positions at the four outermost corners (four corner portions). It is arranged.
  • the full length fuel rod 32c is a low-concentration fuel that does not contain a flammable poison having an average enrichment of 2.50 wt% in four nodes in the upper end region of the fuel region (upper region of the effective fuel portion), that is, the nodes 21 to 24.
  • Node 1 to Node 20 have highly enriched fuel that does not contain flammable poisons with an average enrichment of 4.90 wt%.
  • 52 full length fuel rods 32c are arranged on the outermost periphery, one layer inside from the outermost periphery, two layers inside from the outermost periphery, three layers inside from the outermost periphery, and water rod (WR) 2 in the horizontal cross section of the fuel assembly 1a. It is arranged at the lattice position so as to be adjacent to.
  • the partial-length fuel rod 42 has a highly enriched fuel that does not contain a flammable poison having an average enrichment of 4.90 wt% in the nodes 1 to 14.
  • the 14 partial length fuel rods 42 are arranged at lattice positions adjacent to the outermost periphery and the water rod (WR) 2 in the horizontal cross section of the fuel assembly 1a, and the partial lengths arranged at the outermost lattice positions.
  • the number of fuel rods 42 is eight, and the number of partial-length fuel rods 42 arranged adjacent to the water rod (WR) 2 is six.
  • the full length fuel rod 52 containing the flammable poison is low in the four nodes in the upper end region of the fuel region (upper region of the fuel effective portion), that is, the low containing no flammable poison having an average enrichment of 2.50 wt% in the nodes 21 to 24.
  • Concentrated fuel is contained, and nodes 1 to 20 have highly enriched fuel having an average enrichment of 4.90 wt%.
  • the concentration of gadolinia (Gd), which is a flammable poison contained in the highly enriched fuel of the nodes 1 to 20, is 9.0 wt%.
  • Fourteen full-length fuel rods 52 containing flammable poisons are arranged at lattice positions so as to be adjacent to the innermost layer and the water rod (WR) 2 in the horizontal section of the fuel assembly 1a.
  • the fuel effective portion upper end region in all of the full length fuel rods 32a to 32c and the full length fuel rod 52 containing the flammable poison, four nodes of the fuel region upper end region (fuel effective portion upper end region), that is, the fuel effective portion
  • the ratio of the length of the region containing no flammable poison in the axial length (24 nodes) is 0.16.
  • the average enrichment of the low enrichment fuel which does not contain the combustible poison of the fuel region upper end region (fuel effective portion upper end region) is 2.50 wt%.
  • the fuel effective portion excluding the fuel region upper end region (fuel effective portion upper end region) of the full length fuel rods 32b and 32c and the full length fuel rod 52 containing the flammable poison is a highly enriched fuel. , Fuel economy can be improved.
  • the partial length fuel rods 42 having only highly enriched fuel are arranged at the outermost lattice position in the horizontal cross section of the fuel assembly 1a.
  • the outside of the channel box 4 of the fuel assembly 1a and the inside of the water rod (WR) 2 are non-boiling regions (void ratio is 0%). Therefore, the fuel rods disposed on the outermost periphery and the fuel rods disposed adjacent to the water rod (WR) 2 have higher void reactivity than the fuel rods disposed on the inner side of the outermost periphery (negative). Tend to be larger).
  • the void coefficient of the fuel assembly 1a is improved (shifted to the positive side). ) The effect can be increased.
  • the effect of improving the void coefficient (shifting to the positive side) can be further increased.
  • FIG. 10 is a horizontal sectional view of the fuel assembly of Example 3 according to another example of the present invention and a diagram showing the enrichment of each fuel rod.
  • the present embodiment is different from the first embodiment in that the enrichment is lower toward the upper end in the upper end region of the fuel region (upper region of the fuel effective portion).
  • the overall schematic configuration of the fuel assembly in the present embodiment is the same as the configuration shown in FIG. 2 described in the first embodiment, and the fuel assembly of the present embodiment has the improved boiling water shown in FIG. It is loaded into the core of the type reactor (ABWR).
  • the full length fuel rods 33a are arranged in a 10 ⁇ 10 square lattice formed in the channel box 4 in the horizontal cross section of the fuel assembly 1b.
  • 33c a partial length fuel rod 43, a water rod (WR) 2 and a full length fuel rod 53 containing a flammable poison.
  • Two water rods (WR) 2 having a cross-sectional area that occupies a region where four fuel rods can be arranged are arranged at the center of the horizontal cross section (transverse cross section) of the fuel assembly 1b.
  • the water rod (WR) 2 is a large diameter water rod having a cross-sectional area that occupies a region where at least two fuel rods can be arranged.
  • the full length fuel rod 33a has an average enrichment of 2.50 wt% in the nodes 21 to 23 out of the four nodes in the upper end region of the fuel region (upper fuel region). And a low-concentration fuel that does not contain any flammable poisons, and has a low-concentration fuel that does not contain any flammable poisons having an average enrichment of 2.00 wt% at the node 24 at the upper end (top).
  • the node 20 has a low enrichment fuel free from flammable poisons with an average enrichment of 2.80 wt%.
  • Four full length fuel rods 33a are respectively arranged at the lattice positions of the four corners (four corners) on the outermost periphery in the horizontal cross section of the fuel assembly 1b.
  • the full length fuel rod 33b is a low-concentration fuel that does not contain a flammable poison having an average enrichment of 2.50 wt% in the nodes 21 to 23 among the four nodes in the upper end region of the fuel region (upper region of the effective fuel portion).
  • the node 24 at the upper end (the uppermost part) has a low enriched fuel not containing a flammable poison with an average enrichment of 2.00 wt%, and the average enrichment is 3.90 wt% at the nodes 1 to 20. Highly enriched fuel that does not contain any flammable poisons.
  • Eight full-length fuel rods 33b are positioned at the outermost lattice position so as to be adjacent to the full-length fuel rods 33a disposed at the lattice positions at the four outermost corners (four corners) in the horizontal cross section of the fuel assembly 1b. It is arranged.
  • the full length fuel rod 33c has a low enriched fuel that does not contain a flammable poison having an average enrichment of 2.50 wt% in the nodes 21 to 23 among the four nodes in the upper end region of the fuel region (the upper end region of the fuel effective portion).
  • the node 24 at the upper end (the uppermost part) has a low enrichment fuel not containing a flammable poison having an average enrichment of 2.00 wt%, and the average enrichment is 4.90 wt% at the nodes 1 to 20. Highly enriched fuel that does not contain any flammable poisons.
  • 52 full length fuel rods 33c are arranged on the outermost periphery, one layer inside from the outermost periphery, two layers inside from the outermost periphery, three layers inside from the outermost periphery, and a water rod (WR) 2 in the horizontal cross section of the fuel assembly 1b. It is arranged at the lattice position so as to be adjacent to.
  • WR water rod
  • the partial-length fuel rod 43 has a highly enriched fuel that does not contain a flammable poison having an average enrichment of 4.90 wt% at the nodes 1 to 14.
  • Fourteen partial-length fuel rods 43 are arranged at lattice positions so as to be adjacent to the innermost layer and the water rod (WR) 2 from the outermost periphery in the horizontal cross section of the fuel assembly 1b.
  • the full length fuel rod 53 containing a flammable poison is a low level that does not contain a flammable poison having an average enrichment of 2.50 wt% in the nodes 21 to 23 among the four nodes in the upper end region of the fuel region (upper region of the fuel effective portion).
  • the upper end (top) node 24 has low enriched fuel that does not contain flammable poisons with an average enrichment of 2.00 wt%, and the average enrichment at nodes 1 to 20 4.90 wt% highly enriched fuel.
  • the concentration of gadolinia (Gd) which is a flammable poison contained in the highly enriched fuel of the nodes 1 to 20, is 9.0 wt%.
  • Fourteen full-length fuel rods 53 containing flammable poisons are arranged at lattice positions so as to be adjacent to the innermost layer and the water rod (WR) 2 in the horizontal section of the fuel assembly 1b.
  • the average enrichment of the low enrichment fuel that does not contain combustible poisons provided at the upper end (uppermost portion) of the region upper end region (upper fuel effective region upper region) is 2.00 wt%.
  • the upper end (uppermost portion) of the upper end region of the fuel region (upper fuel region) has a smaller contribution to the core characteristics than the upper end region of the fuel region (upper fuel region). Therefore, the average enrichment of the low enriched fuel that does not include the flammable poison provided in the upper end (uppermost part) of the fuel region upper end region (fuel effective portion upper end region) is determined as the other fuel region upper end region.
  • the fuel effective portion excluding the fuel region upper end region (fuel effective portion upper end region) of the full length fuel rods 33b and 33c and the full length fuel rod 53 containing the flammable poison is a highly enriched fuel. , Fuel economy can be improved.
  • the average enrichment of the low enrichment fuel that does not include the flammable poison provided in the nodes 21 to 23 is Although the average enrichment of the low enrichment fuel not including the combustible poison provided in the node 24 at the upper end (uppermost portion) is set to be low, it is not limited to this.
  • the average enrichment of the low enrichment fuel that does not include the combustible poison provided in the nodes 21 to 22 is 2.50 wt.
  • the average enrichment of the low-concentration fuel that does not include the combustible poison provided in the node 24 is 2.00 wt. good. That is, in the fuel region upper end region (fuel effective portion upper end region), the average enrichment of the low enrichment fuel that does not include the combustible poison may be lowered toward the upper end (uppermost portion).
  • the average enrichment of the low-concentration fuel not containing combustible poisons in the fuel region upper end region is stepped. Therefore, the fuel economy can be further improved.
  • the case where the fuel region (fuel effective portion) is divided into 24 nodes in the axial direction has been described as an example.
  • the fuel region (fuel effective portion) ) May be divided into 25 nodes in the axial direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

所望の燃料装荷量を維持しつつ、ボイド係数の絶対値の増加を抑制し得る燃料集合体及びそれを装荷する炉心を提供する。 燃料集合体1は、可燃性毒物を含有する第1燃料棒51と可燃性毒物を含有しない第2燃料棒(31a~31c)をチャンネルボックス4内に束ねて収容し、第1燃料棒51は、燃料有効部の上端部に可燃性毒物を含有しない燃料有効部上端領域を有し、この可燃性毒物を含有しない燃料有効部上端領域と第2燃料棒の燃料有効部上端領域の平均濃縮度が2.0wt%以上2.5wt%以下であり、且つ、燃料有効部の軸方向長さに占める燃料有効部上端領域の長さの割合が0.16以上0.21以下である。

Description

燃料集合体及びそれを装荷する炉心
 本発明は、燃料集合体に係り、特に、沸騰水型原子炉に適用するのに好適な原子炉の燃料集合体及びそれを装荷する炉心に関する。
 沸騰水型原子炉(Boiling Water Reactor:BWR)は、原子炉圧力容器内に設けられた炉心に複数の燃料集合体を装荷している。これらの燃料集合体は、ウランを含む核燃料物質で製造された複数の燃料ペレットを充填した複数の燃料棒、これらの燃料棒の下端を支持する下部タイプレート、燃料棒の上端部を保持する上部タイプレート、及び上部タイプレートに取り付けられて下部タイプレートに向かって延伸する横断面(水平断面)正方形の角筒であるチャンネルボックスを有している。複数の燃料棒は、相互の間隔を所定幅に保持する燃料スペーサによって束ねられてチャンネルボックス内に配される。 
 燃料の経済性を向上するため、単位重量当たりの核分裂性物質から発生するエネルギーを増大させる高燃焼度化炉心の開発が進んでいる。近年の原子炉用燃料集合体は、その上下端部に天然ウランブランケットを有している。天然ウランブランケットを設けることで、上下方向への中性子の漏れを抑え、中性子経済性の向上を図っている。
 天然ウランブランケットを用いる場合の課題として、上下端部に天然ウラン燃料を設けるため、上下端部の出力が低下し軸方向出力ピーキングが増加すること、また、使用できる燃料の平均濃縮度に上限があるため、天然ウラン領域を設ける分、燃料集合体の平均濃縮度を上げることができないことが挙げられる。
 この課題を解決するため、例えば、特許文献1に示す技術が提案されている。特許文献1では、燃料集合体において、可燃性毒物を含まない領域を、燃料有効部の上端及び下端側のなくとも一方に有し、上端から燃料有効長の1/24の領域での平均濃縮度を2.10wt%とする構成が記載されている。また、燃料有効長さに占めるガドリニアを含まない領域の長さの割合を2/24とすること、及び部分長燃料棒を、最外周を除く外周部及びウォーターロッドに隣接するよう配する点が記載されている。これにより燃料経済性の向上を図るものである。 
 また、高燃焼度化に伴って燃料集合体の平均濃縮度は大きくなる。燃料集合体の平均濃縮度が大きくなると、ボイド係数の絶対値が増加する(大きくなる)。ボイド係数の絶対値を減少させるため、燃料集合体の水対ウラン体積比を大きくすることが考えられる。例えば、特許文献2では、10行10列の正方格子配列の燃料集合体内に、ウォーターロッドを4本以上16本以下配し、燃料有効長の上部1/12~2/12の領域に、他の領域よりも低濃縮度の燃料を配する。そして、このように4本以上16本以下のウォータ―ロッド及び細径燃料棒を配することにより、水対ウラン比が体積比で3.0以上とし、高濃縮度化によるボイド係数の絶対値の増加を抑制可能とするものである。
特許第3262022号公報 特開昭60-205281号公報
 特許文献1の構成では、可能な限り燃料集合体の平均濃縮度を高めることで、燃料集合体を高燃焼度化している。しかしながら、高濃縮度化に伴って絶対値が増加する炉心のボイド係数に関しては何ら考慮されていない。 
 また、特許文献2の構成では、水対ウラン体積比を3.0以上とするため燃料棒径を細くする必要があり、燃料装荷量の低減を招き燃料経済性が低下する。 
 そこで、本発明は、所望の燃料装荷量を維持しつつ、ボイド係数の絶対値の増加を抑制し得る燃料集合体及びそれを装荷する炉心を提供する。
 上記課題を解決するため、本発明の燃料集合体は、可燃性毒物を含有する第1燃料棒と可燃性毒物を含有しない第2燃料棒をチャンネルボックス内に束ねて収容する燃料集合体であって、前記第1燃料棒は、燃料有効部の上端部に前記可燃性毒物を含有しない燃料有効部上端領域を有し、前記可燃性毒物を含有しない燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域の平均濃縮度が2.0wt%以上2.5wt%以下であり、且つ、前記燃料有効部の軸方向長さに占める前記燃料有効部上端領域の長さの割合が0.16以上0.21以下であることを特徴とする。 
 また、本発明の炉心は、複数体の燃料集合体が装荷される原子炉の炉心であって、前記燃料集合体は、可燃性毒物を含有する第1燃料棒と可燃性毒物を含有しない第2燃料棒をチャンネルボックス内に束ねて収容し、前記第1燃料棒は、燃料有効部の上端部に前記可燃性毒物を含有しない燃料有効部上端領域を有し、前記可燃性毒物を含有しない燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域の平均濃縮度が2.0wt%以上2.5wt%以下であり、且つ、前記燃料有効部の軸方向長さに占める前記燃料有効部上端領域の長さの割合が0.16以上0.21以下であることを特徴とする。
 本発明によれば、所望の燃料装荷量を維持しつつ、ボイド係数の絶対値の増加を抑制し得る燃料集合体及びそれを装荷する炉心を提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る実施例1の燃料集合体の全体概略構成図である。 図1に示す燃料集合体のA-A断面図矢視図(水平断面図)及び各燃料棒の濃縮度を示す図である。 図2に示す燃料集合体を装荷する炉心を備えた改良型沸騰水型原子炉の概略構成図である。 燃料領域上端部領域の4ノードに、天然ウラン燃料、可燃性毒物を含まない低濃縮度燃料、及び高濃縮度燃料をそれぞれ設けた燃料を用いた炉心のボイド係数を示す図である。 燃料領域上端部領域の4ノードに、天然ウラン燃料、可燃性毒物を含まない低濃縮度燃料、高濃縮度燃料をそれぞれ設けた燃料を用いた炉心の軸方向出力分布を示す図である。 可燃性毒物を含まない低濃縮度燃料領域のノード数とボイド係数の関係を示す図である。 燃料領域上端部領域の4ノードに可燃性毒物を含まない低濃縮度燃料を設けた場合における、低濃縮度燃料領域の平均濃縮度とボイド係数の関係を示す図である。 燃料領域上端部領域の4ノードに可燃性毒物を含まない低濃縮度燃料を設けた場合における、燃料集合体水平断面の濃縮度と減速材ボイド係数との関係を示す図である。 本発明の他の実施例に係る実施例2の燃料集合体の水平断面図及び各燃料棒の濃縮度を示す図である。 本発明の他の実施例に係る実施例3の燃料集合体の水平断面図及び各燃料棒の濃縮度を示す図である。
 本発明者等は鋭意努力の結果、沸騰水型原子炉の燃料集合体のボイド係数の絶対値を減少させるための新たな知見を得た。 
 沸騰水型原子炉では、炉心に装荷される燃料集合体の上端若しくは下端には天然ウラン燃料領域を設けている。これは、燃料有効部の端部に反応度の低い天然ウラン燃料を設けることで、炉心より漏洩する中性子の量を抑制し中性子経済性を向上させているためである。一般に、濃縮度が大きくなるほどボイド係数の絶対値は増加する傾向を示すことから、濃縮度の低い天然ウラン燃料領域を燃料集合体の上端若しくは下端に設けることで、燃料集合体のボイド係数の絶対値が減少することを期待している。
 図4に、燃料領域上端部領域の4ノードに、天然ウラン燃料、可燃性毒物を含まない低濃縮度燃料、及び高濃縮度燃料をそれぞれ設けた燃料を用いた炉心のボイド係数を示す。図4では、横軸に上端部(燃料領域上端部領域の4ノード)に設けた燃料料領域の平均濃縮度(wt%)、縦軸に炉心のボイド係数×10-3(%dk/k/%void)をとり、可燃性毒物を含まない低濃縮度燃料についてはその濃縮度を2.5wt%とし、可燃性毒物を含む高濃縮度燃料についてはその濃縮度を4.6wt%としたときの、平衡炉心のサイクル末期におけるボイド係数の解析値を示している。なお、本明細書において、高濃縮度燃料とは、平均濃縮度が3.0wt%以上の燃料集合体を指すものとする。また、可燃性毒物を含まない低濃縮度燃料については、軸方向ノード、24ノードのうち、燃料領域上端部領域の4ノードを除く他の20ノードについては高濃縮度燃料とした。
 図4に示すように、燃料領域上端部領域の4ノードに天然ウラン燃料を設けた燃料では、炉心のボイド係数の絶対値の低減は認められない。すなわち、天然ウラン燃料を燃料領域上端部領域の4ノードに設けてもボイド係数の改善効果(炉心のボイド係数の絶対値の低減効果)は達成できないことが分かる。また、同様に、図4に示すように、燃料領域上端部領域の4ノードに高濃縮度燃料を設けた燃料では、炉心のボイド係数の絶対値の低減は認められない。すなわち、高濃縮度燃料を燃料領域上端部領域の4ノードに設けてもボイド係数の改善効果(炉心のボイド係数の低減効果)は達成できないことが分かる。これに対し、燃料領域上端部領域の4ノードに低濃縮度燃料を設けた燃料では、炉心のボイド係数の絶対値の低減に効果的であることが分かる。
 本発明者等は、種々の検討を重ね、炉心のボイド係数の絶対値を低減するための軸方向の燃料構成について明らかにした。図5は、燃料領域上端部領域の4ノードに、天然ウラン燃料、可燃性毒物を含まない低濃縮度燃料、高濃縮度燃料をそれぞれ設けた燃料を用いた炉心の軸方向出力分布を示す図である。図5では横軸に軸方向出力分布を、縦軸に軸方向ノード位置をとり、可燃性毒物を含まない低濃縮度燃料についてはその濃縮度を2.5wt%とし、可燃性毒物を含む高濃縮度燃料についてはその濃縮度を4.6wt%としたときの、平衡炉心のサイクル末期における軸方向出力分布を示している。
 図5に示すように、燃料領域上端部領域の4ノードに天然ウラン燃料を設けた燃料では、燃焼を通して反応度が小さいため、平衡炉心サイクル末期では天然ウラン領域の下に設けられている高濃縮度燃料領域の出力が大きくなる特徴を持つ。ボイド率が大きくなるほどボイド係数の絶対値は大きくなる傾向を持つ。天然ウラン燃料を燃料領域上端部領域の4ノードに設けた場合、炉心のボイド係数が改善されないのは、点線Aにて示す領域おいて軸方向出力分布が大きくなる。すなわち、ノード16~ノード20の位置である上部に設けられた高濃縮度燃料のボイド係数の寄与を大きくしてしまうためである。
 燃料領域上端部領域の4ノードに低濃縮度燃料を設けた燃料では、燃焼初期は反応度が大きいため、図5に示すように、平衡炉心のサイクル末期における軸方向出力分布において、上部(ノード16~ノード20)に設けられた高濃縮度燃料領域の出力の上昇が抑制される。そのため、上述の図4に示す通り、燃料領域上端部領域(以下では、燃料有効部上端領域と称する場合もある)に可燃性毒物を含まない低濃縮度燃料を設けることにより、高濃縮度燃料或いは天然ウラン燃料を燃料有効部上端領域に設ける場合と比較して、炉心のボイド係数の絶対値を低減するという、ボイド係数改善効果が得られる。 
 一方、燃料有効部下端領域に低濃縮度燃料を設けることは、平衡炉心のサイクル末期における軸方向出力分布において、上部(ノード16~ノード20)に設けられた高濃縮度燃料領域の出力上昇の抑制に寄与しないため、ボイド係数改善の効果(炉心のボイド係数の絶対値の低減効果)をもたらさない。 
 以上の通り、可燃性毒物を含まない低濃縮度燃料を燃料有効部上端領域に設けることにより、ボイド係数改善の効果(炉心のボイド係数の絶対値の低減効果)を得ることができることがわかった。
 図6は、可燃性毒物を含まない低濃縮度燃料領域のノード数とボイド係数の関係を示す図である。図6では、横軸に可燃性毒物を含まない燃料領域(燃料有効部)の軸方向ノード数を、縦軸に炉心のボイド係数×10-3(%dk/k/%void)をとり、可燃性毒物を含まない燃料領域(燃料有効部)を軸方向に24ノードに分割した場合を想定している。図6に示すように、ボイド係数改善の効果を最大化し得るノード数は、可燃性毒物を含まない低濃縮度燃料の燃料有効部24ノードの内、4ノード若しくは5ノードであることが分かる。換言すれば、燃料有効部の軸方向長さ(24ノード)に占める可燃性毒物を含有しない領域の長さの割合が0.16以上0.21以下とすることにより、ボイド係数改善の効果を最大化することが可能となる。なお、本明細書では、燃料領域(燃料有効部)を軸方向に24ノードに分割した場合を一例として説明するが、分割するノード数はこれに限られるものではなく、燃料領域(燃料有効部)を軸方向に25ノードに分割しても良い。この場合においても、燃料有効部の軸方向長さに占める可燃性毒物を含有しない領域の長さの割合が0.16以上0.21以下とすることにより、ボイド係数改善の効果を最大化が図られる。
 図7は、燃料領域上端部領域の4ノードに可燃性毒物を含まない低濃縮度燃料を設けた場合における、低濃縮度燃料領域の平均濃縮度とボイド係数の関係を示す図である。図7では、横軸に低濃縮度燃料領域の平均濃縮度(wt%)をとり、縦軸に炉心のボイド係数×10-3(%dk/k/%void)をとり、これらの相関関係を示している。なお、図7では、燃料領域(燃料有効部)を軸方向に24ノードに分割し、燃料領域上端部領域(燃料有効部上端領域)の4ノードに可燃性毒物を含まない低濃縮度燃料を設け、それ以外の領域、すなわち20ノードを高濃縮度燃料とした。図7に示すように、低濃縮度燃料領域の平均濃度が2.0wt%未満になると、ボイド系係数の改善効果(炉心のボイド係数の絶対値の低減効果)が急激に(顕著に)低下している。このことから、燃料領域上端部領域の4ノードに設ける可燃性毒物を含まない低濃縮度燃料の平均濃縮度を2.0%以上とする必要がある。換言すれば、燃料領域上端部領域の4ノードに設ける可燃性毒物を含まない低濃縮度燃料の平均濃縮度の下限値は、2.0wt%である。
 図8は、燃料領域上端部領域の4ノードに可燃性毒物を含まない低濃縮度燃料を設けた場合における、燃料集合体水平断面の濃縮度と減速材ボイド係数との関係を示す図である。図8では、横軸に燃料集合体水平断面の濃縮度(平均濃縮度)(wt%)をとり、縦軸に燃料集合体水平断面の減速材ボイド係数×10-3(%dk/k/%void)をとり、これらの相関関係を示している。なお、図8では、燃料領域(燃料有効部)を軸方向に24ノードに分割し、燃料領域上端部領域(燃料有効部上端領域)の4ノードに可燃性毒物を含まない低濃縮度燃料を設け、それ以外の領域、すなわち20ノードを高濃縮度燃料とした。図8に示すように、燃料集合体水平断面の濃縮度(平均濃縮度)の低下に従い、燃料集合体水平断面の減速材ボイド係数の値は小さくなり、減速材ボイド係数の変化量も大きくなる傾向を示す。燃料集合体水平断面の濃縮度を2.5wt%以下とすることで、減速材ボイド係数を高濃縮度燃料の半分以下とすることができる。このことから、燃料領域上端部領域の4ノードに設ける可燃性毒物を含まない低濃縮度燃料の平均濃縮度を2.5%以下とする必要がある。換言すれば、燃料領域上端部領域の4ノードに設ける可燃性毒物を含まない低濃縮度燃料の平均濃縮度の上限値は、2.5wt%である。
 以上より、燃料有効部の軸方向長さに占める可燃性毒物を含有しない領域(燃料有効部上端領域)の長さの割合を0.16以上0.21以下とし、且つ、燃料領域上端部領域(燃料有効部上端領域)に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度を2.0wt%以上2.5wt%以下とすることで、所望の燃料装荷量を維持しつつ、炉心のボイド係数の絶対値の増加を抑制することが可能となる。
 以下、図面を用いて本発明の実施例について説明する。なお、以下では、インターナルポンプを備え、冷却材を原子炉圧力容器内で循環させる改良型沸騰水型原子炉(Advanced Boiling Water Reactor:ABWR)を一例として説明するが、これに限られるものではない。再循環ポンプを備え、冷却材(中性子の減速材としても機能)を原子炉圧力容器外へ通流し再び原子炉圧力容器内のダウンカマへ流入させることで冷却材を循環させる通常の沸騰水型原子炉(BWR)へも同様に適用できる。また、可燃性毒物として、例えば、ガドリニア(Gd)が用いられる。
 図1に、本発明の一実施例に係る実施例1の燃料集合体の全体概略構成図を示し、図2に図1に示す燃料集合体のA-A断面図矢視図(水平断面図)及び各燃料棒の濃縮度示す図を、図3に図2に示す燃料集合体を装荷する炉心を備えた改良型沸騰水型原子炉の概略構成図を示す。
 (改良型沸騰水型原子炉(ABWR)の構成) 
 図3に示すように、本実施例の燃料集合体(詳細後述する)が装荷される炉心を備える改良型沸騰水型原子炉10は、原子炉圧力容器11内に円筒状の炉心シュラウド16が設けられ、炉心シュラウド16内に、複数体の燃料集合体(図示せず)が装荷された初装荷炉心である炉心12が設置されている。また、原子炉圧力容器11内には、炉心12を覆うシュラウドヘッド20、シュラウド20に取り付けられ上方へと延伸する気水分離器18、及び気水分離器18の上方に配される蒸気乾燥器19が設けられている。 
 上部格子板14が、シュラウドヘッド20の下方で炉心シュラウド16内に配され、炉心シュラウド16に取り付けられて炉心12の上端部に位置している。炉心支持板13が、炉心12の下端部に位置して炉心シュラウド16内に配され、炉心シュラウド16に設置されている。また、複数の燃料支持金具15が炉心支持板13に設置されている。 
 また、原子炉圧力容器11内には、燃料集合体の核反応を制御するため炉心12へ複数の横断面十字状の制御棒(図示せず)を挿入可能とする制御棒案内管22が設けられている。原子炉圧力容器11の底部より下方に設置された制御棒駆動機構ハウジング(図示せず)内に制御棒駆動機構23を備え、制御棒は制御棒駆動機構23に連結されている。
 原子炉圧力容器11の底部である下鏡24に、その下方より原子炉圧力容器11の内部へ貫通するよう複数のインターナルポンプ21が設置されている。複数のインターナルポンプ21は、複数の制御棒案内管22の最外周部より外側であって、環状に相互に所定の間隔にて離間し、複数台配されている。これにより、インターナルポンプ21は、制御棒案内管22等と干渉することはない。そして、各インターナルポンプ21のインペラが、円筒状の炉心シュラウド16と原子炉圧力容器11の内面との間に形成される環状のダウンカマ17内に位置付けられている。原子炉圧力容器11内の冷却水は、各インターナルポンプ21のインペラにより、ダウンカマ17を介して、下鏡24側から炉心12へ供給される。炉心12内に流入する冷却水は、燃料集合体(図示せず)の核反応により加熱され気液二相流となり、気水分離器18へ流入する。気水分離器18を通流する気液二相流は、湿分を含む蒸気(気相)と水(液相)に分離され、液相は再び冷却水としてダウンカマ17へ降下する。一方、蒸気(気相)は、蒸気乾燥器19へと導入され湿分が除去された後、主蒸気配管25を介してタービン(図示せず)へ供給される。復水器等を介して給水配管26より原子炉圧力容器11内に流入する冷却水は、ダウンカマ17内を下方へと通流する(降下する)。このように、インターナルポンプ21は、炉心12で発生する熱を効率良く冷却するため、冷却水を炉心12へ強制循環させる。
 (燃料集合体の構成) 
 図1に、炉心12に装荷される燃料集合体1の全体概略構成図を示す。 
 図1に示すように、燃料集合体1は、上部タイプレート5、下部タイプレート7、これらのタイプレートに両端が保持されている複数の燃料棒3、ウォーターロッド2(ウォーターチャネルとも称される)、これらの燃料棒3を束ねる燃料スペーサ9、及び、燃料スペーサ9により束ねられている燃料棒束を取り囲み上部タイプレート5に取り付けられたチャンネルボックス4を備えている。上部タイプレート5にはハンドル6が締結されており、ハンドル6を吊り上げると、燃料集合体1全体を引き上げることができる。燃料棒3は、その一部に高さが上部タイプレート5まで達しない部分長燃料棒を有する。すなわち、部分長燃料棒は、上部タイプレート5へ達する全長燃料棒よりも内部に充填される燃料有効長が短い燃料棒である。また、複数の燃料棒3内には、核分裂性物質(ウラン235)を含む核燃料物質を用いて製造した円筒形状の多数の燃料ペレットが充填されている。各燃料棒3の下端部が下部タイプレート7によって支持され、各燃料棒3の上端部が上部タイプレート5によって保持される。複数の燃料スペーサ9は、燃料集合体1の軸方向に所定の間隔にて配され、燃料棒相互間に所定の間隔を有するよう複数の燃料棒3を保持する。
 図2は、図1に示す燃料集合体1のA-A断面図矢視図(水平断面図)及び各燃料棒の濃縮度を示す図である。 
 図2の上図に示すように、本実施例の燃料集合体1では、燃料集合体1の水平断面において、チャンネルボックス4内に形成される10行10列の正方格子に、全長燃料棒31a~31c、部分長燃料棒41、水ロッド(WR)2、及び可燃性毒物入り全長燃料棒51が配されている。燃料集合体1の水平断面(横断面)の中央部には、燃料棒を4本配置可能な領域を占有する横断面積を有する水ロッド(WR)2が2本配されている。水ロッド(WR)2は、少なくとも2本の燃料棒が配置可能な領域を占有する横断面積を有する太径水ロッドである。
 図2の上図及び下図に示すように、全長燃料棒31aは、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、ノード21~ノード24に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が2.80wt%の可燃性毒物を含まない低濃縮度燃料を有する。4本の全長燃料棒31aが、燃料集合体1の水平断面内において、最外周の四隅(4つのコーナー部)の格子位置にそれぞれ配されている。
 全長燃料棒31bは、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、ノード21~ノード24に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が3.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。8本の全長燃料棒31bが、燃料集合体1の水平断面内において、最外周の四隅(4つのコーナー部)の格子位置に配される全長燃料棒31aに隣接するよう最外周の格子位置に配されている。
 全長燃料棒31cは、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、ノード21~ノード24に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が4.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。52本の全長燃料棒31cが、燃料集合体1の水平断面内において、最外周、最外周より1層内側、最外周より2層内側、最外周より3層内側、及び水ロッド(WR)2に隣接するよう格子位置に配されている。
 部分長燃料棒41は、ノード1~ノード14に平均濃縮度が4.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。14本の部分長燃料棒41が、燃料集合体1の水平断面内において、最外周より1層内側及び水ロッド(WR)2に隣接するよう格子位置に配されている。
 可燃性毒物入り全長燃料棒51は、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、ノード21~ノード24に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が4.90wt%の高濃縮度燃料を有する。ノード1~ノード20の高濃縮度燃料に含まれる可燃性毒物であるガドリニア(Gd)の濃度は9.0wt%である。14本の可燃性毒物入り全長燃料棒51が、燃料集合体1の水平断面内において、最外周より1層内側及び水ロッド(WR)2に隣接するよう格子位置に配されている。
 本実施例では、全長燃料棒31a~全長燃料棒31c、及び可燃性毒物入り全長燃料棒51の何れにおいても、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、燃料有効部の軸方向長さ(24ノード)に占める可燃性毒物を含有しない領域の長さの割合が0.16である。そして、燃料領域上端部領域(燃料有効部上端領域)の可燃性毒物を含まない低濃縮度燃料の平均濃縮度は2.50wt%である。
 また、上述の通り、全長燃料棒31b、31c、及び可燃性毒物入り全長燃料棒51の燃料領域上端部領域(燃料有効部上端領域)を除く燃料有効部は、高濃縮度燃料であることから、燃料の経済性を向上することができる。
 以上の通り、本実施例によれば、所望の燃料装荷量を維持しつつ、ボイド係数の絶対値の増加を抑制することが可能となる。 
 また、本実施例によれば、燃料の経済性を向上することが可能となる。
 図9は、本発明の他の実施例に係る実施例2の燃料集合体の水平断面図及び各燃料棒の濃縮度示す図である。本実施例では、部分長燃料棒を燃料集合体の水平断面内において最外周部と水ロッド(WR)2に隣接して配する点が実施例1と異なる。本実施例における燃料集合体の全体概略構成は、実施例1にて説明した図2に示す構成と同様であり、また、本実施例の燃料集合体は、図3に示した改良型沸騰水型原子炉(ABWR)の炉心に装荷される。
 図9の上図に示すように、本実施例の燃料集合体1aでは、燃料集合体1aの水平断面において、チャンネルボックス4内に形成される10行10列の正方格子に、全長燃料棒32a~32c、部分長燃料棒42、水ロッド(WR)2、及び可燃性毒物入り全長燃料棒52が配されている。燃料集合体1aの水平断面(横断面)の中央部には、燃料棒を4本配置可能な領域を占有する横断面積を有する水ロッド(WR)2が2本配されている。水ロッド(WR)2は、少なくとも2本の燃料棒が配置可能な領域を占有する横断面積を有する太径水ロッドである。
 図9の上図及び下図に示すように、全長燃料棒32aは、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、ノード21~ノード24に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が2.80wt%の可燃性毒物を含まない低濃縮度燃料を有する。4本の全長燃料棒32aが、燃料集合体1aの水平断面内において、最外周の四隅(4つのコーナー部)の格子位置にそれぞれ配されている。
 全長燃料棒32bは、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、ノード21~ノード24に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が3.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。8本の全長燃料棒32bが、燃料集合体1aの水平断面内において、最外周の四隅(4つのコーナー部)の格子位置に配される全長燃料棒32aに隣接するよう最外周の格子位置に配されている。
 全長燃料棒32cは、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、ノード21~ノード24に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が4.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。52本の全長燃料棒32cが、燃料集合体1aの水平断面内において、最外周、最外周より1層内側、最外周より2層内側、最外周より3層内側、及び水ロッド(WR)2に隣接するよう格子位置に配されている。
 部分長燃料棒42は、ノード1~ノード14に平均濃縮度が4.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。14本の部分長燃料棒42が、燃料集合体1aの水平断面内において、最外周及び水ロッド(WR)2に隣接するよう格子位置に配され、最外周の格子位置に配される部分長燃料棒42は、8本であり、水ロッド(WR)2に隣接して配される部分長燃料棒42は6本である。
 可燃性毒物入り全長燃料棒52は、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、ノード21~ノード24に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が4.90wt%の高濃縮度燃料を有する。ノード1~ノード20の高濃縮度燃料に含まれる可燃性毒物であるガドリニア(Gd)の濃度は9.0wt%である。14本の可燃性毒物入り全長燃料棒52が、燃料集合体1aの水平断面内において、最外周より1層内側及び水ロッド(WR)2に隣接するよう格子位置に配されている。
 本実施例では、全長燃料棒32a~全長燃料棒32c、及び可燃性毒物入り全長燃料棒52の何れにおいても、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、燃料有効部の軸方向長さ(24ノード)に占める可燃性毒物を含有しない領域の長さの割合が0.16である。そして、燃料領域上端部領域(燃料有効部上端領域)の可燃性毒物を含まない低濃縮度燃料の平均濃縮度は2.50wt%である。 
 また、上述の通り、全長燃料棒32b、32c、及び可燃性毒物入り全長燃料棒52の燃料領域上端部領域(燃料有効部上端領域)を除く燃料有効部は、高濃縮度燃料であることから、燃料の経済性を向上することができる。
 また、本実施例では、高濃縮度燃料のみを有する部分長燃料棒42が、燃料集合体1aの水平断面内において最外周の格子位置に配されている。燃料集合体1aのチャンネルボックス4の外側及び水ロッド(WR)2の内側は非沸騰領域(ボイド率が0%)である。そのため、最外周に配される燃料棒及び水ロッド(WR)2に隣接して配される燃料棒は、最外周より内側へ配される燃料棒に比べて、ボイド反応度が高くなる(負に大きくなる)傾向を持つ。従って、チャンネルボックス4の外側の影響が最も多い最外周及び水ロッド(WR)2の隣接位置に部分長燃料棒42を配することで、燃料集合体1aのボイド係数改善(正側にシフトする)効果を増大することができる。
 以上の通り、本実施例によれば、実施例1の効果に加え、更に、ボイド係数改善(正側にシフトする)効果を増大することができる。
 図10は、本発明の他の実施例に係る実施例3の燃料集合体の水平断面図及び各燃料棒の濃縮度を示す図である。本実施例では、燃料領域上端部領域(燃料有効部上端領域)内において上端部に向かうほど濃縮度を低い点が実施例1と異なる。本実施例における燃料集合体の全体概略構成は、実施例1にて説明した図2に示す構成と同様であり、また、本実施例の燃料集合体は、図3に示した改良型沸騰水型原子炉(ABWR)の炉心に装荷される。
 図10の上図に示すように、本実施例の燃料集合体1bでは、燃料集合体1bの水平断面において、チャンネルボックス4内に形成される10行10列の正方格子に、全長燃料棒33a~33c、部分長燃料棒43、水ロッド(WR)2、及び可燃性毒物入り全長燃料棒53が配されている。燃料集合体1bの水平断面(横断面)の中央部には、燃料棒を4本配置可能な領域を占有する横断面積を有する水ロッド(WR)2が2本配されている。水ロッド(WR)2は、少なくとも2本の燃料棒が配置可能な領域を占有する横断面積を有する太径水ロッドである。
 図10の上図及び下図に示すように、全長燃料棒33aは、燃料領域上端部領域(燃料有効部上端領域)の4ノードのうち、ノード21~ノード23に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有すると共に、上端部(最上部)のノード24に平均濃縮度が2.00wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が2.80wt%の可燃性毒物を含まない低濃縮度燃料を有する。4本の全長燃料棒33aが、燃料集合体1bの水平断面内において、最外周の四隅(4つのコーナー部)の格子位置にそれぞれ配されている。
 全長燃料棒33bは、燃料領域上端部領域(燃料有効部上端領域)の4ノードのうち、ノード21~ノード23に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有すると共に、上端部(最上部)のノード24に平均濃縮度が2.00wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が3.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。8本の全長燃料棒33bが、燃料集合体1bの水平断面内において、最外周の四隅(4つのコーナー部)の格子位置に配される全長燃料棒33aに隣接するよう最外周の格子位置に配されている。
 全長燃料棒33cは、燃料領域上端部領域(燃料有効部上端領域)の4ノードのうち、ノード21~ノード23に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有すると共に、上端部(最上部)のノード24に平均濃縮度が2.00wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が4.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。52本の全長燃料棒33cが、燃料集合体1bの水平断面内において、最外周、最外周より1層内側、最外周より2層内側、最外周より3層内側、及び水ロッド(WR)2に隣接するよう格子位置に配されている。
 部分長燃料棒43は、ノード1~ノード14に平均濃縮度が4.90wt%の可燃性毒物を含まない高濃縮度燃料を有する。14本の部分長燃料棒43が、燃料集合体1bの水平断面内において、最外周より1層内側及び水ロッド(WR)2に隣接するよう格子位置に配されている。
 可燃性毒物入り全長燃料棒53は、燃料領域上端部領域(燃料有効部上端領域)の4ノードのうち、ノード21~ノード23に平均濃縮度が2.50wt%の可燃性毒物を含まない低濃縮度燃料を有すると共に、上端部(最上部)のノード24に平均濃縮度が2.00wt%の可燃性毒物を含まない低濃縮度燃料を有し、ノード1~ノード20に平均濃縮度が4.90wt%の高濃縮度燃料を有する。ノード1~ノード20の高濃縮度燃料に含まれる可燃性毒物であるガドリニア(Gd)の濃度は9.0wt%である。14本の可燃性毒物入り全長燃料棒53が、燃料集合体1bの水平断面内において、最外周より1層内側及び水ロッド(WR)2に隣接するよう格子位置に配されている。
 本実施例では、全長燃料棒33a~全長燃料棒33c、及び可燃性毒物入り全長燃料棒53の何れにおいても、燃料領域上端部領域(燃料有効部上端領域)の4ノード、すなわち、燃料有効部の軸方向長さ(24ノード)に占める可燃性毒物を含有しない領域の長さの割合が0.16である。そして、燃料領域上端部領域(燃料有効部上端領域)の上端部(最上部)を除く領域に設けられ可燃性毒物を含まない低濃縮度燃料の平均濃縮度は2.50wt%であり、燃料領域上端部領域(燃料有効部上端領域)の上端部(最上部)に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度は2.00wt%である。燃料領域上端部領域(燃料有効部上端領域)の上端部(最上部)は、炉心特性に対する寄与が他の燃料領域上端部領域(燃料有効部上端領域)に比べて小さい。よって、このように燃料領域上端部領域(燃料有効部上端領域)の上端部(最上部)に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度を、他の燃料領域上端部領域(燃料有効部上端領域)に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度より低くできることから、更なる燃料の経済性向上を図ることができる。 
 また、上述の通り、全長燃料棒33b、33c、及び可燃性毒物入り全長燃料棒53の燃料領域上端部領域(燃料有効部上端領域)を除く燃料有効部は、高濃縮度燃料であることから、燃料の経済性を向上することができる。
 なお、本実施例では、燃料領域上端部領域(燃料有効部上端領域)の4ノードのうち、ノード21~ノード23に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度よりも、上端部(最上部)のノード24に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度を低くする構成としたが、これに限られるものではない。例えば、燃料領域上端部領域(燃料有効部上端領域)の4ノードのうち、ノード21~ノード22に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度を2.50wtとし、ノード23に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度を2.25wt、ノード24に設けられる可燃性毒物を含まない低濃縮度燃料の平均濃縮度を2.00wtとする構成としても良い。すなわち、燃料領域上端部領域(燃料有効部上端領域)内において、上端部(最上部)へ向かうほど可燃性毒物を含まない低濃縮度燃料の平均濃縮度が低くなるような構成としても良い。
 以上の通り、本実施例によれば、実施例1の効果に加え、燃料領域上端部領域(燃料有効部上端領域)内における可燃性毒物を含まない低濃縮度燃料の平均濃縮度を段階的に低くできることから、更なる燃料の経済性向上が可能となる。
 なお、上述の実施例1乃至実施例3では、燃料領域(燃料有効部)を軸方向に24ノードに分割した場合を一例として説明したが、上述のように、例えば、燃料領域(燃料有効部)を軸方向に25ノードに分割しても良い。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1,1a,1b・・・燃料集合体
2・・・ウォーターロッド
3・・・燃料棒
4・・・チャンネルボックス
5・・・上部タイプレート
6・・・ハンドル
7・・・下部タイプレート
8・・・エントランスノズル
9・・・燃料スペーサ
10・・・改良型沸騰水型原子炉
11・・・原子炉圧力容器
12・・・炉心
13・・・炉心支持板
14・・・上部格子板
15・・・燃料支持金具
16・・・炉心シュラウド
17・・・ダウンカマ
18・・・気水分離器
19・・・蒸気乾燥器
20・・・シュラウドヘッド
21・・・インターナルポンプ
22・・・制御棒案内管
23・・・制御棒駆動機構
24・・・下鏡
25・・・主蒸気配管
26・・・給水配管
31a~31c,32a~32c,33a~33c・・・全長燃料棒
41,42,43・・・部分長燃料棒
51,52,53・・・可燃性毒物入り全長燃料棒

Claims (14)

  1.  可燃性毒物を含有する第1燃料棒と可燃性毒物を含有しない第2燃料棒をチャンネルボックス内に束ねて収容する燃料集合体であって、
     前記第1燃料棒は、燃料有効部の上端部に前記可燃性毒物を含有しない燃料有効部上端領域を有し、
     前記可燃性毒物を含有しない燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域の平均濃縮度が2.0wt%以上2.5wt%以下であり、且つ、前記燃料有効部の軸方向長さに占める前記燃料有効部上端領域の長さの割合が0.16以上0.21以下であることを特徴とする燃料集合体。
  2.  請求項1に記載の燃料集合体において、
     前記第1燃料棒の燃料有効部上端領域の軸方向の長さは、前記第2燃料棒の燃料有効部上端領域の軸方向の長さに等しいことを特徴とする燃料集合体。
  3.  請求項2に記載の燃料集合体において、
     前記第1燃料棒の燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域は、燃料有効部の軸方向全長を24ノードに分割としたとき、4ノード以上5ノード以下であることを特徴とする燃料集合体。
  4.  請求項3に記載の燃料集合体において、
     ウォーターロッドを備え、
     前記第2燃料棒は、前記燃料有効部の長さが短い部分長燃料棒を有し、
     前記部分長燃料棒は、水平断面内において最外周及び/又はウォーターロッドに隣接して配されることを特徴とする燃料集合体。
  5.  請求項3に記載の燃料集合体において、
     前記第1燃料棒の燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域を除く、前記第1燃料棒及び前記第2燃料棒の燃料有効部は高濃縮度燃料であることを特徴とする燃料集合体。
  6.  請求項5に記載の燃料集合体において、
     前記高濃縮度燃料は、平均濃縮度が3.0wt%以上であることを特徴とする燃料集合体。
  7.  請求項3に記載の燃料集合体において、
     前記第1燃料棒の燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域は、最上部へ向かうほど平均濃縮度が低いことを特徴とする燃料集合体。
  8.  複数体の燃料集合体が装荷される原子炉の炉心であって、
     前記燃料集合体は、可燃性毒物を含有する第1燃料棒と可燃性毒物を含有しない第2燃料棒をチャンネルボックス内に束ねて収容し、
     前記第1燃料棒は、燃料有効部の上端部に前記可燃性毒物を含有しない燃料有効部上端領域を有し、
     前記可燃性毒物を含有しない燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域の平均濃縮度が2.0wt%以上2.5wt%以下であり、且つ、前記燃料有効部の軸方向長さに占める前記燃料有効部上端領域の長さの割合が0.16以上0.21以下であることを特徴とする炉心。
  9.  請求項8に記載の炉心において、
     前記第1燃料棒の燃料有効部上端領域の軸方向の長さは、前記第2燃料棒の燃料有効部上端領域の軸方向の長さに等しいことを特徴とする炉心。
  10.  請求項9に記載の炉心において、
     前記第1燃料棒の燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域は、燃料有効部の軸方向全長を24ノードに分割としたとき、4ノード以上5ノード以下であることを特徴とする炉心。
  11.  請求項10に記載の炉心において、
     前記燃料集合体は、ウォーターロッドを備え、
     前記第2燃料棒は、前記燃料有効部の長さが短い部分長燃料棒を有し、
     前記部分長燃料棒は、水平断面内において最外周及び/又はウォーターロッドに隣接して配されることを特徴とする炉心。
  12.  請求項10に記載の炉心において、
     前記第1燃料棒の燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域を除く、前記第1燃料棒及び前記第2燃料棒の燃料有効部は高濃縮度燃料であることを特徴とする炉心。
  13.  請求項12に記載の炉心において、
     前記高濃縮度燃料は、平均濃縮度が3.0wt%以上であることを特徴とする炉心。
  14.  請求項10に記載の炉心において、
     前記第1燃料棒の燃料有効部上端領域及び前記第2燃料棒の燃料有効部上端領域は、最上部へ向かうほど平均濃縮度が低いことを特徴とする炉心。
PCT/JP2016/084878 2016-03-04 2016-11-25 燃料集合体及びそれを装荷する炉心 WO2017149864A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016041736A JP6670133B2 (ja) 2016-03-04 2016-03-04 燃料集合体及び原子炉の炉心
JP2016-041736 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017149864A1 true WO2017149864A1 (ja) 2017-09-08

Family

ID=59743838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084878 WO2017149864A1 (ja) 2016-03-04 2016-11-25 燃料集合体及びそれを装荷する炉心

Country Status (2)

Country Link
JP (1) JP6670133B2 (ja)
WO (1) WO2017149864A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965200B2 (ja) 2018-03-30 2021-11-10 日立Geニュークリア・エナジー株式会社 燃料集合体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157890A (en) * 1980-05-08 1981-12-05 Tokyo Shibaura Electric Co Boiling type atomic reactor
JPS5817595U (ja) * 1981-07-29 1983-02-03 株式会社日立製作所 燃料集合体
JPS58179391A (ja) * 1982-03-22 1983-10-20 ゼネラル・エレクトリツク・カンパニイ 軸方向に沿つて区分された濃縮度を有する燃料束
JPH0198992A (ja) * 1987-10-12 1989-04-17 Nippon Atom Ind Group Co Ltd 沸騰水型原子炉用燃料集合体
JPH07209465A (ja) * 1994-01-24 1995-08-11 Nuclear Fuel Ind Ltd 沸騰水型原子炉の取替炉心の燃料装荷方法及び沸騰水型原子炉の取替炉心
JPH11258376A (ja) * 1998-03-17 1999-09-24 Hitachi Ltd 原子炉初装荷炉心
JP2001124884A (ja) * 1999-10-26 2001-05-11 Hitachi Ltd 沸騰水型原子炉の燃料集合体及び初装荷炉心

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142365A (ja) * 1996-11-14 1998-05-29 Toshiba Corp 燃料集合体
US20090196391A1 (en) * 2008-02-06 2009-08-06 Junichi Miwa Core of a Boiling Water Reactor
EP2088600A1 (en) * 2008-02-07 2009-08-12 Hitachi-GE Nuclear Energy, Ltd. Core of a boiling water reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157890A (en) * 1980-05-08 1981-12-05 Tokyo Shibaura Electric Co Boiling type atomic reactor
JPS5817595U (ja) * 1981-07-29 1983-02-03 株式会社日立製作所 燃料集合体
JPS58179391A (ja) * 1982-03-22 1983-10-20 ゼネラル・エレクトリツク・カンパニイ 軸方向に沿つて区分された濃縮度を有する燃料束
JPH0198992A (ja) * 1987-10-12 1989-04-17 Nippon Atom Ind Group Co Ltd 沸騰水型原子炉用燃料集合体
JPH07209465A (ja) * 1994-01-24 1995-08-11 Nuclear Fuel Ind Ltd 沸騰水型原子炉の取替炉心の燃料装荷方法及び沸騰水型原子炉の取替炉心
JPH11258376A (ja) * 1998-03-17 1999-09-24 Hitachi Ltd 原子炉初装荷炉心
JP2001124884A (ja) * 1999-10-26 2001-05-11 Hitachi Ltd 沸騰水型原子炉の燃料集合体及び初装荷炉心

Also Published As

Publication number Publication date
JP2017156291A (ja) 2017-09-07
JP6670133B2 (ja) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018074341A1 (ja) 燃料集合体及びそれを装荷する沸騰水型原子炉の炉心
US8064565B2 (en) Reactor core
JP4970871B2 (ja) 沸騰水型軽水炉炉心
WO2017149864A1 (ja) 燃料集合体及びそれを装荷する炉心
JP4558477B2 (ja) 沸騰水型原子炉の燃料集合体
JP6965200B2 (ja) 燃料集合体
JP6588155B2 (ja) 燃料集合体及びそれを装荷する原子炉の炉心
JP5361964B2 (ja) 原子炉の初装荷炉心
JP2020098110A (ja) 燃料装荷方法および炉心
JP7365297B2 (ja) 燃料集合体及び沸騰水型原子炉
JP7437258B2 (ja) 燃料集合体
JP6621610B2 (ja) 沸騰水型原子炉の初装荷炉心
JP6577131B2 (ja) 燃料集合体及びそれを装荷する炉心
JP6466206B2 (ja) 初装荷炉心および燃料交換方法
JP2023058274A (ja) 燃料集合体及び原子炉の炉心
JP2022177385A (ja) 燃料装荷方法および炉心
JP5592593B2 (ja) 燃料集合体
JP2021012116A (ja) 燃料集合体
JP2011075496A (ja) 燃料集合体
JP2004219225A (ja) 沸騰水型原子炉の炉心
JP2018072230A (ja) 沸騰水型原子炉の炉心
JP2014032117A (ja) 燃料集合体および炉心
JP2004219133A (ja) 沸騰水型原子炉の炉心

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892699

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892699

Country of ref document: EP

Kind code of ref document: A1