WO2017149862A1 - 電界放出電子源、その製造方法および電子線装置 - Google Patents

電界放出電子源、その製造方法および電子線装置 Download PDF

Info

Publication number
WO2017149862A1
WO2017149862A1 PCT/JP2016/084726 JP2016084726W WO2017149862A1 WO 2017149862 A1 WO2017149862 A1 WO 2017149862A1 JP 2016084726 W JP2016084726 W JP 2016084726W WO 2017149862 A1 WO2017149862 A1 WO 2017149862A1
Authority
WO
WIPO (PCT)
Prior art keywords
field emission
electron source
emission electron
hexaboride
single crystal
Prior art date
Application number
PCT/JP2016/084726
Other languages
English (en)
French (fr)
Inventor
敏明 楠
富博 橋詰
圭吾 糟谷
卓 大嶋
佑輔 酒井
洋一 小瀬
紀明 荒井
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US16/081,372 priority Critical patent/US10586674B2/en
Priority to CN201680082576.4A priority patent/CN108701571B/zh
Priority to DE112016006345.8T priority patent/DE112016006345T5/de
Publication of WO2017149862A1 publication Critical patent/WO2017149862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/22Heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes

Definitions

  • the present invention relates to a field emission electron source, a manufacturing method thereof, and an electron beam apparatus.
  • Field emission electron sources are used as electron sources for high-resolution scanning electron microscopes and transmission electron microscopes because they have good monochromaticity and can emit high-brightness electron beams.
  • tungsten (W) has been widely used as a field emission electron source.
  • W tungsten
  • Patent Document 1 discloses a thermoelectron source that heats hexaboride to emit thermoelectrons.
  • Hexaboride has high reactivity, and gas is easily adsorbed and easily contaminated.
  • the residual gas moves through the adsorption site on the electron emission surface and fluctuates the work function, so noise is generated in the emission current.
  • the emission current decreases with time as the current increases. Therefore, measures, such as cleaning by heating flushing (or annealing, hereinafter referred to as heating flushing) of hexaboride, are required as in the field emission electron source using W.
  • the W field emission electron source is spot-welded to the W hairpin filament, and the W filament is heated for a few minutes at a high temperature of 2000 ° C. or more for a short time, or heated at a slightly lower temperature for a few minutes.
  • the gas on the surface of the electron source was desorbed and cleaned.
  • flushing or the like of a hexaboride field emission electron source is performed with this structure, a compound is formed at the spot welded portion between the hexaboride and the W filament to cause corrosion.
  • the joint portion is made of different materials having different thermal expansion coefficients, there arises a problem that the joint is broken due to fatigue due to thermal stress caused by heating flushing.
  • Patent Document 2 discloses a thermoelectron source made of a metal filament, a metal member bonded to the filament, a carbon member, and hexaboride.
  • the filament and the metal member are bonded.
  • the object of the present invention is to achieve monochromaticity that reduces noise and changes over time and enables stable operation even when hexaboride is used. It is an object of the present invention to provide a field emission electron source capable of obtaining an excellent high-intensity electron beam, a manufacturing method thereof, and an electron beam apparatus.
  • a heater made of a metal filament, a metal member joined to the heater, a hexaboride chip that emits electrons from the tip when an electric field is generated, the metal member, and A graphite sheet independent of the hexaboride chip
  • the hexaboride chip is disposed so as to protrude from the inside of the metal member in a direction opposite to the direction in which the heater extends, and is disposed so as not to structurally contact the metal member by the graphite sheet.
  • the field emission electron source is characterized in that the hexaboride chip, the graphite sheet, and the metal member are in mechanical and electrical contact.
  • a field emission electron source capable of obtaining a high-intensity electron beam excellent in monochromaticity capable of stable operation, with reduced noise and change over time.
  • FIG. 4 The perspective view which shows the crystal structure (unit cell) of the hexaboride single crystal used with the field emission electron source which concerns on each Example. 4 is a schematic perspective view for explaining a method for producing a hexaboride single crystal chip in the method for producing a field emission electron source according to Embodiment 1.
  • FIG. The scanning electron microscope image which shows an example of the sharp part of the hexaboride single crystal chip
  • BRIEF DESCRIPTION OF THE DRAWINGS The schematic perspective view for demonstrating the manufacturing method of the field emission electron source which concerns on each Example (The state of the heating holding structure before pressing a metal member on a hexaboride single-crystal chip
  • BRIEF DESCRIPTION OF THE DRAWINGS The schematic top view for demonstrating the manufacturing method of the field emission electron source which concerns on each Example (The state of the heating holding
  • FIG. 4C is a schematic cross-sectional view of an enlarged detailed structure for explaining the state of the press-contact portion of the heating holding structure shown in FIG.
  • FIG. 4C is a schematic cross-sectional view of an enlarged detailed structure for explaining a state at the time of heating flushing of the pressure contact portion of the heating holding structure shown in FIG. 3 is a stereomicroscope image showing a state of the field emission electron source according to Example 1 during heating flushing.
  • FIG. 3 is a graph showing the temperature of a hexaboride single crystal chip when the field emission electron source according to Example 1 is heated and flushed. 3 is a graph showing the relationship between the heating temperature and the degree of vacuum when the field emission electron source according to Example 1 is heated and flushed. The graph which shows the gas mass spectrometry result when the field emission electron source which concerns on Example 1 is heat-flushed.
  • FIG. 2 is an FIM (field ion microscope) image showing that a pointed portion of a hexaboride single crystal chip in the field emission electron source according to Example 1 is a (001) plane. The schematic sectional drawing of the evaluation apparatus used in order to evaluate the field emission electron source which concerns on each Example.
  • FIG. 1 is a graph showing the temperature of a hexaboride single crystal chip when the field emission electron source according to Example 1 is heated and flushed. 3 is a graph showing the relationship between the heating temperature and the degree of vacuum when the field emission electron source according to Example 1 is heated and flushed
  • FIG. 3 is an FEM (field emission microscope) image showing that a pointed portion of a hexaboride single crystal chip in the field emission electron source according to Example 1 is a (001) plane.
  • the graph which compared the half-value width of the emission electron in the field emission electron source which concerns on Example 1 using hexaboride, and the half-value width of the emission electron in the conventional field emission electron source which used W.
  • a perspective view showing an example of a crystal face of a hexaboride single crystal (the upper figure shows the case where the (001) face of the binary hexaboride single crystal is the metal terminal (001) face, and the lower figure shows the binary hexaboron (The case where the (001) plane of the fluoride single crystal is a boron-terminated (001) plane is shown).
  • 6 is a perspective view showing an example of a crystal plane of a hexaboride single crystal used in a field emission electron source according to Embodiment 2.
  • FIG. FIG. 12 is a perspective view showing another example of the crystal plane of a hexaboride single crystal used in the field emission electron source according to Example 2.
  • FIG. 6 is a schematic perspective view for explaining a method for producing a hexaboride single crystal chip in the method for producing a field emission electron source according to Embodiment 2.
  • FIG. 6 The scanning electron microscope image which shows an example of the sharp part of the hexaboride single crystal chip
  • FIG. 6 is an FEM (field emission microscope) image showing that a pointed portion of a hexaboride single crystal chip in the field emission electron source according to Example 2 is a (013) plane.
  • FEM field emission microscope
  • FIG. 6 is a schematic cross-sectional view of an electron beam apparatus (scanning electron microscope equipped with a boride field emission electron source) according to Example 3.
  • the metal member and hexaboride bonded to the metal filament are arranged and pressed so as not to structurally contact through the graphite independent of the metal member and hexaboride, It has been found that a bonded structure with mechanical and electrical contact may be used. Since hexaboride has a low work function on the electron emission surface, the emission current is large, and the hexaboride is not in direct contact with the metal (heater), so no compound is formed and repeated heating flushing by heating is easy. Therefore, even if it is contaminated by gas adsorption or the like, the regeneration is easy, and a hexaboride single crystal field emission electron source can be realized at low cost.
  • hexaboride such as rare earth or alkaline earth metal is used as an electron source material.
  • alkaline earth metals such as La, Ce, Pr, Nd, Sm, Eu, and Gd, which are lanthanoid elements, such as Ca, Sr, and Ba, can be used, and LaB 6 , CeB 6 , and PrB are used. 6 , NdB 6 , SmB 6 , EuB 6 , GaB 6 , CaB 6 , SrB 6 , BaB 6 and the like.
  • FIG. 1 shows the unit cell. It has a crystal structure in which a block of six boron atoms 102 is located at the body center of a simple cubic lattice of metal atoms 101.
  • LaB 6 , CeB 6 and the like are materials widely used as a thermionic source by heating to about 1500 ° C.
  • hexaboride single crystals are, for example, several mm in diameter by melt (liquid phase) crystal growth using the floating zone method or Al flux method, and the (001) plane direction of the crystal habit plane on which the crystals preferentially grow A large single crystal having a length of several tens of millimeters can be produced. When used in a thermal electron source, this single crystal is cut into chips of several 100 ⁇ m square and several mm in length, and the (001) plane is used as an electron emission surface.
  • the crystal structure of hexaboride is a simple cubic lattice as shown in FIG. 1, and the (001) plane, (100) plane, (010) plane, etc. are equivalent.
  • the c axis in FIG. 1 is defined as the crystal habit axis
  • the (001) plane which is the c plane is defined as the crystal habit plane for convenience.
  • hexaboride single crystal has been used as a thermionic source in this way, it has not been put to practical use as a field emission electron source until now.
  • the reason for this is that hexaboride is generally a hard and ceramic-like brittle material, so that it is difficult to sharpen the tip of the tip compared to W, and brightness (current density per unit solid angle: A / m 2 / sr). ) was not sufficient, and because of the binary material of metal element and boron, it was difficult to obtain an electron emission surface with a stable element composition with good reproducibility at room temperature, which is the operating temperature of the field emission electron source, For example, the current decrease due to the effect of gas adsorption was large when used at room temperature. In the case of a thermoelectron source used at a high temperature of about 1500 ° C., a fresh metal terminal (001) plane always grows due to atomic rearrangement and evaporation, and gas adsorption is also prevented.
  • Example 1 first, a hexaboride single crystal field electron emission source chip was produced by paying attention to this processing technique.
  • FIG. 2 is a schematic diagram of a method for producing a hexaboride single crystal field electron emission source of Example 1
  • FIG. 3 is a scanning micrograph of the tip portion of the actually produced hexaboride single crystal field electron emission source.
  • a single crystal having a diameter of several mm and a length of several centimeters such as LaB 6 and CeB 6 is grown by melt crystal growth using a floating zone method or the like.
  • the hexaboride single crystal is a simple cubic lattice with the (001) plane as the habit plane, and generally a rectangular parallelepiped hexaboride single crystal 103 with the (001) axis direction as the major axis is obtained.
  • the crystal axis is measured using an X-ray Laue method or the like, and cut along a predetermined crystal axis by cutting.
  • a thermionic source it is common to cut out in the (001) axial direction.
  • a chip 104 having a length of about 1 to 5 mm and a length of 100 to 500 ⁇ m ⁇ in the (001) axial direction was cut out. By this cutting, the bases of a plurality of chips 104 were cut out from one single crystal (only one is shown representatively in the drawing).
  • the tip of the chip 104 cut out in a nitric acid aqueous solution or the like is immersed, and electrolytic polishing is performed by applying an alternating electric field. This was performed as a pretreatment for reducing the tip size of the hexaboride single crystal tip in order to reduce the processing time of the subsequent processing using the focused ion beam (electropolishing section 105 in FIGS. 2 and 3).
  • the tip of the tip 104 is cut into a needle shape with a radius of curvature of 0.1 ⁇ m or less by a focused ion beam using Ga ions.
  • the length of the sharp tip 106 is arbitrary, but the length of the sharp tip 106 is shortened in order to make the electric field easy to concentrate, and in the surface cleaning process by the electric field evaporation process and the heat flushing process described later. It is desirable that the thickness be 10 ⁇ m or more.
  • the processed hexaboride single crystal chip 104 is bonded to a heater.
  • the carbon heater is bonded using an organic resin adhesive in which fillers such as carbon, boron and carbon boride are dissolved and heated and fired in a vacuum.
  • an organic resin adhesive in which fillers such as carbon, boron and carbon boride are dissolved and heated and fired in a vacuum.
  • these organic resin adhesives are brittle and cannot be bonded when completely carbonized, so that some organic components remain.
  • Field emission electron sources are generally sensitive to surface contamination, and it has been gradually found that the residual gas component of these adhesives affects current stability in hexaboride field emission electron sources.
  • the field emission electron source is used at room temperature and is heated to 1400 ° C. or higher only during heating flushing or annealing. For this reason, when firmly bonded with an adhesive, the heat of hexaboride (thermal expansion coefficient 6.2 ⁇ 10 ⁇ 6 / K) and glassy carbon (thermal expansion coefficient 2.6 ⁇ 10 ⁇ 6 / K) It has been found that since repeated thermal stress due to the difference in expansion coefficient is generated at the joint, cracking or peeling may occur at the joint.
  • Example 1 a field emission electron source having a new heating holding structure that holds the hexaboride single crystal chip 104 and enables heating flushing was developed.
  • FIG. 4B which is a top view of FIG. 4A
  • a chip 104 is attached to a tubular metal member 108 joined to a filament 107 made of metal via a graphite sheet 109 containing no organic component.
  • FIG. 4A the hexaboride single crystal chip 104, the graphite sheet 109, and the metal member 108 are pressed in the direction of the arrow, so that as shown in FIG. 4C, which is a top view of FIG.
  • the crystal chip 104, the graphite sheet 109, and the metal member 108 were mechanically and electrically in contact with each other.
  • a high melting point metal such as W, Mo, Ta, or Nb can be used for the filament 107 made of metal, but it has a proven track record in the conventional W field emission electron source, and has the highest melting point and the highest rigidity. It is optimal to use a tungsten (W) filament.
  • High melting point metals such as W, Mo, Ta, and Nb can be used for the metal member 108 to be joined to the filament, but tantalum (Ta) or niobium (Nb) refractory metal tubes that are soft and easy to press are most suitable.
  • the graphite sheet 109 is particularly preferably a pyrolytic graphite sheet obtained by completely pyrolyzing organic components. All of these members are proven members and are inexpensive, and it is possible to produce a heat holding structure with low cost and high reliability.
  • FIG. 5A and 5B are enlarged schematic cross-sectional views of the joint portion of the hexaboride single crystal chip 104, the graphite sheet 109, and the metal member 108.
  • FIG. The surface of the hexaboride single crystal chip 104 produced by cutting to 100 to 500 ⁇ m ⁇ and the metal tube (metal member) 108 of 200 to 600 ⁇ m ⁇ such as tantalum and niobium is unevenness of about several ⁇ m to several tens of ⁇ m.
  • the graphite sheet 109 having a thickness of about 25 ⁇ m inserted between them is press-welded at a number of point contact portions as shown in FIG. 5A.
  • LaB 6 of hexaboride is about 6.2 ⁇ 10 ⁇ 6 / K and tantalum is about 6.3 ⁇ 10 ⁇ 6 / K
  • pyrolytic graphite sheet has a plane direction. Is as small as 9.2 ⁇ 10 ⁇ 7 / K, and conversely the direction perpendicular to the surface is as large as 32 ⁇ 10 ⁇ 6 / K. Therefore, when the joint pressed in the heating flushing is heated to a high temperature, the hexaboride single crystal chip 104 and the metal member 108 are relatively face to the pyrolytic graphite sheet 109 as shown in FIG. 5B. Although it extends to (vertical arrow in FIG.
  • FIG. 6 is a stereoscopic microscope image showing a state when the field emission electron source according to Example 1 is heated and flushed.
  • Reference numeral 110 denotes a colorimetric thermometer.
  • FIG. 7 shows the relationship between the heating temperature of the hexaboride single crystal chip 104 measured with the colorimetric thermometer 110 and the input power to the filament 107. It can be seen that by controlling the input power to the filament 107, the hexaboride single crystal chip 104 of the field emission electron source can be heated with good control in proportion to the input power from room temperature to 1600 ° C.
  • FIG. 8 is a graph showing the relationship between the heating temperature and the degree of vacuum when the field emission electron source according to Example 1 is heated and flushed. For reference, data when the hexaboride single crystal chip 104 is held only by the Ta metal tube 8 are also shown.
  • the amount of change in the degree of vacuum is as follows. It can be considered that this is equivalent to the case where 104 is joined and heated only by the metal tube 108 within the range of experimental error, and it is understood that there is almost no degassing from the pyrolytic graphite sheet.
  • the residual gas component is mostly hydrogen detected at a mass number of 1 to 2, water detected at a mass number of 17 to 18, carbon monoxide detected at a mass number of 28, and carbon dioxide detected at a mass number of 44. It can be seen that organic gas components are not detected within the detection sensitivity.
  • the field emission electron source according to Example 1 can easily perform flashing by heating at 1400 ° C. or higher, and uses a graphite sheet 109 that does not contain an organic substance, so that the metal tube 108, the hexaboride single crystal chip 104, While preventing this reaction, the degree of vacuum reduction due to the degassing amount can be reduced. Furthermore, the hexaboride single crystal chip 104 and the graphite sheet 109, and the graphite sheet 109 and the metal member 108 are in mechanical contact with each other at a plurality of points, and are resistant to thermal expansion due to temperature changes. Since the contact portion only slides on the graphite sheet, it is possible to prevent the joint from being broken due to thermal stress caused by repeated heating between the room temperature and the flushing temperature.
  • FIG. 10 is an example of an FIM image from a hexaboride single crystal field emission electron source cleaned by heating flushing.
  • LaB 6 was used as the hexaboride.
  • a (001) plane pattern is confirmed at the center, and it can be seen that a (001) plane crystal terrace (facet) is formed at the tip of the hexaboride single crystal field emission electron source.
  • the hexaboride single crystal chip 104 produced in this way was attached to a measuring apparatus as shown in FIG. 11 and evaluated. Since it was once exposed to the atmosphere when attached to the evaluation apparatus, it was attached to the evaluation apparatus and evacuated, and then the surface of the sharpened portion 106 of the field emission electron source was cleaned by performing heat flushing at 1400 ° C. before evaluation. Electrons emitted from the hexaboride single crystal chip 104 in the field emission electron source are extracted by the anode 111 and enter the energy analyzer 114 through the probe hole 113 of the fluorescent plate 112. A field emission microscope (FEM) image was observed on the phosphor screen, and the electron emission (001) crystal plane terrace (facet) was centered on the pinhole position.
  • FEM field emission microscope
  • FIG. 12 shows an example of the FEM image.
  • the position of the electron beam is slightly shifted from the probe hole 113. Similar to the FIM image, the (001) plane pattern is confirmed, and the (001) plane crystal terrace (facet) is formed at the tip (sharp portion 106) of the sharpened hexaboride chip 104. I understand.
  • FIG. 13 shows the measurement results of the energy analysis of the emitted electrons.
  • Example 1 even when hexaboride is used, field emission that can reduce noise and change over time and can obtain a high-brightness electron beam excellent in monochromaticity capable of stable operation.
  • An electron source and a manufacturing method thereof can be provided.
  • Example 2 will be described with reference to FIGS. Note that the matters described in the first embodiment but not described in the second embodiment can be applied to the second embodiment as long as there are no special circumstances.
  • Example 1 the hexaboride single crystal chip 104 was cut in the (001) axis direction of the hexaboride crystal habit axis and sharpened with a focused ion beam, the crystal habit plane (001) The surface was used as the electron emission surface.
  • the (001) plane of a binary system hexaboride single crystal has a metal termination (001) plane (upper figure) and a boron termination (001) plane (lower figure). ) There are two cases.
  • the work function of the crystal surface is such that when the metal having a low electronegativity is a metal terminal (001) plane where the surface is boron and the boron having a high electronegativity is bulk, the polarity of the surface electric dipole is positive on the vacuum side. Therefore, the vacuum barrier is lowered and the work function is lowered.
  • the metal having a small electronegativity is a boron terminal (001) surface where boron having a large electronegativity is on the surface side on the bulk side, the polarity of the electric dipole on the surface is Since it is negative on the vacuum side, the work function increases to raise the vacuum barrier.
  • the metal termination (001) plane when used as the electron emission surface, the metal termination (001) plane must be selectively used. However, when creating a clean surface by field evaporation, the metal termination (001) surface and the boron termination (001) surface appear alternately, and the metal termination (001) surface is always 100% selected for cleaning. Not that easy. In the case of cleaning by heating flushing, the metal tends to move to the surface more easily than boron and becomes the metal terminal (001) surface, but unlike the thermoelectron source, it is not continuously maintained by heating continuously. Therefore, 100% of the metal termination (001) plane is not necessarily selected.
  • the tip of the hexaboride single crystal chip 104 of the field emission electron source due to field evaporation due to a strong electric field, Joule heating of the electron source, or Nottingham effect
  • the elemental composition of the terminal surface of the electron emission surface is switched by local heating of the (sharp portion 106), and in that case, the emission current may be changed in a step shape.
  • the inventors diligently studied the above problems.
  • the crystal plane terrace (facet) perpendicular to the crystal axis is mixed with hexaboride metal elements and boron elements, and a crystal plane having a constant ratio is used for a field emission electron source, and hexaboride
  • the above problem can be overcome by cutting the cutting direction of the single crystal chip 104 in a direction perpendicular to the surface.
  • the (01n) plane such as the (011) plane and the (013) plane, or the (01n) plane with an odd number, or an equivalent plane thereof, is used as the electron emission plane.
  • the ratio of the metal element to the boron element on the end face can always be kept constant.
  • the (013) plane is a low-density plane with a wide atomic interval and a work function is low, which is more preferable as a field emission electron source.
  • Example 2 a hexaboride field emission electron source having the (013) plane as an electron emission surface was prepared and evaluated. CeB 6 was used as the hexaboride single crystal 103.
  • a method for manufacturing the hexaboride single crystal chip 104 in the field emission electron source according to Embodiment 2 will be described with reference to FIG. First, the crystal axis of the hexaboride single crystal 103 is measured using an X-ray Laue method or the like. (013) An angle of 18.4 ° along the crystal axis, that is, the major axis of the hexaboride single crystal 103. Cut out by cutting. Subsequently, the tip of the hexaboride single crystal chip 104 is sharpened.
  • FIG. 17 shows a scanning electron micrograph of the sharpened portion 106 of the hexaboride single crystal chip 104 sharpened only by electrolytic polishing.
  • FIG. 18 shows an example of an FEM image of a field emission electron source cleaned by heating flushing. From this FEM image, a 4-fold symmetrical pattern of (013) plane was confirmed, and a crystal terrace (facet) of (013) plane was formed at the tip of the sharp part of CeB 6 hexaboride field emission electron source. I understand that.
  • FIG. 19 shows the half-value width of the emitted electrons. A narrow energy width (0.2 to 0.25 eV), which is about 2/3 on average, can be obtained with an extraction voltage as low as about 1/3 compared to a W field emission electron source.
  • FIG. 20 shows the results of measurement of the radiation angle current density performed using a Faraday cup that detects current instead of the energy analyzer 114 shown in FIG.
  • a radiation angle current density higher than that of the W field emission electron source was obtained with a low extraction voltage of about 1/3 as compared with the W field emission type electron source.
  • the same effect as the first embodiment can be obtained.
  • the crystal plane of the sharp portion 106 of the hexaboride single crystal chip 104 to the (01n) plane where n is an odd number, or an equivalent plane thereof, variation in the elemental composition of the termination surface of the electron emission surface is suppressed. can do.
  • Example 3 will be described with reference to FIG. Note that the matters described in the first or second embodiment but not described in the third embodiment can be applied to the third embodiment as long as there are no special circumstances.
  • Example 3 shows an example of a scanning electron microscope equipped with a field emission electron source using the hexaboride single crystal produced in Example 1 or 2. In the third embodiment, a scanning electron microscope will be described as an example, but the present invention is not limited to this.
  • FIG. 21 is a schematic diagram of a scanning electron microscope according to the third embodiment. Electrons emitted from the hexaboride single crystal chip 104 of the field emission electron source 100 are accelerated by the anode 111 to become an electron beam 130, focused by the condenser lens 115, objective lens 116, and astigmatism correction coil 117, and deflected scanning coil Scanned at 118 and irradiated onto the observation region on the sample 119, the generated secondary electrons are detected by the secondary electron detector 120.
  • Reference numeral 121 denotes an elemental analyzer. At this time, the electrons emitted from the hexaboride single crystal chip 104 have better monochromaticity than the W field emission electron source.
  • the chromatic aberration in the condenser lens 115, the objective lens 116, etc. is reduced, and the more focused electrons.
  • the beam 130 can be irradiated to the sample 119, and a high-resolution scanning electron microscope image can be obtained.
  • the imaging time is short, and the analysis time for elemental analysis can be shortened.
  • the performance of the electron microscope could be improved by mounting the field emission electron source described in Example 1 or 2.
  • Example 3 the effect of Example 1 or 2 can be acquired. Moreover, even when hexaboride is used, an electron beam apparatus capable of obtaining a high-intensity electron beam excellent in monochromaticity capable of stable operation with reduced noise and change over time is provided. it can.
  • the field emission electron sources of Examples 1 to 3 include a heater made of a metal filament, a metal member joined to the heater, a hexaboride chip that emits electrons from the tip when an electric field is generated, A metal sheet and a graphite sheet independent of the hexaboride tip, wherein the hexaboride tip is arranged to protrude from the inside of the metal member in a direction opposite to a direction in which the heater extends.
  • the graphite sheet is disposed so as not to structurally contact the metal member, and further, the hexaboride chip, the graphite sheet, and the metal member are in mechanical and electrical contact.
  • the field emission electron source includes a hexaboride single crystal chip having a sharp portion, and the hexaboride single crystal chip sandwiched so that the sharp portion is exposed.
  • a graphite sheet having a structure in contact with a plurality of point contact points, and a structure in which the hexaboride single crystal chip is sandwiched through the graphite sheet and in contact with the graphite sheet at a plurality of point contact points And a metal heater joined to the metal member.
  • the method of manufacturing the field emission electron source includes a step of preparing a hexaboride single crystal chip having a sharp portion, and a graphite sheet sandwiching the hexaboride single crystal chip so that the sharp portion is exposed.
  • a step of disposing a step of disposing a metal tube such that the graphite sheet disposed between the hexaboride single crystal tips is disposed inside, and the graphite sheet with the hexaboride single crystal tips. You may have the process of press-contacting the said metal pipe so that it may pinch
  • An electron beam apparatus includes any one of the above field emission electron sources, a sample stage on which a sample is placed, and an electron optical system that irradiates the sample on the sample stage with electrons emitted from the field emission electron source. You may have.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • SYMBOLS 100 Field emission electron source, 101 ... Metal atom, 102 ... Boron atom, 103 ... Hexaboride single crystal, 104 ... Hexaboride single crystal chip, 105 ... Electropolishing part, 106 ... Sharp part, 107 ... Filament, 108 DESCRIPTION OF SYMBOLS ... Metal member (metal pipe), 109 ... Graphite sheet, 110 ... Colorimetric thermometer, 111 ... Anode, 112 ... Fluorescent plate, 113 ... Probe hole, 114 ... Energy analyzer, 115 ... Condenser lens, 116 ... Objective lens, 117 ... astigmatism correction coil, 118 ... deflection scanning coil, 119 ... sample, 120 ... secondary electron detector, 121 ... elemental analyzer, 130 ... electron beam.
  • SYMBOLS 100 ... Field emission electron source, 101 ... Metal atom, 102 ... Boron atom, 103 ... Hexaboride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

安定して加熱フラッシングが可能な六硼化物単結晶電界放出電子源を提供するために、金属フィラメント(107)と、それに接合される金属管(108~と、電子を放出する六硼化物チップ(104)と、金属管および六硼化物チップとは独立したグラファイトシート(109)とを備え、六硼化物チップは、グラファイトシートにより金属管に構造的に接触しない様に配置され、且つ六硼化物チップとグラファイトシートと金属管が機械的、電気的に接触した構造を有する電界放出電子源とする。

Description

電界放出電子源、その製造方法および電子線装置
 本発明は、電界放出電子源、その製造方法および電子線装置に関する。
 電界放出電子源は、単色性がよく高輝度の電子ビームを放出できるため、高分解能の走査電子顕微鏡や透過電子顕微鏡などの電子源として使用されている。電界放出電子源としては、従来タングステン(W)が広く用いられているが、Wの仕事関数が大きいため電子のトンネル確率が小さく、放出される電流量が少ない。そこで、仕事関数の低い六硼化物のナノワイヤを用いた電界放出電子源が提案されている(例えば、特許文献1)。なお、特許文献2には、六硼化物を加熱して熱電子を放出する熱電子源が開示されている。
国際公開第2014/007121号 特開平01-7450号公報
 六硼化物は反応性が高く、またガスが吸着し易く汚染され易い。室温で用いる電界放出電子源の表面に残留ガスが吸着すると、残留ガスが電子放出表面での吸着サイトを移動し仕事関数を変動させるため、放出電流にノイズが発生する、さらに残留ガスの吸着量の増大に伴って放出電流が経時的に低下する等の課題が危惧される。そのため、六硼化物を加熱フラッシング(ないしアニーリング、以下、加熱フラッシングと記す)して清浄化する等の対策が、Wを用いた電界放出電子源と同様に必要となる。
 Wの電界放出電子源は、Wのヘアピン型フィラメントにスポット溶接され、そのWフィラメントを数秒程度の短時間、2000℃以上の高温で通電加熱するフラッシング処理、またはそれよりやや低温で数分程度加熱するアニーリング処理を施すことにより、電子源の表面のガスを脱離させ清浄化していた。しかしながら、この構造で六硼化物電界放出型電子源のフラッシング等を行うと、六硼化物とWフィラメントとのスポット溶接部で化合物が形成され腐食が生じる。また、熱膨張係数の異なる異種材料の接合部であることから加熱フラッシングによる熱応力による疲労で接合が壊れる等の課題が生じる。
 特許文献2には、金属からなるフィラメントとフィラメントに接合される金属部材と炭素部材と六硼化物からなる熱電子源が開示されている。本特許文献2では、フィラメントと金属部材が接着されているが、定常温度で使用する熱電子源と異なり、これを電界放出電子源に応用した場合、加熱フラッシングにおける高温と、動作温度の室温の温度サイクルによる繰り返し熱応力に対応することができない、という課題がある
 本発明の目的は、六硼化物を用いた場合であっても、ノイズや経時変化が低減され、安定動作が可能な単色性に優れた高輝度電子ビームを得ることのできる電界放出電子源、その製造方法および電子線装置を提供することにある。
 上記目的を達成するための一実施形態として、金属フィラメントからなるヒーターと、前記ヒーターに接合される金属部材と、電界が生じた時に先端から電子を放出する六硼化物チップと、前記金属部材および前記六硼化物チップとは独立したグラファイトシートと、を備え、
  前記六硼化物チップは、前記ヒーターが延在する方向とは反対方向に前記金属部材の内部から突き出る様に配置されると共に、前記グラファイトシートにより前記金属部材に構造的に接触しない様に配置され、更に、前記六硼化物チップとグラファイトシートと金属部材が機械的、電気的に接触した構造を有することを特徴とする電界放出電子源とする。
 本発明によれば、六硼化物を用いた場合であっても、ノイズや経時変化が低減され、安定動作が可能な単色性に優れた高輝度電子ビームを得ることのできる電界放出電子源、その製造方法および電子線装置を提供することができる。
各実施例に係る電界放出電子源で用いる六硼化物単結晶の結晶構造(単位格子)を示す斜視図。 実施例1に係る電界放出電子源の製造方法における六硼化物単結晶チップの作製方法を説明するための概略斜視図。 図2に示す六硼化物単結晶チップの先端部において、集束イオンビームを用いて尖鋭化した六硼化物単結晶チップの尖鋭部の一例を示す走査電子顕微鏡像。 各実施例に係る電界放出電子源の製造方法を説明するための概略斜視図(六硼化物単結晶チップにグラファイトシートを介して金属部材を圧接する前の加熱保持構造の状態)。 各実施例に係る電界放出電子源の製造方法を説明するための概略上面図(六硼化物単結晶チップにグラファイトシートを介して金属部材を圧接する前の加熱保持構造の状態)。 各実施例に係る電界放出電子源の製造方法を説明するための概略上面図(六硼化物単結晶チップにグラファイトシートを介して金属部材を圧接した後の加熱保持構造の状態)。 図4Cに示す加熱保持構造の圧接部の室温における状態を説明するための拡大詳細構造の模式断面図。 図4Cに示す加熱保持構造の圧接部の加熱フラッシング時の状態を説明するための拡大詳細構造の模式断面図。 実施例1に係る電界放出電子源の加熱フラッシング時の様子を示す実体顕微鏡像。 実施例1に係る電界放出電子源を加熱フラッシングしたときの六硼化物単結晶チップの温度を示すグラフ。 実施例1に係る電界放出電子源を加熱フラッシングしたときの加熱温度と真空度との関係を示すグラフ。 実施例1に係る電界放出電子源を加熱フラッシングしたときのガス質量分析結果を示すグラフ。 実施例1に係る電界放出電子源における六硼化物単結晶チップの尖鋭部が(001)面であることを示すFIM(フィールドイオン顕微鏡)像。 各実施例に係る電界放出電子源を評価するために用いた評価装置の概略断面図。 実施例1に係る電界放出電子源における六硼化物単結晶チップの尖鋭部が(001)面であることを示すFEM(フィールドエミッション顕微鏡)像。 六硼化物を用いた実施例1に係る電界放出電子源における放出電子のエネルギー半値幅と、Wを用いた従来の電界放出電子源における放出電子のエネルギー半値幅とを比較したグラフ。 六硼化物単結晶の結晶面の一例を示す斜視図(上図は2元系の六硼化物単結晶の(001)面が金属終端(001)面の場合、下図は2元系の六硼化物単結晶の(001)面が硼素終端(001)面の場合を示す)。 実施例2に係る電界放出電子源で用いる六硼化物単結晶の結晶面の一例を示す斜視図。 実施例2に係る電界放出電子源で用いる六硼化物単結晶の結晶面の他の例を示す斜視図。 実施例2に係る電界放出電子源の製造方法における六硼化物単結晶チップの作製方法を説明するための概略斜視図。 図16に示す六硼化物単結晶チップの先端部において、電解研磨を用いて尖鋭化した六硼化物単結晶チップの尖鋭部の一例を示す走査電子顕微鏡像。 実施例2に係る電界放出電子源における六硼化物単結晶チップの尖鋭部が(013)面であることを示すFEM(フィールドエミッション顕微鏡)像。 六硼化物を用いた実施例2に係る電界放出電子源における放出電子のエネルギー半値幅と、Wを用いた従来の電界放出電子源における放出電子のエネルギー半値幅とを比較したグラフ。 六硼化物を用いた実施例2に係る電界放出電子源における放射角電流密度と、Wを用いた従来の電界放出電子源における放射角電流密度とを比較したグラフ。 実施例3に係る電子線装置(硼化物電界放出電子源を搭載した走査電子顕微鏡)の概略断面図。
 発明者等が検討した結果、金属からなるフィラメントに接合される金属部材と六硼化物を、金属部材および六硼化物とは独立したグラファイトを介して構造的に接触しないように配置、圧接し、機械的、電気的に接触した接合構造とすれば良いことが分かった。六硼化物なので電子放出面の仕事関数が低いため放出電流が大きく、かつ六硼化物が直接金属(ヒーター)に接触しておらず化合物が生成されることはなく加熱による繰り返しの加熱フラッシングが容易なため、たとえガス吸着等で汚染されても再生が容易であり、六硼化物単結晶の電界放出電子源を安価に実現することができる。
 以下、本発明について、実施例により図面を参照して説明する。なお、以下の図面では、発明の構成を分かりやすくするために、各構成の縮尺を適宜変更している。
 実施例1に係る電界放出電子源及び製造方法について図1乃至図13を用いて説明する。
 実施例1において、電子源の材料として希土類やアルカリ土類金属などの六硼化物を用いる。具体的にはランタノイド系の元素であるLa、Ce、Pr、Nd、Sm、Eu、Gdなど、アルカリ土類金属のCa、Sr、Baなどを用いることができ、それぞれLaB、CeB、PrB、NdB、SmB、EuB、GaB、CaB、SrB、BaBなどの化学式で表される。図1にその単位格子を示す。金属原子101の単純立方格子の体心に6個の硼素原子102のブロックが位置した結晶構造をしている。これらの材料、特に希土類を用いた材料は一般に融点が高く、蒸気圧が低く、硬度が高く、イオン衝撃に強く、かつWより仕事関数が低いものが多い。そのためLaB、CeBなどは1500℃程度に加熱して熱電子源として広く利用されている材料である。
 これらの六硼化物単結晶は例えばフローティングゾーン法やAlフラックス法などを用いた融液(液相)結晶成長により直径が数mm、結晶が優先的に成長する晶癖面の(001)面方向に成長した長さ数10mmの大形の単結晶が作成できる。熱電子源で利用する場合は、この単結晶を切削により数100μm角、長さ数mmのチップに切り出して、(001)面を電子放出面として利用している。なお、六硼化物の結晶構造は図1のように単純立方格子であり、(001)面と(100)面や(010)面などは等価である。実施例1では便宜上図1のc軸を晶癖軸、c面である(001)面を晶癖面として定義して以下の説明を行なう。
 六硼化物単結晶はこのように熱電子源としては利用されてきたが、電界放出電子源としてはこれまで研究レベルに留まり実用に供されてこなかった。その理由は、六硼化物が一般に高硬度でセラミックス状の脆い材料であることから、チップ先端の先鋭化がWに比べると難しく、輝度(単位立体角あたりの電流密度:A/m/sr)が十分でなかったこと、金属元素と硼素の2元系の材料のため電界放出電子源の動作温度である室温では元素組成が安定した電子放出面を再現性よく得ることが難しかったこと、室温で用いた場合にガス吸着などの影響による電流減少が大きかったことなどが挙げられる。1500℃程度の高温で用いる熱電子源の場合には、原子の再配列、蒸発により常にフレッシュな金属終端(001)面が成長し、ガス吸着も防止される。
 しかしながら、チップ先端の尖鋭化に関しては近年、集束イオンビーム加工などの技術の進歩によりこのようなセラミック状の材料でも曲率半径の小さい針状形状への加工が可能になってきた。例えば、電界イオン顕微鏡と飛行時間分析型のイオン検出器を組み合わせたアトムプローブ分析では、様々な複合材料を、電界イオン顕微鏡で電界蒸発が可能な曲率0.1μm以下の針状に加工する技術が、集束イオンビーム法を用いて実現できるようになってきている。
 実施例1では、まずこの加工技術に着目し六硼化物単結晶の電界電子放出源のチップを作成した。図2に実施例1の六硼化物単結晶の電界電子放出源の作成法の概要図、図3に実際に作製した六硼化物単結晶の電界電子放出源の先端部分の走査顕微鏡写真を示す。始めにLaBやCeBなどの直径数mm、長さ数cmの単結晶を、フローティングゾーン法などを用いた融液結晶成長によって育成する。六硼化物単結晶は(001)面を晶癖面とした単純立方格子であり、一般に(001)軸方向を長軸とした直方体状の六硼化物単結晶103が得られる。
 続いて、X線ラウエ法などを用いて結晶軸を測定し、所定の結晶軸に沿って切削で切り出す。熱電子源では(001)軸方向に切り出すのが一般的である。実施例1でも、まずはそれに従い(001)軸方向に100~500μm□で長さ1~5mm程度のチップ104を切り出した。この切削により1個の単結晶から複数のチップ104の基体を切り出した(図面では代表して1個のみ記載している)。
 続いて硝酸水溶液などに切り出したチップ104の先端を浸漬し、交流電界をかけることにより電解研磨を行なう。これは、この後の集束イオンビームを用いた加工の加工時間を削減するため、六硼化物単結晶チップの先端サイズを絞り込む前処理として行った(図2、図3の電解研磨部105)。
 続いてGaイオンを用いた集束イオンビームによりチップ104の先端を曲率半径0.1μm以下の針状に削り込む。先端の尖鋭部106の長さは任意であるが、電界が集中しやすくするため、またこの後に記述する電界蒸発処理や加熱フラッシング処理による表面の清浄化工程で尖鋭部106の長さが短くなってもよいように10μm以上にするのが望ましい。
 続いて、加工した六硼化物単結晶チップ104をヒーターに接合する。なお、ガラス状カーボンのヒーターに接着剤を用いて接合した場合、カーボンヒーターの接合には炭素や硼素、硼化炭素などのフィラーを溶かした有機樹脂の接着剤を用い、真空中で加熱焼成して有機成分を除去することにより、電子源チップとカーボンヒーターの間に機械的に強固で、電気的接触、熱接触に優れた接合部を形成できる。しかしながら、これらの有機樹脂系の接着材は完全に炭化させると脆くなって接合できないため、若干の有機成分などが残留してしまう。電界放出電子源は、一般に表面汚染に敏感であり、六硼化物の電界放出電子源でもこれらの接着剤の残留ガス成分が電流安定性に影響することが次第に分かってきた。また、電界放出電子源は使用温度が室温であり、加熱フラッシングやアニーリングのときのみ1400℃以上に加熱を行う。そのため、接着材で強固に接着接合しておくと六硼化物(熱膨張係数6.2×10-6/K)とガラス状カーボン(熱膨張係数2.6×10-6/K)の熱膨張係数差に起因した繰り返しの熱応力が接合部に発生するため、接合部に割れや剥離などが発生する可能性があることが分かってきた。
 そこで実施例1では図4Aに示すように、六硼化物単結晶チップ104を保持し、加熱フラッシングを可能とする新たな加熱保持構造を有する電界放出電子源を開発した。具体的には、図4Aの上面図である図4Bに示すように、金属からなるフィラメント107に接合される管形状の金属部材108に、有機成分を含まないグラファイトシート109を介してチップ104を挟み、図4Aに示すように六硼化物単結晶チップ104とグラファイトシート109と金属部材108を矢印方向に圧接することにより、図4Aの上面図である図4Cに示すように、六硼化物単結晶チップ104とグラファイトシート109と金属部材108が機械的、電気的に接触した構造とした。
 ここで、金属からなるフィラメント107は、WやMo、Ta、Nbなどの高融点金属が使用可能であるが、従来のW電界放出電子源で実績が高く、最も高融点で剛性も高いヘアピン状のタングステン(W)のフィラメントを用いるのが最適である。フィラメントに接合される金属部材108もWやMo、Ta、Nbなどの高融点金属が使用可能であるが、軟らかくて圧接しやすいタンタル(Ta)またはニオブ(Nb)の高融点金属管が最も適している。グラファイトシート109は完全に有機成分を熱分解したパイロリティックグラファイトシートであると特に好ましい。これらの部材はいずれも実績のある部材でかつ安価であり、低コストで信頼性の高い加熱保持構造を作成することが可能である。
 図5A、図5Bに六硼化物単結晶チップ104とグラファイトシート109と金属部材108との接合部の拡大模式断面図を示す。100~500μm□に切削して作製した六硼化物単結晶チップ104と、200~600μmφのタンタルやニオブなどの金属管(金属部材)108の表面はミクロに見ると数μm~数10μm程度の凹凸があり、その間で挿入される厚さが25μm程度のグラファイトシート109とは、図5Aに示すように多数の点接触部で圧接接合されている。熱膨張係数は、例えば六硼化物のLaBが6.2×10-6/K、タンタルが6.3×10-6/Kと同程度であるのに対し、パイロリティックグラファイトシートは面方向が9.2×10-7/Kと小さく、逆に面に垂直な方向は32×10-6/Kと大きい。したがって、加熱フラッシングの際に圧接された接合部が高温に加熱されると、図5Bに示すように六硼化物単結晶チップ104と金属部材108はパイロリティックグラファイトシート109に対し相対的に面方向(図5Bの垂直方向の矢印)に伸びるが、点接触部がパイロリティックグラファイトシート上をスライドするだけなので、熱応力により接合部が機械的に破壊されることがない。またパイロリティックグラファイトシートは厚み方向(図5Bの水平方向の矢印)に大きく膨張するため、六硼化物単結晶チップ104と金属管108との間の圧接力が加熱でよりさらに強まり、機械的、電気的な接触を良好に維持することが可能である。
 図6は、実施例1に係る電界放出電子源を加熱フラッシングした時の様子を示す実体顕微鏡像である。符号110は比色温度計を示す。図7に比色温度計110で測定した六硼化物単結晶チップ104の加熱温度とフィラメント107への投入電力との関係を示す。
フィラメント107への投入電力をコントロールすることで室温から1600℃まで投入電力に比例して制御よく電界放出電子源の六硼化物単結晶チップ104を加熱できることが分かる。
 図8は、実施例1に係る電界放出電子源を加熱フラッシングしたときの加熱温度と真空度との関係を示すグラフである。なお、参考のため、六硼化物単結晶チップ104をTaの金属管8のみで保持した場合のデータも示す。実施例1に係る電界放出電子源の場合、即ち六硼化物単結晶チップ104をパイロリティックグラファイトシート109を介して金属管108で圧接した場合の真空度の変化量は、六硼化物単結晶チップ104を金属管108のみで接合し加熱した場合と実験誤差の範囲内で同等と考えられ、パイロリティックグラファイトシートからの脱ガスは殆どないことが分かる。図9にTaの金属管108とパイロリティックグラファイトシート109を用いた場合の脱ガス成分を四重極質量分析器で測定した結果を示す。残留ガス成分としては質量数1~2で検出される水素、質量数17~18で検出される水、質量数28で検出される一酸化炭素、質量数44で検出される二酸化炭素が殆どであり、有機系のガス成分は検出感度内で検出されていないことが分かる。
 実施例1に係る電界放出電子源は、1400℃以上の加熱フラッシングを容易に行うことができ、かつ有機物を含まないグラファイトシート109を用いることで、金属管108と六硼化物単結晶チップ104との反応を防止しつつ、脱ガス量による真空度低下を少なくできる。さらに、六硼化物単結晶チップ104とグラファイトシート109、及びグラファイトシート109と金属部材108とは互いに複数の点で機械的に接触した構成を有しており、温度変化による熱膨張に対して点接触部がグラファイトシート上をスライドするだけなので、室温とフラッシング温度間の繰り返し加熱に起因する熱応力による接合部の破壊を防止することができる。
 図10は加熱フラッシングにより清浄化した六硼化物単結晶電界放出電子源からのFIM像の一例である。六硼化物としてはLaBを用いた。中央に(001)面のパターンが確認されており、六硼化物単結晶電界放出電子源の先端に(001)面の結晶テラス(ファセット)が形成されていることが分かる。
 このように作製した六硼化物単結晶チップ104を図11に示すような計測装置に取り付け評価した。評価装置に取り付ける際は一旦大気にさらされるため、評価装置に取り付け真空排気した後、評価前に1400℃での加熱フラッシングを行なって電界放出電子源の先鋭部106の表面を清浄化した。電界放出電子源における六硼化物単結晶チップ104から放出した電子は陽極111によって引き出され、蛍光板112のプローブホール113を経てエネルギー分析器114に入射する。蛍光面では電界放出顕微鏡(Field Emission Microscope:FEM)像を観察し、電子放出している(001)結晶面テラス(ファセット)中心にピンホールの位置に合わせた。図12にFEM像の一例を示す。FEM像を観察し易くするため、電子ビームの位置をプローブホール113から若干ずらしている。FIM像と同様に(001)面のパターンが確認されており、尖鋭化した六硼化物チップ104の先端(先鋭部106)に(001)面の結晶テラス(ファセット)が形成されていることが分かる。図13に放出電子のエネルギー分析の測定結果を示す。実施例1のLaBを用いた六硼化物単結晶電界放出電子源では、W電界放出型電子源に比較し1/3程度の低い引き出し電圧で、平均して約2/3の狭いエネルギー幅(0.2~0.25eV)を持つ単色性のよい電子線を得ることができた。
 以上、実施例1によれば、六硼化物を用いた場合であっても、ノイズや経時変化が低減され、安定動作が可能な単色性に優れた高輝度電子ビームを得ることのできる電界放出電子源、及びその製造方法を提供することができる。
 実施例2について、図14から図20を用いて説明する。なお、実施例1に記載され実施例2に未記載の事項は特段の事情が無い限り実施例2にも適用することができる。
 実施例1では、六硼化物の晶癖軸の(001)軸方向に六硼化物単結晶チップ104を切り出し、集束イオンビームで尖鋭化した六硼化物単結晶チップでは晶癖面の(001)面を電子放出面として利用した。図14に示すように2元系の六硼化物単結晶の(001)面は金属終端(001)面が形成される場合(上図)と硼素終端(001)面が形成される場合(下図)の2通りのケースがある。結晶表面の仕事関数は電気陰性度の小さい金属が表面側で電気陰性度の大きい硼素がバルク側になる金属終端(001)面の場合、表面の電気双極子の極性が真空側で正となるため真空障壁を下げ仕事関数を低下させるが、電気陰性度の小さい金属がバルク側で電気陰性度の大きい硼素が表面側になる硼素終端(001)面の場合、表面の電気双極子の極性が真空側で負となるため真空障壁を上げるため仕事関数が上昇する。そのため(001)面を電子放出面として利用する場合は、金属終端(001)面を選択的に利用しなければならない。しかしながら、電界蒸発で清浄表面を作成する場合、金属終端(001)面と硼素終端(001)面が交互に現れ、金属終端(001)面を常に100%選択して清浄化を実施することはそれほど容易ではない。
また加熱フラッシングによる清浄化の場合、金属の方が硼素より表面に原子移動しやすく金属終端(001)面となりやすいが、熱電子源と異なり連続的に加熱し平衡状態が保たれるわけではないので、必ずしも金属終端(001)面が100%選択されるわけでない。さらに常温での電界放出電子源の動作中でも大電流などを取り出す動作条件によっては強電界による電界蒸発や、電子源のジュール加熱、ノッティンガム効果による電界放出電子源の六硼化物単結晶チップ104の先端(先鋭部106)の局所加熱により電子放出面の終端面の元素組成が入れ替わる可能性があり、その場合、放出電流がステップ状に変化してしまう可能性がある。
 そこで発明者らは上記課題について鋭意検討した。その結果、結晶軸に垂直な結晶面テラス(ファセット)を六硼化物の金属元素と硼素元素が混在し、その比率が一定である結晶面を電界放出電子源に利用すること、および六硼化物単結晶チップ104の切削方向をその面に垂直な方向に切り出すことで上記課題を克服することができることを見出した。
例えば、図15A、図15Bに示すように、(011)面や(013)面などnを奇数とした(01n)面、またはその等価面を電子放出面にすることで、電界放出電子源の六硼化物単結晶チップの製造時や電界放出電子源の動作時に電界蒸発や、加熱蒸発などが起きても、終端面の金属元素と硼素元素の比率が常に一定に保つことができる。特に(013)面は原子間隔が広い低密度面であり、仕事関数が低いため電界放出電子源としてさらに好ましい。
 そこで、実施例2では(013)面を電子放出面とする六硼化物電界放出電子源を作成し、評価した。六硼化物単結晶103としてはCeBを用いた。図16を用いて実施例2に係る電界放出電子源における六硼化物単結晶チップ104の製造方法を説明する。まずX線ラウエ法などを用いて、六硼化物単結晶103の結晶軸を測定し、(013)結晶軸に沿って、すなわち六硼化物単結晶103の長軸に対し18.4°の角度で切削で切り出す。つづいて六硼化物単結晶チップ104の先端を尖鋭化する。最近は電解研磨液の工夫により、実施例1で用いた集束イオンビームを用いずとも六硼化物単結晶チップ104の先端を尖鋭化することができるようになってきており、実施例2では電解研磨のみで尖鋭化を行なった。図17に電解研磨のみで尖鋭化した六硼化物単結晶チップ104の尖鋭部106の走査電子顕微鏡写真を示す。
 このように作製した六硼化物単結晶チップ104を実施例1と同様の方法で電界放出電子源に組み立て、図11に示したような計測装置に取り付け評価した。図18に加熱フラッシングで清浄化した電界放出電子源のFEM像の一例を示す。本FEM像から、(013)面の4回対称のパターンが確認されており、CeBの六硼化物電界放出電子源の尖鋭部先端に(013)面の結晶テラス(ファセット)が形成されていることが分かる。図19は放出電子のエネルギー半値幅を示す。Wの電界放出型電子源に比較し1/3程度の低い引き出し電圧で平均して約2/3の狭いエネルギー幅(0.2~0.25eV)を得ることができた。
 図20は図11に示すエネルギー分析器114の代わりに、電流を検出するファラデーカップを用いて行なった放射角電流密度の測定結果である。実施例2に係る電界放出電子源では、W電界放出型電子源に比較し1/3程度の低い引き出し電圧でW電界放出電子源より高い放射角電流密度が得られた。
 以上実施例2によれば、実施例1と同様の効果を得ることができる。また、六硼化物単結晶チップ104の尖鋭部106の結晶面を、nを奇数とした(01n)面、またはその等価面とすることにより、電子放出面の終端面の元素組成の変動を抑制することができる。
 実施例3について図21を用いて説明する。なお、実施例1又は2に記載され実施例3に未記載の事項は特段の事情が無い限り実施例3にも適用することができる。実施例3では、実施例1又は2で作製した六硼化物単結晶を用いた電界放出電子源を搭載した走査電子顕微鏡の例を示す。なお、実施例3では走査電子顕微鏡を例に説明するがこれに限らない。
 図21は、実施例3に係る走査電子顕微鏡の概略図である。電界放射電子源100の六硼化物単結晶チップ104から放出された電子は陽極111により加速されて電子ビーム130となり、コンデンサレンズ115、対物レンズ116、非点補正コイル117で集束され、偏向走査コイル118で走査されて試料119上の観察領域に照射され、発生した二次電子が二次電子検出器120で検出される。符号121は元素分析器である。このとき、六硼化物単結晶チップ104から放出された電子は、W電界放出電子源に比べ単色性がよいため、コンデンサレンズ115、対物レンズ116等での色収差が低減され、より絞られた電子ビーム130を試料119に照射することができ、高分解の走査電子顕微鏡画像を得ることができる。また高輝度であるため、撮像時間が短く、元素分析などの分析時間も短縮することが可能である。このように、実施例1又は2に記載の電界放出電子源を搭載することにより、電子顕微鏡の性能を向上させることができた。
 以上、実施例3によれば、実施例1又は2の効果を得ることができる。また、六硼化物を用いた場合であっても、ノイズや経時変化が低減され、安定動作が可能な単色性に優れた高輝度電子ビームを得ることが可能な電子線装置を提供することができる。
 以上より、実施例1乃至3の電界放出電子源は、金属フィラメントからなるヒーターと、前記ヒーターに接合される金属部材と、電界が生じた時に先端から電子を放出する六硼化物チップと、前記金属部材および前記六硼化物チップとは独立したグラファイトシートと、を備え、前記六硼化物チップは、前記ヒーターが延在する方向とは反対方向に前記金属部材の内部から突き出る様に配置されると共に、前記グラファイトシートにより前記金属部材に構造的に接触しない様に配置され、更に、前記六硼化物チップとグラファイトシートと金属部材が機械的、電気的に接触した構造を有する。
 また、該電界放出電子源は、先鋭部を備えた六硼化物単結晶チップと、前記先鋭部が露出するように前記六硼化物単結晶チップを挟持し、前記六硼化物単結晶チップとは複数の点接触点で接触している構造を有するグラファイトシートと、前記グラファイトシートを介して前記六硼化物単結晶チップを挟持し、前記グラファイトシートとは複数の点接触点で接触している構造を有する金属部材と、前記金属部材に接合された金属製ヒーターと、を備えてもよい。
 また、該電界放出電子源の製造方法は、先鋭部を備えた六硼化物単結晶チップを準備する工程と、前記先鋭部が露出するように前記六硼化物単結晶チップを挟んでグラファイトシートを配置する工程と、前記六硼化物単結晶チップを挟んで配置された前記グラファイトシートが内部に配置されるように金属管を配置する工程と、前記グラファイトシートを前記六硼化物単結晶チップとの間に挟み込むように前記金属管を圧接する工程と、前記金属管に金属製ヒーターを接合する工程と、を有してもよい。
 また、電子線装置は、上記何れかの電界放出電子源と、試料を載置する試料台と、前記電界放出電子源から放出された電子を前記試料台の上の試料に照射する電子光学系と、を有してもよい。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
100…電界放出電子源、101…金属原子、102…硼素原子、103…六硼化物単結晶、104…六硼化物単結晶チップ、105…電解研磨部、106…尖鋭部、107…フィラメント、108…金属部材(金属管)、109…グラファイトシート、110…比色温度計、111…陽極、112…蛍光板、113…プローブホール、114…エネルギー分析器、115…コンデンサレンズ、116…対物レンズ、117…非点補正コイル、118…偏向走査コイル、119…試料、120…二次電子検出器、121…元素分析器、130…電子ビーム。

Claims (11)

  1.  金属フィラメントからなるヒーターと、前記ヒーターに接合される金属部材と、電界が生じた時に先端から電子を放出する六硼化物チップと、前記金属部材および前記六硼化物チップとは独立したグラファイトシートと、を備え、
      前記六硼化物チップは、前記ヒーターが延在する方向とは反対方向に前記金属部材の内部から突き出る様に配置されると共に、前記グラファイトシートにより前記金属部材に構造的に接触しない様に配置され、更に、前記六硼化物チップとグラファイトシートと金属部材が機械的、電気的に接触した構造を有することを特徴とする電界放出電子源。
  2.  請求項1記載の電界放出電子源において、
      前記金属フィラメントからなるヒーターは、タングステン製、タンタル製、ニオブ製、又はモリブデン製であることを特徴とする電界放出電子源。
  3.  請求項1記載の電界放出電子源において、
      前記金属部材は、タンタル、ニオブ、タングステンまたはモリブデンの金属管であることを特徴とする電界放出電子源。
  4.  請求項1記載の電界放出電子源において、
      前記六硼化物チップは、先端に先鋭部を有する単結晶チップであることを特徴とする電界放出電子源。
  5.  請求項1記載の電界放出電子源において、
      前記グラファイトシートは、パイロリティックグラファイトシートであることを特徴とする電界放出電子源。
  6.  先鋭部を備えた六硼化物単結晶チップと、
      前記先鋭部が露出するように前記六硼化物単結晶チップを挟持し、前記六硼化物単結晶チップとは複数の点接触点で接触している構造を有するグラファイトシートと、
      前記グラファイトシートを介して前記六硼化物単結晶チップを挟持し、前記グラファイトシートとは複数の点接触点で接触している構造を有する金属部材と、
      前記金属部材に接合された金属製ヒーターと、
    を備えることを特徴とする電界放出電子源。
  7.  請求項6記載の電界放出電子源において、
      前記先鋭部は、nを奇数とした(01n)面であることを特徴とする電界放出電子源。
  8.  先鋭部を備えた六硼化物単結晶チップを準備する工程と、
      前記先鋭部が露出するように前記六硼化物単結晶チップを挟んでグラファイトシートを配置する工程と、
      前記六硼化物単結晶チップを挟んで配置された前記グラファイトシートが内部に配置されるように金属管を配置する工程と、
      前記グラファイトシートを前記六硼化物単結晶チップとの間に挟み込むように前記金属管を圧接する工程と、
      前記金属管に金属製ヒーターを接合する工程と、
    を有することを特徴とする電界放出電子源の製造方法。
  9.  請求項8記載の電界放出電子源の製造方法において、
      前記先鋭部は、集束イオンビーム又は電解研磨を用いて形成することを特徴とする電界放出電子源の製造方法。
  10.  請求項1記載の電界放出電子源と、
      試料を載置する試料台と、
      前記電界放出電子源から放出された電子を前記試料台の上の試料に照射する電子光学系と、を有することを特徴とする電子線装置。
  11.  請求項6記載の電界放出電子源と、
      試料を載置する試料台と、
      前記電界放出電子源から放出された電子を前記試料台の上の試料に照射する電子光学系と、を有することを特徴とする電子線装置。
PCT/JP2016/084726 2016-03-01 2016-11-24 電界放出電子源、その製造方法および電子線装置 WO2017149862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/081,372 US10586674B2 (en) 2016-03-01 2016-11-24 Field emission electron source, method for manufacturing same, and electron beam device
CN201680082576.4A CN108701571B (zh) 2016-03-01 2016-11-24 场致发射电子源、其制造方法和电子束装置
DE112016006345.8T DE112016006345T5 (de) 2016-03-01 2016-11-24 Feldemissionselektronenquelle, Verfahren zu ihrer Herstellung und Elektronenstrahlvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016038898A JP6529920B2 (ja) 2016-03-01 2016-03-01 電界放出電子源、その製造方法および電子線装置
JP2016-038898 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017149862A1 true WO2017149862A1 (ja) 2017-09-08

Family

ID=59742809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084726 WO2017149862A1 (ja) 2016-03-01 2016-11-24 電界放出電子源、その製造方法および電子線装置

Country Status (5)

Country Link
US (1) US10586674B2 (ja)
JP (1) JP6529920B2 (ja)
CN (1) CN108701571B (ja)
DE (1) DE112016006345T5 (ja)
WO (1) WO2017149862A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002305A1 (ja) * 2019-07-02 2021-01-07 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6636472B2 (ja) 2017-02-28 2020-01-29 株式会社日立ハイテクノロジーズ 電子源およびそれを用いた電子線装置
WO2020044389A1 (ja) * 2018-08-27 2020-03-05 株式会社日立ハイテクノロジーズ 電子源とその製造方法およびそれを用いた電子線装置
US11380511B2 (en) * 2020-03-24 2022-07-05 Fei Company Charged particle beam source
US11887805B2 (en) * 2021-09-30 2024-01-30 Fei Company Filament-less electron source
CN115058775B (zh) * 2022-06-07 2024-03-19 合肥工业大学 一种大尺寸、高性能三元稀土复合单晶材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104043A (en) * 1979-02-06 1980-08-09 Natl Inst For Res In Inorg Mater Thermion radiating cathode
JPS6183245U (ja) * 1984-11-08 1986-06-02
JP2009026710A (ja) * 2007-07-24 2009-02-05 Hitachi High-Technologies Corp 電界放出型電子銃およびそれを用いた電子線応用装置
JP2011014529A (ja) * 2009-04-20 2011-01-20 National Institute For Materials Science 希土類六ホウ化物冷陰極電界放出型電子源
JP2011181339A (ja) * 2010-03-01 2011-09-15 Hiroshi Yasuda 電子銃およびマルチコラム電子ビーム装置。
JP2015518245A (ja) * 2012-04-13 2015-06-25 ジェンシン イェン 低仕事関数及び高い化学的安定性を備えた電極材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647450A (en) * 1987-06-30 1989-01-11 Ube Industries Pointed thermionic emission cathode
US6448700B1 (en) 1999-10-25 2002-09-10 Southeastern Universities Res. Assn. Solid diamond field emitter
JP2005276498A (ja) * 2004-03-23 2005-10-06 Fuji Xerox Co Ltd 電子線発生素子とその製造方法
CN101051595B (zh) 2006-04-05 2010-11-10 清华大学 碳纳米管场发射电子源
JP4951477B2 (ja) * 2006-12-04 2012-06-13 電気化学工業株式会社 電子放出源
JP2009245787A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP5063715B2 (ja) * 2010-02-04 2012-10-31 株式会社日立ハイテクノロジーズ 電子源,電子銃、それを用いた電子顕微鏡装置及び電子線描画装置
US8581481B1 (en) * 2011-02-25 2013-11-12 Applied Physics Technologies, Inc. Pre-aligned thermionic emission assembly
JP5794598B2 (ja) 2012-07-03 2015-10-14 国立研究開発法人物質・材料研究機構 六ホウ化金属冷電界エミッター、その製造方法及び電子銃

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104043A (en) * 1979-02-06 1980-08-09 Natl Inst For Res In Inorg Mater Thermion radiating cathode
JPS6183245U (ja) * 1984-11-08 1986-06-02
JP2009026710A (ja) * 2007-07-24 2009-02-05 Hitachi High-Technologies Corp 電界放出型電子銃およびそれを用いた電子線応用装置
JP2011014529A (ja) * 2009-04-20 2011-01-20 National Institute For Materials Science 希土類六ホウ化物冷陰極電界放出型電子源
JP2011181339A (ja) * 2010-03-01 2011-09-15 Hiroshi Yasuda 電子銃およびマルチコラム電子ビーム装置。
JP2015518245A (ja) * 2012-04-13 2015-06-25 ジェンシン イェン 低仕事関数及び高い化学的安定性を備えた電極材料

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002305A1 (ja) * 2019-07-02 2021-01-07 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JPWO2021002305A1 (ja) * 2019-07-02 2021-01-07
JP7168269B2 (ja) 2019-07-02 2022-11-09 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
US11984294B2 (en) 2019-07-02 2024-05-14 National Institute For Materials Science Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same

Also Published As

Publication number Publication date
DE112016006345T5 (de) 2018-10-18
US10586674B2 (en) 2020-03-10
US20190066966A1 (en) 2019-02-28
CN108701571B (zh) 2020-04-10
JP6529920B2 (ja) 2019-06-12
JP2017157368A (ja) 2017-09-07
CN108701571A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2017149862A1 (ja) 電界放出電子源、その製造方法および電子線装置
US10707046B2 (en) Electron source and electron beam device using the same
JP3832402B2 (ja) カーボンナノチューブを有する電子源とそれを用いた電子顕微鏡および電子線描画装置
US9812279B2 (en) Electrode material with low work function and high chemical stability
JP6452334B2 (ja) ターゲット、該ターゲットを備えたx線発生管、x線発生装置、x線撮影システム
KR101982289B1 (ko) 탄소나노튜브 전자방출원, 그 제조 방법 및 이를 이용하는 엑스선 소스
JP3982558B2 (ja) カーボンナノチューブを有する電子源とそれを用いた電子顕微鏡および電子線描画装置
US11915920B2 (en) Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same
WO2016167048A1 (ja) 電界放出型電子源及びその製造方法
JP7403678B2 (ja) 電子源とその製造方法およびそれを用いた電子線装置
JP4895938B2 (ja) 電界放出型電子銃およびそれを用いた電子線応用装置
JP2009146705A (ja) 電子放出素子、電子源、電子線装置、及び電子放出素子の製造方法
JP7295974B2 (ja) 電子源、電子線装置および電子源の製造方法
JP7022837B2 (ja) 電子源とその製造方法およびそれを用いた電子線装置
JP2005032500A (ja) 冷陰極とそれを用いた電子源及び電子線装置
WO2023248271A1 (ja) 電界放出電子源とその製造方法およびそれを用いた電子線装置
JP2010067452A (ja) 電子放射陰極、電子顕微鏡および電子ビーム露光機
JP2006031976A (ja) 電界放射電子源およびこれを用いた電子銃
JP2010272504A (ja) 炭素系材料からなる電子源及びその製造方法
Wrobel Synthesis, Field Emission and Associated Degradation Mechanisms of Tapered ZnO Nanorods
JP2007073251A (ja) 電界放射電子源およびその製造方法
JP2010238367A (ja) 高効率ダイヤモンド電子銃

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112016006345

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892697

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892697

Country of ref document: EP

Kind code of ref document: A1