WO2016167048A1 - 電界放出型電子源及びその製造方法 - Google Patents

電界放出型電子源及びその製造方法 Download PDF

Info

Publication number
WO2016167048A1
WO2016167048A1 PCT/JP2016/057109 JP2016057109W WO2016167048A1 WO 2016167048 A1 WO2016167048 A1 WO 2016167048A1 JP 2016057109 W JP2016057109 W JP 2016057109W WO 2016167048 A1 WO2016167048 A1 WO 2016167048A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron source
field emission
crystal
emission electron
tip
Prior art date
Application number
PCT/JP2016/057109
Other languages
English (en)
French (fr)
Inventor
敏明 楠
丈嗣 中山
浩之 山本
富博 橋詰
健一 山本
佑輔 酒井
久弥 村越
洋一 小瀬
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2016167048A1 publication Critical patent/WO2016167048A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Definitions

  • the present invention relates to a field emission electron source used for an electron source or the like of an electron microscope, and more particularly to a field emission electron source using a hexaboride single crystal and a manufacturing method thereof.
  • Field emission electron sources have good monochromaticity and can emit high-intensity electron beams, and are used as electron sources for high-resolution scanning electron microscopes and transmission electron microscopes.
  • tungsten has been widely used as a chip material for field emission electron sources.
  • a strong electric field is applied to a tungsten tip sharpened by electrolytic polishing at room temperature, so that electrons can form a vacuum barrier based on the work function of tungsten (W). It is configured to tunnel and emit electrons into the vacuum.
  • the field emission electron source has high luminance (current density per unit solid angle: A / cm 2 / sr), a thermal electron source that thermally excites electrons to emit electrons into vacuum, Compared with a Schottky-type thermal field emission electron source that emits electrons that are thermally excited through the vacuum barrier lowered by the electron beam, an electron beam having a narrow energy width can be obtained.
  • chromatic aberration in the lens system is reduced, and the field emission electron source is widely used for high-resolution electron microscopes.
  • the tunnel probability of the vacuum barrier is reduced.
  • the amount of current emitted is reduced to about several ⁇ to several tens ⁇ A. If the electric field is increased to increase the current, tunneling to deep valence electrons below the Fermi level will result in a wider energy width.
  • the residual gas is easily adsorbed on the surface of the tungsten chip, and the adsorbed residual gas moves on the adsorption site on the metal surface.
  • the work function fluctuates due to the adsorption and movement of the residual gas, noise is generated in the emission current, and there is a problem that the emission current decreases with time because the tungsten (W) is covered with the residual gas. .
  • Patent Documents 1 and 2 a field emission electron source using a hexaboride single crystal nanowire having a low work function as a chip has been proposed in Patent Documents 1 and 2 and the like.
  • the metal termination (100) surface formed at the tip of the hexaboride single crystal nanowire has a small work function and electrons are emitted from the tip of the nanowire with a small diameter, It has been disclosed that since there is almost no emission from the surroundings, it is possible to irradiate an electron beam with a small diameter and to realize a field emission electron source with high luminance.
  • the metal terminal (100) surface formed at the tip of a hexaboride single crystal nanowire is active (high energy state) although it has a low work function, and easily adsorbs residual gas. Therefore, it is necessary to perform a hydrogen termination treatment in which the metal termination (100) surface is exposed to hydrogen.
  • the boron terminated (100) surface has a high work function. For this reason, when manufacturing the chip, the hydrogen-terminated metal termination (100) surface must be selectively exposed, and in addition, it is required to maintain it during the operation of the electron source. Technology was needed.
  • hexaboride single crystal nanowires cannot be self-supported because of their small diameter, and must be used by being bonded to a metal needle support or the like. Reacts at a high temperature, and therefore, when performing flushing to desorb the adsorbed gas, the temperature becomes high. Therefore, it is necessary to previously provide a reaction prevention layer or the like between the hexaboride and the support. There is a problem that the structure of the electron source becomes complicated.
  • the present invention has been made in view of the problems of a conventional field emission electron source using a single hexaboride single crystal, and is intended to improve the electron emission performance while avoiding the complexity of the structure. It is an object of the present invention to provide a field emission electron source using a single crystal and a method for manufacturing the same.
  • the present invention has the following features for solving the above-described problems.
  • a field emission electron source is formed from a single crystal growth body of hexaboride grown by melt (liquid phase) growth from a single crystal growth body to a predetermined crystal axis so that the longitudinal direction is a predetermined crystal axis direction. Is cut out along the edge, sharpened and cleaned at one end in the longitudinal direction of the chip workpiece, and on one end surface of the chip workpiece at the tip of the chip, a crystal plane terrace (facet) perpendicular to a predetermined crystal axis Is formed.
  • the tip workpiece has a diameter of 100 ⁇ m or more in cross section perpendicular to the longitudinal direction (predetermined crystal axis direction) before sharpening at one end side in the longitudinal direction, and the tip end after sharpening.
  • the tip curvature on one end side of the chip workpiece to be obtained is 0.2 ⁇ m or less.
  • the crystal plane terrace (facet) perpendicular to a predetermined crystal axis is characterized in that a metal element of hexaboride and a boron element are mixed, and the ratio of the elements is a crystal plane.
  • the crystal axis direction for cutting the chip workpiece from the single crystal growth body of hexaboride single crystal is the [01n] axis where n is an odd number in the Miller index, or its equivalent axis, and the crystal plane terrace (facet) at the tip Is a (01n) plane or its equivalent plane.
  • N is particularly an odd number of 3 or more.
  • the crystal axis direction for cutting the chip workpiece from the single crystal growth body of hexaboride single crystal is the [2 + 4m42 + 4m n] axis where m is an integer and n is an odd number, or its equivalent axis.
  • the crystal plane terrace (facet) at the tip is a (2 + 4m 2 + 4m n) plane or an equivalent plane thereof.
  • the hexaboride single crystal field emission electron source is characterized in that the base end of the chip formed on the other side in the longitudinal direction of the chip workpiece is bonded to a carbon filament and can be flushed by heating.
  • a method for manufacturing a field emission electron source is that a hexaboride single crystal melt (liquid phase) growth is performed by a floating zone method or a flux method. Is cut out along the predetermined crystal axis so that the longitudinal direction becomes the predetermined crystal axis direction, and one end side in the longitudinal direction of the chip workpiece is electropolished, focused ion beam method, or a combination thereof. Then, it is sharpened and cleaned by field evaporation or flushing to form a crystal plane terrace (facet) perpendicular to a predetermined crystal axis on one end face of the chip workpiece to be the tip of the chip.
  • the present invention it is possible to improve the electron emission performance while avoiding the complicated structure of the field emission electron source.
  • a field emission electron source in which the entire chip is formed of hexaboride single crystal has a high emission current due to a low work function of the electron emission surface and a high luminance due to a small tip curvature of the chip. Furthermore, since the surface of the crystal plane where the metal element and boron element are mixed and the element ratio is constant is used as the electron emission surface, the work function is stabilized, so that the current fluctuation is small.
  • the tip has a metal support since the tip of the tip having a small diameter and the base of the tip as a support are integrally formed from a hexaboride single crystal tip work piece. Therefore, even if no metal support is provided, flushing by heating is possible and can be easily performed, and regeneration is possible even if it is contaminated by gas adsorption or the like.
  • hexaboride such as rare earth or alkaline earth metal is used as the material of the electron source chip of the field emission electron source.
  • the chip material lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), which are lanthanoid elements, among rare earth elements. ), Gadolinium (Gd), or the like can be used.
  • As the alkaline earth metal element calcium (Ca), strontium (Sr), barium (Ba), or the like can be used.
  • each hexaboride is represented by a chemical formula such as LaB 6 , CeB 6 , PrB 6 , NdB 6 , SmB 6 , EuB 6 , GaB 6 , CaB 6 , SrB 6 , BaB 6 and the like.
  • FIG. 1 is a diagram schematically showing the crystal structure of a single crystal of hexaboride.
  • the hexaboride single crystal 10 has a crystal structure in which a block of six boron atoms 12 is located at the center of a simple cubic lattice of metal atoms 11.
  • hexaboride using rare earth as the metal atom 11 is generally high in melting point, low in vapor pressure, high in hardness, strong in ion bombardment, and tungsten ( Many have lower work functions than W). Therefore, LaB 6 , CeB 6 and the like are materials that are widely used as chip materials for thermionic sources by heating to about 1500 ° C.
  • These hexaboride single crystals 10 are crystal habits having a diameter of several millimeters and crystals preferentially growing by melt (liquid phase) crystal growth using, for example, a floating zone method or an aluminum (Al) flux method.
  • a large single crystal (referred to as a single crystal growth body for the sake of convenience) 13 having a length of several tens of millimeters grown in the (001) plane direction of the plane can be produced.
  • the single crystal growth body 13 is perpendicular to the longitudinal direction along the [001] axis so that the longitudinal direction is the crystal axis direction of the (001) plane that is the crystal habit plane.
  • a hot electron source chip having a size of several 100 ⁇ m square and a length of several millimeters in the longitudinal direction is cut out by cutting, and the (001) plane, which is a crystal habit plane, is perpendicular to the longitudinal direction. It is used as a release surface.
  • the crystal structure of hexaboride is a simple cubic lattice as shown in FIG. 1, and the (001) plane is equivalent to the (100) plane, the (010) plane, etc., and these are equivalent planes ⁇ 001 ⁇ It is.
  • the c-axis of the orthogonal coordinate (abc) shown in FIG. 1 is defined as the crystal habit axis
  • the (001) plane that is the c-plane perpendicular to the crystal habit axis c-axis is defined as the crystal habit plane.
  • the hexaboride single crystal 10 has been used as a thermionic source in this way, but as a field emission electron source, it has remained at the research level and has not been put to practical use.
  • hexaboride is generally a hard and ceramic-like brittle material, so it is difficult to sharpen the tip of the tip compared to tungsten (W), and the brightness is insufficient. Because it is a binary material of boron and boron, it was difficult to obtain an electron emission surface with a stable elemental composition with good reproducibility at room temperature, which is the operating temperature of a field emission electron source. The current decrease due to the influence of gas adsorption and the like was large.
  • thermoelectron source when used as a chip of a thermoelectron source, since it is used at a high temperature of about 1500 ° C., a fresh metal terminal (001) plane always grows due to atom rearrangement and evaporation, and gas adsorption is also prevented. , Did not hinder.
  • Example 1 In this example, first, focusing on this processing technique, an electron source chip of a field emission type electron source of hexaboride single crystal was produced.
  • FIG. 2 is an explanatory view showing an outline of a method for manufacturing a field emission electron source using a hexaboride single crystal according to the present embodiment.
  • FIG. 3 is a scanning photomicrograph of the tip of the tip of a field emission electron source using a hexaboride single crystal actually produced using the method of manufacturing the field emission electron source of this example.
  • a hexaboride large single crystal growth body 13 is grown on a hexaboride single crystal such as LaB 6 or CeB 6 by melt crystal growth using a floating zone method or the like.
  • the hexaboride single crystal has a simple cubic lattice with a (001) plane as the habit plane, and generally has a rectangular parallelepiped shape with the [001] axis direction (c-axis direction) as the major axis.
  • a single crystal growth body 13 of hexaboride is obtained.
  • the crystal axis of the grown hexaboride single crystal growth body 13 was measured using an X-ray Laue method or the like. From the hexaboride single crystal growth body 13, a chip workpiece 15 was obtained. Cut along a predetermined crystal axis so that the longitudinal direction is the predetermined crystal axis direction. In a thermoelectron source, it is common to cut out along the [001] axis direction. Also in the present embodiment, first, according to this, the longitudinal direction extends along the [001] axis direction, the cross-sectional size perpendicular to the longitudinal direction is 100 to 500 ⁇ m in diameter, and the length in the longitudinal direction is about 1 to 5 mm.
  • a hexaboride single crystal chip workpiece 15 made of a single crystal column was cut out.
  • a chip workpiece 15 serving as a base of a plurality of hexaboride single crystal chips (electron source chips) 21 was cut out from a single hexaboride single crystal growth body 13 (FIG. 2).
  • FIG. 2 In this example, only one chip workpiece 15 and single crystal chip 21 are shown as a representative).
  • one side in the longitudinal direction which is the tip end side of the cut hexaboride chip workpiece 15 is immersed in an electrolytic polishing liquid such as an aqueous nitric acid solution, and electrolysis is performed on one side peripheral surface of the chip workpiece 15.
  • electrolytic polishing liquid such as an aqueous nitric acid solution
  • the area / size of the cross-sectional shape perpendicular to the [001] axial direction gradually decreases from the initial area / size according to the polishing amount.
  • the chip workpiece 15 has an integrated shape in which the one peripheral surface immersed in the electrolytic polishing liquid and the other peripheral surface not immersed in the electrolytic polishing liquid are connected by reducing the peripheral surface of the one side.
  • the electrolytic polishing section 16 whose cross-sectional size perpendicular to the longitudinal direction is reduced on the peripheral surface on one side in the longitudinal direction of the chip workpiece 15 as it approaches one end side in the longitudinal direction. Formed.
  • the peripheral surface on the further tip side of the electrolytic polishing portion 16 having the tapered peripheral surface (outer peripheral surface) of the chip workpiece 15 is tapered by focused ion beam processing using gallium (Ga) ions.
  • the workpiece 15 is cut into a needle shape with a radius of curvature of 0.2 ⁇ m or less while being rotated about its central axis along the [001] axis direction.
  • the length of the needle portion 17 on the tip side of the electron source chip 21 formed on one side of the chip workpiece 15 is arbitrary. However, in order to easily concentrate the electric field, an electric field evaporation process described later is also performed.
  • the length of the needle portion 17 is desirably 10 ⁇ m or more so that the length of the needle portion 17 may be shortened in the surface cleaning process by the flushing process.
  • an electron source chip 21 in which the needle portion 17 and the support portion 18 that supports the needle portion 17 are integrated is produced from the hexaboride single crystal chip workpiece 15. Therefore, in the electron source chip 21 of the present embodiment, the support portion 18 that supports the needle portion 17 is also formed from the same hexaboride single crystal tip workpiece 15 as the needle portion 17. There is no joint portion between the support member 18 and the support member 18, and it is not necessary to provide a reaction prevention layer or the like in advance, and the support structure of the needle portion 17 is strengthened without complicating the structure of the electron source chip 21. be able to.
  • FIG. 4 is a schematic configuration diagram of an embodiment of a field emission electron source in which an electron source chip is bonded to a carbon heater.
  • the carbon heater 25 is composed of a carbon-based heating material bent into an inverted U shape, and generates heat when a voltage is applied.
  • a fixed surface to which the bottom surface of the support portion 18 of the electron source chip 21 is bonded and fixed is formed on the outer peripheral surface of the connecting portion that connects the pair of leg portions of the inverted U-shaped carbon heater 25. Bonding and fixing of the bottom surface of the support portion 18 of the electron source chip 21 to the fixing surface of the carbon heater 25 is performed using an adhesive in which a filler such as carbon, boron, or carbon boride is dissolved.
  • the carbon heater 25 to which the electron source chip 21 is bonded and fixed is heated and baked to remove the organic component of the adhesive, thereby being mechanically strong between the electron source chip 21 and the carbon heater 25, Forms joints with excellent electrical and thermal contact.
  • the field emission electron source 20 configured by bonding and fixing the electron source chip 21 to the carbon heater 25 is obtained by simply processing the needle part 17 of the electron source chip 21 with a focused ion beam.
  • the processing damage layer and the gallium (Ga) used for focused ion beam processing remain on the surface of the crystal, and the organic substance evaporated from the adhesive and attached to the electron source chip 21 in the bonding process of the carbon heater 25. As it is, it cannot be used as a field emission electron source as it is.
  • a high electric field is applied using the needle portion 17 as an anode to evaporate the processing damage layer, the contamination layer, and the like on the surface, or heat to 1500 ° C. to thermally evaporate the crystal axis [001].
  • the surface of the hexaboride single crystal of the needle portion 17 including the crystal plane terrace (facet) perpendicular to the surface is exposed and cleaned.
  • the tip of the crystal of the needle portion 17 serving as a crystal plane terrace (facet) is processed to be very thin with a radius of curvature of 0.2 m or less, a processing damage layer or The contaminated layer or the like can be evaporated in an electric field.
  • the electron source chip 21 imaged with a field ion microscope (FIM: Field : Ion Microscope) or a field emission microscope (FEM: Field : Emission Microscope) is used. It can be confirmed by FIM image or FEM image.
  • FIG. 5 is an FIM image of the electron source chip of the present example obtained with a field ion microscope.
  • FIG. 6 is an FEM image of the electron source chip of this example obtained with a field emission microscope.
  • a high-luminance (001) surface pattern is confirmed at the center of the tip surface of the needle portion 17, It can be confirmed that a crystal terrace (facet) having a (001) plane is formed at the tip of the needle portion 17 to be.
  • the electron microscope 20 shown in FIG. 7 was modified from the field emission type electron source 20 in which the hexaboride single crystal electron source chip 21 was bonded and fixed to the carbon heater 25. It attached to the evaluation apparatus and evaluated.
  • FIG. 7 is a schematic configuration diagram of an evaluation apparatus for a field emission electron source.
  • the evaluation device 30 is configured such that the electron source chip 21 is detachable and replaceable, and the electrons emitted from the electron source chip 21 are the anode 31, focusing lenses 32 and 33, apertures (diaphragms) 34 and 35, and a magnifying lens. Then, the light enters the detector 37 via 36. If a fluorescent screen is placed as the detector 37, the spot diameter of the electron beam can be known, and if a Faraday cup is placed, current can be detected, and luminance and current fluctuation can be measured. Moreover, the energy width of the electron beam can be detected by placing an energy analyzer.
  • the field emission electron source 20 of this example has an average brightness (up to 10) higher than that of the field emission electron source using tungsten (W). 9 A / cm 2 / sr) and an average energy width of about 2/3 (0.2 eV) was obtained. Also, the emission current was about several tens of ⁇ A to 100 ⁇ A, which was higher than that of the field emission electron source using tungsten (W).
  • the current decrease due to gas adsorption was substantially the same as that of a conventional field emission electron source using tungsten (W).
  • W tungsten
  • the (001) plane itself of the metal termination forming the crystal terrace (facet) is an active metal surface, and basically the difference in sensitivity to tungsten (W) field emission electron source and gas adsorption is small. ,it is conceivable that. Therefore, also in the field emission electron source 20 of the present embodiment, it is necessary to periodically perform flushing at about 1500 ° C. and desorb the adsorbed gas. In the field emission electron source 20 of the present embodiment, flushing can be easily performed by energizing the carbon heater 25 shown in FIG.
  • the support body portion 18 that supports the needle portion 17 is also formed from the same hexaboride single crystal chip workpiece 15 as the needle portion 17. There is no joint portion between the portion 17 and the support portion 18, and the support structure of the needle portion 17 can be strengthened without complicating the structure of the electron source chip 21.
  • Example 2 a chip workpiece 15 serving as a base of an electron source chip 21 of hexaboride single crystal is cut out from the hexaboride single crystal growth body 13 along the [001] axis direction of the crystal habit axis.
  • the needle portion 17 and the support portion 18 that supports the needle portion 17 are integrated so that the (001) plane of the crystal habit plane that is the end face of the single crystal growth body 13 is an electron emission surface.
  • An electron source chip 21 was prepared.
  • FIG. 8 is a view showing the (001) end face of a hexaboride single crystal.
  • the surface electric dipole is positive on the vacuum side, so that the vacuum barrier is lowered and the work function is lowered.
  • FIG. In the case of a boron terminal (001) surface in which 11 is a bulk side and a boron element 12 having a large electronegativity is on the surface side, since the electric dipole on the surface is negative on the vacuum side, the work function is increased to raise the vacuum barrier. To rise. Therefore, when the (001) plane of hexaboride single crystal is used as the electron emission surface, the metal termination (001) plane shown in FIG. 8 (a) must be selectively used.
  • the metal terminal (001) surface and the boron terminal (001) surface appear alternately, so the metal terminal (001) It is not so easy to always select 100% of the surface and clean the one side end surface of the chip workpiece 15 (tip surface of the needle portion 17).
  • metal tends to move to the interface surface more easily than boron and tends to be a metal terminal (001) surface, but unlike a thermal electron source, it is continuously heated to maintain an equilibrium state. Therefore, 100% of the metal termination (001) plane is not necessarily selected.
  • the field emission electron source 20 even during the operation of the field emission electron source 20 at room temperature, depending on the operating conditions for extracting a large current or the like, the field evaporation due to a strong electric field, the Joule heating of the field emission electron source 20, or the electron source chip 21 due to the Nottingham effect. There is a possibility that the elemental composition of the end surface of the electron emission surface is switched by local heating of the tip, and in this case, the emission current may change stepwise.
  • the hexagonal metal element and the boron element are mixed in the crystal plane terrace (facet) perpendicular to the crystal axis, and the crystal plane having a constant ratio is used as the electron emission of the field emission electron source 20. It has been found that the above-mentioned problems can be overcome by using the surface.
  • 9 and 10 are diagrams schematically showing examples of crystal planes in which a metal element and boron element of hexaboride are mixed and the ratio thereof is constant.
  • the (01n) plane or the (013) plane of hexaboride such as the (01n) plane with n being an odd number, or its equivalent plane is used as the electron emission plane.
  • the ratio of the metal element 11 to the boron element 12 on the end face can always be kept constant.
  • this crystal plane is chemically more stable than the active metal end face and hardly absorbs gas, current reduction due to gas adsorption can be suppressed.
  • a similar hexaboride crystal plane can also be realized by a (221) plane as shown in FIG. 10 or a (2 + 4m 2 + 4m n) plane where m is an integer and n is an odd number. it can.
  • the (011) plane of hexaboride has a higher proportion of boron element 12 exposed on the surface than the metal termination (001) plane, and the work function is slightly higher, but it is higher than the boron termination (001) plane.
  • the hexaboride (011) plane shown in FIG. 9A is a higher-density surface than the (001) plane, and the work function is more likely to be increased.
  • the (013) plane and the (221) plane of the hexaboride shown in FIG. 10 are more preferable as the field emission electron source 20 because they have a lower density than the (001) plane and the work function is lowered.
  • FIG. 11 is an explanatory diagram of a method for manufacturing an electron source chip of a field emission electron source according to the present embodiment.
  • the manufacturing method of the electron source chip of the field emission electron source according to the present embodiment is basically the manufacturing method of the electron source chip of the field emission electron source of the first embodiment shown in FIG.
  • the cutting method of the chip workpiece 15 from the grown single crystal growth body 13 of hexaboride and the crystal axis direction related to the longitudinal direction of the cut chip workpiece 15 are different.
  • the crystal axis of the grown hexaboride single crystal growth body 13 was measured using an X-ray Laue method or the like, and the single crystal growth was performed along the [011] crystal axis or the [013] crystal axis.
  • the chip workpiece 15 is cut out by cutting at an angle of 45 ° or 28 ° with respect to the [001] axial direction (c-axis direction) which is the long axis of the body 13. Therefore, the one end surface in the longitudinal direction of the cut chip workpiece 15 that forms the tip of the needle portion 17 that becomes the tip of the tip becomes the (011) plane or the (013) plane of hexaboride.
  • a compound crystal element 11 and a boron element 12 are mixed, and the crystal plane has a constant ratio.
  • Such a method for producing the electron source chip 21 is not possible with a single crystal nanowire having a small diameter, and the support body portion 18 for supporting the needle portion 17 is also the same hexaboride single crystal chip workpiece as the needle portion 17. 15 is a manufacturing method that makes use of the characteristics formed together.
  • the field emission electron source 20 of this example also has an average brightness (up to 10 9 A / cm 2 / sr) on average compared to the field emission electron source using tungsten (W). On the average, a narrow energy width (0.2 eV) of about 2/3 was obtained. Also, the emission current was several tens of ⁇ A to 100 ⁇ A, which was higher than that of the field emission electron source using tungsten (W). In addition, the field emission electron source 20 further improved the stability of electron emission compared to Example 1 and the step-like current fluctuation did not occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

電子放出特性の安定した六硼化物単結晶を用いた電界放出型電子源を提供するために、融液(液相)成長で育成した六硼化物の単結晶成長体(13)からチップ被加工体(15)を切り出し、その長手方向先端を先鋭化、清浄化して、結晶軸に垂直な結晶面テラス(ファセット)を先端に形成した電界放出型電子源(20)を構成した。

Description

電界放出型電子源及びその製造方法
 本発明は電子顕微鏡の電子源等に使用される電界放出型電子源に係り、六硼化物単結晶を用いた電界放出型電子源、及びその製造方法に関する。
 電界放出型電子源は、単色性がよく、高輝度の電子ビームの放出が可能であり、高分解能の走査電子顕微鏡や透過電子顕微鏡等の電子源として使用されている。
 従来、電界放出型電子源のチップ材料としては、タングステン(W)が広く用いられている。タングステン(W)を用いた電界放出電子源は、電解研磨により先端を先鋭化したタングステンチップに、室温で強電界を印加することによって、タングステン(W)の仕事関数に基づいた真空障壁を電子がトンネルし、真空中に電子を放出する構成になっている。そのため、電界放出型電子源は、輝度(単位立体角当たりの電流密度:A/cm/sr )が高く、また、電子を熱励起して真空中に電子を放出する熱電子源や、電界で引き下げた真空障壁を越して熱励起した電子を放出するショットキー型の熱電界放出型電子源に比べて、エネルギー幅が狭い電子線を得ることができる。その結果、電子源に電界放出型電子源を使用した電子顕微鏡では、レンズ系での色収差が少なくなり、電界放出型電子源は、高分解能の電子顕微鏡に広く利用されている。
 ところで、タングステン(W)を用いた電界放出型電子源は、タングステン(W)の仕事関数が4eV以上あるため、真空障壁のトンネル確率が小さくなる。これに伴って、電界放出型電子源では、放出される電流量は、数μ~数10μA程度と少なくなる。また電流を増加させるため電界を強くすると、フェルミ準位以下の深い価電子までトンネルするため、エネルギー幅が広くなってくる。さらに、タングステン(W)を用いた電界放出型電子源を室温で用いる場合は、タングステンチップの表面に残留ガスが吸着され易く、吸着された残留ガスは金属表面での吸着サイトを移動する。この残留ガスの吸着及び移動により仕事関数が変動し、放出電流にノイズが発生するとともに、残留ガスでタングステン(W)が被覆されていくことで放出電流が経時的に低下するとの問題があった。
 そこで、仕事関数が低い六硼化物単結晶のナノワイヤをチップに用いた電界放出型電子源が、特許文献1,2等で提案されている。特許文献1,2によれば、六硼化物単結晶のナノワイヤの先端に形成された金属終端(100)面は、仕事関数が小さく、かつ電子は、径が細いナノワイヤの先端から放出され、その周囲からの放出がほとんどないため、径が細い電子ビームを照射でき、高輝度な電界放出型電子源を実現できることが開示されている。
WO2014/007121 特許第5586013号
 しかしながら、特許文献1によれば、六硼化物単結晶のナノワイヤの先端に形成された金属終端(100)面は、仕事関数は低いが活性(高エネルギー状態)であり、残留ガスを吸着し易いため、この金属終端(100)面を水素に晒す水素終端処理等が必要である。また、硼素終端(100)面は、仕事関数が高い。そのため、チップ作製の際は、この水素終端処理された金属終端(100)面を選択的に露出させなければならず、加えて電子源の動作中もそれを維持することが求められ、高度な技術が必要であった。
 また、特許文献2によれば、六硼化物単結晶のナノワイヤは径が細いため自立できず、金属針の支持体等に接合して用いる必要があるが、六硼化物と支持体の金属とは高温で反応してしまうため、吸着ガスを脱離させるフラッシング等を行う際には高温になるので、六硼化物とこの支持体との間には反応防止層等を予め設けておく必要があり、電子源の構造が複雑化するとの問題がある。
 本発明は、従来の六硼化物単結晶を用いた電界放出型電子源の問題点を鑑みなされたものであり、構造の複雑化を回避しながら電子の放出性能の向上をはかった六硼化物単結晶を用いた電界放出型電子源、及びその製造方法を提供することを目的とする。
 本発明は、上述した課題を解決するための、以下の特徴を有する。
 1.電界放出型電子源は、融液(液相)成長で育成した六硼化物の単結晶成長体から、チップ被加工体を、長手方向が所定の結晶軸方向になるように、所定の結晶軸に沿って切り出し、チップ被加工体の長手方向の一端側を先鋭化、清浄化して、チップの先端になるチップ被加工体の一端面に、所定の結晶軸に垂直な結晶面テラス(ファセット)を形成したことを特徴とする。
 2.チップ被加工体は、長手方向の一端側の先鋭化前の、長手方向(所定の結晶軸方向)に垂直な断面の大きさが直径100μm以上であり、かつ先鋭化した後の、チップの先端になるチップ被加工体の一端側の先端曲率は、0.2μm以下であることを特徴とする。
 3.所定の結晶軸に垂直な結晶面テラス(ファセット)は、六硼化物の金属元素と硼素元素とが混在し、その元素比率が一定の結晶面であることを特徴とする。
 4.六硼化物単結晶の単結晶成長体からチップ被加工体を切り出す結晶軸方向は、ミラー指数でnを奇数とした[01n]軸、又はその等価軸であり、先端の結晶面テラス(ファセット)は、(01n)面、又はその等価面であることを特徴とする。
 5.上記4.において、nが特に3以上の奇数であることを特徴とする。
 6.六硼化物単結晶の単結晶成長体からチップ被加工体を切り出す結晶軸方向は、ミラー指数でmを整数とし、nを奇数とした[2+4m 2+4m n]軸、又はその等価軸であり、先端の結晶面テラス(ファセット)は、(2+4m 2+4m n)面、又はその等価面であることを特徴とする。
 7.六硼化物単結晶の電界放出電子源は、チップ被加工体の長手方向の他側からなるチップの基端がカーボン製のフィラメントに接合され、加熱によるフラッシングが可能であることを特徴とする。
 8.電界放出型電子源の製造方法は、六硼化物単結晶の融液(液相)成長を、フローティングゾーン法又はフラックス法で行い、育成した六硼化物の単結晶成長体から、チップ被加工体を、長手方向が所定の結晶軸方向になるように、切削で所定の結晶軸に沿って切り出し、チップ被加工体の長手方向の一端側を、電解研磨や集束イオンビーム法、又はそれらを併用して先鋭化し、電界蒸発又はフラッシングにより清浄化して、チップの先端になるチップ被加工体の一端面に、所定の結晶軸に垂直な結晶面テラス(ファセット)を形成することを特徴とする。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-084643号の開示内容を包含する。
 本発明によれば、電界放出型電子源の構造の複雑化を回避しながら電子の放出性能の向上をはかることができる。
 具体的には、チップ全体が六硼化物単結晶で形成された電界放出型電子源は、電子放出面の仕事関数が低いため放出電流が大きく、チップの先端曲率が小さいため高輝度である。さらに、表面には金属元素と硼素元素とが混在し、その元素比率が一定となる結晶面テラスを電子放出面とするため、仕事関数が安定するので、電流変動が少ない。
 加えて、チップは、径が細いチップの先端部とその支持体としてチップの基部とが、六硼化物単結晶のチップ被加工体から一体的に形成されているので、金属の支持体を有することによる構造の複雑化を回避しながら、金属の支持体を備えていなくても、加熱によるフラッシングが可能になり、かつ容易に行えるので、ガス吸着等で汚染されても再生が可能である。
 上記した以外の、課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
六硼化物の単結晶の結晶構造を模式的に示した図である。 本発明の電界放出型電子源の製造方法に係る一実施例の説明図である。 本発明の電界放出型電子源に係る一実施例の走査顕微鏡像である。 電子源チップをカーボンヒーターに接合した電界放出型電子源の一実施例の概略構成図である。 電界イオン顕微鏡で取得した本実施例の電子源チップのFIM像である。 電界放出顕微鏡で取得した本実施例の電子源チップのFEM像である。 電界放出型電子源についての評価装置の概略構成図である。 六硼化物単結晶の(001)終端面を示す図である。 六硼化物の金属元素と硼素元素が混在し、その比率が一定である結晶面の一実施例を模式的に示した図である。 六硼化物の金属元素と硼素元素が混在し、その比率が一定である結晶面の別実施例を模式的に示した図である。 本発明の電界放出型電子源の製造方法に係る別実施例の説明図である。
 以下、図面を参照しながら、本発明に係る電界放出型電子源及びその製造方法の実施の形態について、詳細に説明する。なお、説明で用いる図面は、本発明の主旨並びに技術内容を理解し易くするために、図面間で、同一若しくは対応する構成部分については同一符号を付す一方、縮尺は適宜変更している。
 本発明では、電界放出型電子源の電子源チップの材料として、希土類やアルカリ土類金属等の六硼化物を用いる。具体的には、チップ材料には、希土類の元素では、ランタノイド系の元素である、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)等を用いることができる。また、アルカリ土類金属の元素では、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を用いることができる。この場合、それぞれの六硼化物は、LaB、CeB、PrB、NdB、SmB、EuB、GaB、CaB、SrB、BaB等の化学式で表される。
 図1は、六硼化物の単結晶の結晶構造を模式的に示した図である。
 六硼化物の単結晶10は、金属原子11の単純立方格子の体心に、6個の硼素原子12のブロックが位置した結晶構造をしている。
 これら六硼化物からなるチップ材料の中、特に希土類を金属原子11に用いた六硼化物は、一般的に、融点が高く、蒸気圧が低く、硬度が高く、イオン衝撃に強く、かつタングステン(W)よりも仕事関数が低いものが多い。そのため、LaB、CeB等は、1500℃程度に加熱して、熱電子源のチップ材料として広く利用されている材料である。
 これらの六硼化物の単結晶10は、例えばフローティングゾーン法やアルミニウム(Al)フラックス法等を用いた融液(液相)結晶成長により、直径が数mm、結晶が優先的に成長する晶癖面の(001)面方向に成長した長さが数10mmの、大形の単結晶(便宜的に、単結晶成長体と称する)13が作成できる。熱電子源で利用する場合は、この単結晶成長体13から、長手方向が晶癖面である(001)面の結晶軸方向になるように、[001]軸に沿って、長手方向に垂直な断面の大きさが数100μm角、長手方向の長さが数mmの熱電子源チップを切削によって切り出して、長手方向に垂直な断面であり、晶癖面である(001)面をそのまま電子放出面として利用している。
 なお、六硼化物の結晶構造は、図1に示したように単純立方格子であり、(001)面と(100)面や(010)面等とは等価で、これらは等価面{001}である。以下では、便宜上、図1に示した直交座標(abc)のc軸を晶癖軸、晶癖軸c軸に垂直なc面である(001)面を晶癖面として定義して、説明を行う。
 六硼化物の単結晶10は、このように熱電子源としては利用されてきたが、電界放出型電子源としては、これまで研究レベルに留まり、実用に供されてこなかった。
 その理由は、・六硼化物が、一般に高硬度でセラミックス状の脆い材料であることから、チップ先端の先鋭化がタングステン(W)に比べると難しく、輝度が十分でなかったこと、・金属元素と硼素の2元系の材料のため、電界放出型電子源の動作温度である室温では、元素組成が安定した電子放出面を再現性よく得ることが難しかったこと、・室温で用いた場合に、ガス吸着等の影響による電流減少が大きかったこと、等が挙げられる。
 ところが、熱電子源のチップとして使用する場合は、1500℃程度の高温で用いるので、原子の再配列 、蒸発により、常にフレッシュな金属終端(001)面が成長し、ガス吸着も防止されるため、支障とならなかった。
 その一方で、チップ先端の先鋭化に関しては、近年、集束イオンビーム加工等の加工技術の進歩により、このようなセラミック状の六硼化物からでも、曲率半径の小さい針状形状の結晶面テラス(ファセット)への加工が可能になってきた。例えば、電界イオン顕微鏡と飛行時間分析型のイオン検出器とを組み合わせたアトムプローブ分析では、様々な複合材料から、電界イオン顕微鏡で電界蒸発が可能な曲率0.2μm以下の針状の端面を加工する技術が、集束イオンビーム法を用いて実現できるようになってきている。
 <実施例1>
 本実施例では、まずこの加工技術に着目し、六硼化物単結晶の電界放出型電子源の電子源チップを作成した。
 図2は、本実施例に係る、六硼化物単結晶を用いた電界放出型電子源の製造方法の概要を示した説明図である。
 図3は、本実施例の電界放出型電子源の製造方法を用いて実際に作成した六硼化物単結晶を用いた電界放出型電子源のチップ先端部分の走査顕微鏡写真である。
 始めに、LaBやCeB等の六硼化物単結晶を、フローティングゾーン法等を用いた融液結晶成長によって、六硼化物の大形の単結晶成長体13を育成する。本実施例では、六硼化物単結晶は、結晶構造が(001)面を晶癖面とした単純立方格子であり、一般に[001]軸方向(c軸方向)を長軸とした直方体形状の六硼化物の単結晶成長体13が得られる。
 続いて、育成した六硼化物の単結晶成長体13について、X線ラウエ法等を用いて結晶軸を測定し、この六硼化物の単結晶成長体13から、チップ被加工体15を、その長手方向が所定の結晶軸方向になるように、所定の結晶軸に沿って切り出す。熱電子源では、[001]軸方向に沿って切り出すのが一般的である。本実施例でも、まずはそれに従い、長手方向が[001]軸方向に沿って延びる、長手方向に垂直な断面の大きさが直径100~500μmで、長手方向の長さが1~5mm程度の、単結晶柱状体からなる六硼化物単結晶のチップ被加工体15を切り出した。この切削により、1個の六硼化物の単結晶成長体13から、複数の、それぞれ六硼化物の単結晶チップ(電子源チップ)21の基体となるチップ被加工体15を切り出した(図2では、代表して、1個のチップ被加工体15及び単結晶チップ21のみを記載している)。
 続いて、硝酸水溶液等の電解研磨液に、切り出した六硼化物のチップ被加工体15のチップ先端側となる長手方向の一側を浸漬し、チップ被加工体15の一側周面に電解研磨液を介して交流電界をかけることにより、チップ被加工体15の一側周面の電解研磨を行う。
 この電解研磨の段階では、単結晶チップ21の先端面となるチップ被加工体15の一側端面の曲率半径を0.2μm以下にすることは困難であり、この後の集束イオンビームを用いた研削加工の加工時間を削減するため、チップ被加工体15の先端側サイズを絞り込むための前処理として、チップ先端側、すなわちチップ被加工体15の長手方向の一側の電解研磨を行った。これにより、六硼化物のチップ被加工体15の長手方向の一側は、その一側周面(一側外周面)が電解研磨によって研削され、チップ被加工体15の長手方向の一側の、[001]軸方向に対して垂直な断面形状の面積・大きさが、当初の面積・大きさからその研磨量に応じて徐々に縮小する。これにより、チップ被加工体15は、その一側周面の縮小によって、電解研磨液に浸漬された一側周面と電解研磨液に浸漬されていない他側周面とが連接された一体形状に加工されるとともに、チップ被加工体15の長手方向の一側の周面には、長手方向の一端側に近づくにしたがい、長手方向に垂直な断面の大きさが小さくなった電解研磨部16を形成した。
 続いて、ガリウム(Ga)イオンを用いた集束イオンビーム加工により、チップ被加工体15の、周面(外周面)がテーパー状になった電解研磨部16のさらに先端側の周面を、チップ被加工体15を [001]軸方向に沿ったその中心軸で回動させながら、曲率半径0.2μm以下の針状に削り込む。この場合、チップ被加工体15の一側に形成する、電子源チップ21の先端側の針部17の長さは任意であるが、電界が集中し易くするため、また、後述する電界蒸発処理やフラッシング処理による表面の清浄化工程で針部17の長さが短くなってもよいように、針部17の長さは10μm以上にするのが望ましい。
 これにより、六硼化物単結晶のチップ被加工体15から、針部17と、この針部17を支持する支持体部18とが一体的となった電子源チップ21が作成される。したがって、本実施例の電子源チップ21では、針部17を支持する支持体部18も針部17と同じ六硼化物単結晶のチップ被加工体15から一緒に形成されているので、針部17と支持体部18との接合部自体がなく、反応防止層等を予め設けておく必要もなくなり、電子源チップ21の構造を複雑化させずに、針部17の支持構造の強化をはかることができる。
 続いて、このようにして加工した電子源チップ21の支持体部18の底面、すなわちチップ被加工体15の他端面である電子源チップ21の基端面を、図4に示すように、カーボンヒーター(カーボンフィラメント)25に接合する。
 図4は、電子源チップをカーボンヒーターに接合した電界放出型電子源の一実施例の概略構成図である。
 ここでは、カーボンヒーター25は、逆U字形状に折曲された炭素系の発熱材によって構成され、電圧印加により発熱する。逆U字形状のカーボンヒーター25の一対の脚部同士を連結する連結部の外周面には、電子源チップ21の支持体部18の底面が接合固定される固定面が形成されている。カーボンヒーター25の固定面に対する、電子源チップ21の支持体部18の底面の接合固定は、炭素や硼素、硼化炭素等のフィラーを溶かした接着剤を用いて行われる。真空中で、電子源チップ21が接合固定されたカーボンヒーター25を加熱焼成して接着剤の有機成分を除去することにより、電子源チップ21とカーボンヒーター25との間に機械的に強固で、電気的接触、熱接触に優れた接合部を形成する。
 電子源チップ21をカーボンヒーター25に接合固定して構成された電界放出型電子源20は、集束イオンビームで電子源チップ21の針部17を加工しただけでは、針部17の六硼化物単結晶の表面に、加工ダメージ層や、集束イオンビーム加工に用いたガリウム(Ga)が残っており、また、カーボンヒーター25の接合工程で、接着剤から蒸発して電子源チップ21に付着した有機物等の汚れもあり、そのままでは、電界放出型電子源として使用することができない。
 そこで、超高真空中で、針部17を陽極として高電界をかけて表面の加工ダメージ層や汚染層等を電界蒸発させたり、1500℃程度に加熱して熱蒸発させ、結晶軸[001]に垂直な結晶面テラス(ファセット)を含む針部17の六硼化物単結晶の表面を露出させ、清浄化する。本実施例では、結晶面テラス(ファセット)となる針部17の結晶先端が、曲率半径0.2m以下と非常に細く加工されているため、数kVの比較的低い電圧で、加工ダメージ層や汚染層等を電界蒸発させることができる。六硼化物単結晶からなる針部17の結晶表面の清浄性の確認には、電界イオン顕微鏡(FIM:Field Ion Microscope)や電界放出顕微鏡(FEM:Field Emission Microscope)で撮像した電子源チップ21のFIM像やFEM像により確認することができる。
 図5は、電界イオン顕微鏡で取得した本実施例の電子源チップのFIM像である。
 図6は、電界放出顕微鏡で取得した本実施例の電子源チップのFEM像である。
 図5、図6に示すように、本実施例の電子源チップのFIM像及びFEM像とも、針部17の先端面の中央に、高輝度の(001)面のパターンが確認され、チップ先端となる針部17の先端に(001)面の結晶テラス(ファセット)が形成されていることが確認できる。
 その上で、このようにして作成された、六硼化物単結晶の電子源チップ21がカーボンヒーター25に接合固定された電界放出型電子源20を、図7に示すような電子顕微鏡を改造した評価装置に取り付け、評価した。
 図7は、電界放出型電子源についての評価装置の概略構成図である。
 評価装置30は、電子源チップ21が着脱、交換可能に構成されており、電子源チップ21から放出された電子が、陽極31、集束レンズ32,33、アパーチャー(絞り)34,35、拡大レンズ36を経て、検出器37に入射する構成になっている。検出器37として蛍光面を置けば、電子ビームのスポット径が分かり、またファラデーカップを置けば、電流を検出することができ、輝度や電流変動を測定することが可能である。また、エネルギー分析器を置くことにより、電子ビームのエネルギー幅を検出することができる。
 そして、評価装置30を用いた評価の結果、本実施例の電界放出型電子源20では、タングステン(W)を用いた電界放出型電子源に比較し、平均して1桁高い輝度(~10A/cm/sr)と、平均して約2/3の狭いエネルギー幅(0.2eV)を得ることができた。また、放出電流も、数10μA~100μA程度と、タングステン(W)を用いた電界放出型電子源に比べて、高い値を得ることができた。
 一方、ガス吸着による電流減少に関しては、従来のタングステン(W)を用いた電界放出型電子源と略同等であった。これは、結晶テラス(ファセット)を形成した金属終端の(001)面自体が活性な金属表面であり、基本的にタングステン(W)の電界放出型電子源とガス吸着に対する感度の差が小さいため、と考えられる。そのため、本実施例の電界放出型電子源20においても、定期的に1500℃程度のフラッシングを行い、吸着したガスを脱離させて利用する必要がある。本実施例の電界放出型電子源20では、図4に示したカーボンヒーター25に通電することで、容易にフラッシングすることが行える。その際、本実施例の電子源チップ21では、針部17を支持する支持体部18も針部17と同じ六硼化物単結晶のチップ被加工体15から一緒に形成されているので、針部17と支持体部18との接合部自体がなく、電子源チップ21の構造を複雑化させずに、針部17の支持構造の強化をはかることができる。
 <実施例2>
 実施例1では、六硼化物の単結晶成長体13から、晶癖軸の[001]軸方向に沿って、六硼化物単結晶の電子源チップ21の基体となるチップ被加工体15を切り出し、単結晶成長体13の端面である晶癖面の(001)面を電子放出面とするように、針部17と、この針部17を支持する支持体部18とが一体的となった電子源チップ21を作成した。
 図8は、六硼化物単結晶の(001)終端面を示す図である。
 しかしながら、図8 に示すように、2元系の六硼化物単結晶の(001)面は、金属元素(金属原子)11による金属終端(001)面が形成される場合(図8(a))と、硼素元素(硼素原子)12による硼素終端(001)面が形成される場合(図8(b))との2通りのケースがある。これにより、結晶表面の仕事関数は、図8(a)に示すように、電気陰性度の小さい金属元素11が表面側で、電気陰性度の大きい硼素元素12がバルク 側になる金属終端(001)面の場合は、表面の電気双極子が真空側が正となるため、真空障壁を下げ、仕事関数を低下させるのに対し、図8(b)に示すように、電気陰性度の小さい金属元素11がバルク側で、電気陰性度の大きい硼素元素12が表面側になる硼素終端(001)面の場合は、表面の電気双極子が真空側が負となるため、真空障壁を上げるため仕事関数が上昇する。そのため、六硼化物単結晶の(001)面を電子放出面として利用する場合は、図8(a)に示す金属終端(001)面を選択的に利用しなければならない。
 しかしながら、チップ先端となるチップ被加工体15の一端面に、電界蒸発で清浄表面を作成する場合、金属終端(001)面と硼素終端(001)面が交互に現れるので、金属終端(001)面を常に100%選択して、チップ被加工体15の一側端面(針部17の先端面)の清浄化を実施することは、それほど容易なことではない。また、フラッシングによる清浄化の場合、金属の方が硼素より界面表面に原子移動しやすく 、金属終端(001)面となり易いが、熱電子源とは異なり、連続的に加熱し平衡状態が保たれるわけではないので、必ずしも金属終端(001)面が100%選択されるわけでない。さらに、常温での電界放出型電子源20の動作中でも、大電流等を取り出す動作条件によっては、強電界による電界蒸発や、電界放出型電子源20のジュール加熱、ノッティンガム効果による電子源チップ21の先端の局所加熱により、電子放出面の終端面の元素組成が入れ替わる可能性があり、その場合、放出電流がステップ状の変化してしまう可能性がある。
 そこで、本実施例では、結晶軸に垂直な結晶面テラス(ファセット)に、六硼化物の金属元素と硼素元素が混在し、その比率が一定である結晶面を電界放出電子源20の電子放出面に利用することで、上記の課題を克服することができることを見出した。
 図9及び図10は、六硼化物の金属元素と硼素元素が混在し、その比率が一定である結晶面の実施例を模式的に示した図である。
 図9(a),(b)に示すように、六硼化物の(011)面や(013)面等、nを奇数とした(01n)面、又はその等価面を電子放出面にすることで、電子源チップ21の製造時や電界放出型電子源20の動作時に電界蒸発や加熱蒸発等が起きても、終端面における金属元素11と硼素元素12の比率は常に一定に保つことができる。また、この結晶面は活性な金属終端面よりも化学的により安定であり、ガス吸着もし難いため、ガス吸着による電流減少を抑制することができる。同じような六硼化物の結晶面としては、図10に示すような(221)面等、mを整数とし、nを奇数とした(2+4m 2+4m n)面によっても実現することができる。
 仕事関数の面では、六硼化物の(011)面は、金属終端(001)面より表面に硼素元素12が露出する割合が多く、仕事関数はやや高くなるが、硼素終端(001)面よりは仕事関数が低く、十分、電界放出型電子源20として利用可能である。
 その一方で、仕事関数を決める要素としては、終端面の元素組成のみでなく、結晶面の密度が重要な役割を果たすことが知られている。具体的には、結晶面の密度が高いと、電子密度が高くなるため、真空側への電子の染み出し量が増え、表面の電気双極子が真空側が負となり易いため、仕事関数が上昇する。これに対し、結晶面の密度が低いと、電子密度が低下し、真空側への電子の染み出し量が減るため仕事関数が低下する。すなわち、結晶の高次面を用いることで、仕事関数を低減することができる。
 例えば、図9(a)に示す六硼化物の (011)面は、(001)面より高密度面であり、仕事関数がさらに上がり易いが、図9(b) に示す六硼化物の (013)面や、図10に示す六硼化物の(221)面は、(001) 面より低密度面であり、仕事関数が低下するため、電界放出型電子源20としては、さらに好ましい。
 図11は、本実施例に係る電界放出型電子源の電子源チップの製造方法の説明図である。
 本実施例に係る電界放出型電子源の電子源チップの製造方法は、基本的に、工程的には図4に示した第1の実施例の電界放出型電子源の電子源チップの製造方法と同様であるが、育成した六硼化物の単結晶成長体13からのチップ被加工体15の切り出し方、及び切り出されたチップ被加工体15の長手方向に係る結晶軸方向が異なる。
 本実施例では、育成した六硼化物の単結晶成長体13について、X線ラウエ法等を用いて結晶軸を測定し、[011]結晶軸や[013]結晶軸に沿って、単結晶成長体13の長軸である[001]軸方向(c軸方向)に対し、45°、又は28°の角度で、切削で、チップ被加工体15を切り出す。したがって、チップ先端となる針部17の先端を形成する、切り出されたチップ被加工体15の長手方向の一側端面が、六硼化物の(011)面や(013)面になり、六硼化物の金属元素11と硼素元素12が混在し、その比率が一定である結晶面になる。このような電子源チップ21の作成方法は、径が細い単結晶ナノワイヤでは不可能であり、針部17を支持する支持体部18も針部17と同じ六硼化物単結晶のチップ被加工体15から一緒に形成する特徴を生かした製造方法である。
 本実施例の電界放出型電子源20でも、タングステン(W)を用いた電界放出型電子源に比較し、に比較し、平均して1桁高い輝度(~10A/cm/sr)と、平均して約2/3の狭いエネルギー幅(0.2eV)を得ることができた。また、放出電流も、数10μA~100μA程度と、タングステン(W)を用いた電界放出型電子源に比べて高い値を得ることができた。加えて、電界放出型電子源20は、実施例1と比べ、電子放出の安定性がさらに向上し、ステップ状の電流変動が生じない等の改善が得られた。
 10 六硼化物単結晶、
 11 金属原子、
 12 硼素原子、
 13 単結晶成長体、
 15 チップ被加工体、
 16 電解研磨部、
 17 針部、
 18 支持体部、
 20 電界放出型電子源、
 21 電子源チップ、
 25 カーボンヒーター、
 30 評価装置、
 31 陽極、
 32,33 集束レンズ、
 34,35 アパーチャー、
 36 拡大レンズ、
 37 検出器。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (9)

  1.  融液成長で育成した六硼化物単結晶を所定の結晶軸に沿って切り出し、その長手方向先端を先鋭化、清浄化して、結晶軸に垂直な結晶面テラスを先端に形成した電界放出型電子源。
  2.  請求項1に記載の電界放出型電子源であって、
     前記結晶面テラスは、融液成長で育成した六硼化物単結晶を所定の結晶軸に沿って切り出したチップ被加工体の長手方向の一端面で形成され、前記チップ被加工体の長手方向の一端面を含む一側は周面加工によって針部となり、他側が前記針部の支持体部になっていることを特徴とする電界放出型電子源。
  3.  請求項1に記載の電界放出型電子源であって、
     切り出した六硼化物単結晶の径は、100μm以上、かつ先鋭化した結晶の先端曲率は0.2μm以下であることを特徴とする電界放出型電子源。
  4.  請求項1に記載の電界放出型電子源であって、
     前記結晶面テラスは、六硼化物の金属元素と硼素元素が混在し、その元素比率が一定である結晶面を用いることを特徴とする電界放出型電子源。
  5.  請求項1に記載の電界放出型電子源であって、
     切り出す結晶軸方向は、ミラー指数でnを奇数とした[01n]軸、またはその等価軸であり、先端の結晶面テラスは(01n)面、またはその等価面であることを特徴とする電界放出型電子源。
  6.  請求項5に記載の電界放出型電子源であって、
     nが特に3以上の奇数であることを特徴とする電界放出型電子源。
  7.  請求項1に記載の電界放出型電子源であって、
     切り出す結晶軸方向は、ミラー指数でmを整数とし、nを奇数とした[2+4m 2+4m n]軸またはその等価軸であり、先端の結晶面テラスは(2+4m 2+4m n)面、またはその等価面であることを特徴とする電界放出型電子源。
  8.  請求項1に記載の電界放出型電子源であって、
     六硼化物単結晶の電界放出型電子源は、カーボン製のフィラメントに接合され、加熱によるフラッシングが可能であることを特徴とする電界放出型電子源。
  9.  六硼化物単結晶の融液成長は、フローティングゾーン法又はフラックス法で行い、育成した六硼化物単結晶を切削で所定の結晶軸に沿って切り出し、その長手方向先端を電解研磨、集束イオンビーム法、又はこれらを併用して先鋭化し、電界蒸発又はフラッシングにより清浄化して、結晶軸に垂直な結晶面テラスを先端に形成する
    ことを特徴とする電界放出型電子源の製造方法。
PCT/JP2016/057109 2015-04-17 2016-03-08 電界放出型電子源及びその製造方法 WO2016167048A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015084643A JP2016207319A (ja) 2015-04-17 2015-04-17 電界放出型電子源及びその製造方法
JP2015-084643 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016167048A1 true WO2016167048A1 (ja) 2016-10-20

Family

ID=57125880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057109 WO2016167048A1 (ja) 2015-04-17 2016-03-08 電界放出型電子源及びその製造方法

Country Status (2)

Country Link
JP (1) JP2016207319A (ja)
WO (1) WO2016167048A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322329B2 (en) 2018-08-27 2022-05-03 Hitachi High-Tech Corporation Electron source, method for manufacturing the same, and electron beam device using the same
US11651924B1 (en) 2022-06-22 2023-05-16 Fei Company Method of producing microrods for electron emitters, and associated microrods and electron emitters
EP4050637A4 (en) * 2019-10-21 2023-12-20 National Institute for Materials Science TRANSMITTER, ELECTRON GUN USING SAME, ELECTRONIC DEVICE USING SAME AND METHOD FOR MANUFACTURING SAME

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984358A (ja) * 1972-12-18 1974-08-13
JPS5293264A (en) * 1976-02-02 1977-08-05 Hitachi Ltd Cathode of electrolytic radiation
JP2008177017A (ja) * 2007-01-18 2008-07-31 Sumitomo Electric Ind Ltd 電子源用チップ及びその製造方法
WO2014007121A1 (ja) * 2012-07-03 2014-01-09 独立行政法人物質・材料研究機構 六ホウ化金属冷電界エミッター、その製造方法及び電子銃
US20150054398A1 (en) * 2012-04-13 2015-02-26 TongYuan textile limited, Electrode material with low work function and high chemical stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984358A (ja) * 1972-12-18 1974-08-13
JPS5293264A (en) * 1976-02-02 1977-08-05 Hitachi Ltd Cathode of electrolytic radiation
JP2008177017A (ja) * 2007-01-18 2008-07-31 Sumitomo Electric Ind Ltd 電子源用チップ及びその製造方法
US20150054398A1 (en) * 2012-04-13 2015-02-26 TongYuan textile limited, Electrode material with low work function and high chemical stability
WO2014007121A1 (ja) * 2012-07-03 2014-01-09 独立行政法人物質・材料研究機構 六ホウ化金属冷電界エミッター、その製造方法及び電子銃

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322329B2 (en) 2018-08-27 2022-05-03 Hitachi High-Tech Corporation Electron source, method for manufacturing the same, and electron beam device using the same
EP4050637A4 (en) * 2019-10-21 2023-12-20 National Institute for Materials Science TRANSMITTER, ELECTRON GUN USING SAME, ELECTRONIC DEVICE USING SAME AND METHOD FOR MANUFACTURING SAME
US11915920B2 (en) 2019-10-21 2024-02-27 National Institute For Materials Science Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same
US11651924B1 (en) 2022-06-22 2023-05-16 Fei Company Method of producing microrods for electron emitters, and associated microrods and electron emitters
CN117301327A (zh) * 2022-06-22 2023-12-29 Fei 公司 生产用于电子发射器的微棒的方法及相关联的微棒和电子发射器
TWI842577B (zh) * 2022-06-22 2024-05-11 美商Fei公司 產生用於電子發射器之微米棒及關聯微米棒及電子發射器的方法

Also Published As

Publication number Publication date
JP2016207319A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
JP4868294B2 (ja) ダイヤモンド電子放射陰極、電子放射源、電子顕微鏡及び電子ビーム露光機
JP5794598B2 (ja) 六ホウ化金属冷電界エミッター、その製造方法及び電子銃
US10586674B2 (en) Field emission electron source, method for manufacturing same, and electron beam device
WO2016167048A1 (ja) 電界放出型電子源及びその製造方法
US10707046B2 (en) Electron source and electron beam device using the same
JP2019525401A (ja) 高輝度でホウ素を含有する真空環境用電子ビームエミッタ
JP7369473B2 (ja) エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP5063715B2 (ja) 電子源,電子銃、それを用いた電子顕微鏡装置及び電子線描画装置
JPWO2006075715A1 (ja) 電子源の製造方法
JP6804120B2 (ja) エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP4446667B2 (ja) Cnt(カーボンナノチューブ)チップ及びその製造方法、並びに電子銃及び走査型プローブ顕微鏡用探針
WO2022064557A1 (ja) 電子源とその製造方法およびそれを用いた電子線装置
JP7295974B2 (ja) 電子源、電子線装置および電子源の製造方法
JPWO2008001805A1 (ja) ダイヤモンド電子放射陰極、電子源、電子顕微鏡及び電子ビーム露光機
JP5047062B2 (ja) 熱電子放射陰極
EP4379767A1 (en) Electron source, manufacturing method therefor, and device comprising electron source
JPH03274642A (ja) 高輝度L↓aB↓6陰極
JP2011044254A (ja) 電子放出素子、及び、電子放出素子の作製方法
JP2010067452A (ja) 電子放射陰極、電子顕微鏡および電子ビーム露光機
Sun et al. Field emission properties of point emitters fabricated using carbon nanotubes on the graphite rod
JP2010238367A (ja) 高効率ダイヤモンド電子銃
JP2008021535A (ja) 電子放射源
JP2011249033A (ja) 突起構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779840

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779840

Country of ref document: EP

Kind code of ref document: A1