WO2022064557A1 - 電子源とその製造方法およびそれを用いた電子線装置 - Google Patents

電子源とその製造方法およびそれを用いた電子線装置 Download PDF

Info

Publication number
WO2022064557A1
WO2022064557A1 PCT/JP2020/035749 JP2020035749W WO2022064557A1 WO 2022064557 A1 WO2022064557 A1 WO 2022064557A1 JP 2020035749 W JP2020035749 W JP 2020035749W WO 2022064557 A1 WO2022064557 A1 WO 2022064557A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
electron source
chip
electron
tip
Prior art date
Application number
PCT/JP2020/035749
Other languages
English (en)
French (fr)
Inventor
敏明 楠
紀明 荒井
富博 橋詰
圭吾 糟谷
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2020/035749 priority Critical patent/WO2022064557A1/ja
Priority to JP2022551462A priority patent/JP7403678B2/ja
Priority to US18/018,900 priority patent/US20230317401A1/en
Publication of WO2022064557A1 publication Critical patent/WO2022064557A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/075Electron guns using thermionic emission from cathodes heated by particle bombardment or by irradiation, e.g. by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure

Definitions

  • the present invention relates to an electron source of an electron beam device such as an electron microscope, a method for manufacturing the same, and an electron beam device using the same.
  • the electron microscope has a spatial resolution that exceeds the optical limit, and can observe the fine structure on the order of nm to pm and analyze the composition. Therefore, it is widely used in engineering fields such as materials, physics, medicine, biology, electricity, and machinery.
  • a scanning electron microscope SEM as a device that can easily observe the sample surface.
  • Electron sources used in electron beam devices such as electron microscopes include thermal electron sources (Thermionic Emitter: TE), field emission electron sources (Field Emitter: FE), and shotkey emission electron sources (Schottky Emitter: SE).
  • FIG. 1 Figures (a) to (c) of FIG. 1 show energy diagrams showing the operating principle of each electron source.
  • the thermoelectron source (TE) shown in FIG. 1 (a) heats a tungsten (W) filament processed into a hairpin shape to about 2500 ° C., and the electrons thermally excited in the W solid are the work of W.
  • the electron e is taken out into the vacuum by crossing the energy barrier of the function ⁇ (4.3 to 4.5 eV). Since the electron source is constantly heated, there is no contamination of the electron source surface due to gas adsorption, etc., and stable electron beams with little current fluctuation can be taken out.
  • the half-value full width ⁇ E TE of the emitted electrons is as wide as 3 to 4 eV, the electron emission area is wide, and the brightness B (unit area, emission current amount per unit solid angle) is 10 5 A / cm 2 sr ( The value at an acceleration voltage of 20 kV, the same applies below) is as low as possible.
  • thermionic sources of hexaborides such as LaB 6 whose work function ⁇ is 2.6 eV and lower than W are also used. Since the LaB 6 thermionic source has a low work function ⁇ , the operating temperature can be reduced to about 1400 to 1600 ° C, the full width at half maximum ⁇ E TE can be suppressed to 2 to 3 eV, and the brightness B is also about 10 6 A / cm 2 sr. It is possible to raise it.
  • Patent Documents 1 and 2 disclose a thermionic source that heats a hexaboride single crystal to emit thermionic electrons. These thermoelectron sources have a wide half-value energy width and low chromatic aberration due to large chromatic aberration of electron optical systems such as the objective lens of an electron microscope, but they are easy to handle and inexpensive, and are easy-to-use electron sources for scanning electron microscopes. , Used for transmission electron microscopes that are less affected by chromatic aberration.
  • the field emission electron source (FE) shown in FIG. 1 (b) has good monochromaticity and can emit a high-intensity electron beam, so that chromatic aberration of the electron optics system can be reduced and is used for a scanning electron microscope with high spatial resolution. It is used as an electron source.
  • a field emission electron source using a tungsten ⁇ 310 ⁇ crystal plane with a sharp tip is widely used.
  • a high electric field is applied by concentrating the external electric field F on the tip of the W chip, and the electron e in the W chip is quantum-mechanically transmitted through the effectively thinned energy barrier and released into a vacuum. Since it can operate at room temperature, the energy half width at half maximum ⁇ E FE of the extracted electrons e is as narrow as about 0.3 eV, and the brightness is 10 8 A because high-density electron beams are emitted from the narrow electron emission surface at the tip of a very sharp tip. It has a high feature of / cm 2 sr.
  • a field emission electron source using a hexaboride nanowire such as La B 6 having a low work function ⁇ has also been proposed in order to further narrow the energy half width ⁇ E and increase the brightness B even with a field emission electron source (for example, patent).
  • Document 3 Since the work function barrier is lower than that of W, it is possible to transmit electrons at a lower electric field and emit an electric field, further reducing the half-value full width at half maximum ⁇ E TE .
  • zirconium oxide (ZrO 2 ) as shown in Fig. 1 (c) is applied to the W chip and diffused on the W ⁇ 100 ⁇ crystal plane.
  • a / W shot key emission electron source (SE) is used.
  • the ZrO / W Schottky emission electron source is constantly heated to about 1400 to 1500 ° C, and ZrO thermally diffused to the tip of the W chip lowers the work function ⁇ of the ⁇ 100 ⁇ surface of the W chip to about 2.8 to 2.9 eV. , Thermions are emitted over the energy barrier of the work function ⁇ lowered by the Schottky effect due to the external electric field F applied to the tip of the chip and the mirror image potential.
  • the Schottky emission electron source can stably extract a large current density than the field emission electron source, but since the operating temperature is high, the energy half width ⁇ E SE is as large as 0.6 to 1 eV.
  • the inventors used hexaboride single crystals such as CeB 6 produced by the floating zone method, etc., and shaped the tip into a hemispherical shape by making full use of electrolytic polishing, field emission, etc., and further 700 to 1400.
  • a cold field emission electron source Cold Field Emitter, CFE
  • CFE Cold Field Emitter
  • the size of the hexahoidal single crystal created by the floating zone method is about 0.1 mm to 1 mm, it can be assembled into an electron source by human hands or using a machine, as in Patent Document 3. It has the advantage that it is cheaper and easier to produce with higher yield than an electron source using nanowires with a diameter of several tens to several hundreds of nanometers.
  • the field-emission electron source of this hexaboroid single crystal has better monochromaticity than the conventional field-emission electron source of W, and the ratio of the radiation angle current density J ⁇ ( ⁇ A / s r) to the total current It is J ⁇ / I.
  • the emission angle current density can be increased when t is 6 to 13 or more.
  • the field emission electron source is suitable for a scanning electron microscope having high spatial resolution because it has good monochromaticity of emitted electrons and can reduce chromatic aberration of an electron optical system such as an objective lens.
  • field emission electron source since the field emission electron source has a low operating temperature, residual gas or the like in the electron beam device is easily adsorbed on the electron emission surface, and there is a problem that the stability of the emission current is inferior.
  • field emission electron sources of hexaborides such as CeB 6 , which have a lower work function than W, are relatively more affected by changes in the work function due to gas adsorption and desorption.
  • the crystal surface of a hexaboride single crystal binds to residual oxygen and the work function is greatly increased.
  • electron guns equipped with these electron sources are required to have an ultra-high vacuum of 10-9 Pa or less.
  • it is not suitable for length measurement of semiconductor devices that require long-term stability for several months unless special methods such as preventing gas adsorption such as periodic heating are used.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to emit electrons from a local region of a desired shape- and time-varyingly stable electron emission surface, which is less affected by gas adsorption of hexaboroid single crystals.
  • a hexaboroforme single crystal that has both monochromaticity and long-term stability of emission current by using a stable electron beam and a method of suppressing the mixing of unstable electron beams emitted from other than the emission surface. It is to provide an electron beam device such as an electron microscope that can be used for various applications that provide an electron source and require high resolution and long-term stability.
  • the top facet of the ⁇ 100 ⁇ plane surrounded by the side facets consisting of the ⁇ n11 ⁇ plane with a high work function and the ⁇ n10 ⁇ plane with a low work function of at least 4 faces, and the ⁇ n11 ⁇ plane
  • the total area of the side facets is configured to be the total area of the side facets of ⁇ n10 ⁇ .
  • the method for manufacturing an electron source for a hexaboride single crystal chip is to electrolytically polish the tip portion of the hexaboride single crystal chip in the ⁇ 100> orientation.
  • the tip of the hexaboride single crystal is formed into a cone shape, and the tip of the hexaboride single crystal is formed into a cone shape while heating the tip of the hexaboride single crystal.
  • By applying the voltage of The top facet of the ⁇ 100 ⁇ surface surrounded by the side facets composed of the ⁇ n10 ⁇ surface is formed, and the total area of the side facets of the ⁇ n11 ⁇ surface> the total area of the side facets of the ⁇ n10 ⁇ surface. I tried to form it.
  • the electron source, the sample table on which the sample is placed, and the electrons emitted from the electron source are converged in a beam shape to irradiate the sample on the sample table.
  • the top facet of the ⁇ 100 ⁇ surface surrounded by the ⁇ surface and the side facet consisting of at least 4 ⁇ n10 ⁇ surfaces is formed, and the total area of the side facets of the ⁇ n11 ⁇ surface is> ⁇ n10 ⁇ . It was configured with a hexaborized single crystal chip, which is the total area of the side facets.
  • a new electron source having both monochromaticity and long-term stability of emission current, and an electron microscope equipped with this electron source can be used for various applications requiring high resolution and long-term stability.
  • Such as electron beam equipment can be provided.
  • FIG. 1 It is an energy diagram showing the operating principle of various electron sources used in an electron beam device such as an electron microscope. It is a perspective view which shows the crystal structure (unit lattice) of the hexaboride single crystal used in the electron source which concerns on Example 1.
  • FIG. It is a schematic diagram of the state which the chip of the quadrangular prism was cut out along the [100] crystal axis from the hexaboride single crystal grown on the [100] crystal axis which concerns on Example 1.
  • FIG. It is a perspective view which shows the state which attached the metal tube which concerns on Example 1 to the assembling table of the chip of the hexaboride single crystal.
  • FIG. 5 is a perspective view showing a positional relationship between a metal tube mounted on an assembly table of a hexaboride chip, a pressure welding tool, and a stereomicroscope to explain a method of joining the metal tube and the hexaboride single crystal chip according to the first embodiment.
  • .. It is a figure explaining the bonding structure of the metal tube and the chip of the hexaboride single crystal which concerns on Example 1, (a) is a plan view, (b) is a perspective view, (c) is a front sectional view. It is a front view of the structure which becomes the prototype of an electron source explaining the assembly structure of the electron source which concerns on Example 1.
  • FIG. 1 It is a figure explaining the alignment jig at the time of assembling the electron source which concerns on Example 1, (a) is the perspective view of the alignment jig which aligns a metal tube and a filament, and (b) is a spot a filament. It is a perspective view of the welded metal tube, the stem, and the alignment jig which aligns them. It is a figure explaining another example of the junction structure of the metal tube and the hexaboride single crystal chip which concerns on Example 1, (a) is a plan view, (b) is a perspective view, (c) is a front sectional view. Is. FIG.
  • FIG. 5 is a front sectional view showing a state in which an electron source structure is immersed in an electrolytic polishing liquid to explain a step of sharpening the tip of an electron source chip according to the first embodiment by electrolytic polishing. It is sectional drawing of the front of the hexaboride chip and the electrolytic polishing liquid which explains the principle of electrolytic polishing of the tip of the electron source which concerns on Example 1.
  • FIG. An SEM image of the shape of the tip of the electron source processed by electrolytic polishing using conventional technology.
  • (A) is an SEM image of the tip of the chip
  • (b) is an enlarged SEM image of the vicinity of the top of the tip of the chip.
  • (c) is an SEM image of the part surrounded by the circle 401 of (b) seen from directly above (in the direction of the central axis of the chip). It is an SEM image observing the crystal plane structure of the tip of the electron source produced by the manufacturing method of Example 1.
  • (a) is an SEM image of the tip of the chip, and (b) is an enlarged image of the vicinity of the top of the tip of the chip.
  • the SEM image, (c) is an SEM image of the part surrounded by the circle 401 of (b) seen from directly above (in the direction of the central axis of the chip). It is a schematic diagram of the chip tip structure of the electron source of the hexaboride single crystal of Example 1.
  • FIG. It is a front view of the electron source of the hexaboride single crystal which concerns on Example 1.
  • FIG. It is a figure which shows the process condition range of the manufacturing method of Example 1.
  • FIG. It is a field emission microscope observation image of the field electron emission of the hexaboride single crystal electron source at room temperature. It is a crystal electron source. It is a graph which shows the measurement result of the ratio of the radiation angle current density and the total current of the conventional hexaboride single crystal electron source, and the hexaboride single crystal electron source prepared in Example 1.
  • FIG. The field emission electron source using the chip of the hexaborozone single crystal using the ⁇ 100 ⁇ plane of Example 1 and the conventional ⁇ 310 ⁇ plane-based field emission electron source, also the conventional ⁇ 310 ⁇ .
  • Forming the top facet of the ⁇ 100 ⁇ face surrounded by the side facets consisting of the lower ⁇ n10 ⁇ faces of the function, and the total area of the side facets of the ⁇ n11 ⁇ face> ⁇ n10 ⁇ side facets It was found that it is effective to probe the electron beam from the facet of the ⁇ 100 ⁇ plane at the top as the total area. The reason will be described below.
  • the tip of the chip is shaped into a sphere by electric field evaporation, and then heated at 700 to 1400 ° C. for 2 minutes to several days, centering on the ⁇ 100 ⁇ plane.
  • the four-fold symmetric ⁇ 310 ⁇ plane grows, and its work function becomes as low as 2.46 eV.
  • the ⁇ 310 ⁇ plane not only has a low work function, but also becomes a sharp part compared to the curvature of the entire surface of the tip of the chip, and the degree of electric field concentration increases locally, which makes it easier to emit electrons.
  • the energy half-value full width ⁇ E FE is narrow, and the ratio J ⁇ / It of the emission angle current density J ⁇ ( ⁇ A / s r) to the total current It is 6 to 13 or more.
  • a high field emission electron source can be realized.
  • the lower the work function and the higher the concentration of the electric field the more sensitive it is to changes in the work function due to the adsorption and desorption of gas, and the electron gun can be used in an environment with a poor degree of vacuum, or a large current can be taken out and used as a lead-out electrode.
  • the probe current tends to become unstable when the amount of electron beam-stimulated desorption gas increases due to the colliding electron beam.
  • the ⁇ 100 ⁇ plane has a slightly higher work function than the ⁇ 310 ⁇ plane, and that the atomic plane density is higher than that of the ⁇ 310 ⁇ plane, which suppresses the vibration of atoms. It is easy to form flat and large area facets, and the electric field concentration is lowered. Furthermore, local work function changes due to gas adsorption and desorption during field electron emission are averaged in the plane of large facets, resulting in overall variation. It depends on becoming smaller. Therefore, current stability can be improved by forming a facet on the ⁇ 100 ⁇ plane at the tip of the hexaboride single crystal chip on the ⁇ 100> axis and probing the electron beam emitted from the ⁇ 100 ⁇ plane.
  • the high work function and the low field concentration indicate that the ⁇ 100 ⁇ plane is less likely to emit electrons than the ⁇ 310 ⁇ plane, and is formed around the ⁇ 100 ⁇ plane. Since electron emission from the 310 ⁇ plane is wasted, the problem is that the ratio of the radiation angle current density J ⁇ ( ⁇ A / s r) to the total current It is significantly reduced to less than 1.
  • a large side facet of the ⁇ n11 ⁇ plane such as the ⁇ 111 ⁇ plane, which has a higher work function than the ⁇ 100 ⁇ plane, is formed around the ⁇ 100 ⁇ plane, and the ⁇ 310 ⁇ plane has a lower work function than the ⁇ 100 ⁇ plane. It is effective to make the side facets of ⁇ n10 ⁇ planes such as ⁇ planes, ⁇ 210 ⁇ planes, and ⁇ 110 ⁇ planes small.
  • At least four surfaces having n 1,2,3 integers at the tip of the ⁇ 100> axis hexaboroid single crystal chip It forms a top facet of ⁇ 100 ⁇ planes surrounded by side facets consisting of a ⁇ n11 ⁇ plane with a high work function and at least four ⁇ n10 ⁇ planes with a low work function, and a ⁇ n10 ⁇ plane with a high work function.
  • Example 1 the structure of the field emission electron source (hereinafter, may be simply referred to as an electron source) of the hexaboride single crystal of the present invention and the method for producing the same will be described with reference to FIGS. 2 to 20.
  • an electron source the field emission electron source
  • a rare earth hexaboride single crystal is used as the material of the electron source.
  • lanthanoid elements such as La, Ce, Pr, Nd, Sm, Eu, and Gd can be used, and LaB 6 , CeB 6 , PrB 6 , NdB 6 , SmB 6 , EuB 6 , and GdB, respectively. It is represented by a chemical formula such as 6 .
  • FIG. 2 shows a schematic diagram of the unit cell 200.
  • the unit lattice 200 has a crystal structure in which six blocks of boron atoms 2 are located in the body center of a simple cubic lattice of metal atoms 1. These materials generally have a high melting point, low vapor pressure, high hardness, strong resistance to ionic impact, and a lower work function than W, making them suitable as materials for electron sources.
  • Ce and lanthanoid-based Pr, Nd, Sm, Eu, Gd, etc. which have a larger atomic weight than Ce, have f electrons with strong energy localization and high density of states just below the Fermi level, and emit current. It has a high electron density for supplying, and is suitable as a material for hexaborodide single crystals for producing field emission electron sources and Schottky electron sources.
  • hexaborodide single crystals for producing field emission electron sources and Schottky electron sources.
  • an example using a hexaboride single crystal of CeB 6 is shown.
  • these hexaborates have a diameter of several mm due to the growth of melt (liquid phase) crystals using, for example, the floating zone method, and are formed on the (100) plane of the crystal habit plane where the crystals grow preferentially. It is possible to create a large single crystal 3 with a length of 10 mm that grows in the vertical [100] crystal axis direction.
  • This single crystal 3 is cut into a prism with a side of 100 ⁇ m, a cylinder with a diameter of 100 ⁇ m, and a chip 4 with a length of several mm, and the (100) plane is used as an electron emitting plane.
  • a quadrangular prism having a side of 200 ⁇ m and a length of 5 mm or a cylinder having a diameter of 280 ⁇ m and a length of 5 mm was used.
  • the crystal structure of the hexaborized single crystal is a simple cubic lattice as shown in FIG. 2, and the (100) plane and the (010) plane and the (001) plane, the [100] crystal axis and the [010] crystal axis, [ 001]
  • the crystal axes and the like are equivalent, and the effect is the same regardless of which plane or axial direction is used. Therefore, in the following explanation, the equivalent surface group will be described as ⁇ 100 ⁇ , etc., and the equivalent axis group will be described as ⁇ 100>, etc.
  • the electron source according to this embodiment has a structure in which a hexaboride single crystal chip is arranged inside a metal tube such as tantalum or niobium.
  • a plurality of recesses are provided from at least two axial directions so as to surround the central axis, and the bottom of each of the plurality of recesses contacts the outer periphery of the chip of the hexaboride single crystal arranged inside. I tried to make it. As a result, the structure is such that the chips of the hexaboride single crystal do not fall off even when heated at a high temperature, and the bonding is strong and reliable.
  • a paste of a mixture of tetracarbide nanoparticles having an average particle size of 0.01 to 0.1 ⁇ m and a carbon resin is filled between the metal tube and the chip of the hexaboride single crystal, and the paste is cured and further carbonized. So, I tried to join with high heat resistance. Hereinafter, a specific description will be given.
  • the material of the metal tube used for bonding the hexaboride single crystal to the chip 4 is a refractory metal such as tantalum and niobium, and has high ductility. A material that makes it easy to process recesses is suitable.
  • tantalum as an example, a minute metal tube 11 having an outer diameter of ⁇ 500 ⁇ m, an inner diameter of ⁇ 320 ⁇ m, a wall thickness of 90 ⁇ m, and a length of 5 mm was produced.
  • the guide pin 12 is inserted into the metal tube 11 by using the pedestal 13 in which the guide pin 12 having a diameter of 300 ⁇ m and a length of 1 to 3 mm that enters the inner diameter of the metal tube 11 is erected vertically. Stand the metal tube 11 vertically with respect to the pedestal 13.
  • the paste 14 obtained by mixing nanoparticles such as boron tetracarbide B 4 C having an average particle size of 0.01 to 0.1 ⁇ m and a carbon resin such as furan resin is filled in the metal tube 11 from above.
  • nanoparticles having an average particle size of 0.05 ⁇ m were used.
  • the guide pin 12 can control the length h of the hexaboride single crystal chip 4 protruding from the inside of the metal tube 11.
  • the protruding length h is set to 2 to 3 mm.
  • FIG. 5 a special tool developed by the present inventor from two axes and four directions orthogonal to each other in a plane perpendicular to the vertical direction of the hexaboride single crystal chip 4 and the metal tube 11. Press with.
  • FIG. 5 for the sake of simplicity, only the blade 15 portion of the pressure welding tool is shown.
  • a pair of protrusions 150 for forming a recess in the metal tube 11 are provided vertically.
  • the blade 15 of the pressure welding tool is brought close to the metal tube 11 from two axes and four directions with an even stroke, and the protrusion 150 crushes the blade 15 from the outer circumference of the metal tube 11 to form the metal tube 11 as shown in FIG. 6 (c).
  • a plurality of recesses 17 are formed.
  • the positional relationship between the metal tube 11 and the hexaboride single crystal chip 4 was confirmed with a stereoscopic microscope 16, and each side surface of the hexaboride single crystal chip 4 of the square column was the stroke direction of the tool blade 15.
  • the axis of rotation of the hexaboride single crystal chip 4 is appropriately adjusted so as to match.
  • a plurality of recesses 17 are formed from the outer periphery of the metal tube 11 so as to surround the central axis, and the bottoms of the recesses 17 are pressed against the outer peripheral surface of the hexaboride single crystal chip 4 and come into contact with each other.
  • the hexaboride single crystal chip 4 can be automatically fixed in alignment with the central axis of the metal tube 11.
  • FIG. 6 is a schematic diagram of a hexaboride single crystal chip 4 and a metal tube 11 joined by the method of this embodiment.
  • FIG. 6A shows a plan view of the joint portion seen from the tip end side of the tip 4
  • FIG. 6B shows a perspective view of the tip 4
  • FIG. 6C shows a cross-sectional view of the tip 4 in the vertical direction.
  • the metal tube 11 and the hexaboride single crystal chip 4 can be pressed evenly from two axes and four directions, and mechanically strong joining can be obtained.
  • the hexboride single crystal chip 4 of a quadrangular prism is automatically placed on the central axis of the metal tube 11. Since it can be aligned and joined, the assembly accuracy is improved, so that the axis of the electron source is easily aligned and the yield is also improved. Furthermore, by joining at two points above and below in the axial direction, it is possible to prevent the tip 4 from tilting at the joint, which has the effect of further improving the accuracy of centering.
  • the paste 14 obtained by mixing nanoparticles of boron tetracarbide B 4 C and a carbon resin such as furan resin flexibly deforms, and between the deformed metal tube 11 and the chip 4 of the hexaboride single crystal. Fill without gaps. Since small nanoparticles having an average particle size of 0.1 ⁇ m or less are used as the paste 14, the hexaboride single crystal chip 4 is not damaged and damaged during pressure welding, and the yield in the pressure welding process can be improved. can.
  • the average particle size of the nanoparticles is 0.01 ⁇ m or more is that if the average particle size is too small, the apparent volume of the B 4 C powder increases and it becomes difficult to mix the paste, and the nanoparticles themselves are manufactured. This is because it becomes difficult and the cost becomes high.
  • the dotted line portion 11-1 in which the guide pin 12 is inserted in the metal tube 11 becomes unnecessary, so that the metal tube 11 is guided.
  • the paste 14 is heated in the air to cure the paste 14 and then heated at a high temperature of 1000 ° C. or higher for several hours in a vacuum to carbonize the paste 14. This makes it possible to eliminate degassing from the paste 14 and to form a reaction barrier layer that prevents the reaction at high temperatures between the metal tube 11 such as tantalum and the chip 4 of the hexaboride single crystal.
  • a filament 18 such as tungsten is directly spot welded to the metal tube 11 to which the hexaboride single crystal chip 4 is bonded. Further, both ends of the filament 18 are spot welded to a pair of electrodes 20 fixed to the stem 19 to form a structure 1001 which is a prototype of an electron source. Since the structure 1001 is formed by joining metals to each other, it is possible to easily obtain a strong joining by spot welding.
  • FIG. 8 (a) A specific example of the welding process for forming this structure 1001 will be described with reference to FIG.
  • the alignment jig 21 as shown in FIG. 8 (a) is used.
  • the filament 18 such as tungsten is accurately aligned with the metal tube 11 by using the alignment jig 21-1, and the metal tube 11 and the filament 18 are spot welded.
  • the metal tube 11 to which the filament 18 is spot welded and the stem 19 are accurately aligned using the alignment jig 21-2 to form the filament 18 and the stem 19.
  • a pair of fixed electrodes 20 are spot welded to form a structure 1001.
  • the alignment jigs 21-1 and 21-2 they are fixed to the central axis of the metal tube 11 and the chip 4 of the hexaboride single crystal and the stem 19 at the stage of assembling as the structure 1001. Since the centers of the pair of electrodes 20 are aligned, the structure 1001 can be centered with high accuracy.
  • a hexaboride single crystal chip 4 cut into a square columnar shape was used as a component of the structure 1001.
  • the hexaboride single crystal chip 4 may be processed into a cylinder.
  • FIG. 9 shows an example in which a cylindrical hexaboride single crystal chip 4-1 is used.
  • the special tool developed in this embodiment may be used for pressure welding.
  • FIGS. 9 (b) and 9 (c) after cutting the portion corresponding to the portion 11-1 that becomes unnecessary after the pressure welding of the four chips of the hexaboride single crystal of the metal tube 11 described in FIG. Indicates the state of.
  • the metal tube 11 and the cylindrical hexaboride single crystal chip 4-1 are biaxially arranged. Of course, it does not matter if they are joined by pressure welding from four directions.
  • the tip of the hexaboride single crystal chip 4 protruding from the metal tube 11 is electropolished to a pyramidal diameter.
  • electrolytic polishing the tip portion of the hexaboride single crystal chip 4 assembled as shown in FIG. 10 is dipped in an electrolytic solution 22 such as nitric acid placed in a container 25 to form a ring-shaped counter electrode such as platinum. It is performed by applying a voltage from the AC or DC power supply 24 to the 23.
  • the hexaboride single crystal chip 4 forms a meniscus on the liquid surface when immersed in the electrolytic solution (electrolytic polishing liquid) 22, and the polishing speed of the liquid surface portion is slow and the polishing speed of the submerged portion is high. fast.
  • the electrolytic current decreases.
  • the tip portion 40 can be machined into a tapered cone as shown by the dotted line in FIG.
  • FIGS. 12 (a) to 12 (c) An example of an SEM image near the tip 40 of the hexaboride single crystal chip 4 processed in FIGS. 12 (a) to 12 (c) is shown.
  • the cone angle ⁇ of the tip 40 of the tip 4 whose diameter is reduced by electrolytic polishing shown in FIG. 12 (a) can be freely controlled by the liquid composition, electrolytic voltage, cutoff current, etc. at the time of electrolytic polishing. ..
  • FIG. 12 (b) shows an SEM image of the apex 401 surrounded by the dotted circle of the tip 40 of the tip 4 in FIG. 12 (b) observed from directly above.
  • the 401 near the apex is processed smoothly, and it is difficult to determine the boundary of the crystal plane.
  • the crystal plane on the side surface of the tip 40 is formed in a desired state with respect to the hexaboride single crystal chip 4 in which the tip 40 is reduced in diameter by electrolytic polishing.
  • a stable electron emitting surface was formed.
  • a method for forming a crystal plane on the side surface of the tip portion 40 of the hexaboride single crystal chip 4 in a desired state will be described.
  • a hexaboride single crystal chip 4 that has been electrolyzed and processed into the shape of the tip 40 as shown in FIG. 12 is set in a vacuum chamber (not shown), and is subjected to a new manufacturing process developed in this embodiment.
  • the feature of the manufacturing method in this embodiment is that the electropolished chip 4 is heated in a vacuum at 1500 to 1700 ° C. and an electric field of 1 to 4.5 ⁇ 10 9 V / m is applied to make the chip 4 positive. be.
  • the tip portion of a chip whose diameter has been reduced to a pyramid shape by electrolytic polishing is processed into a hemispherical shape by electric field evaporation. After that, heat treatment is performed to form a ⁇ 310 ⁇ surface that becomes an electron emission surface.
  • Electric field evaporation is a method in which atoms on the tip surface are ionized and gradually stripped off by applying a positive electric field of several tens of ⁇ 10 9 V / m to the electron source.
  • Electric field evaporation occurs preferentially in places where the electric field strength is strong. For this reason, atoms on sharp points and steps on the surface evaporate, and the entire surface can be evaporated over time. Eventually, when the electric field evaporation progresses sufficiently, the tip portion of the chip becomes a spherical shape in which the electric field strength becomes uniform over the entire surface. Electric field evaporation can be performed even in a vacuum, but it can be performed while observing the surface image of the tip of the electron source by introducing an imaging gas such as He, Ne, or H 2 from 10 -3 Pa to 10 -2 Pa. .. This observation method is called a field ion microscope (FIM).
  • FIM field ion microscope
  • the imaging gas is ionized at the tip of the electron source and emitted radially.
  • MCP microchannel plate
  • a hexaboride single crystal chip with a hemispherical tip is then heated at 700-1400 ° C for 2 minutes to several days to form a four-fold symmetric ⁇ 310 ⁇ plane around the ⁇ 100 ⁇ plane.
  • An electron emitting part is formed, and one of them is used as an electron emitting surface.
  • the electropolished hexaboride single crystal is heated to about 1400 to 1500 ° C, and the top of the ⁇ 100 ⁇ surface is heated. A facet is formed and used as an electron emitting surface. At this time, it is shown that the ⁇ 210 ⁇ plane and the ⁇ 110 ⁇ plane grow larger than the ⁇ 111 ⁇ plane on the side surface of the tip of the chip.
  • the hexaboride single crystal chip 4 is a refractory material, but when heated to 700 to 1400 ° C. in a vacuum, the crystal plane of the tip 40 of the chip 4 is particularly reconstructed due to the atomic movement on the surface. Further, when heated to 1500 ° C or higher, evaporation from the surface gradually progresses and the crystal structure of the surface collapses, and when the temperature is 1600 ° C or higher, evaporation becomes more remarkable.
  • the heating at 1500 to 1700 ° C. in the production method according to this embodiment mainly plays a role of evaporation, and when the chip 4 of the hexaboride single crystal is heated without applying an electric field at all, the chip 4 is used. It is known that the tip portion 40 of the tip 40 is thinned while maintaining a similar shape of the shape created by electrolytic polishing. When heated to 1700 ° C or higher, evaporation becomes intense and it becomes difficult to maintain a similar figure of the shape created by electrolytic polishing.
  • the chip surface evaporates to some extent only by heating at 1500 to 1700 ° C, but thermal electric field evaporation occurs with the effect of the electric field added to it.
  • the feature of thermal electric field evaporation is that, unlike evaporation by heating alone, the pointed portion of the chip evaporates preferentially, so that the tip of the chip is processed so as to have a shape close to a hemisphere as a whole.
  • the applied electric field has a positive electrode property.
  • FIG. 13 shows an SEM photograph of the tip 41 of the hexaboride single crystal chip 4 after being processed by the method according to this embodiment.
  • the tip portion 41 of the chip 4 is reduced in diameter as a whole as compared with the tip portion 40 shown in FIG. 12 (a) due to thermal electric field evaporation, and from the tip portion 41 of the chip 4.
  • the cone angle ⁇ in the range of about 10 ⁇ m is 16 °, which is smaller than 20 ° immediately after electrolytic polishing shown in FIG. 12 (a).
  • the tip of the chip 4 is shown.
  • a facet of ⁇ 100 ⁇ planes is formed on the top of the portion 41, and four ⁇ 111 ⁇ planes and four (110) planes are formed on the side of the tip portion 41, and the ⁇ 111 ⁇ planes are formed.
  • small ⁇ 311 ⁇ and ⁇ 211 ⁇ planes are formed at the boundary between the ⁇ 100 ⁇ plane and the ⁇ 111 ⁇ plane, and the ⁇ 100 ⁇ plane and the (110 ⁇ plane are formed.
  • Small ⁇ 310 ⁇ or (210) planes may be formed at the boundaries between the) planes. These high exponential planes have a large tip curvature, and are more likely to be formed as the inclination angle of the transition region between the ⁇ 100 ⁇ plane, the ⁇ 111 ⁇ plane, and the (110) plane becomes gentler.
  • the radius of curvature R of the proximity circle at the tip of the chip to be created is smaller. Is preferably R ⁇ 0.5 ⁇ m.
  • R it is also desirable to reduce R to reduce the diameter of the light source, but if R is made too small, the size of the facet on the ⁇ 100 ⁇ surface at the top will also be small, and sufficient probe current will not be obtained. Therefore, it is preferable to set 0.2 ⁇ m ⁇ R ⁇ 0.5 ⁇ m.
  • the area A of the facet on the ⁇ 100 ⁇ surface of the top is preferably 0.01 ⁇ A ⁇ 0.1 mm 2
  • the cone angle ⁇ at the tip of the chip is also preferably 25 ° ⁇ ⁇ ⁇ 10 °. .. If the cone angle is too large, R tends to be large, and if it is too small, R and facet size will also be small.
  • FIG. 14 shows a schematic diagram of the structure of the hexaboride single crystal chip 4 according to the present embodiment, which summarizes the above characteristics.
  • the schematic diagram of FIG. 14 corresponds to 410 circled by the tip 41 of the tip 4 of the hexaboride single crystal shown in the SEM photograph of FIG. 13 (b).
  • the tip 41 of the hexaboride single crystal chip 4 according to this embodiment has a cone angle ⁇ formed between 25 ° and 10 °.
  • a ⁇ 100 ⁇ plane is formed with a size of 0.01 to 0.1 mm 2 .
  • FIG. 15 shows the configuration of the electron source 100 manufactured by the method of this embodiment.
  • the apex 411 formed by the ⁇ 100 ⁇ plane and the apex 411 are surrounded by the apex 411.
  • FIG. 16 summarizes the conditions of the manufacturing method of the tip portion 41 of the hexaboride single crystal chip 4 according to this embodiment in comparison with the prior art, with respect to the heating temperature and the applied positive electric field strength.
  • ⁇ 100> shows a map of how the tip of a hexaboride single crystal is machined.
  • Region 152 is a region disclosed in conventional examples such as Patent Documents 1 and 4, in which the heating temperature is as low as 1500 ° C. and no electric field is applied or the electric field strength is 4.5 ⁇ 10 9 V / m or less.
  • the crystal plane is reconstructed mainly by atomic movement due to heating, and a ⁇ 100 ⁇ plane facet is formed on the top and a side facet on the ⁇ n10 ⁇ > ⁇ n11 ⁇ plane is formed on the side. ..
  • the region 151 when an electric field of 1 to 4.5 ⁇ 10 9 V / m is applied while heating to 1500 to 1700 ° C., the effect of thermal electric field evaporation and the effect of build-up are combined, and the top is The facet of the ⁇ 100 ⁇ plane is formed, and the side facet of the ⁇ n11 ⁇ > ⁇ n10 ⁇ plane is formed on the side.
  • evaporation due to heating, electric field, or both becomes predominant, and the chip tip shape as described in this embodiment is not formed.
  • FIG. 17 (a) shows the field electron emission of the hexaboride single crystal electron source prepared by the conventional manufacturing method
  • FIG. 17 (b) shows the field electron emission from the hexaboride single crystal electron source prepared in this embodiment.
  • the result observed by the emission microscope is shown.
  • electron emission from each crystal plane at the tip of a chip can be magnified and projected onto a phosphor screen.
  • FIG. 18 shows the entire chip when the hexaborized single crystal electron source prepared by the above-mentioned conventional manufacturing method and the hexaborized single crystal electron source prepared by the manufacturing method according to this embodiment are field-emitted at room temperature. It is the result of measuring the total current It (A) and the emission angle current density J ⁇ ( ⁇ A / sr) of the probe current taken out from the electron emission part on the top ⁇ 100 ⁇ surface. 181 shows the measurement results of this example, and 182 shows the measurement results of the conventional example.
  • J ⁇ / It t (curve in FIG. 18) of the hexaborized single crystal electron source having the total area of the ⁇ n10 ⁇ planes the total area of the ⁇ n11 ⁇ planes prepared by the manufacturing method of this example, although the degree is low.
  • the slope (corresponding to the inclination of 181) is 2.6 to 4, which is a significant improvement of 3.25 to 4 times compared to the curve 182 corresponding to the hexavalent single crystal electron source prepared by the conventional manufacturing method.
  • FIG. 19 shows a field-emission electron source using a hexaborozone single crystal with a ⁇ 100 ⁇ plane on the top and a conventional field-emission electron source with a hexaborofume field-emission electron source using a ⁇ 310 ⁇ plane on the top according to the present embodiment. It is also the result of comparing the full width at half maximum of the emitted electrons of the field emission electron source of W using the ⁇ 310 ⁇ plane on the top of the conventional one.
  • 191 is a field emission electron source using a hexaborized single crystal with a ⁇ 100 ⁇ plane on the top according to this embodiment
  • 192 is a conventional field emission electron source using a ⁇ 310 ⁇ plane on the top
  • Emission electron source, 193 shows the relationship between the emission angle current density of the field emission electron source of W using the ⁇ 310 ⁇ plane at the top and the energy half-value full width of the emission electrons.
  • the work function of the ⁇ 100 ⁇ plane of the hexaboride is 2.7 to 2.8 eV, which is considered to be 0.2 to 0.3 eV higher than that of the ⁇ 310 ⁇ plane, but compared to the 4.3 eV of the W ⁇ 310 ⁇ plane. And 1.5 eV or more low. Therefore, the energy width is slightly wider than that of the field emission electron source using the ⁇ 310 ⁇ plane of the hexaboroid single crystal, but the energy half width is narrower than that of the field emission electron source using W ⁇ 310 ⁇ . It can be used as an electron source with good monochromaticity.
  • FIG. 20 shows the stability of the current when the electron source 100 using the hexaboride single crystal chip 4 using the ⁇ 100 ⁇ plane on the top according to this embodiment is discharged into a cold electric field in an electron gun at room temperature. It is the result of evaluation. As shown in FIG. 20 (a), the emission current noise of the current value 201 in a short time is ⁇ 2 to 4%, and as shown in FIG. 20 (b), the attenuation of the current value 202 in a long time is also 8 hours. By flushing at a low rate of about 25% and about once a day, the current stability required as a field emission electron source used in a general-purpose electron microscope can be obtained.
  • FIG. 21 is a result of evaluating the current stability when the electron source 100 using the hexaboride single crystal chip 4 is operated in the thermal field emission mode heated to 160 ° C.
  • the emitted current noise in a short time is ⁇ 2 to 3%
  • the amount of current attenuation is also 8 hours.
  • the stability is improved with a further decrease of about 10%. Improving stability in such a thermal field emission mode is effective in a heating range of about 100 to 300 ° C.
  • the top facet of the ⁇ 100 ⁇ surface surrounded by the side facets consisting of at least 4 low work function ⁇ n10 ⁇ surfaces is formed, and the total area of the side facets of the ⁇ n11 ⁇ surface is> ⁇
  • the area A of the top facet of the ⁇ 100 ⁇ plane of the above hexaborized single crystal chip is 0.01 ⁇ A ⁇ 0.1 ⁇ m 2
  • the radius of curvature R of the adjacent circle at the tip of the chip is 0.2 ⁇ R ⁇ 0.5 ⁇ m. It is realized more effectively when the cone angle ⁇ of the cone at the tip of the tip is 25 ° ⁇ ⁇ ⁇ 10 °.
  • the above-mentioned electron source is a single crystal chip obtained by sharpening one end of a rod of a hexahoidal single crystal of ⁇ 100> axis by electrolytic polishing or the like, and heating the single crystal chip at 1500 ° C or higher and 1700 ° C or lower, and the single crystal chip is heated.
  • the above electron sources are a cold cathode field emission electron source that operates at a temperature of room temperature or lower as described in this embodiment, and a thermal field emission electron that operates by heating at a relatively low temperature of about 100 to 300 ° C. In addition to the source, it can be used as a shotkey electron source that operates by heating to about 1050 ° C to 1400 ° C.
  • Example 2 the example when the electron source 100 using the hexaboride single crystal chip produced in Example 1 is heated to about 1050 to 1400 ° C. and operated in the shot key mode will be described.
  • the work function of the ⁇ 100 ⁇ plane of the CeB 6 single crystal of the hexaboride is about 2.7 to 2.8 eV, which is about 0.2 to 0.3 eV lower than the work function of the conventional Zr-O / W Schottky electron source of 2.9 eV. Therefore, it is expected that more monochromatic Schottky electron emission can be obtained at the same radiation angle current density.
  • FIG. 22 shows the radiation angle current densities when the electron source 100 using the hexaboride single crystal chip is operated at 1327 ° C and the conventional Zr-O / W electron source is operated at 1427 ° C. This is the result of comparing the full width of the half energy value.
  • Curve 221 shows the half-value energy full-width characteristic of the electron source 100 with respect to the radiation angle current density of the hexaboroideic single crystal chip
  • curve 222 shows the energy half-value of the conventional Zr-O / W electron source with respect to the radiation angle current density. It shows the characteristics of the full width.
  • the energy half-value full width at the same radiation angle current density is 0.1 eV or more lower in the electron source 100 using the hexaboride single crystal chip than in the case of the conventional Zr-O / W electron source, and is more monochromatic. It can be seen that a highly reliable shotkey electron source can be realized.
  • FIG. 23 is a comparison of the short-time current stability of the Schottky electron source using the ⁇ 100 ⁇ plane and the ⁇ 310 ⁇ plane of the hexaboride single crystal chip 4 described in Example 1.
  • FIG. 23 (a) shows the time change of the radiation angle current density in the (100) plane as the ⁇ 100 ⁇ plane
  • FIG. 23 (b) shows the radiation angle current density in the (310) plane as the ⁇ 310 ⁇ plane. Shows the time change of.
  • the Schottky electron source has a more stable emission current than the cold field emission electron source, but the ⁇ 100 ⁇ plane is used compared to the noise ⁇ 3-4% of the Schottky electron source using the ⁇ 310 ⁇ plane. It can be seen that the Schottky electron source of the present invention has a small emission current noise of ⁇ 1%, and the stability is further improved.
  • the emission angle is the same as that of the conventional Schottky electron source.
  • Schottky electron emission with better monochromaticity, less noise and improved stability can be obtained. Since the Schottky electron source does not have remarkable current attenuation unlike the field emission electron source, it can be applied to the length measurement of semiconductor devices that require long-term stability.
  • Example 3 will be described with reference to FIG. 24. The matters described in Example 1 or 2 and not described in Example 3 can also be applied to Example 3 unless there are special circumstances.
  • An example of the electron microscope 1000 is shown. Although the scanning electron microscope 1000 using the field emission electron source 100 of the first embodiment will be described as an example in the third embodiment, the shotkey electron emission source of the second embodiment may be used, and the method of the electron beam apparatus may be used. Is not limited to the scanning electron microscope.
  • FIG. 24 is a schematic view of the scanning electron microscope 1000 according to the third embodiment.
  • the field emission electron source 100 is constantly heated by passing a constant current through a heating power supply 103 controlled by a computer 101 and a controller 102, and a positive voltage is applied to the extraction electrode 105 by the extraction power supply 104 with respect to the tip of the chip 4. Then, electrons are emitted by field emission.
  • the emitted electron beam 106 is accelerated toward the grounded anode 108 by the negative high voltage applied by the acceleration power supply 107, and is accelerated toward the grounded anode 108, the first condenser lens 109, the aperture 110, the second condenser lens 111, the objective lens 112, It is focused by the non-point aberration correction coil 113, scanned by the deflection scanning coil 114, irradiated to the observation region on the sample 115, and the generated secondary electrons are detected by the secondary electron detector 116.
  • an example of a two-electrode configuration of the extraction electrode 105 and the anode 108 is shown, but a three-electrode configuration in which a control electrode is inserted between the extraction electrode 105 and the anode 108, or a chip is surrounded in front of the extraction electrode 105.
  • a 4-electrode configuration in which a suppressor electrode is provided may be used.
  • the detector is not shown except for the secondary electron detector, a backscattered electron detector and an elemental analyzer are also used.
  • the electrons emitted from the electron emission source 100 are the electric field using the conventional W ⁇ 310 ⁇ plane as shown in FIG. Since the half-value full width of the energy is narrower than that of the emitted electron source and the monochromaticity is good, chromatic aberration in the objective lens 112 and the like is reduced, and the sample 115 can be irradiated with a more focused electron beam 106, which is a highly resolved scanning electron microscope image. Can be obtained.
  • the electrons emitted from the field emission electron source 100 have good monochromaticity and the spread from the electron source is small, it is possible to reduce the irradiation of extra electrons to the members around the electron source as compared with the conventional electron source. It is possible to reduce the contamination on the sample irradiated with the electron beam.
  • the conventional Zr-O / W ⁇ 110 ⁇ plane can be used. Since the full width at half maximum of energy is narrower and the monochromaticity is better than that of the Schottky emission electron source used, the same improvement effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

六ホウ化物単結晶の{100}面を電子放出面として用いる電界放出電子源およびショットキー電子源の電流安定性を向上させる。電子源を構成する<100>軸の六ホウ化物単結晶のチップの先端を、n=1,2,3の整数とする少なくとも4面の{n11}面と、少なくとも4面の{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積 > { n10 }の側部ファセットの合計面積 であるように形成した。

Description

電子源とその製造方法およびそれを用いた電子線装置
 本発明は、電子顕微鏡などの電子線装置の電子源とその製造方法およびそれを用いた電子線装置に関する。
 電子顕微鏡は光学限界を超えた空間分解能をもち、nmからpmオーダの微細構造の観察と組成の分析ができる。このため、材料や物理学、医学、生物学、電気、機械などの工学分野で広く利用されている。電子顕微鏡のなかでも、簡便に試料表面の観察を行える装置として走査型電子顕微鏡(Scanning Electron Microscope : SEM) がある。
 電子顕微鏡などの電子線装置に用いられる電子源として、熱電子源(Thermionic Emitter:TE)、電界放出電子源(Field Emitter:FE)、ショットキー放出電子源(Schottky Emitter: SE)がある。
 図1の(a)~(c)に各電子源の動作原理を示したエネルギーダイアグラムを示す。 
 図1の(a)に示す熱電子源(TE)は、ヘアピン状に加工されたタングステン(W)のフィラメントを2500 ℃程度に加熱し、Wの固体内で熱励起された電子をWの仕事関数Φ(4.3~4.5 eV)のエネルギー障壁を越えさせることにより電子eを真空中に取り出す。電子源が常時加熱されているため、ガス吸着などによる電子源表面の汚染がなく、電流変動が少ない安定した電子線を取り出せる。その半面、放出電子のエネルギー半値全幅ΔETEは3~4 eVと広く、また電子放出面積が広く、輝度B(単位面積、単位立体角当たりの放出電流量)は105 A/cm2sr(加速電圧20 kVでの値、以下同様)程度と低い。
 そのため、仕事関数Φが2.6 eVとWより低いLaBなどの六ホウ化物の熱電子源も用いられている。LaB熱電子源は仕事関数Φが低いため動作温度を1400~1600℃程度まで低減でき、エネルギー半値全幅ΔETEを2~3 eVに抑制でき、輝度Bも106A/cm2sr程度に上げることが可能である。
 特許文献1および2には、六ホウ化物単結晶を加熱して熱電子を放出する熱電子源が開示されている。これらの熱電子源は、エネルギー半値全幅が広く、電子顕微鏡の対物レンズなどの電子光学系の色収差が大きいため低空間分解能だが、取り扱いが容易で安価な簡易型の走査電子顕微鏡用の電子源や、色収差の影響の少ない透過型電子顕微鏡などに用いられる。
 図1の(b)に示す電界放出電子源(FE)は、単色性がよく高輝度の電子ビームを放出できるため、電子光学系の色収差を低減でき、高空間分解能の走査型電子顕微鏡用の電子源として使用されている。電界放出電子源には先端を尖らせたタングステンの{310}結晶面を用いたものが広く用いられている。
 外部電界FをWチップ先端に集中させることにより高電界を印加し、Wチップ内の電子eを実効的に薄くなったエネルギー障壁を量子力学的に透過させて真空中に放出させる。室温で動作できるため、引き出される電子eのエネルギー半値全幅ΔEFEは0.3 eV程度と狭く、また非常に尖ったチップ先端の狭い電子放出面から高密度の電子線を放出するため輝度が108 A/cm2srと高い特徴を有する。
 電界放出電子源でもさらにエネルギー半値全幅ΔEを狭くし、輝度Bを上げるため、仕事関数Φが低いLaB6などの六ホウ化物のナノワイヤを用いた電界放出電子源も提案されている(例えば、特許文献3)。Wに比べ仕事関数障壁が低いため、より低電界で電子を透過させ電界放出できエネルギー半値全幅ΔETEをさらに低減することが可能である。
 一方、半導体デバイスの寸法計測などを行う測長走査電子顕微鏡では、図1の(c)に示すような酸化ジルコニウム(ZrO2)をWチップに塗布しW{100}結晶面に拡散させたZrO/Wのショットキー放出電子源(SE)が用いられる。
 ZrO/Wショットキー放出電子源は常時1400~1500 ℃程度に加熱されており、Wチップ先端に熱拡散したZrOがWチップの{100}面の仕事関数Φを2.8~2.9 eV程度に下げるとともに、チップ先端に印加された外部電界Fと鏡像ポテンシャルによるショットキー効果により引き下げられた仕事関数Φのエネルギー障壁を越して熱電子が放出されるものである。ショットキー放出電子源は電界放出電子源より大電流密度を安定に取り出せるが、動作温度が高いためエネルギー半値全幅ΔESEは0.6~1 eV程度と大きくなる。
 発明者らは、これまでにフローティングゾーン法などで作製したCeB6などの六ホウ化物単結晶を用い、その先端を電解研磨、電界蒸発などを駆使して半球状に整形し、さらに700~1400℃の加熱処理を行うことで仕事関数の低いCeB6の{310}結晶面を形成し、室温で電界放出させる冷電界放出電子源(Cold Field Emitter、CFE)を開発し開示してきた(特許文献4)。
 フローティングゾーン法などで作成した六ホウ化物単結晶の大きさは0.1 mmから1 mm程度であることから、人の手や、機械を用いて電子源へと組み立てることができ、特許文献3のような直径が数十から数百ナノメートル程度のナノワイヤを用いる電子源より安価で簡便に歩留まり高く生産できる利点がある。
 この六ホウ化物単結晶の電界放出電子源は従来のWの電界放出電子源に比べて単色性がよく、また全電流Itに対する放射角電流密度JΩ(μA/ s r)の比JΩ/ I tが6~13以上と放射角電流密度が高めることができる。この発明により、特に低加速電圧での走査電子顕微鏡の色収差を改善でき、試料の極表面の観察や、炭素系化合物などの軽元素物質の観察の高空間分解能化が可能となる。
特公昭60-31059号公報 特開昭57-141839号公報 特許第05660564号公報 国際公開WO2018/070010号明細書
 電界放出電子源は、放出電子の単色性がよく対物レンズなどの電子光学系の色収差を低減できるため、高空間分解能の走査電子顕微鏡に適する。特に上記特許文献4の発明のように仕事関数の低いCeB6の{310}結晶面を用いると単色性がさらに向上し望ましい。
 しかしながら、電界放出電子源は動作温度が低いため電子線装置中の残留ガスなどが電子放出面に吸着しやすく、放出電流の安定性に劣ることが課題である。特に、Wより仕事関数の低いCeB6などの六ホウ化物の電界放出電子源はガス吸着と脱離による仕事関数変化の影響を相対的により強く受ける。特に六ホウ化物単結晶の結晶表面は残留酸素と結合し仕事関数が大きく上昇することも知られている。
 そのため、これらの電子源を搭載する電子銃に10-9Pa台以下の超高真空が求められる。また定期的な加熱を行うなどガス吸着を防止するなどの特別な手法を用いない限り数か月にわたる長期安定性が必要な半導体デバイスの測長などの用途には適さない。
 本発明の目的は、上記した従来技術の課題を解決して、六ホウ化物単結晶のガス吸着の影響が少ない所望の形状的、時間変化的に安定した電子放出面の局所領域から放出される安定した電子線を利用し、さらに該放出面以外から放出される不安定な電子線の混入を抑制する手法を用い、単色性と放出電流の長期安定性を兼備えた六ホウ化物単結晶の電子源を提供し、高分解で長期安定性が必要な様々な用途も用いることができる電子顕微鏡などの電子線装置を提供することである。
 上記した課題を解決するために、本発明では、電子源を構成する<100>軸の六ホウ化物単結晶のチップを、先端に、n=1,2,3の整数とする少なくとも4面の仕事関数の高い{n11}面と、少なくとも4面の仕事関数の低い{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積 > { n10 }の側部ファセットの合計面積 であるように構成した。
 また、上記した課題を解決するために、本発明では、六ホウ化物単結晶のチップの電子源の製造方法を、<100>方位の六ホウ化物単結晶のチップの先端部分を電解研磨することにより六ホウ化物単結晶のチップの先端部分を錐体状に形成し、この先端部分を錐体状に形成した六ホウ化物単結晶のチップを加熱しながら六ホウ化物単結晶のチップを正極性とする電圧を印加することにより、六ホウ化物単結晶のチップの錐体状に形成した先端部分に、n=1,2,3の整数とする少なくとも4面の{ n10 }と少なくとも4面の{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積 > { n10 }の側部ファセットの合計面積 と形成するようにした。
 さらに、上記した課題を解決するために、本発明では、電子源と、試料を載置する試料台と、電子源から放出された電子をビーム状に収束させて試料台の上の試料に照射する電子光学系とを備えた電子線装置において、電子源を、<100>軸の六ホウ化物単結晶のチップの先端に、n=1,2,3の整数とする少なくとも4面の{n11}面と、少なくとも4面の{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットが形成され、かつ { n11 }面の側部ファセットの合計面積 > { n10 }の側部ファセットの合計面積 である六ホウ化物単結晶のチップを備えて構成した。
 本発明によれば、単色性と放出電流の長期安定性を兼備えた新たな電子源と、この電子源を備えて高分解で長期安定性が必要な様々な用途に用いることができる電子顕微鏡などの電子線装置を提供することができる。
電子顕微鏡などの電子線装置に用いられる各種の電子源の動作原理を示したエネルギーダイアグラムである。 実施例1に係る電子源で用いる六ホウ化物単結晶の結晶構造(単位格子)を示す斜視図である。 実施例1に係る[100]結晶軸に成長させた六ホウ化物単結晶から[100]結晶軸に沿って四角柱のチップを切り出した様子の模式図である。 実施例1に係る金属管を六ホウ化物単結晶のチップの組み立て台に装着した状態を示す斜視図である。 実施例1に係る金属管と六ホウ化物単結晶のチップの接合方法を説明する六ホウ化物チップの組み立て台に装着した金属管と圧接用工具と実体顕微鏡との位置関係を示す斜視図である。 実施例1に係る金属管と六ホウ化物単結晶のチップの接合構造を説明する図で、(a)は平面図、(b)は斜視図、(c)は正面の断面図である。 実施例1に係る電子源の組み立て構造を説明する電子源の原型となる構造体の正面図である。 実施例1に係る電子源の組み立て時の位置あわせ治具を説明する図で、(a)は金属管とフィラメントとそれらの位置を合わせる位置あわせ治具の斜視図、(b)はフィラメントをスポット溶接した金属管とステムとそれらの位置を合わせる位置あわせ治具の斜視図である。 実施例1に係る金属管と六ホウ化物単結晶のチップの接合構造の別の例を説明する図で、(a)は平面図、(b)は斜視図、(c)は正面の断面図である。 実施例1に係る電子源のチップ先端を電解研磨で尖鋭化する工程を説明する電子源構造体を電解研磨液に浸漬した状態を示す正面の断面図である。 実施例1に係る電子源のチップ先端の電解研磨の原理を説明する六ホウ化物チップと電解研磨液の正面の断面図である。 電子源のチップ先端を従来技術による電解研磨で加工した形状を観察したSEM像で、(a)はチップの先端部のSEM像、(b)はチップの先端の頂部付近を拡大したSEM像、(c)は(b)の円401で囲んだ部分を真上(チップの中心軸方向)から見たSEM像である。 実施例1の製造方法で作製した電子源のチップ先端の結晶面構造を観察したSEM像で、(a)はチップの先端部のSEM像、(b)はチップの先端の頂部付近を拡大したSEM像、(c)は(b)の円401で囲んだ部分を真上(チップの中心軸方向)から見たSEM像である。 実施例1の六ホウ化物単結晶の電子源のチップ先端構造の模式図である。 実施例1に係る六ホウ化物単結晶の電子源の正面図である。 実施例1の製造方法のプロセス条件範囲を示す図である。 六ホウ化物単結晶電子源の室温での電界電子放出の電界放出顕微鏡観察像で、(a)は従来の六ホウ化物単結晶電子源、(b)は実施例1で作成した六ホウ化物単結晶電子源である。 従来の六ホウ化物単結晶電子源、および実施例1で作成した六ホウ化物単結晶電子源の放射角電流密度と全電流の比の測定結果を示すグラフである。 実施例1の{100}面を用いた六ホウ化物単結晶のチップを用いた電界放出電子源と、従来の{310}面を用いた六ホウ化物電界放出電子源、同じく従来の{310}面を用いたWの電界放出電子源の放出電子の放射角電流密度に対するエネルギー半値全幅の測定結果を示すグラフである。 実施例1で作成した六ホウ化物単結晶のチップを用いた電子源を室温で動作させた冷陰極電界放出電流の安定性を示すグラフで、(a)は0.1時間での変動、(b)は8時間での変動を示す。 実施例1で作成した六ホウ化物単結晶のチップを用いた電子源を160℃に加熱し動作させた熱電界放出電流の安定性を示すグラフで、(a)は0.1時間での変動、(b)は8時間での変動を示す。 実施例2の六ホウ化物単結晶のショットキー電子源とZr-O/Wショットキー電子源の放射角電流密度に対するエネルギー半値全幅の測定結果を示すグラフである。 実施例2に係るショットキーモードで動作させたときの放出電流の短時間の安定性を示すグラフで、(a)は実施例1で作成した先端部を(100)面で形成した六ホウ化物単結晶のチップを用いたショットキー電子源の場合、(b)は従来技術による先端部を(310)面で形成した六ホウ化物単結晶のチップを用いたショットキー電子源の場合を示すグラフである。 実施例3に係る電子線装置(六ホウ化物単結晶のチップを用いた電子源を搭載した走査電子顕微鏡)の概略断面図である。
 以下の説明において、結晶面や結晶方位の表記はミラー指数に則り、面の指定は( )で示し、その等価な面郡は{ }で示す。結晶軸方向は[  ]、それと等価な軸方向は< >で示す。
 発明者等が鋭意検討した結果、六ホウ化物の{100}結晶面は<100>結晶軸を光軸とする単結晶を用い、後述する手法によってそれ自体が微小な平坦面を形成し、かつ4回対称のファセットの構築が可能な安定した電子放出面となり、単色性と電流安定性を両立することが見出された。
 具体的には、<100>軸の六ホウ化物単結晶のチップの先端に、n=1,2,3の整数とする少なくとも4面の仕事関数の高い{n11}面と少なくとも4面の仕事関数の低い{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積>{ n10 }の側部ファセットの合計面積 とし、頂部の{100}面のファセットから電子ビームをプローブすることが有効であることが分かった。以下、その理由について説明する。
 発明者らが特許文献4で示したように、六ホウ化物単結晶では電界蒸発でチップ先端を球形に整形したのち、700~1400℃で2分~数日加熱すると、{100}面を中心とした4回対称の{310}面が成長し、その仕事関数が2.46 eVと低くなる。また{310}面は仕事関数が低いだけでなく、チップ先端の表面全体の曲率に比べて尖った部分となり、局所的に電界集中度が上がるためさらに電子放出しやすくなる。
 そのため{310}面からの電子ビームをプローブすることにより、エネルギー半値全幅ΔEFEが狭く、全電流Itに対する放射角電流密度JΩ(μA/ s r)の比JΩ/ I tが6~13以上と高い電界放出電子源を実現できる。
 しかしながら、仕事関数が低く、電界集中度が高い程、ガスの吸着や脱離による仕事関数変化に敏感になり、電子銃を真空度が悪い環境で使用したり、大電流を取り出して引き出し電極に衝突する電子ビームによって電子線刺激脱離ガスが多くなったりすると、プローブ電流が不安定になりやすい課題があった。
 一方、発明者らが検討した結果、特許文献1や2の六ホウ化物単結晶の熱電子源と同じように<100>軸の六ホウ化物単結晶のチップ頂部に{100}面のファセットを形成し、{100}面からの電界放出電子をプローブすると、{310}面からの電界放出電子に比べ放出電流の安定性が高いことが分かった。
 この理由は主に{100}面の方が{310}面に比べて仕事関数がやや高いこと、また{310}面に比べ原子面密度が高いため原子の振動が抑制されること、加熱によって平坦で面積の大きなファセットを形成しやすく電界集中度が下がること、さらに電界電子放出の際のガス吸着と脱離による局所的な仕事関数変化が大きなファセットの面内で平均化され、全体変動が小さくなることなどによる。そのため<100>軸の六ホウ化物単結晶チップの先端に{100}面のファセットを形成し、{100}面から放出した電子ビームをプローブすると電流安定性を向上させることができる。
 しかしながら、仕事関数が高く電界集中度が下がることは、逆に{100}面は{310}面に比べて電子放出しにくいことを示しており、また{100}面の周りに形成される{310}面などからの電子放出が無駄に放出されるため、全電流Itに対する放射角電流密度JΩ(μA/ s r)の比が1未満と著しく低下してしまうことが課題である。
 この比が低すぎると、必要な放射角電流密度JΩを得るために必要な全電流Itが多くなり、電子銃の引き出し電極等に当たる光軸外の放出電流が増え、電子線刺激脱離ガスの増加によって真空度が悪化し、結局は電子源の表面でのガス吸着、脱離が増えて放出電流の安定性が損なわれることになる。
 この問題を解決するには、頂部の{100}面のファセット以外の周辺からの電子放出を減らすことが必要である。そのためには、{100}面の周りに{100}面より仕事関数が高い{111}面などの{n11}面の側部ファセットを大きく形成し、{100}面より仕事関数の低い{310}面や{210}面、{110}面などの{n10}面の側部ファセットを小さく形成することが有効である。
 しかしながら電界研磨や電界蒸発で先鋭化した<100>軸の六ホウ化物単結晶のチップの加熱処理により{100}面のファセットを形成する場合、特許文献1の熱電子源の例で示されているようにチップ先端の側部に{100}面より仕事関数の低い(110)面の方が、仕事関数の高い{111}面より大きく成長してしまう。そこで特許文献2に示されているように側部が全て{111}面となるように放電加工で切り出す方法が提案されている。
 しかしながら、このような製造方法は先端曲率半径が数10~数100 nmと小さい電界放出電子源やショットキー電子源などの加工に適用するのは著しく困難である。またこのような加工形状は4つの{111}面間の稜線が尖って電界集中しやすくなり、光軸外の不要な電界放出が増えるため、熱電子源より強い電界を作用させて電子放出させる電界放出電子源やショットキー電子源への適用は困難である。
 以上の課題を踏まえ、本発明では新たな製造方法を開発することにより、<100>軸の六ホウ化物単結晶のチップの先端に、n=1,2,3の整数とする少なくとも4面の仕事関数の高い{n11}面と、少なくとも4面の仕事関数の低い{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ 仕事関数の高い{ n11 }面の側部ファセットの合計面積 >仕事関数の低い { n10 }の側部ファセットの合計面積 となる電子源チップの作製に成功し、単色性がよく、放出電流の安定性が高く、全電流Itに対す放射角電流密度JΩ(μA/ s r)の比JΩ/ I tが高い電子源を実現することができた。
 以下、本発明について、実施例により図面を参照して説明する。電子線装置の実施例では走査電子顕微鏡(SEM)を例に説明するが、本発明はこれに限らず透過電子顕微鏡(Transmission Electron Microscope, TEM) や走査透過電子顕微鏡(Scanning Transmission Electron Microscope, STEM)、電子ビーム露光装置、電子ビーム式3DプリンタやX線管などを含む電子線装置に適用することができる。なお、以下の図面では、発明の構成を分かりやすくするために、各構成の縮尺を適宜変更している。
 実施例1では、本発明の六ホウ化物単結晶の電界放出電子源(以下、単に電子源と記載する場合もある)の構造、及びその製造方法について図2乃至図20を用いて説明する。
 まず電子源の材料として希土類の六ホウ化物単結晶を用いる。具体的にはランタノイド系の元素であるLa、Ce、Pr、Nd、Sm、Eu、Gdなどを用いることができ、それぞれLaB6、CeB6、PrB6、NdB6、SmB6、EuB6、GdB6などの化学式で表される。図2にその単位格子200の模式図を示す。
 単位格子200は、金属原子1の単純立方格子の体心に6個のホウ素原子2のブロックが位置した結晶構造をしている。これらの材料は一般に融点が高く、蒸気圧が低く、硬度が高く、イオン衝撃に強く、かつWより仕事関数が低く電子源の材料として適する。
 このうち、CeおよびCeより原子量の大きいランタノイド系のPr、Nd、 Sm、Eu、Gdなどは、フェルミ準位直下に、エネルギー局在性が強く状態密度の高いf電子が存在し、放出電流を供給するための電子密度が高く、電界放出電子源やショットキー電子源を作製する六ホウ化物単結晶の材料として適する。本実施例ではCeB6の六ホウ化物単結晶を用いた例を示す。
 これらの六ホウ化物は図3に示すように例えばフローティングゾーン法などを用いた融液(液相)結晶成長により直径が数mm、結晶が優先的に成長する晶癖面の(100)面に垂直な[100]結晶軸方向に成長した長さ数10 mmの大形の単結晶3を作成できる。
 この単結晶3を切削により一辺数100 μmの角柱、または直径数100 μmの円柱、長さ数mmのチップ4に切り出して、(100)面を電子放出面として利用する。本実施例では一辺200 μm、長さ5 mmの四角柱、または直径280 μm、長さ5 mmの円柱を用いた。
 なお、六ホウ化物単結晶の結晶構造は図2のように単純立方格子であり、(100)面と(010)面や(001)面、[100]結晶軸と[010]結晶軸、[001]結晶軸などはそれぞれ等価であり、どの面、軸方向を用いても効果は同じである。そのため以下の説明では等価な面群として{100}等、等価な軸群として<100>等と表記して説明する。
 続いて、六ホウ化物単結晶のチップ4を保持し、加熱するためのフィラメントを取り付ける接合方法について説明する。本実施例に係る電子源では、タンタルやニオブなどの金属管の内側に六ホウ化物単結晶のチップを配置する構造とした。
 そして、金属管の外周において、中心軸を囲むように少なくとも2軸方向から複数の凹部を設け、この複数の凹部のそれぞれの底部が、内側に配置した六ホウ化物単結晶のチップの外周に接触させるようにした。これにより、高温で加熱しても六ホウ化物単結晶のチップが脱落しない強固で信頼性のある接合を行う構造とした。
 さらに金属管と六ホウ化物単結晶のチップの間に平均粒径が0.01~0.1 μmの四炭化ホウ素のナノ粒子と、炭素樹脂の混合物のペーストを充填し、それを硬化してさらに炭化させることで、耐熱性の高い接合を行うようにした。以下、具体的に説明する。
 六ホウ化物単結晶のチップ4との接合に用いる金属管の材料は、タンタルやニオブなどのような高融点金属でかつ延性に富み、伸管により微小な金属管が作成しやすく、また後述する凹部を加工しやすい材質のものが適する。本実施例では、一例としてタンタルを用い、外径がφ500 μm、内径がφ 320 μm、肉厚90 μm、長さ5 mmの微小な金属管11を作製した。
 続いて上記の金属管11を用いた六ホウ化物単結晶のチップ4の接合方法を述べる。まず図4に示すように金属管11の内径に入る直径300 μm、長さ1~3 mmのガイドピン12を垂直に立てた台座13を用いて、金属管11にガイドピン12を挿入して金属管11を台座13に対して鉛直に立てる。続いて、平均粒径が0.01~0.1 μmの四炭化ホウ素B4Cなどのナノ粒子と、フラン樹脂などの炭素樹脂を混合したペースト14を、金属管11の中に上部から充填する。ここでは、平均粒径が0.05 μmのナノ粒子を用いた。
 さらに六ホウ化物単結晶のチップ4を金属管11の上部から挿入する。ガイドピン12により六ホウ化物単結晶のチップ4が金属管11の内部から突き出る長さhをコントロールできる。本実施例では後述するように六ホウ化物単結晶のチップ4の片側先端を電解研磨で削るため、突き出る長さhを2~3 mmと長くしておく。
 続いて図5に示すように六ホウ化物単結晶のチップ4と金属管11をチップ4の鉛直方向とは垂直な面内の直交する2軸、4方向から本発明者が開発した特殊な工具で圧接する。図5では説明を簡単にするため、圧接用の工具の刃15の部分のみ示している。圧接用工具の刃15の先端には金属管11に凹部を形成するための突起150が上下に一対設けられている。圧接用工具の刃15を2軸、4方向から均等なストロークで金属管11に近づけ、突起150で金属管11の外周から押し潰すことにより、金属管11に図6(c)に示すような凹部17を複数形成する。
 作業中は金属管11と六ホウ化物単結晶のチップ4との位置関係を実体顕微鏡16で確認し、四角柱の六ホウ化物単結晶のチップ4の各側面が工具の刃15のストローク方向と一致するように六ホウ化物単結晶のチップ4の回転軸を適宜調整する。それにより金属管11の外周から中心軸を囲むように複数の凹部17が形成され、凹部17それぞれの底部が、六ホウ化物単結晶のチップ4の外周面に押し当てられて接触することにより、六ホウ化物単結晶のチップ4を自動的に金属管11の中心軸に合わせて固定することができる。
 図6は本実施例の方法で接合した六ホウ化物単結晶のチップ4と金属管11の模式図である。図6の(a)にチップ4の先端側から見た接合部の平面図、(b)にチップ4の斜視図、(c)にチップ4の鉛直方向の断面図を示す。
 本接合方法を用いると、金属管11と六ホウ化物単結晶のチップ4を2軸、4方向から均等に圧接することができ、機械的に強固な接合が得られる。また、2軸、4方向から均等なストロークで金属管11に近づけ金属管11の外周から押し潰していくため、四角柱の六ホウ化物単結晶のチップ4を金属管11の中心軸に自動的に整列させて接合することができ、組み立て精度が向上するため電子源の軸出しが容易になり、歩留まりも向上する。さらに軸方向の上下2箇所で接合されることで、チップ4が接合部で傾くことを防止でき、軸出しの精度がさらに高くなる効果がある。
 また圧接の際、四炭化ホウ素B4Cのナノ粒子と、フラン樹脂などの炭素樹脂を混合したペースト14は柔軟に変形し、変形した金属管11と六ホウ化物単結晶のチップ4の間を隙間なく埋める。ペースト14として平均粒径が0.1 μm以下の小さいナノ粒子を用いているため、圧接の際、六ホウ化物単結晶のチップ4を痛め、破損することがなく、圧接工程における歩留まりを向上させることができる。なお、ナノ粒子の平均粒径を0.01 μm以上としたのは、平均粒径が小さすぎるとB4C粉末の見掛けの体積が増えペーストの混合がしにくくなることや、ナノ粒子自体の製造が難しくなり、コストが高くなるためである。
 なお、金属管11を六ホウ化物単結晶のチップ4に圧接した後は、金属管11のうちガイドピン12が挿入されていた点線の部分11-1は不要となるため、金属管11をガイドピン12から取り外したのち、金属管11の熱容量低減のためカッターで切断する。その後、大気中で加熱し、ペースト14を硬化させたのち、真空中にて1000℃以上で数時間高温加熱することにより、ペースト14を炭化させる。これにより、ペースト14からの脱ガスをなくし、またタンタルなどの金属管11と六ホウ化物単結晶のチップ4との間の高温での反応を防止する反応障壁層を形成することができる。
 続いて図7に示すように、六ホウ化物単結晶のチップ4を接合した金属管11にタングステン等のフィラメント18を直接スポット溶接する。さらに、フィラメント18の両端をステム19に固定された一対の電極20にスポット溶接して電子源の原型となる構造体1001を形成する。構造体1001は金属同士の接合で形成されるため、スポット溶接により容易に強固な接合を得ることが可能である。
 この構造体1001を形成する溶接工程の具体例を、図8を用いて説明する。六ホウ化物単結晶のチップ4を接合した金属管11にタングステン等のフィラメント18を直接スポット溶接する際には、図8の(a)に示すような位置合わせ治具21を用いる。まず金属管11にタングステン等のフィラメント18を位置合わせ治具21-1を用いて正確に位置合わせして、金属管11とフィラメント18とをスポット溶接する。
 続いて、図8(b)に示すように、フィラメント18をスポット溶接した金属管11とステム19とを位置合わせ治具21-2を用いて正確に位置合わせして、フィラメント18とステム19に固定された一対の電極20とをスポット溶接して構造体1001を形成する。このように、位置合わせ治具21-1と21-2を用いることにより、構造体1001として組み立てた段階において、金属管11と六ホウ化物単結晶のチップ4の中心軸とステム19に固定された一対の電極20の中心は揃っているので、構造体1001は精度の高い軸出しが可能となる。
 以上の実施例では、構造体1001の構成部品として四角柱状に切削した六ホウ化物単結晶のチップ4を用いた。六ホウ化物単結晶のチップ4は円柱に加工してもよい。図9は、円柱の六ホウ化物単結晶のチップ4-1を用いた場合の例である。円柱の六ホウ化物単結晶のチップ4-1と金属管11を接合する場合は、少なくとも六ホウ化物単結晶のチップ4-1の鉛直方向とは垂直な面内の等間隔の3軸、3方向から本実施例で開発した特殊な工具で圧接すればよい。
 図9の(a)にチップ4-1の先端側から見た接合部の平面図、(b)にチップ4-1の斜視図、(c)にチップ4-1の鉛直方向の断面図を示す。図9の(b)と(c)とにおいては、図6で説明した金属管11の六ホウ化物単結晶のチップ4都の圧接後に不要となる部分11-1に相当する部分を切断した後の状態を示している。
 また、図5及び図6を用いて説明した四角柱の六ホウ化物単結晶のチップ4の場合と同様に、金属管11と円柱の六ホウ化物単結晶のチップ4-1とを、2軸、4方向から圧接して接合しても当然構わない。
 続いて構造体1001において、六ホウ化物単結晶のチップ4の金属管11からはみ出ている部分に先端を電解研磨により錐体状に縮径する。電解研磨は、図10に示すように組み立てた六ホウ化物単結晶のチップ4の先端部分を容器25に入れた硝酸などの電解液22中にディップし、リング状に形成した白金などの対向電極23との間に交流や直流の電源24から電圧を印加して行う。
 六ホウ化物単結晶のチップ4は、図11に示すように電解液(電解研磨液)22に浸漬すると液面にメニスカスを形成し、液面部分の研磨速度は遅く液中部分の研磨速度は速い。電解研磨が進み電解液22に浸漬した部分における六ホウ化物単結晶のチップ4の研磨面積が少なくなるに従い電解電流が減衰する。電界電流が一定レベル(カットオフ電流)まで減衰した際に電源24を遮断すると、図11の点線で示すよう先端部40が先細りの錐体に加工することが可能である。
 図12の(a)~(c)に加工した六ホウ化物単結晶のチップ4の先端部40付近のSEM像の一例を示す。図12の(a)に示した電解研磨によって縮径するチップ4の先端部40のコーン角αは、電解研磨の際の液組成、電解電圧、カットオフ電流などによって自由にコントロールすることができる。図12(a)で示すように本実施例で作成した六ホウ化物単結晶のチップ4は、先端部40から10 μm程度の電解研磨後のコーン角がα= 20°である。
 また図12(b)に示すようにチップ4の先端部40は先端曲率半径R= 0.25 μm程度に滑らかに加工されている。図12(b)におけるチップ4の先端部40の点線の円で囲んだ頂点付近401を真上から観察したSEM像を、図12の(c)に示す。頂点付近401は滑らかに加工されており、結晶面の境界を判別することは難しい。
 このように、先端部40を電解研磨により縮径させた六ホウ化物単結晶のチップ4に対して、本実施例では、先端部40の側面の結晶面を所望の状態に形成することにより、安定した電子放出面を形成するようにした。以下に、六ホウ化物単結晶のチップ4の先端部40の側面の結晶面を所望の状態に形成する方法について説明する。
 電解研磨して図12に示したような先端部40の形状に加工した六ホウ化物単結晶のチップ4を図示していない真空チャンバにセットし、本実施例で開発した新たな製造プロセスにて、<100>軸の六ホウ化物単結晶のチップ4の先端部40に、n=1,2,3の整数とする少なくとも4面の仕事関数の高い{n11}面と、少なくとも4面の仕事関数の低い{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積 > { n10 }の側部ファセットの合計面積 となるチップ4の先端部40の形状の加工を行う。
 本実施例における製造方法の特徴は、電解研磨したチップ4を真空中で1500~1700℃で加熱しながらチップ4を正極性とする1~4.5×109 V/mの電界を印加することである。
 まず、本実施例で開発した新たな製造プロセスの特徴を説明するため、比較例として、従来の六ホウ化物単結晶電子源の電界放出電子源および熱電子源の作製方法について述べる。
 特許文献4に記載されているように、従来の六ホウ化物単結晶を用いた電界放出電子源では、電解研磨によって錐体状に縮径したチップの先端部分を電界蒸発によって半球形に加工し、その後加熱処理を行い電子放出面となる{310}面を形成する。電界蒸発とは電子源に数10×109 V/mの正極性の電界を印加することで、先端表面の原子をイオン化し、徐々に剥ぎ取る方法である。
 電界蒸発は電界強度が強い箇所で優先的に起こる。このため、表面の尖った箇所やステップ部の原子が蒸発し、時間をかけることで全面を蒸発できる。やがて、電界蒸発が十分進むと、チップの先端部分は電界強度が全面にわたって均一となる球状になる。電界蒸発は真空中でも行えるが、HeやNe、H2といった結像ガスを10-3Paから10-2Pa程度導入して行うことで、電子源先端の表面像を観察しながら行うことができる。この観察手法を電界イオン顕微鏡(Field ion microscope:FIM)と呼ぶ。
 結像ガスは電子源先端でイオン化し、放射状に放出する。対向面にマイクロチャンネルプレート(MCP)をおき、放出したイオンを検出することで電子源先端の表面像を原子分解能で観察できる。FIMで観察を行なう場合、イオンの熱振動があると空間分解能が劣化するため、電界蒸発は通常は70 K以下の低温で行われる。
 電界放出電子源ではその後、先端を半球状に加工した六ホウ化物単結晶のチップを700~1400℃で2分から数日加熱し、{100}面のまわりに4回対称の{310}面の電子放出部を形成し、そのうちの一つを電子放出面として用いる。
 一方、六ホウ化物単結晶を用いた熱電子源では特許文献1などに示されているように、電解研磨した六ホウ化物単結晶を1400~1500℃程度まで加熱し、 {100}面の頂部ファセットを形成して電子放出面として用いる。この際、チップ先端の側面には{210}面や{110}面が{111}面より大きく成長することが示されている。
 これに対して、本実施例による電子源の製造方法の特徴は、上記に説明した従来技術による電界放出電子源や熱電子源の作製方法に比べると、チップ4の加熱温度が高いこと、および通常の電界蒸発に比べるとチップ4の先端部40に印加する正極性の電界の電界強度が低いことである。これらの特徴により、本実施例により形成される<100>軸の六ホウ化物単結晶のチップ4の先端部40に、n=1,2,3の整数とする少なくとも4面の仕事関数の高い{n11}面と、少なくとも4面の仕事関数の低い{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積 > { n10 }の側部ファセットの合計面積 となる六ホウ化物単結晶のチップ4の先端構造を得ることができる。以下にその理由について説明する。
 まず、加熱の効果について説明する。六ホウ化物単結晶のチップ4は高融点材料であるが、真空中で700~1400℃に加熱すると表面の原子移動により特にチップ4の先端部40の結晶面の再構成がおきる。さらに1500℃以上に加熱すると表面からの蒸発が徐々に進み表面の結晶構造が崩れ、1600℃以上ではさらに蒸発が顕著になってくる。
 そのため、本実施例による製造方法の1500~1700℃での加熱は主に蒸発の役割を担っており、六ホウ化物単結晶のチップ4に電界をまったく印加せずに加熱した場合は、チップ4の先端部40は電解研磨で作成した形状の相似形をほぼ維持しながら細っていくことが分かっている。なお、1700℃以上に加熱した場合は、蒸発が激しくなり、電解研磨で作成した形状の相似形の維持も困難になってくる。
 つぎにチップ4の先端部40に印加する正極性の電圧の効果について説明する。これには2つの効果がある。まずひとつめの効果について以下に説明する。
 FIMを観察しながら70K程度の低温で行う電界蒸発では、数10×109V/mの高い電界を印加して、チップ先端を球状に加工していた。この電界蒸発は温度依存性があり、温度が高いほど低い電界で電界蒸発が起こる。
 これに対して本実施例では、そもそも1500~1700℃の加熱だけである程度チップ表面の蒸発が起きているが、それに電界の効果が加わった熱電界蒸発が起きている。熱電界蒸発の特徴は、加熱だけによる蒸発と異なり、チップの尖った部分が優先的に蒸発するため、チップ先端が全体として半球状に近い形状になるように加工されていくことである。
 次に2つめの効果を説明する。一般に加熱したチップに強い電界を印加すると、静電気力による表面の原子拡散が生じ、原子密度の高い結晶面が大きく成長し、ビルドアップすることがショットキー電子源用のZr-O/W{100}のチップなどで知られている。
 本発明者らが鋭意検討した結果、<100>軸の六ホウ化物単結晶のチップにおいても、電界の印加により加熱したチップ先端に{100}面のビルドアップが起こることを見出した。またビルドアップさせる電界には極性依存性はなく、正極性でも負極性でも{100}面をビルドアップさせることができることが分かった。
 ただし、負極性の場合には上記の電界蒸発の効果がなく、また高温かつ高電界を印加した六ホウ化物単結晶のチップからは大量の電子放出が起こるため、電子線刺激脱離ガスの発生により真空度が低下し放電破損などのリスクがあるので、本実施例の製造方法では、印加する電界は正極性とすることが好ましい。
 本実施例ではこの熱電界蒸発の効果と、ビルドアップの効果を組み合わせることにより、<100>軸の六ホウ化物単結晶のチップ4の先端に、n=1,2,3の整数とする少なくとも4面の仕事関数の高い{n11}面と、少なくとも4面の仕事関数の低い{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積 > { n10 }の側部ファセットの合計面積 となるチップ4の先端形状を加工することができた。これは、熱電界蒸発の効果によって、{310}や(110)面などチップ先端の表面全体の曲率に比べて尖った部分が削られ成長しにくくなるとともに、ビルドアップの効果によってチップの頂部に{100}面、それを囲む側部に{111}面の高密度結晶面の成長が促進されるためである。
 図13に本実施例による方法で加工した後の、六ホウ化物単結晶のチップ4の先端部41のSEM写真を示す。図13(a)のSEM写真が示すように熱電界蒸発により、チップ4の先端部41は図12(a)に示した先端部40と比べ全体として縮径され、チップ4の先端部41から10 μm程度の範囲のコーン角αは、図12(a)に示した電解研磨直後の20°より小さい16°になっている。
 また図13(b)に示した先端部41の拡大SEM写真、および、図13(c)に示した先端部41をチップ4の軸方向から見たSEM写真が示すように、チップ4の先端部41の頂部に{100}面のファセットが形成され、先端部41の側部には4つの{111}面と、その間に4つの(110)面が形成されており、{111}面の面積>{110}面の面積 となっている。
 なお、図13(c)のSEM写真では判別しにくいが、{100}面と{111}面の境界には小さな{311}面や{211}面が形成され、{100}面と(110)面の間の境界には小さな{310}面や(210)面が形成されることがある。これらの高指数面はチップの先端曲率が大きく、{100}面から{111}面や(110)面の間の遷移領域の傾斜角が緩やかになるほど、形成されやすい。
 そのため、特に仕事関数が低い{310}面や(210)面の成長を抑制し、不要な電子放出を減らすには、作成するチップ先端の近接円の曲率半径Rは小さいほど好ましく、具体的にはR ≦ 0.5 μmとするのが好ましい。
 また光源径を小さくするにもRを小さくすることが望ましいが、Rを小さくしすぎると頂部の{100}面のファセットのサイズも小さくなってしまい、十分なプローブ電流が取れなくなってしまう。従って、0.2 μm ≦ R ≦ 0.5 μmとするのがよい。
 また同様の理由により頂部の{100}面のファセットの面積Aは0.01 ≦ A ≦ 0.1 mm2とするのが好ましく、チップ先端のコーン角αも、25°≧ α ≧10°とするのが好ましい。コーン角が大きすぎるとRが大きくなりやすく、小さすぎるとRやファセットサイズも小さくなってしまう。これらは本発明の電解研磨における加工形状を制御し、さらにその後行う熱電界蒸発の温度、電界、時間を制御することによって、制御することが可能である。
 以上の特徴をまとめた本実施例に係る六ホウ化物単結晶のチップ4の構造の模式図を図14に示す。図14の模式図は、図13の(b)のSEM写真に示した六ホウ化物単結晶のチップ4の先端部41で丸で囲んだ410に相当する。本実施例に係る六ホウ化物単結晶のチップ4の先端部41は、コーン角αが25°から10°の間で形成されている。そして、先端部41の頂点411には、{100}面が0.01から0.1mm2の大きさで形成されている。また、{100}面を取り囲むようにして側部412に{n11}面と{n10}面(n=1,2,3)とが交互に配置され、{n11}面の総面積が{n10}面の総面積よりも大きい。
 図15に、本実施例の方法で製造した電子源100の構成を示す。図7で説明した電子源の構造体1001のチップ4の先端部分を上記に説明したような方法で加工することにより、{100}面で形成された頂点411と、頂点411を取り囲むようにして{n11}面と{n10}面(n=1,2,3)とが交互に配置された側部412とを有する先端部41が形成されている。
 図16は本実施例による六ホウ化物単結晶のチップ4の先端部41の製造方法の条件を従来技術との比較でまとめたものであり、加熱温度および印加する正極性の電界強度に対して、<100>軸の六ホウ化物単結晶のチップ先端がどのように加工されるかのマップを示す。領域152は、特許文献1や4などの従来例で開示されている領域であり、加熱温度が1500℃以下と低く、かつ電界を印加しないか、電界強度が4.5×109 V/m以下と低い電界しか印加しない場合、主に加熱による原子移動による結晶面の再構成がおき、頂部に{100}面のファセット、側部は{n10}>{n11}面の側部ファセットが形成される。
 一方、本実施例に係る領域151においては、1500~1700℃に加熱しながら、1~4.5×10 9V/mの電界を印加すると熱電界蒸発の効果とビルドアップの効果が複合され、頂部に{100}面のファセット、側部は{n11}>{n10}面の側部ファセットが形成される。その他の領域153乃至155は、加熱や電界、またはその両方による蒸発が優勢となり、本実施例で説明したようなチップ先端形状は形成されない。なお、ビルドアップの効果を高め、ファセットを形成するプロセス時間を30分~1時間程度に短縮するには、領域151の中においても3~4.5×109V/mの電界を印加するのが最も好ましい。
 図17(a)に従来の製造方法で作成した六ホウ化物単結晶電子源、図17(b)に本実施例で作成した六ホウ化物単結晶電子源からの室温での電界電子放出を電界放出顕微鏡で観察した結果を示す。電界放出顕微鏡では、チップ先端の各結晶面からの電子放出を蛍光面に拡大投影することができる。
 図17(a)の従来の六ホウ化物単結晶電子源では、中央の{100}面からの電子放出の周りに、4回対称の面積が広く明るい{310}面からの電子放出パターンが観察されている。{310}面の面積≧{111}面の面積であり、光軸外の不要な電子放出が多い。
 一方、図17(b)の本実施例で作成した六ホウ化物単結晶電子源では、中央の{100}面からの電子放出の周りの4回対称の{310}面や{110}面からの電子放出面積が小さく、{310}~{110}面の合計面積<{111}面の合計面積 であり、図16(a)の従来の六ホウ化物単結晶電子源の場合と比べて、光軸外の不要な電子放出が少ない。
 図18は、上記の従来の製造方法で作成した六ホウ化物単結晶電子源と、本実施例による製造方法で作成した六ホウ化物単結晶電子源を室温で電界放出させたときの、チップ全体の全電流It(A)と、頂部{100}面の電子放出部から取り出したプローブ電流の放射角電流密度JΩ(μA/sr)を測定した結果である。181に本実施例による測定結果、182に従来例の測定結果を示す。
 従来の製造方法で作成した {n10}面の合計面積={n11}面の合計面積 の六ホウ化物単結晶電子源のJΩ/It(図18における曲線182の傾きに相当)は0.8~1程度と低いのに対し、本実施例の製造方法で作成した {n10}面の合計面積= {n11}面の合計面積 の六ホウ化物単結晶電子源のJΩ/It t(図18における曲線181の傾きに相当)は2.6~4と、従来の製造方法で作成した六ホウ化物単結晶電子源に対応する曲線182と比べて3.25~4倍に大幅に向上した。
 図19は、本実施例に係る頂部に{100}面を用いた六ホウ化物単結晶を用いた電界放出電子源と、従来の頂部に{310}面を用いた六ホウ化物電界放出電子源、同じく従来の頂部に{310}面を用いたWの電界放出電子源の放出電子のエネルギー半値全幅を比較した結果である。
 図19において、191は本実施例に係る頂部に{100}面を用いた六ホウ化物単結晶を用いた電界放出電子源、192は従来の頂部に{310}面を用いた六ホウ化物電界放出電子源、193は従来の頂部に{310}面を用いたWの電界放出電子源の放出角電流密度と放出電子のエネルギー半値全幅との関係を示している。
 六ホウ化物の{100}面の仕事関数は2.7~2.8 eVであり、{310}面に比べると0.2~0.3 eV程度仕事関数が高いと考えられるが、W{310}面の4.3 eVに比べると1.5 eV以上低い。そのため、六ホウ化物単結晶の{310}面を用いた電界放出電子源に比べるとややエネルギー幅が広がるが、W{310}を用いた電界放出電子源に比べると、エネルギー半値幅は狭く、単色性のよい電子源として利用することが可能である。
 図20は、本実施例に係る頂部に{100}面を用いた六ホウ化物単結晶のチップ4を用いた電子源100を電子銃内で室温で冷電界放出させたときの電流の安定性を評価した結果である。図20(a)に示すように短時間における電流値201の放出電流ノイズは±2~4%であり、図20(b)に示すように長時間における電流値202の減衰量も8時間で25%程度と少なく、1日1回程度のフラッシングを行うことによって、汎用の電子顕微鏡に用いる電界放出電子源として必要な電流安定性が得られる。
 図21は六ホウ化物単結晶のチップ4を用いた電子源100を160℃に加熱した熱電界放出モードで動作させたときの電流安定性を評価した結果である。図21(a)の曲線211に示す電流値のように短時間の放出電流ノイズは±2~3%であり、図21(b) の曲線212に示すように電流の減衰量も8時間で10%程度とさらに少なくなり安定性が向上している。このような熱電界放出モードにおける安定性向上は100~300℃程度の加熱範囲で効果がある。
 このように、本実施例によれば、<100>軸の六ホウ化物単結晶のチップの先端に、n=1,2,3の整数とする少なくとも4面の仕事関数の高い{n11}面と、少なくとも4面の仕事関数の低い{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積 > { n10 )}の側部ファセットの合計面積 となるチップの先端形状を加工することにより、電流変動の少ない安定した電界電子放出電子源を実現することが可能である。
 以上に説明したように、本実施例においては、六ホウ化物単結晶のチップを用いた電子源を、<100>軸の六ホウ化物単結晶のチップの先端に、n=1,2,3の整数とする少なくとも4面の仕事関数の高い{n11}面と、少なくとも4面の仕事関数の低い{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ { n11 }面の側部ファセットの合計面積 > { n10 }の側部ファセットの合計面積 であるように構成した。
 さらに、上記の六ホウ化物単結晶のチップの{100}面の頂部ファセットの面積Aは0.01 ≦ A ≦ 0.1 μm2であり、チップ先端の近接円の曲率半径Rは0.2 ≦ R ≦ 0.5 μmであり、チップ先端の錐体のコーン角αが25°≧α ≧10°であることにより、より効果的に実現される。
 上記の電子源は、<100>軸の六ホウ化物単結晶のロッドの片側先端を電解研磨等により尖鋭化した単結晶チップを1500℃以上1700℃以下で加熱し、かつ、前記単結晶チップを正極性とする1×109 V/m以上4.5×109 V/m以下、より好ましくは3×109 V/m以上4.5×109 V/m以下の電界を印加することによって製造することができる。
 本実施例によれば、六ホウ化物単結晶のチップの電子源の頂部{100}面の電子放出部から取り出したプローブ電流の放射角電流密度JΩ(μA/sr)と、電子源から放出される全電流Itの比が2以上で従来と比べて単色性が良く、電流変動が少ない安定した電子源を実現することができる。
なお、上記の電子源は、本実施例で説明したように室温以下の温度で動作させる冷陰極電界放出電子源、100~300℃程度までの比較的低温で加熱して動作させる熱電界放出電子源の他、1050℃~1400℃程度まで加熱して動作させるショットキー電子源として用いることが可能である。
 実施例2では実施例1で作製した六ホウ化物単結晶のチップを用いた電子源100を1050~1400℃程度に加熱し、ショットキーモードで動作させたときの実施例について説明する。六ホウ化物のCeB6単結晶の{100}面の仕事関数は2.7~2.8 eV程度であり、従来のZr-O/Wショットキー電子源の仕事関数2.9 eVに比べ0.2~0.3 eV程度低い。そのため、同一の放射角電流密度で、より単色性のよいショットキー電子放出が得られると予想される。
 図22は、六ホウ化物単結晶のチップを用いた電子源100を1327℃で動作させた場合と、従来のZr-O/W電子源を1427℃で動作させた場合の放射角電流密度に対するエネルギー半値全幅を比較した結果である。曲線221は六ホウ化物単結晶のチップを用いた電子源100の放射角電流密度に対するエネルギー半値全幅の特性を示し、曲線222は従来のZr-O/W電子源の放射角電流密度に対するエネルギー半値全幅の特性を示している。同一の放射角電流密度でのエネルギー半値全幅は、六ホウ化物単結晶のチップを用いた電子源100の方が従来のZr-O/W電子源の場合と比べて0.1 eV以上低く、より単色性の高いショットキー電子源を実現可能であることがわかる。
 図23は、実施例1で説明した六ホウ化物単結晶のチップ4の{100}面と、{310}面を用いたショットキー電子源の短時間の電流安定性の比較である。図23の(a)には{100}面として(100)面における放射角電流密度の時間変化を示し、図23の(b)には{310}面として(310)面おける放射角電流密度の時間変化を示す。
 ショットキー電子源は冷電界放出電子源等に比べると放出電流は安定であるが、{310}面を用いたショットキー電子源のノイズ±3~4%に比べ、{100}面を用いた本発明のショットキー電子源は放出電流のノイズは±1%と小さく、安定性がさらに向上することがわかる。
 本実施例によれば、実施例1で作製した六ホウ化物単結晶のチップを用いた電子源100をショットキーモードで作動させた場合、従来のショットキー電子源と比べて、同一の放射角電流密度で、より単色性が良く、ノイズが少なく安定性が向上したショットキー電子放出が得られる。なおショットキー電子源では、電界放出電子源のような顕著な電流減衰がないため、長期安定性が必要な半導体デバイスの測長などにも適用することが可能となる。
 実施例3について図24を用いて説明する。なお、実施例1又は2に記載され実施例3に未記載の事項は特段の事情が無い限り実施例3にも適用することができる。実施例3では、実施例1で作製し、評価したCeB6の六ホウ化物単結晶のチップ4の{100}面を電子放出面に用いた電子源(電界放出電子源)100を搭載した走査電子顕微鏡1000の例を示す。なお、実施例3では実施例1の電界放出電子源100を用いた走査電子顕微鏡1000を例に説明するが、実施例2のショットキー電子放出源を用いてもよく、また電子線装置の方式は走査電子顕微鏡に限らない。
 図24は、実施例3に係る走査電子顕微鏡1000の概略図である。電界放出電子源100は、コンピューター101と制御器102により制御された加熱電源103により一定電流を流して常時加熱され、引き出し電源104により引き出し電極105に、チップ4の先端に対して正電圧を印加して電界放出により電子を放出する。
 放出された電子ビーム106は加速電源107で印加された負の高電圧により接地された陽極108に向かって加速されて、第1コンデンサレンズ109、絞り110、第2コンデンサレンズ111、対物レンズ112、非点収差補正コイル113で集束され、偏向走査コイル114で走査されて試料115上の観察領域に照射され、発生した二次電子が二次電子検出器116で検出される。
 本実施例では、引き出し電極105と陽極108の2電極構成の例を示したが、引き出し電極105と陽極108の間に制御電極を入れる3電極構成や、引き出し電極105の手前にチップを囲むようにサプレッサ電極を設けた4電極構成でもよい。検出器は2次電子検出器以外を図示していないが、他に反射電子検出器や元素分析器なども利用される。
 六ホウ化物単結晶のチップ4の{100}面を電子放出面に用いた電界放出電子源100から放出された電子は、図19に示したように従来のW{310}面を用いた電界放出電子源よりエネルギー半値全幅が狭く単色性がよいため、対物レンズ112等での色収差が低減され、より絞られた電子ビーム106を試料115に照射することができ、高分解の走査電子顕微鏡画像を得ることができる。
 また、電界放出電子源100から放出される電子は単色性が良く、電子源からの広がりが小さいので、従来の電子源と比べて電子源周辺の部材に余計な電子が照射されるのを低減することができ、電子線を照射する試料上でのコンタミを低減することができる。
 なお六ホウ化物単結晶のチップ4の{100}面を電子放出面に用いたショットキー電子放出源を用いても図22に示したように、従来のZr-O/W{110}面を用いたショットキー放出電子源よりエネルギー半値全幅が狭く単色性がよいため、同様の改善効果が得られる。
 上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1・・・金属原子  2・・・ホウ素原子  3・・・単結晶  4・・・チップ  11・・・金属管  12・・・ガイドピン  13・・・台座  14・・・ペースト  15・・・刃  16・・・実体顕微鏡  17・・・凹部  18・・・フィラメント  19・・・ステム  20・・・電極  21-1,21-2・・・位置合わせ治具  22・・・電解液  23・・・対向電極  24・・・電源  100・・・電界放出電子源  101・・・コンピューター  102・・・制御器  103・・・加熱電源  104・・・引き出し電源  105・・・引き出し電極  106・・・電子ビーム  107・・・加速電源  108・・・陽極  109・・・第1コンデンサレンズ  110・・・絞り  111・・・第2コンデンサレンズ  112・・・対物レンズ  113・・・非点収差補正コイル  114・・・偏向走査コイル  115・・・試料  116・・・2次電子検出器。

Claims (15)

  1.  <100>軸の六ホウ化物単結晶のチップの先端に、n=1,2,3の整数とする少なくとも4面の{ n11 }面と、少なくとも4面の{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットが形成され、かつ 前記{ n11 }面の側部ファセットの合計面積 > 前記{ n10 }の側部ファセットの合計面積 である前記六ホウ化物単結晶のチップを備えることを特徴とする電子源。
  2.  請求項1記載の電子源であって、前記六ホウ化物単結晶のチップの前記{ n11 }面は前記{ n10 }面より仕事関数が高いことを特徴とする電子源。
  3.  請求項1記載の電子源であって、前記六ホウ化物単結晶のチップを備える前記電子源は、室温以下の温度で動作させる冷陰極電界放出電子源であることを特徴とする電子源。
  4.  請求項1記載の電子源であって、前記六ホウ化物単結晶のチップを備える電子源は、室温より高く300℃以下に加熱して動作させる熱電界放出電子源であることを特徴とする電子源。
  5.  請求項1記載の電子源であって、前記六ホウ化物単結晶のチップを備える電子源は、1050℃以上1400℃以下に加熱して動作させるショットキー電子放出源であることを特徴とする電子源。
  6.  請求項1記載の電子源であって、前記六ホウ化物単結晶の前記{100}面の頂部ファセットの面積Aは0.01 ≦ A ≦ 0.1μm2であることを特徴とする電子源。
  7.  請求項1記載の電子源であって、前記六ホウ化物単結晶のチップの先端の近接円の曲率半径Rは0.2 ≦ R ≦ 0.5 μmであることを特徴とする電子源。
  8.  請求項1記載の電子源であって、前記六ホウ化物単結晶のチップの先端部分は錐体状に形成されており、前記錐体状に形成された部分のコーン角αが25°≧α ≧10°であることを特徴とする電子源。
  9.  <100>方位の六ホウ化物単結晶のチップの先端部分を電解研磨することにより前記のチップの前記先端部分を錐体状に形成し、前記先端部分を錐体状に形成した前記六ホウ化物単結晶のチップを加熱しながら前記六ホウ化物単結晶のチップを正極性とする電圧を印加することにより、前記六ホウ化物単結晶のチップの前記錐体状に形成した前記先端部分の先端の側壁にn=1,2,3の整数とする少なくとも4面の{ n10 }と少なくとも4面の{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットを形成し、かつ 前記{ n11 }面の側部ファセットの合計面積 > 前記{ n10 }の側部ファセットの合計面積 であることを特徴とする六ホウ化物単結晶のチップを備えた電子源の製造方法。
  10.  請求項9記載の六ホウ化物単結晶のチップを備えた電子源の製造方法であって、前記先端部分を前記錐体状に形成した前記六ホウ化物単結晶のチップを加熱しながら前記六ホウ化物単結晶のチップを正極性とする電圧を印加することを、前記六ホウ化物単結晶のチップを1500℃以上1700℃以下に加熱し、前記六ホウ化物単結晶のチップを正極性電位として1×109 V/m以上4.5×109 V/m以下の電圧を印加することにより行うことを特徴とする六ホウ化物単結晶のチップを備えた電子源の製造方法。
  11.  電子源と、試料を載置する試料台と、前記電子源から放出された電子をビーム状に収束させて前記試料台の上の試料に照射する電子光学系とを備えた電子線装置であって、
     前記電子源は、<100>軸の六ホウ化物単結晶のチップの先端に、n=1,2,3の整数とする少なくとも4面の{ n11 }面と、少なくとも4面の{ n10 }面から構成される側部ファセットに囲まれた {100}面の頂部ファセットが形成され、かつ 前記{ n11 }面の側部ファセットの合計面積 > 前記{ n10 }の側部ファセットの合計面積 である六ホウ化物単結晶のチップを備えることを特徴とする電子線装置。
  12.  請求項11記載の電子線装置であって、前記電子源は、室温以下の温度で作動させる冷陰極電解放出電子源であることを特徴とする電子線装置。
  13.  請求項11記載の電子線装置であって、前記電子源は、前記電子源を室温より高く300℃以下で加熱する加熱源を備える熱電解放出電源であることを特徴とする電子線装置。
  14.  請求項11記載の電子線装置であって、前記電子源は、前記電子源を1050℃から1400℃の範囲で加熱する加熱源を備えるショットキー電子放出源であることを特徴とする電子線装置。
  15.  請求項11乃至14の何れか1項に記載の電子線装置であって、前記電子源の前記六ホウ化物単結晶のチップの頂部ファセットの{100}面から取り出したプローブ電流の放射角電流密度JΩ(μA/sr)と、前記電子源から放出される全電流Itの比が2以上であることを特徴とする電子線装置。
PCT/JP2020/035749 2020-09-23 2020-09-23 電子源とその製造方法およびそれを用いた電子線装置 WO2022064557A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/035749 WO2022064557A1 (ja) 2020-09-23 2020-09-23 電子源とその製造方法およびそれを用いた電子線装置
JP2022551462A JP7403678B2 (ja) 2020-09-23 2020-09-23 電子源とその製造方法およびそれを用いた電子線装置
US18/018,900 US20230317401A1 (en) 2020-09-23 2020-09-23 Electron Source, Method of Manufacturing the Same, And Electron Beam Apparatus Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035749 WO2022064557A1 (ja) 2020-09-23 2020-09-23 電子源とその製造方法およびそれを用いた電子線装置

Publications (1)

Publication Number Publication Date
WO2022064557A1 true WO2022064557A1 (ja) 2022-03-31

Family

ID=80845628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035749 WO2022064557A1 (ja) 2020-09-23 2020-09-23 電子源とその製造方法およびそれを用いた電子線装置

Country Status (3)

Country Link
US (1) US20230317401A1 (ja)
JP (1) JP7403678B2 (ja)
WO (1) WO2022064557A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248271A1 (ja) * 2022-06-20 2023-12-28 株式会社日立ハイテク 電界放出電子源とその製造方法およびそれを用いた電子線装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693244A (en) * 1979-12-26 1981-07-28 Toshiba Corp Electron gun
JPS6031059B2 (ja) * 1984-04-13 1985-07-19 株式会社日立製作所 熱陰極
WO2016140177A1 (ja) * 2015-03-02 2016-09-09 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP2018142453A (ja) * 2017-02-28 2018-09-13 株式会社日立ハイテクノロジーズ 電子源およびそれを用いた電子線装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693244A (en) * 1979-12-26 1981-07-28 Toshiba Corp Electron gun
JPS6031059B2 (ja) * 1984-04-13 1985-07-19 株式会社日立製作所 熱陰極
WO2016140177A1 (ja) * 2015-03-02 2016-09-09 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP2018142453A (ja) * 2017-02-28 2018-09-13 株式会社日立ハイテクノロジーズ 電子源およびそれを用いた電子線装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248271A1 (ja) * 2022-06-20 2023-12-28 株式会社日立ハイテク 電界放出電子源とその製造方法およびそれを用いた電子線装置

Also Published As

Publication number Publication date
US20230317401A1 (en) 2023-10-05
JP7403678B2 (ja) 2023-12-22
JPWO2022064557A1 (ja) 2022-03-31

Similar Documents

Publication Publication Date Title
US10707046B2 (en) Electron source and electron beam device using the same
US10586674B2 (en) Field emission electron source, method for manufacturing same, and electron beam device
CN109804450B (zh) 电子束装置
WO2022064557A1 (ja) 電子源とその製造方法およびそれを用いた電子線装置
JP4210131B2 (ja) 電子源及び電子源の使用方法
JP4792404B2 (ja) 電子源の製造方法
EP2242084B1 (en) Method of manufacturing an electron source
US10074506B2 (en) Method for manufacturing electron source
EP4050637A1 (en) Emitter, electron gun using same, electronic device using same, and method for manufacturing same
TWI712066B (zh) 電子束裝置、熱場發射器、用於製造用於熱場發射器的發射器尖端的方法及用於操作電子束裝置的方法
JP7295974B2 (ja) 電子源、電子線装置および電子源の製造方法
JP7022837B2 (ja) 電子源とその製造方法およびそれを用いた電子線装置
WO2015058588A1 (zh) 针状带电粒子束发射体及制作方法
WO2023248271A1 (ja) 電界放出電子源とその製造方法およびそれを用いた電子線装置
WO2016167048A1 (ja) 電界放出型電子源及びその製造方法
JP4032057B2 (ja) 電子源の製造方法
JP4874758B2 (ja) 電子源
JP2003007195A (ja) 電子放射陰極及びその製造方法
JP2005332677A (ja) 電子源の製造方法と使用方法
JP2010067452A (ja) 電子放射陰極、電子顕微鏡および電子ビーム露光機
JP2010238670A (ja) 電子放射陰極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955151

Country of ref document: EP

Kind code of ref document: A1