WO2015058588A1 - 针状带电粒子束发射体及制作方法 - Google Patents

针状带电粒子束发射体及制作方法 Download PDF

Info

Publication number
WO2015058588A1
WO2015058588A1 PCT/CN2014/085644 CN2014085644W WO2015058588A1 WO 2015058588 A1 WO2015058588 A1 WO 2015058588A1 CN 2014085644 W CN2014085644 W CN 2014085644W WO 2015058588 A1 WO2015058588 A1 WO 2015058588A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
needle
tip
electron
emitter
Prior art date
Application number
PCT/CN2014/085644
Other languages
English (en)
French (fr)
Inventor
严建新
Original Assignee
严建新
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 严建新 filed Critical 严建新
Publication of WO2015058588A1 publication Critical patent/WO2015058588A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/063Geometrical arrangement of electrodes for beam-forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Definitions

  • Instruments that use focused electron beams include imaging instruments such as scanning electron microscopes.
  • SEM scanning electron microscopy
  • TEM transmission electron microscopy
  • EBL electron beam etching machines
  • EBL chemical analysis instruments
  • ELS electron energy loss spectrometers
  • Auger electrons Spectrometer Auger electrons Spectrometer.
  • the brightness of an electron emitter is defined as the amount of current confined within a unit solid angle from a unit emitter surface area at a unit applied voltage.
  • Electron emitters widely used in focused electron beam instruments at this stage include three types: thermal emitters, Schottky emitters, and cold field emission electron emitters. Among them, Schottky electron emitters and cold field emission electron emitters have more than 1000 times higher brightness than thermal emitters, and thus are more suitable as electron emitters for high resolution focused electron beam devices.
  • the common features of these two electron emitters are: They all take the form of a single crystal metal tip.
  • the microscopic morphology of the metal tip can be seen as approximately a hemispherical surface. This hemisphere is in turn composed of crystal faces of different orientations joined together.
  • a negative polarity voltage of a certain magnitude is applied to the metal needle relative to a nearby reference electrode, thereby generating an electric field of a certain intensity at the tip of the metal needle. Under the action of this electric field, the electron beam is emitted from the crystal face provided on the front end face of the tip. At a constant temperature, the stronger the electric field, the greater the current emitted.
  • Schottky electron emitters tend to be tungsten tip tips with a (100) crystal plane at the front end; while cold field emission electron emitters tend to be tungsten tip with a (3 10 ) crystal plane as the leading end.
  • the Schottky electron emitter also needs to be added with a diffusion layer containing zirconia material, the preparation process of the tungsten needle material in the early stage is basically similar to that of the cold field emitter: that is, a single crystal tungsten wire is taken, and the front end is electrochemically Corrosion into a pointed needle, heated to melt the tip of the tip to a smooth near hemisphere.
  • the larger the radius of curvature of the hemispherical surface the more parallel the electric field shape of the tip end of the tip is parallel to the axial direction of the tip, and the smaller the angular dispersion of the electrons emitted, or the more the electron beam shrinks toward the central axis of the tungsten needle.
  • the smaller the electron beam the larger the solid angle, that is, the more the electron beam diverges.
  • a large radius of curvature is advantageous for the realization of high brightness because the divergence solid angle becomes small.
  • the larger the radius of curvature of the hemispherical surface of the tip the larger the front end emitting surface becomes.
  • the larger the area of the emission surface the smaller the brightness. More importantly, the voltage is not applied. Under the premise of changing, increasing the radius of curvature of the tip will reduce the electric field strength at the tip of the tip and thus reduce the emission current. This effect also reduces the brightness of the electron emitter.
  • Schottky electron emitters use a large radius of curvature (about 500 nm) to pursue small divergence solid angles.
  • the brightness is correspondingly limited by the large emission area; while the cold field emission electron emitters use a smaller radius of curvature (less than 100 nm) to pursue a small emission area.
  • the brightness is correspondingly controlled by a large divergent solid angle.
  • the best Schottky electron emitters and cold field emission electron emitters use voltages of approximately 4 to 5 kV.
  • Schottky electron emitters have a higher unit solid angle current density, which is 100 microamperes per cubic centimeter.
  • the cold field emission electron emitter is 10 microamperes per solid angle arc.
  • the cold field emission electron emitters have a higher current density per unit area, which is 17,000 amps per square centimeter.
  • the Schottky electron emitter is 5300 amps per square centimeter. Taking a comprehensive view of the final electron emitter brightness, the cold field emission electron emitter has a higher brightness, that is, 2E7 amps per unit square centimeter unit solid angle radians in kilovolts.
  • the Schottky electron emitter has a brightness of 1 E 7 amps per unit square centimeter and a solid angle of radians in kilovolts.
  • electron emitters need to achieve the following three aspects to further improve brightness: smaller divergence solid angle, smaller emitter area, stronger surface electric field at a given voltage strength.
  • Known techniques at this stage cannot achieve such an ideal high-brightness electron emitter. In essence, this is due to the fact that the shape of the existing electron emitter is a simple hemispherical tip, and the only parameter that can be changed is the radius of curvature of the hemisphere. The radius of curvature has a conflicting effect on the pursuit of the three indicators. This results in an electron emitter that cannot achieve higher brightness.
  • the present invention aims to propose a new electron emitter structure and corresponding material composition, thereby increasing the independently adjustable electron emitter parameters, and further improving the brightness of the existing electron emitter.
  • the electron emitter is characterized in that: the emitter is needle-shaped, and the tip portion of the needle contains at least two components, and the component one is a hole-shaped component having an opening at least toward the needle tip pointing direction, the component The second is the tip component disposed in the void of the component, and the electron is emitted from at least the tip of the tip of the component 2.
  • this emitter structure can be used as a high-brightness electron source, it can be used as a source of other charged particle beams.
  • a metal ion source or a gas ion source Such an ion emitting source can be used on a focused ion beam instrument. It also has the advantage of high brightness.
  • component 2 in the void of component one means that component 2 can be regarded as component one in a certain observation direction. Examples of directions of observation are: top view, side view, and top view.
  • Component 2 allows a portion to be placed outside of component one in a certain viewing direction. For example, component two exceeds the void of component one in length, and either the front end or the rear end is exposed outside the void. For another example, when the hole is divided into more than one When there are many holes in the part, the middle part of the component 2 can also be exposed outside the cavity.
  • component one and component two tend to, but do not have to use, a central axisymmetric shape, such as a cylindrical cavity and a conical tip.
  • a central axisymmetric shape such as a cylindrical cavity and a conical tip.
  • the axis of symmetry of component one tends to coincide with the axis of symmetry of component two.
  • the axes of symmetry may not coincide.
  • the emitter needle apex of the present invention may further include other components than component one and component two.
  • it may include a linking component that connects component one and component two, or other components that are used to fix component one and component two positions.
  • component one and component two are electrically insulated from each other, and different voltages are applied during use.
  • it is also necessary to include components that electrically insulate component one and component two and components that conduct voltages separately.
  • a preferred feature of the electron emitter of the present invention is that component one and component two are electrically conductive and have the same voltage.
  • the two components can be directly connected by electrical conductors to naturally have the same voltage, or they can be separated by electrical insulators to apply the same voltage in use.
  • the electron emitter of the present invention is further characterized in that: component one, in the direction in which the top of the emitter is pointed, the size of the front end surface, if it is a plane, is defined For an effective outer diameter, if it is a partial spherical surface, it is defined as the minimum effective curvature diameter and should be less than 100 microns.
  • the front end surface of the emitter includes a cavity.
  • the foremost face described here should be considered as a shape that is supposed to be ignored by this hole.
  • the frontmost surface if it is a plane, tends to, but does not have to be, a central symmetry plane, and can be any polygon.
  • effective outer diameter shall be understood to mean the smallest circular diameter that can encompass the foremost face.
  • minimum effective curvature diameter shall be understood to mean the diameter of the smallest sphere that can encompass the most frontal surface. In principle, the smaller the front end face, the greater the electric field strength generated by the needle tip at the same applied voltage.
  • the front end face tends to be smaller than 50 microns. In other cases, it tends to be less than 10 microns. In other cases, it tends to be less than 5 microns. In other cases, it tends to be less than 2 microns. In other cases, it tends to be less than 500 nanometers. In other cases, it tends to be less than 100 nanometers.
  • the component one is a hollow circular mesa structure which is opened toward the front and the rear in the direction in which the needle tip is directed.
  • the truncated cone body is understood to mean that part or most of the component two includes a shape that approximates a circular body.
  • the upper and lower end faces of the circular table body may be of different sizes or the same size.
  • Component 2 may also include other portions, such as a portion connecting component two with the body of the needle emitter, or a portion connecting component two with component one, or may be retained due to processing methods, or may not be easily removed. part.
  • the length of the hollow in the center of the dome is, in some cases, less than 20 microns.
  • Another preferred feature of the electron emitter of the present invention It consists in: component one, in the direction in which the needle tip is pointed, its front end surface is higher than the tip apex of component two.
  • the component one is a hollow truncated cone body
  • another preferred feature is: a hollow truncated cone component, in the direction in which the needle tip is pointed, The rear end face is lower than the tip apex of component two.
  • the front end face is higher than the tip apex of component two, that is, the tip apex is located inside the cavity in the side view. In other cases, the front end face is also lower than the tip apex of component two.
  • the tip component 2 is composed of an effective single fibrous material.
  • the fibrous material described herein is understood to be a rod-like material whose outer diameter is substantially uniform in the longitudinal direction. This includes both solid fibrous materials as well as hollow, porous. In some cases, the fibrous material tends to be straight in the length direction. In other cases, it may be curved or spiral.
  • the individual fibers described are understood to mean: The electrons actually used at a certain point in time from the use of the electron source are from a single fiber. Other electron fibers may also be included in the electron emitter, but at some point in use, only one fiber emits electrons for the actual use of electrons, and the fiber should be understood as an effective single fiber. Other fibers should be used as an additional component of this electron source. For example, a spare fiber in the case where an effective single fiber no longer emits electrons or electrons are no longer used.
  • the fiber material At least a portion of the needle end is oriented lower than the rear end surface of the truncated cone of component one.
  • the main constituent materials include: tungsten, molybdenum, niobium, tantalum, titanium, chromium, platinum, rhodium, ruthenium and the like
  • the main component of the alloy, the main components are carbon, silicon, germanium materials, metal oxides, metal borides, metal nitrides, metal carbides, and the metal elements are calcium, strontium, barium, strontium, barium, all A combination of one or more of lanthanides, lanthanum, titanium, zirconium and hafnium.
  • the main constituent material of component one is a high work function conductive material which is less likely to emit electrons
  • the main constituent material of component two is a low work function conductive material that is relatively easy to emit electrons.
  • the main constituent materials of the component two are metal oxides, metal borides, metal nitrides, metal carbides, and
  • the metal elements are calcium, tantalum, niobium, tantalum, niobium, a combination of one or more of all actinides, niobium, titanium, zirconium and hafnium.
  • the present invention proposes a new structure relating to an emitter, all of the conventional electron emitter materials can adopt such a structure accordingly. In some cases, we prefer a higher melting point , a harder, electron-emitting material.
  • the type of material given here should be understood as an example of the materials that can be used for the emitter. The invention is not limited solely to these materials or combinations of materials.
  • Another object of the present invention is to provide a method of using the electron emitter of the invention, the method of emitting electrons comprising at least the following steps: a. providing a reference electrode near the emitter, b. applying a relative The reference electrode has a negative voltage above at least the tip component two.
  • the emitter can be heated or cooled to a temperature that contributes to electron emission or contributes to high current stability.
  • a certain gas is introduced around the emitter to function as a stable emitter.
  • the introduced gas is oxygen.
  • Another object of the present invention is to provide an electron beam apparatus using the acicular electron emitter of the invention as an electron emission source, which comprises: a scanning electron microscope, a transmission electron microscope, a scanning transmission electron microscope, and electron beam etching.
  • Machine electron beam excitation X-ray energy spectrometer, electron energy loss spectrometer, Auger electron spectrometer.
  • Another object of the present invention is to provide a method for preparing an electron emitter, characterized in that: the emitter is needle-shaped, and the tip portion of the needle contains at least two components, and the component one has at least a needle
  • the hole-shaped component of the top-pointing opening, the component 2 is a tip component disposed in a cavity of the component, and the electron is emitted from at least the tip of the tip of the component 2.
  • the process of preparing the emitter comprises the following steps: a. Preparing a needle-shaped basic body; b. Facing the direction in which the needle tip is pointed, the ion beam is used to bombard the localized defined area of the needle-shaped basic body, so that the material of the bombarded area is removed to form a cave-like structure.
  • ion beam bombardment can be performed, for example, by focused ion beam technology.
  • a computer program controlled ion beam scanning function can be used.
  • a preferred feature of the preparation method of the present invention is that: the partially defined region in the above step b is annular, thereby forming a cavity, while a part of the material remains in the center of the cavity, and the retained portion is directly used as Or further processed into the tip component two. If the tip of the central retention portion is small enough, it can be used directly as component two. If the size is not small enough, or the shape needs to be improved, further processing can be performed. In a preferred embodiment, the ion beam is used to continue bombarding the central retention portion until it forms a sufficiently small tip to be used as component two.
  • An advantage of the present invention is that in the electron emitter manufacturing process, component two is an actually used electron-emitting region, so that a high surface current density can be obtained by changing its size and shape; Control can be used to assist component two to adjust the distribution shape and strength of the electric field. This further achieves high solid angle current density and low operating voltage.
  • a higher electron source brightness than a single metal tip structure can be obtained. Thereby achieving a higher resolution of the corresponding electron beam instrument.
  • Figure 1 is a side elevational view of the needle-like emitter 100.
  • Figure 2 is a side cross-sectional view of the emitter tip portion 200.
  • Figure 3 is a top plan view of the emitter tip portion 2000.
  • Fig. 4 is a side sectional view showing the needle top portion 300 of the second embodiment.
  • Figure 5 is a side cross-sectional view of the needle top portion 400 of the third embodiment.
  • Fig. 6 is a side sectional view showing the needle top portion 500 of the embodiment 4.
  • Figure 7 is a top plan view of the emitter tip portion 5000.
  • Figure 8 is a side cross-sectional view of the needle top portion 600 of the embodiment 5.
  • Fig. 9 is a view showing the electric field distribution of the space in the vicinity of the needle-shaped emitter 100 when a voltage is applied to the adjacent electrode.
  • Figure 10 is an electric field distribution diagram of a nearby space when an emitter having no needle-like structure is applied with a voltage with respect to an adjacent electrode.
  • Fig. 11 is a view showing the electric field distribution of the vicinity space when the needle top portion 200 is applied with respect to the adjacent electrode in the embodiment 2.
  • Fig. 12 is an electric field distribution diagram of a space in the vicinity of a needle-shaped emitter having no cavity component when a voltage is applied with respect to an adjacent electrode.
  • Figure 13 is a structural view of an electron source including the needle-like emitter of Example 7.
  • Figure 14 is a structural view of a scanning electron microscope including an electron source in Example 8.
  • Figure 1 shows an outline of the basic shape of a needle-like emitter, which does not include the detail of the needle tip portion and the other portions of the needle-shaped emitter.
  • the needle-shaped emitter 100 described herein is composed of three basic portions: a needle tip portion 102, a needle portion 106, and a constricted portion 104 connecting the two.
  • the positive direction is the direction in which the needle tip is pointed, as indicated by arrow 108.
  • the basic shape of the acicular emitter is formed by etching a single wire. For example, a wire is placed in an etching solution with a wire placed around the liquid surface to place a counter electrode.
  • a voltage is applied between the counter electrode and the wire until the wire is corroded and fractured at the liquid level. At this time, one end of the wire is formed into a needle shape. Continue to corrode the formed needle top, and the top of the needle will become bald.
  • existing processes for processing the tip of a scanning tunneling microscope can be used directly to machine the basic shape of the needle-like emitter.
  • the diameter of the tip of a scanning tunneling microscope is less than 10 nm. By controlling the length of time that corrosion continues, we can increase the curvature diameter of the needle tip.
  • the wire is a tungsten wire
  • the etching solution is a potassium hydroxide solution
  • the counter electrode is a platinum electrode.
  • Fig. 9 shows an effect that the needle-shaped emitter 100 is expected to produce when a neighboring electrode is disposed in the vicinity thereof.
  • the adjacent electrode is a plate electrode 702 that faces the needle tip pointing direction 708 and is disposed directly in front of the emitter 100.
  • a voltage source 704 is applied between 702 and 100 to apply a voltage difference.
  • the voltage across emitter 100 can be either a positive voltage or a negative voltage.
  • a negative voltage can be used when transmitting electrons.
  • the distribution of the potential equipotential lines 710 is as shown in the figure.
  • the equipotential lines indicated here are made up of equipotential lines of the same potential difference.
  • the electric field strength is greater in places where the equipotential lines are denser.
  • the needle-shaped basic shape of the emitter 100 can be effective. Strengthening the electric field near the top of the needle makes it easier to emit charged particles. On the contrary, if the emitter does not have a needle-like basic shape, the electric field strength of the surface of the emitter will be greatly weakened under the same applied voltage.
  • the emitter 800 is rod-shaped, the diameter of which is the same as the diameter of the needle in the emitter 100 of Fig. 9, that is, the same as the diameter of the portion 106 of Fig. 1.
  • the rod pointing 808 is also the same as the needle top pointing 708 in FIG.
  • the distance and relative position of the adjacent electrode 802 and the rod electrode 800 are the same as the distance and relative position of 702 and 100 in FIG.
  • Voltage source 804 also applies a voltage similar to 704 in FIG.
  • the effect of the equipotential line 810 on the front end of the 800 is significantly weaker than the effect of the 710 on the surface of the 100 in FIG. 9, that is, the electric field at the front end of the 800 is significantly weaker than the electric field at the surface of the 100, which cannot Attenuate the difficulty of emitting charged particles.
  • the needle-shaped emitter 100 has a needle top equivalent curvature diameter of 10 microns. In another preferred embodiment, the needle-like emitter 100 has a needle top equivalent curvature diameter of 5 microns. In another preferred embodiment, the needle-like emitter 100 has a needle top equivalent curvature diameter of 2 microns.
  • the charged particles are electrons and the emitted charged particle beam is an electron beam.
  • FIG. 2 illustrates an embodiment of a needle-like emitter pin top structure 200.
  • a tip component 204 is disposed on the central axis of the cavity component 202.
  • the positive direction is the direction indicated by the needle tip of the integral needle-shaped emitter, as indicated by arrow 208.
  • the front end face of the hole component 202 is labeled 2 10 .
  • the plane containing the foremost apex of the tip component 204 and parallel to 2 10 is labeled 2 1 2 .
  • the hole diameter of the hole-shaped component 202 is denoted as 2 14 .
  • the front end face diameter of the cavity component 202 is labeled 206.
  • the cavity component 202 and the tip component 204 are both rotationally symmetric bodies with respect to a common central axis.
  • the 2 10 end faces are located at the front end of the 2 12 plane, i.e., the tip assembly 204 is located inside the cavity component 202.
  • a top view thereof is shown in FIG. In this view, the hole-shaped component 2002 is annular, and the tip component 2004 is located at the center of the hole-shaped component.
  • FIG. 2 The function of the structure shown in Fig. 2 will be described below by way of example.
  • the potential distribution near the needle top portion 200 is as shown in Fig. 11.
  • Arrow 908 is the direction in which the needle-like emitter tip is pointed.
  • the presence of the cave-shaped component 202 causes the equipotential line 9 10 to dent toward the central interior of the hole such that charged particles near the central axis are subjected to a component force toward the central axis.
  • a charged particle beam 9 12 having a small divergence solid angle is formed.
  • the emission electron beam has a divergence angle of 5 degrees.
  • the applied voltage is minus 3000 volts
  • the electron emitter brightness is 4E7 amps per unit square centimeter unit solid angle radians in kilovolts.
  • the structure shown in Figure 2 is achieved by focused ion beam processing.
  • the basic shape of the needle-like emitter is obtained by electrochemically etching the conductive rod-like material.
  • the plated needle tip is then cut with a focused ion beam.
  • the plated needle tip is scanned in a circular pattern with the focused ion beam in the direction of the needle tip, so that the material is removed in the scanned area.
  • the scanning continues until a hole is formed in the top of the needle, and a columnar material remains in the middle of the hole.
  • the ion beam scanning area is then shrunk over the remaining columnar material, and the focused ion beam continues to remove excess material until the columnar material forms a tip component.
  • This step can be carried out using the disclosed procedure for producing a probe tip of a atom probe using focused ion beam techniques.
  • both the hole-shaped component 1 and the tip component 2 have been formed.
  • the distance between the plane 2 10 and the plane 2 1 2 can be increased by shortening the length of the tip component 2.
  • the method of focusing the ion beam to shorten the tip length has been disclosed in the related literature for making atom probe microscopy samples.
  • the electrically conductive rod material is a rare earth boride.
  • the conductive rod-like material is lanthanum boride. Specific needle-like basic body corrosion conditions have been disclosed in the related literature.
  • FIG. 4 illustrates another embodiment of a needle-like emitter pin top structure 300.
  • the positive direction is defined as the direction in which the needle tip is pointed, as indicated by arrow 3 10.
  • the front portion of the cavernous component 302 does not form a plane.
  • a partial spherical surface 306 can be used to approximate the front portion of the cavernous component 302.
  • the radius of this partial sphere is labeled 308.
  • the plane 3 12 is defined as a plane passing through the foremost point of the hole-shaped component 302 and perpendicular to the positive direction 3 10 .
  • the plane 3 14 is defined as a plane that passes through the foremost point of the tip component 304 and is perpendicular to the positive direction 3 10 .
  • the outer surface of the hole-shaped component is a spherical surface, it is more advantageous to generate a stronger electric field with the same applied voltage with respect to the structure in which the front end is planar in Embodiment 2. Thereby reducing the required voltage at the same emission current.
  • the charged particle beam is emitted at least from the tip component 304, and the charged particle beam has the characteristic of a small divergence angle due to the presence of the cavernous component 302.
  • the charged particle emission properties described in Figures 9 and 11 are based on another specific emitter shape, they exhibit the same effect as the acicular morphology, the hole-like composition, and the tip component of the emitter. An emitter composed of similar parts.
  • the acicular morphology of the emitter enhances the electric field strength of the tip portion, while the cave component 302 controls the direction and divergence angle of the charged particle beam emitted from the tip component 304.
  • Degree In a specific embodiment, the radius of curvature 308 of the front of the needle top is 2 micrometers, the distance between the end surface 3 12 and the plane 3 14 is 300 nanometers, and when the applied voltage is minus 2000 volts, the divergence angle of the emitted electron beam is 5 degrees.
  • the emitter brightness is 5E7 amps per unit square centimeter unit solid angle radians in kilovolts.
  • the basic shape of the needle-like emitter is formed by etching a metal wire.
  • a metal wire put one end into the corrosive liquid, and place a pair of electrodes around the liquid surface.
  • a voltage is applied between the counter electrode and the wire until the wire is corroded and fractured at the liquid level.
  • the metal needle formed thereafter continues to be placed in the etching solution, maintaining the voltage so that the formed tip continues to be corroded and ablated until the desired tip curvature diameter 308 is formed. Thereafter, the hemispherical needle tip is scanned in a circular pattern in a circular pattern toward the needle tip pointing direction, so that the material is removed in the scanned area.
  • the scanning continues until a hole is formed in the top of the needle, and a columnar material remains in the middle of the hole.
  • the ion beam scanning region is then shrunk onto the remaining columnar material, and the focused ion beam continues to remove excess material until the columnar material forms a tip component.
  • This step can be carried out using the disclosed procedure for making an atom probe microscope sample.
  • both the hole-shaped component 1 and the tip component 2 have been formed.
  • the distance between plane 3 1 2 and plane 3 14 can be increased by shortening the length of component 2 of the tip.
  • the method of focusing the ion beam to shorten the tip length has been disclosed in the related literature for making atom probe microscopy samples.
  • the wire is a wire;
  • the etching solution is a mixture of phosphoric acid, acetic acid, sulfuric acid and hydrofluoric acid; and the counter electrode is a platinum electrode.
  • FIG. 5 illustrates an embodiment of another needle-like emitter pin top structure 400.
  • a tip component 404 is disposed on the central axis of the cavernous component 402.
  • This tip component 404 is composed of a single fibrous material.
  • the positive direction is the direction indicated by the integral needle-shaped emitter tip, as indicated by arrow 408.
  • the front end face of the hole component 402 is labeled 4 12 .
  • the plane containing the foremost vertex of the fibrous tip component 404 and parallel to 412 is labeled 414.
  • the end face of 412 is located at the forward end of the 414 plane, i.e., the fibrous tip component 404 is located inside the cavity component 402.
  • the end face of 412 is located at the rear of the 414 plane, i.e., the front apex of the fibrous tip component 404 is located outside of the cavity component 402.
  • the charged particle beam is emitted from at least the top end of the fibrous component 404.
  • the charged particle emission properties described in Figures 9 and 11 are based on another specific emitter shape, they exhibit the same effect as the needle-like morphology, the hole-like composition, and the tip component of the emitter. An emitter composed of similar parts.
  • the acicular morphology of the emitter enhances the electric field strength of the tip portion, while the cave component 402 controls the direction and divergence angle of the charged particle beam emitted from the tip component 404.
  • the charged particle beam is an electron beam.
  • the basic shape of the needle-like emitter is formed by etching a wire.
  • a wire put one end into the etching solution, and place a pair of electrodes around the liquid surface.
  • a voltage is applied between the counter electrode and the wire until the wire is corroded and fractured at the liquid level.
  • one end of the wire is formed into a needle shape.
  • Focused ion beam Cut out the platform-like needle top.
  • the plated needle tip is scanned in a circular pattern with the focused ion beam in the direction of the needle tip orientation so that the material is removed in the scanned area. The scan continues until a hole is formed in the top of the needle.
  • the focused electron beam is used to illuminate the fixed point in the center of the hole.
  • the deposition elements are deposited at this fixed point under the irradiation of the electron beam, and gradually accumulate into a fiber along the direction of the electron beam.
  • the relative position and distance of plane 41 2 and plane 414 is determined by the length of the fiber.
  • the fiber length in this example, is controlled by the deposition time.
  • the wire is a tungsten wire
  • the etching solution is a potassium hydroxide solution
  • the counter electrode is a platinum electrode
  • the deposition element is carbon.
  • the opening diameter is 1 micrometer
  • the end surface 412 is located in front of the plane 414, and the distance is 700 nm
  • the needle tip front surface diameter is 5 micrometers
  • the fibrous component 404 has a diameter of 60
  • the applied voltage is 3000 volts
  • the divergence angle of the emitted electron beam is 3 degrees
  • the emitter brightness is 4E7 amps per unit square centimeter unit solid angle radians in kilovolts.
  • FIG. 6 illustrates an embodiment of another needle-like emitter pin top structure 500.
  • a tip component 504 is disposed on the central axis of the cavern component 502.
  • This tip component 504 is composed of a single fibrous material.
  • the positive direction is the direction indicated by the integral needle-shaped emitter tip, as indicated by arrow 508.
  • the front end face of the hole component 502 is labeled 5 12 .
  • the plane of the end face is labeled 5 16 .
  • the plane containing the foremost vertex of the fibrous tip assembly 504 and parallel to 5 12 is labeled 5 14 .
  • the fibrous tip component 504 is attached to the joining component 5 10 and its position is controlled by the shape of the component 5 10 .
  • the 5 12 end faces are located at the front end of the 5 14 plane, and the 5 16 end faces are located at the rear end of the 5 14 plane, i.e., the front apex of the fibrous tip component 504 is located inside the cavity component 502, and The rear apex of the fibrous tip component 504 is located outside of the cavity component 502.
  • the 5 12 end face is located at the rear of the 5 14 plane, and the 5 16 end face is located at the front end of the rear apex of the fibrous component 504, i.e., the front apex of the fibrous tip component 504 is located in the slab component Outside the 502, the posterior apex of the fibrous tip component 504 is also located outside of the cavity component 502.
  • the charged particle beam is emitted from at least the front apex of the fibrous component 504.
  • the tip component 504 is located outside of the cavity component 502, such a structure simplifies the fabrication process. This is because the tip component 504 can be manipulated outside of the cavity component 502 during fabrication.
  • the operations here include and are not limited to cutting, connecting, transferring, fixing, and covering.
  • the charged particle emission properties described in Figures 9 and 11 are based on another specific emitter shape, they exhibit the same effect as the acicular morphology, the hole-like composition, and the tip component of the emitter. An emitter composed of similar forms. These effects can be summarized in part as follows:
  • the acicular morphology of the emitter enhances the electric field strength of the tip portion.
  • the cavern component 502 controls the direction and divergence angle of the charged particle beam emitted from the tip component 504.
  • the charged particle beam is an electron beam
  • the basic shape of the needle-like emitter is formed by etching a metal wire.
  • a wire put one end into the etching solution, and place a pair of electrodes around the liquid surface.
  • a voltage is applied between the counter electrode and the wire until the wire is corroded and fractured at the liquid level.
  • one end of the wire is formed into a needle shape.
  • the plated needle tip is then cut with a focused ion beam and the component 5 10 is joined. Thereafter, the focused ion beam is in a circular pattern, and the top of the needle is scanned in the direction in which the needle is pointed, so that the material is removed in the scanned area. Scanning continues until the top of the needle forms a cavity component 502.
  • the fibrous component 504 is then attached over the joining component 5 10 and secured.
  • the relative position and distance of the plane 5 12 and the flat surface 5 14 are determined by the length and connection position of the fiber component 504.
  • the wire is a twisted wire
  • the etching solution is a mixture of phosphoric acid, acetic acid, sulfuric acid and hydrofluoric acid
  • the counter electrode is a platinum electrode.
  • the fiber component 504 is a zinc oxide fiber, a titanium oxide fiber, a borated metal fiber, a silicon fiber or a carbon fiber.
  • the opening diameter is 1 micrometer
  • the end surface 5 12 is located in front of the plane 5 14 , and the distance is 500 nanometers
  • the needle tip front surface diameter is 4 micrometers
  • the diameter of the fibrous component 504 is In the case of 50 nm
  • the applied voltage is 2800 volts
  • the divergence angle of the emitted electron beam is 4 degrees
  • the electron emitter brightness is 3E7 amps per unit square centimeter unit solid angle radians in kilovolts.
  • FIG. 8 illustrates an embodiment of another needle-like emitter pin top structure 600.
  • a tip component 604 is disposed on the central axis of the cavern component 602.
  • This tip component 604 is composed of a single fibrous material.
  • the positive direction is the direction indicated by the integral needle-shaped emitter tip, as indicated by arrow 608.
  • the front end face of the hole component 602 is labeled 6 12 .
  • the plane of the end face is labeled 6 16 .
  • the plane containing the foremost vertex of the fibrous tip assembly 604 and parallel to 6 12 is labeled 6 14 .
  • the cave tip component 602 is attached to the joining component 6 10 via an intermediate component 606.
  • the fibrous tip component 604 is attached to the joining component 6 10 and its position is controlled by the shape of the component 6 10 .
  • the 6 12 end faces are located at the forward end of the 6 14 plane, and the 6 16 end faces are also located at the forward end of the 6 14 plane, i.e., the front and rear vertices of the fibrous tip component 604 are located outside of the cavity component 602.
  • the charged particle beam is emitted from at least the front apex of the fibrous component 604.
  • the tip component 604 is located outside of the cavity component 602, and such a structure further simplifies the fabrication process. This is because the tip component 604 can be manipulated outside of the cavity component 602 during fabrication.
  • the operations here include and are not limited to cutting, connecting, transferring, fixing, and covering.
  • the charged particle emission properties described in Figures 9 and 11 are based on another specific emitter shape, they exhibit the same effect as the acicular morphology, the hole-like composition, and the tip component of the emitter. An emitter composed of similar forms.
  • the acicular morphology of the emitter enhances the electric field strength of the tip portion, while the cave component 602 controls the direction and divergence angle of the charged particle beam emitted from the tip component 604.
  • the charged particle beam is an electron beam.
  • the basic shape of the needle-like emitter is formed by etching a metal wire.
  • a wire put one end into the etching solution, and place a pair of electrodes around the liquid surface.
  • a voltage is applied between the counter electrode and the wire until the wire is corroded and fractured at the liquid level.
  • one end of the wire is formed into a needle shape.
  • the plated needle tip, intermediate component 606 and connecting component 6 10 are then cut with a focused ion beam. Thereafter, the focused ion beam is in a circular pattern, and the top of the needle is scanned in the direction in which the needle is pointed, so that the material is removed in the scanned area.
  • the wire is a wire
  • the etching solution is a mixture of phosphoric acid, acetic acid, sulfuric acid and hydrofluoric acid
  • the counter electrode is a platinum electrode.
  • the fiber component 604 is a zinc oxide fiber, a titanium oxide fiber, a borated metal fiber, a silicon fiber or a carbon fiber.
  • the diameter of the opening is 2 micrometers
  • the end surface 6 12 is located in front of the plane 6 14 and the distance is 1 micrometer
  • the diameter of the front end of the needle tip is 5 micrometers
  • the diameter of the fibrous component 604 In the case of 60 nm, the applied voltage is minus 2900 volts, the divergence angle of the emitted electron beam is 2 degrees, and the emitter brightness 5E7 is amps per unit square centimeter unit solid angle radians in kilovolts.
  • this embodiment shows an electron emission source 1 100 using the acicular emitter described in the present invention. It is constructed such that a needle-like emitter 100 is welded to the filament 1 106. Both ends of the filament 1 106 are welded to the two metal posts 1 1 10, respectively. The two metal posts 1 1 10 are mechanically joined together by an insulating block 1 1 1 2 and are electrically insulated.
  • the needle-like emitter 100 has a needle tip 102 having a small radius of curvature which should be less than 100 microns.
  • the filament 1 106 is used to heat the needle-like emitter 100 by Joule heating by a certain current.
  • the needle-shaped emitter 100 is made of a high-melting conductive material.
  • the acicular emitter 100 can be either single crystal or polycrystalline.
  • the needle top 102 can be of any crystal structure orientation.
  • the positive direction is the direction in which the needle tip is pointed and is indicated by arrow 1 108.
  • the electron beam apparatus in this embodiment is a field emission scanning electron microscope (SEM) 1200.
  • the field electron emission source 1 100 of the present embodiment selects the electron emission source shown in FIG. 13, and mounts the emission source in the vacuum chamber 1 220 of the SEM, and the two filament current pin columns of the emitter are connected to The exterior of the cavity 1220.
  • a filament power supply 1204 is used to provide the heating current used by the filament.
  • An extraction electrode 12 1 2 is placed on the field electron emission source The tip of the 1100 is adjacent to enable the needle emitter to release electrons.
  • the extraction electrode 1212 is connected to the outside of the cavity 1220 through a vacuum introduction terminal.
  • An extraction voltage source 1206 is used to maintain the extraction voltage difference between the field electron emission source 1100 and the extraction electrode 1212.
  • An electron beam 1218 is generated from the emission source 1100 by applying an extraction voltage.
  • An accelerating electrode 1214 is used to set the energy of the electron beam 1218 and is controlled by a voltage source 1210 external to the cavity 1220.
  • a scanning and focusing system 1216 is used to focus the electron beam 1218 into a small electron probe and scan the surface of the sample 1224 with the probe.
  • Sample 1224 is mounted on a mobile station 1226 for aiding in the viewing of the sample.
  • a signal detector 1222 is placed adjacent to the sample 1224 for collecting signals generated by the interaction between the electron probe and the sample.
  • a vacuum pump 1228 is used to generate the desired vacuum within the chamber 1220.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

一种带电粒子束的发射体,该发射体为针状,且针顶端部分(200)至少包含两个组分,组分一是具有至少朝针顶指向方向开口的洞状组分(202),组分二是设置于组分一空洞中的针尖组分(204),电子至少从组分二的针尖顶点发射出。该发射体的特点是发射所需施加电压低并且发射带电粒子束的发射面积小,发散角小。

Description

说明书
发明名称: 针状带电粒子束发射体及制作方法 【1】 技术领域
【 2】 本专利属于真空电子束发射体领域
【3】 技术背景
【4】 使用聚焦电子束的仪器包括成像仪器, 比如扫描电子显微镜
( SEM ) 和透射电子显微镜 (TEM ) ; 制造仪器比如电子束刻蚀机 器 (EBL ) 以及化学分析仪器比如电子激发 X射线能谱仪, 电子 能量损失能谱仪 (EELS ) , 和俄歇电子能谱仪。 为了实现更高的 性能, 这些仪器需要配备一个亮度更高的电子发射体。 电子发 射体的亮度定义为在单位施加电压下从单位发射体表面积发射 出去的限制在单位立体角度之内的电流大小。 现阶段广泛应用 于聚焦电子束仪器的电子发射体包括三种类型: 热发射体, 肖 特基发射体以及冷场发射电子发射体。 其中肖特基电子发射体 和冷场发射电子发射体相对于热发射体有超过 1000倍以上的更 高亮度, 因此更加适合作为高分辨率聚焦电子束装置的电子发 射体。
【5】 此两种电子发射体的共同特征在于: 他们都以单结晶的金属 针尖为基本组成形态。 金属针尖的微观形貌可被看作近似为半 球面。 此半球面又由连接在一起的不同取向的晶面构成。 在电 子发射体使用过程中, 相对于附近的一个参照电极, 一定大小 的负极性电压被施加于金属针上, 从而在金属针顶端产生一定 强度的电场。 在此电场的作用下, 电子束从设置于针尖前端面 的晶面上发出。 在温度一定的情况下, 电场越强, 发射出的电 流也越大。 肖特基电子发射体往往做成最前端为 ( 100 ) 晶面的 钨针尖; 而冷场发射电子发射体往往做成以 (3 10 ) 晶面为最前 端的钨针尖。 虽然肖特基电子发射体还需要加上含有氧化锆材 料的扩散层, 其前期对于钨针材料的制作处理工艺与冷场发射 体基本相似: 即取一根单结晶的钨丝, 前端通过电化学腐蚀成 尖针状, 加热从而使针尖最前端融化出平滑的近半球面。 一般 来说, 加热温度越高, 时间越长, 此半球面的曲率半径就越大, 即针尖越秃。 从电场分布形状上来说, 半球面的曲率半径越大, 针尖前端的电场形状越平行于针尖轴向, 发射出的电子立体角 分散也越小, 或者说电子束越收缩向钨针的中心轴; 反之, 越 小则电子束立体角越大, 即电子束越发散。 结合电子发射体亮 度的定义, 从这个意义上来说, 曲率半径大有利于高亮度的实 现, 因为发散立体角变小。 可是, 从发射体面积上来看, 针尖 半球面的曲率半径越大, 最前端发射面也变得越大。 对于同样 大小的发射电流来说, 基于电子发射体亮度的定义可知, 变大 的发射面面积, 反而会减小亮度。 更重要的是, 在施加电压不 变的前提下, 加大针尖曲率半径, 会减小针尖顶端电场强度, 从而减小发射电流。 这个效应也使电子发射体亮度降低。
【6】 在实际应用中, 肖特基电子发射体采用了较大曲率半径 (约 500纳米)来追求小的发散立体角。 其亮度相应的受制于大的发 射面积; 而冷场发射电子发射体采用了较小的曲率半径 (小于 100纳米)来追求小的发射面积。 其亮度相应的受制于大的发散 立体角。 具体的来说, 现阶段, 最好的肖特基电子发射体和冷 场发射电子发射体的使用电压都大约为 4 到 5千伏。 肖特基电 子发射体拥有更高的单位立体角电流密度, 即 100 微安培每立 体角弧度。 冷场发射电子发射体为 10微安培每立体角弧度。 而 冷场发射电子发射体拥有更高的单位面积电流密度, 即 17000 安培每平方厘米。 肖特基电子发射体为 5300安培每平方厘米。 综合来看最终电子发射体亮度的话, 冷场发射电子发射体拥有 较高的亮度, 即 2E7 安培每单位平方厘米单位立体角弧度单位 千伏。 而肖特基电子发射体的亮度为 1 E 7 安培每单位平方厘米 单位立体角弧度单位千伏。
【7】 而理想的情况下, 电子发射体需要同时实现以下三方面的追 求来进一步提高亮度: 即更小的发散立体角, 更小的发射体面 积, 给定的电压下更强的表面电场强度。 现阶段的已知技术, 无法实现这样理想的高亮度电子发射体。 从本质上来看, 这是 由于现有电子发射体的形状采用的是简单的半球状针尖, 唯一 可以改变的参数就是半球曲率半径。 而曲率半径对于三方面的 指标追求, 有着相互矛盾的影响。 从而导致无法实现更高亮度 的电子发射体。
【8】 发明内容
【9】 本发明旨在提出一种新的电子发射体结构及相应材料构成, 从而增加了可以独立调节的电子发射体参数, 实现了进一步提 高现有电子发射体的亮度。
【 10】 此电子发射体的特征在于: 所述发射体为针状, 且针顶端部 分至少包含两个组分, 组分一是具有至少朝针顶指向方向开口 的洞状组分, 组分二是设置于组分一空洞中的针尖组分, 电子 至少从组分二的针尖顶点发射出。
【 1 1】 虽然这个发射体结构可以作为高亮度电子源使用, 它一样可 以用作为其他带电粒子束的发射源。 比如金属离子发射源或者 是气体离子发射源。 此种离子发射源可用在聚焦离子束仪器上 面。 同样具备高亮度的优点。
【 12】 组分二设置于组分一的空洞中的含义是指:在某观测方向上, 组分二可看作在组分一之中。 观测方向的例子有: 顶视, 侧视, 俯视。 组分二允许有一部分在某观测方向上设置于组分一之外。 例如, 组分二在长度上超过组分一的空洞, 于是或者是前端, 或者是后端暴露在空洞之外。 再例如, 当空洞被分为不止一部 分的多部分空洞时, 组分二的中部也可暴露在空洞之外。
【 13】 再例如, 组分一与组分二倾向于但不必须使用中轴对称的形 状, 如圆柱形空洞和圆锥形针尖。 在使用对称形状的情况下, 组分一的对称轴倾向于和组分二的对称轴重合。 在某些情况下, 当电子发射特性可以被接受的时候, 二者对称轴也可不重合。
【 14】 本发明所述发射体针顶点还可以包括除组分一和组分二之外 的其他组分。 例如, 可以包括连接组分一和组分二的连接组分, 或者其他用来固定组分一和组分二位置的组分。 在某些情况下, 组分一和组分二彼此电绝缘, 使用中施加不同的电压。 例如, 在这些情况下, 还应包括对组分一和组分二进行电绝缘的组分 及给他们分别传导电压的组分。
【 15】 进一步来说, 本发明所述电子发射体, 一个优选的特征在于: 其组分一和组分二为电导通状态, 其电压相同。
【 16】 两组分既可以直接以导电体相连从而自然地拥有相同电压, 也可以用电绝缘体隔开而在使用中分别施加相同的电压。
【17】 更进一步来说, 本发明所述电子发射体, 另一个优选的特征 在于: 其组分一, 在发射体针顶指向的方向上, 其最前端面大小, 如若 为平面, 则定义为有效外直径, 如若为部分球面, 则定义为最小有效曲率 直径, 应小于 100微米。
【18】 由于组分一沿针顶指向方向开口, 从而发射体最前端面会包括一个空 洞。 这里描述的最前端面应视为假想忽略此空洞而形成的形状。 最前端面 若为平面, 倾向于但不必须是中心对称面, 可以是任意多边形。 这里描述 中用的有效外直径一词, 应该理解为能够包含此最前端面在内的最小圆形 的直径。 这里描述中用的最小有效曲率直径一词, 应该理解为能够包含此 最前端面在内的最小球体的直径。 原则上来说, 最前端面越小, 在相同施 加电压下, 针顶产生的电场强度就越大。 因此, 在某些情况下, 前端面大 小倾向于小于 50微米。 在另外一些情况下, 倾向于小于 10微米。 在另外 一些情况下,倾向于小于 5微米。在另外一些情况下,倾向于小于 2微米。 在另外一些情况下, 倾向于小于 500纳米。 在另外一些情况下, 倾向于小 于 100纳米。
【19】 更进一步来说, 本发明所述电子发射体, 另一个优选的特征 在于: 其组分一是在针顶指向方向上朝前后分别开口的空心圆台体结构。 【20】 在这个描述中, 圆台体应理解为组分二的部分或者大部分包括一个近似 成圆台体的形状。 此圆台体的上下端面既可以大小不同也可以大小相同。 组分二还可以包括别的部分, 例如连接组分二与针发射体主体的部分, 或 者连接组分二与组分一的部分, 或者由于受加工方法所限, 必须保留, 或 者不容易除去的部分。 此圆台体中间空洞的长度, 在某些情况下, 倾向于 短于 20微米。 在另外一些情况下, 倾向于短于 10微米。 在另外一些情况 下, 倾向于短于 5微米。 在另外一些情况下, 倾向于短于 2微米。 在另外 一些情况下, 倾向于短于 500纳米。 在另外一些情况下, 倾向于长于 1微 米。 在另外一些情况下, 倾向于长于 2微米。
【21】 更进一步来说, 本发明所述电子发射体, 另一个优选的特征 在于: 其组分一, 在针顶指向方向上, 其最前端面高于组分二的针尖顶 点。
【22】 更进一步来说, 本发明所述电子发射体, 当组分一为空心圆 台体的情况下, 另一个优选的特征在于: 其空心圆台体组分一, 在 针顶指向方向上, 其后端面低于组分二的针尖顶点。 而其前端面则高于组 分二的针尖顶点, 即针尖顶点在侧视剖面图中位于空洞内部。 在另一些情 况下, 其前端面也低于组分二的针尖顶点。
【23】 更进一步来说, 本发明所述电子发射体, 另一个优选的特征 在于: 其针尖组分二由有效单根纤维状材料构成。
【24】 这里描述的纤维状材料应理解为棒状材料, 其外直径在长度方向上基本 保持一致。 这既包括实心的纤维状材料, 也包括空心的, 多孔的。 在某些 情况下, 纤维状材料倾向于在长度方向上平直。 在另一些情况下, 也可以 是弯曲的或者成螺旋状的。 所描述的单根纤维应理解为: 在电子源使用过 程中, 在某一个时刻所实际使用的电子来自单根纤维。 此电子发射体中还 可以包括其他多根纤维, 但在使用中某一时刻, 只有一根纤维发射的电子 为实际使用电子, 此纤维应被理解为有效单根纤维。 其他纤维应被作为此 电子源附加组分。 例如, 在有效单根纤维不再发射电子或电子不再被利用 情况下的备用纤维。
【25】 在此基础上, 此电子源另一个优选的特征在于: 其纤维状组分二, 在针 顶指向方向上, 在侧视剖面图中, 其一部分位于组分一空洞之外。
【26】 更进一步来说, 本发明所述电子发射体, 当组分一为空心圆 台体, 组分二为有效单根纤维状材料的情况下, 另一个优选的 特征在于: 此纤维状材料的至少一部分, 在针顶指向的方向上, 低于组 分一的圆台体后端面。
【27】 更进一步来说, 本发明所述电子发射体, 另一个优选的特征 在于: 其主要构成材料包括: 钨, 钼, 钽, 铼, 钛, 铬, 铂, 锇, 铱以 及以这些元素为主要成分的合金, 主要成分为碳, 硅, 锗的材料, 金属氧 化物, 金属硼化物, 金属氮化物, 金属碳化物, 且其中的金属元素为钙, 锶, 钡, 钪, 钇, 所有镧系元素, 钍, 钛, 锆和铪中的一种或多种的组合。
【28】 更进一步来说, 本发明所述电子发射体, 另一个优选的特征 在于: 其组分一的主要构成材料为较为不易发射电子的高功函数导电材 料, 组分二的主要构成材料为较为容易发射电子的低功函数导电材料。
【29】 这里对于组分材料功函数及发射电子难易程度的定义应当理解为所用 材料实际使用中发射电子的情况。 实际发射电子的情况除了取决于材料本 身的特性, 还包括表面处理, 镀膜等工艺的影响以及所处真空残留气体的 影响。
【30】 更进一步来说, 本发明所述电子发射体, 另一个优选的特征 在于: 其组分二的主要构成材料为金属氧化物, 金属硼化物, 金属氮化 物, 金属碳化物, 且其中的金属元素为钙, 锶, 钡, 钪, 钇, 所有镧系元 素, 钍, 钛, 锆和铪中的一种或多种的组合。
【31】 由于本发明提出了一种关于发射体的新的结构, 因此以往的所有电子发 射体材料都可以相应的采取这种结构。 在一些情况下, 我们优选熔点较高 的, 硬度较大的, 电子易于发射的材料。 这里给出的材料种类, 应理解为 本发射体可使用材料的例子。 本发明不是仅仅限于这些材料或材料组合。
【32】 本发明另一个目的就是提出一种使用该发明的电子发射体的方法, 其发 射电子的方法至少包括以下几个步骤: a.在发射体附近设置一个参照电 极, b.施加一个相对于此参照电极为负的电压在至少针尖组分二之上。
【33】 在这些步骤之外,在某些情况下,此发射体可被加热或冷却到一个温度, 从而有助于电子发射或是有助于高电流稳定性的实现。 在另一些情况下, 某种气体被引入发射体周围, 从而起到包括稳定发射在内的作用。 在一个 特选的实例中, 引入的气体为氧气。
【34】 本发明另一个目的就是提出一种以该发明的针状电子发射体作为电子 发射源的电子束仪器, 其包括: 扫描电子显微镜, 透射电子显微镜, 扫描 透射电子显微镜, 电子束刻蚀机器, 电子束激发 X射线能谱仪, 电子能量 损失能谱仪, 俄歇电子能谱仪。
【35】 本发明的另一个目的是提供一个电子发射体的制备方法, 其特征在于: 所述发射体为针状, 且针顶端部分至少包含两个组分, 组分一 是具有至少朝针顶指向方向开口的洞状组分, 组分二是设置于 组分一空洞中的针尖组分, 电子至少从组分二的针尖顶点发射 出, 制备此发射体的过程包含以下步骤: a.制备针状的基本体; b .迎着针顶指向方向, 用离子束轰击此针状基本体的针顶局部 限定区域, 从而使被轰击的区域的材料被除去, 形成洞状的结 构。
【36】 其中离子束轰击例如可采用聚焦离子束技术。 对于轰击区域 的限定, 可使用例如电脑程序控制的离子束扫描功能。
【37】 进一步来说, 本发明的制备方法, 一个优选的特征在于: 上 述步骤 b 中所述局部限定区域为环状, 从而形成空洞的同时, 空洞中央保留部分材料, 此保留部分直接用作或进一步加工成 所述针尖组分二。 如果中央保留部分的尖端足够小, 那么可直 接用作组分二。 如果尺寸不够小, 或者形状需要改进, 可以进 行进一步加工。 在一个优选的实例中, 离子束被用来继续轰击 此中央保留部分, 直至它形成一个足够小的针尖, 从而被用作 组分二。
【38】 本发明的优点在于, 在电子发射体制造过程中, 组分二为实际使用的电 子发射区域, 从而可以通过改变其大小形状获得高的面电流密度; 而对于 组分一的大小形状控制可用来协助组分二调节电场的分布形状和强弱。从 而进一步实现高的立体角电流密度和较低的操作电压。 综合来说, 可获得 比单一金属针尖结构更加高的电子源亮度。从而实现相应的电子束仪器更 高的分辨率。
【39】 附图说明
[ 40 ] 图 1为针状发射体 100的侧视略图。
【41】 图 2为发射体针顶部分 200的侧视剖面图。
[ 42 ] 图 3为发射体针顶部分 2000的俯视图。
【43】 图 4为实施例 2中针顶部分 300的侧视剖面图。 【44】 图 5为实施例 3中针顶部分 400的侧视剖面图。
【45】 图 6为实施例 4中针顶部分 500的侧视剖面图。
【46】 图 7为发射体针顶部分 5000的俯视图。
【47】 图 8为实施例 5中针顶部分 600的侧视剖面图。
【48】 图 9为针状发射体 100被相对于邻近电极施加电压时其附近空间的电场分 布图。
【49】 图 10 为一种不具有针状结构的发射体被相对于邻近电极施加电压时附近 空间的电场分布图。
【50】 图 11为实施例 2中针顶部分 200被相对于邻近电极施加电压时附近空间 的电场分布图。
【51】 图 12 为一种不具有洞状组分的针状发射体被相对于邻近电极施加电压时 附近空间的电场分布图。
【52】 图 13为实施例 7包含针状发射体的电子源的结构图。
【53】 图 14为实施例 8中一个包含电子源的扫描电子显微镜的结构图。
【54】 以下的内容将给出对于本发明的具体描述和实例。 需要向本领 域中的专业人士指出的是, 以下给出的实例可以直接用来改造 出其他针尖组分, 洞状组分以及他们材料的组合结构, 但是都 应该被认定为不偏离本专利核心内容的本专利自然延伸。
【55】 下面结合具体的实施例对本发明做进一步详细的说明, 但不限 于这些实施例。
【56】 实施例 1
【57】 图 1展示了一个针状发射体基本形状的略图, 此略图不包括针顶部分的细 节以及连接针状发射体的其他部分。这里描述的针状发射体 100由三个基 本部分构成: 针顶端部分 102, 针体部分 106, 以及连接两者的收缩部分 104。 正方向为针顶指向的方向, 如箭头 108标出。 在一个具体的实例中, 此针状发射体的基本形状由单根金属丝通过腐蚀而形成。 例如, 一根金属 丝, 将一头放入腐蚀溶液中, 金属丝进入液面部分周围放置一个对电极。 在对电极与金属丝之间施加电压直至金属丝在液面腐蚀断裂。此时金属丝 的一头便形成针状。 继续对所形成的针顶进行腐蚀, 针顶就会随之变秃。 例如, 现有的用来加工扫瞄隧道显微镜所用针尖的工艺可以直接用来加工 针状发射体的基本形状。 一般来说, 扫瞄隧道显微镜所用针顶曲率直径小 于 10纳米。 通过控制继续腐蚀的时间长短, 我们便可以增大针顶的曲率 直径。 在一个优选的实例中, 金属丝为钨丝, 腐蚀液为氢氧化钾溶液, 对 电极为铂电极。
【58】 图 9展示了当其附近设置一个邻近电极的时候, 此针状发射体 100所期待 产生的一个效果。 在一个具体的实例中, 此邻近电极为一正对针顶指向方 向 708并设置于发射体 100正前方的平板电极 702。 702与 100之间用一 个电压源 704施加电压差。 相对于电极 702, 发射体 100上面的电压既可 以是正电压也可以是负电压。 当发射电子用的时候, 可以使用负电压。 在 施加电压差的情况下, 电位等势线 710的分布如图中所示。 此处所标示等 势线由相同电势差值的等势线构成。 基于基本物理原理, 等势线越密集的 地方电场强度越大。 由图 9所示, 发射体 100的针状基本形状可以有效的 加强针顶附近的电场, 从而使得带电粒子发射变得更加容易。 相反, 如果 发射体不具有针状的基本形状, 在相同的施加电压的情况下, 发射体表面 的电场强度将大为减弱。 图 10所示的例子中, 发射体 800为棒状, 其棒 体直径与图 9发射体 100中针体直径相同,即相同与图 1中 106部分直径。 棒体指向 808也与图 9中针顶指向 708相同。邻近电极 802和棒状电极 800 的距离及相对位置均与图 9中 702和 100的距离及相对位置相同。 电压源 804也施加和图 9中 704—样的电压。 在这样的情况下可以看出, 等势线 810在 800前端面的聚集效果要明显弱于图 9中 710在 100表面的聚集效 果, 即 800前端面电场明显弱于 100表面电场, 不能起到减弱带电粒子发 射难度的效果。
【59】 除了利用电化学腐蚀时间来控制针顶大小以外, 还可以用机械研磨, 或者 是离子束加工的方法来形成所需针顶尺寸。 在一个优选的实例中, 针状发 射体 100的针顶等效曲率直径为 10微米。 在另一个优选的实例中, 针状 发射体 100的针顶等效曲率直径为 5微米。 在另一个优选的实例中, 针状 发射体 100的针顶等效曲率直径为 2微米。
【60】 在一个优选的实例中, 带电粒子为电子, 所发射带电粒子束为电子束。
【6 1】 实施例 2:
【62】 图 2 展示了一个针状发射体针顶结构 200 的实施例。 在此侧视 剖面图中, 洞状组分 202的中轴线上设置一个针尖组分 204。 正 方向为整体针状发射体针顶所指方向, 如箭头 208 所示。 洞状 组分 202的前端面平面标注为 2 10。包含针尖组分 204的最前顶 点并且平行于 2 10的平面标注为 2 1 2。洞状组分 202的洞口直径 标注为 2 14。 洞状组分 202的前端面直径标注为 206。 在一个优 选的实施例中, 洞状组分 202 和针尖组分 204均为相对于共同 中心轴的回转对称体。 2 10端面位于 2 12平面的前端, 即针尖组 分 204位于洞状组分 202 的内部。 在一个针状发射体针顶结构 2000 的实例中, 其俯视图如图 3所示。 在这个视角中, 洞状组 分 2002为环状, 针尖组分 2004位于洞状组分圆心处。
【63】 下面通过实例来说明图 2 中所示结构的作用。 当整体针状发射 体如图 9 中所示被施加电压的情况下, 针顶部分 200 附近的电 势分布如图 1 1所示。 箭头 908为针状发射体针顶指向方向。 洞 状组分 202 的存在使得等势线 9 10 向洞的中央内部凹陷, 从而 使得中轴线附近的带电粒子受到朝向中心轴的分力。 当带电粒 子从针尖组分 204 上发射出来的时候, 形成小发散立体角的带 电粒子束 9 12。 作为对比, 当其他条件不变, 仅仅去掉洞状组分 202的情况, 由图 12展示。 在这个情况下, 针尖组分 1002周围 没有洞状组分的存在, 所以在加电压的情况下, 其周围等势线 10 10没有向中央凹陷的形状。 于是电力线也不具有向中轴线聚 集的分量。 组分 1002所发射的带电粒子束 10 1 2 呈现较大的发 散角。 比较图 1 1 和图 1 2可知, 洞状组分的作用使得所发射带 电粒子束发散角减小。 需要指出的是, 虽然图 9和图 1 1所描述 的带电粒子发射性能是基于一个具体的发射体形状, 但是它们 展示出的发射体针状形态, 洞状组分以及针尖组分的作用同样 适用于其他由类似形态组合而成的发射体。 这些作用可部分概 括为: 发射体针状形态增强了针顶部分的电场强度, 而洞状组 分控制了从针尖组分上发射出的带电粒子束的方向和发散角 度。 在一个具体的实例中, 当洞口直径 2 14为 2微米, 端面 2 10 与平面 2 12距离为 500纳米, 针顶前端面直径 206为 4微米的 情况下, 发射电子束的发散角度为 5度。 所加电压为负 3000伏 时, 电子发射体亮度为 4E7 安培每单位平方厘米单位立体角弧 度单位千伏。
【64】 在一个实例中, 图 2所示结构通过聚焦离子束加工实现。 首先, 针状发射体的基本形状由电化学腐蚀导电棒状材料所得。 然后 用聚焦离子束切出平台状针顶。 之后, 用聚焦离子束呈环状图 案迎着针顶指向方向扫描此平台状针顶, 使得材料在被扫描的 区域被去除。 扫描继续直至针顶形成一个洞, 并且在洞的中间 有柱状材料剩余。 然后离子束扫描区域缩小到此剩余柱状材料 之上, 聚焦离子束继续去除多余材料直至柱状材料形成针尖组 分。 此步骤可运用已经公开的利用聚焦离子束技术制作原子探 针显微镜针尖试样的步骤进行。 此时洞状组分一和针尖组分二 均已形成。 平面 2 10和平面 2 1 2 的距离可以通过缩短针尖组分 二的长度而加大。 而聚焦离子束缩短针尖长度的方法都已在制 作原子探针显微镜试样的相关文献中公开。 在一个具体的实例 中, 导电棒状材料为稀土硼化物。 在另一个具体的实例中, 导 电棒状材料为硼化镧。 具体针状基本体腐蚀条件已被相关文献 所公开。
【65】 实施例 3 :
【66】 图 4展示了另一个关于针状发射体针顶结构 300 的实施例。 正 方向定义为针顶指向方向, 由箭头 3 10所示。 在这个实施例中, 洞状组分 302 的前部分没有形成平面。 相应的, 可以用一个部 分球面 306来近似洞状组分 302 的前部分。 此部分球面的半径 标注为 308。平面 3 12定义为经过洞状组分 302最前点并垂直于 正方向 3 10 的平面。 平面 3 14定义为经过针尖组分 304最前点 并垂直于正方向 3 10 的平面。 在此实施例中, 由于洞状组分外 表面为球面, 相对于实施例 2 中前端为平面的结构, 更有利于 在相同施加电压的情况下产生更强的电场。 从而在相同的发射 电流下, 降低所需电压。 此实施例中, 带电粒子束至少从针尖 组分 304 上发出, 并且此带电粒子束由于洞状组分 302 的存在 具有小发散角的特征。 虽然图 9和图 1 1所描述的带电粒子发射 性能是基于另一个具体的发射体形状, 但是它们展示出的发射 体针状形态, 洞状组分以及针尖组分的作用同样适用于这个实 例中由类似部分组合而成的发射体。 这些作用可部分概括为: 发射体针状形态增强了针顶部分的电场强度, 而洞状组分 302 控制了从针尖组分 304 上发射出的带电粒子束的方向和发散角 度。 在一个具体实施例中, 针顶前部曲率半径 308 为 2 微米, 端面 3 12与平面 3 14距离为 300纳米, 施加电压为负 2000伏的 情况下, 发射电子束的发散角度为 5 度, 发射体亮度为 5E7 安 培每单位平方厘米单位立体角弧度单位千伏。
【67】 在一个具体的实施例中, 针状发射体的基本形状由腐蚀一根金 属丝形成。 例如, 一根金属丝, 将一头放入腐蚀液中, 金属丝进入液面 部分周围放置一个对电极。在对电极与金属丝之间施加电压直至金属丝在 液面腐蚀断裂。 之后形成的金属针继续放置于腐蚀液中, 保持电压, 从而 已经形成的针尖继续被腐蚀变秃, 直到形成所需的顶端曲率直径 308。 之 后, 用聚焦离子束呈环状图案迎着针顶指向方向扫描此半球面 状针顶, 使得材料在被扫描的区域被去除。 扫描继续直至针顶 形成一个洞, 并且在洞的中间有柱状材料剩余。 然后离子束扫 描区域缩小到此剩余柱状材料之上, 聚焦离子束继续去除多余 材料直至柱状材料形成针尖组分。 此步骤可运用已经公开的制 作原子探针显微镜试样的步骤进行。 此时洞状组分一和针尖组 分二均已形成。 平面 3 1 2和平面 3 14 的距离可以通过缩短针尖 组分二的长度而加大。 而聚焦离子束缩短针尖长度的方法都已 在制作原子探针显微镜试样的相关文献中公开。 在一个优选的 实例中, 金属丝为钽丝; 腐蚀液为磷酸, 醋酸, 硫酸和氢氟酸 的混合液; 对电极为铂电极。
【68】 实施例 4 :
【69】 图 5 展示了另一个针状发射体针顶结构 400 的实施例。 在此侧 视剖面图中, 洞状组分 402的中轴线上设置一个针尖组分 404。 此针尖组分 404 由单根纤维状材料组成。 正方向为整体针状发 射体针顶所指方向, 如箭头 408所示。 洞状组分 402 的前端面 平面标注为 4 12。包含纤维状针尖组分 404的最前顶点并且平行 于 412的平面标注为 414。 在一个优选的实施例中, 412端面位 于 414 平面的前端, 即纤维状针尖组分 404 位于洞状组分 402 的内部。 在另一个优选的实施例中, 412端面位于 414平面的后 部, 即纤维状针尖组分 404的前顶点位于洞状组分 402的外部。 带电粒子束至少从纤维状组分 404 的顶端发出。 虽然图 9和图 1 1 所描述的带电粒子发射性能是基于另一个具体的发射体形 状, 但是它们展示出的发射体针状形态, 洞状组分以及针尖组 分的作用同样适用于这个实例中由类似部分组合而成的发射 体。 这些作用可部分概括为: 发射体针状形态增强了针顶部分 的电场强度, 而洞状组分 402 控制了从针尖组分 404上发射出 的带电粒子束的方向和发散角度。 在一个优选的实例中, 带电 粒子束为电子束。
[ 70 ] 在一个具体的实施例中, 针状发射体的基本形状由腐蚀一根金 属丝形成。 例如, 一根金属丝, 将一头放入腐蚀溶液中, 金属丝进入液 面部分周围放置一个对电极。在对电极与金属丝之间施加电压直至金属丝 在液面腐蚀断裂。 此时金属丝的一头便形成针状。 然后用聚焦离子束 切出平台状针顶。 之后, 用聚焦离子束呈圆形图案迎着针顶指 向方向扫描此平台状针顶, 使得材料在被扫描的区域被去除。 扫描继续直至针顶形成一个洞。 之后在一个含有沉积元素的气 氛中, 用聚焦电子束集中照射洞中央的定点。 沉积元素在电子 束的照射诱发下沉积在这个定点上, 逐渐堆积成一根沿着电子 束方向的纤维。 平面 41 2和平面 414 的相对位置及距离由纤维 长度决定。 而纤维长度, 在这个实例中, 由沉积时间控制。 在 一个优选的实例中, 金属丝为钨丝, 腐蚀液为氢氧化钾溶液, 对电极为铂电极, 沉积元素为碳。
【7 1】 在一个具体的实例中, 当洞口直径为 1 微米, 端面 412 位于平 面 414 的前面, 并且距离为 700纳米, 针顶前端面直径为 5微 米,纤维状组分 404的直径为 60纳米的情况下,施加电压为 3000 伏, 发射电子束的发散角度为 3度, 发射体亮度为 4E7 安培每 单位平方厘米单位立体角弧度单位千伏。
【72】 实施例 5 :
【73】 图 6 展示了另一个针状发射体针顶结构 500 的实施例。 在此侧 视剖面图中, 洞状组分 502的中轴线上设置一个针尖组分 504。 此针尖组分 504 由单根纤维状材料组成。 正方向为整体针状发 射体针顶所指方向, 如箭头 508所示。 洞状组分 502 的前端面 平面标注为 5 12。 其后端面平面标注为 5 16。 包含纤维状针尖组 分 504的最前顶点并且平行于 5 12的平面标注为 5 14。纤维状针 尖组分 504 连接在连接组分 5 10 之上, 其位置部分由组分 5 10 的形状大小控制。 在一个优选的实施例中, 5 12 端面位于 5 14 平面的前端, 而 5 16端面位于 5 14平面的后端, 即纤维状针尖 组分 504 的前顶点位于洞状组分 502 的内部, 而纤维状针尖组 分 504 的后顶点位于洞状组分 502 的外部。 在另一个优选的实 施例中, 5 12端面位于 5 14平面的后部, 而 5 16端面位于纤维状 组分 504后顶点的前端, 即纤维状针尖组分 504 的前顶点位于 洞状组分 502 的外部, 纤维状针尖组分 504 的后顶点也位于洞 状组分 502 的外部。 带电粒子束至少从纤维状组分 504 的前顶 点发出。 在某些针状发射体针顶结构 5000的实例中, 其俯视图 如图 7所示。 在这个视角中, 洞状组分 5002为环状, 纤维状针 尖组分 5004位于洞状组分圆心处并且联接在连接组分 5006之 上。
【74】 针尖组分 504 的至少一部分位于洞状组分 502 的外部, 这样的 结构简化了制作过程。 这是因为在制作过程中, 可以在洞状组 分 502 的外部对针尖组分 504进行操作。 这里的操作包括并不 仅限于切割, 连接, 转移, 固定, 覆盖。 虽然图 9和图 1 1所描 述的带电粒子发射性能是基于另一个具体的发射体形状, 但是 它们展示出的发射体针状形态, 洞状组分以及针尖组分的作用 同样适用于这个实例中由类似形态组合而成的发射体。 这些作 用可部分概括为: 发射体针状形态增强了针顶部分的电场强度, 而洞状组分 502 控制了从针尖组分 504 上发射出的带电粒子束 的方向和发散角度。 在一个优选的实例中, 带电粒子束为电子 束
【75】 在一个具体的实施例中, 针状发射体的基本形状由腐蚀一根金 属丝形成。 例如, 一根金属丝, 将一头放入腐蚀溶液中, 金属丝进入液 面部分周围放置一个对电极。在对电极与金属丝之间施加电压直至金属丝 在液面腐蚀断裂。 此时金属丝的一头便形成针状。 然后用聚焦离子束 切出平台状针顶以及连接组分 5 10。 之后, 用聚焦离子束呈圆形 图案, 迎着针顶指向方向扫描平台状针顶, 使得材料在被扫描 的区域被去除。 扫描继续直至针顶形成洞状组分 502。 之后纤维 状组分 504被连接在连接组分 5 10之上并固定。 平面 5 12和平 面 5 14 的相对位置及距离由纤维组分 504 的长度及连接位置决 定。 在一个优选的实例中, 金属丝为钽丝, 腐蚀液为磷酸, 醋 酸, 硫酸和氢氟酸的混合液; 对电极为铂电极。 纤维组分 504 为氧化锌纤维, 氧化钛纤维, 硼化金属纤维, 硅纤维或者是碳 纤维。 纤维状组分的制作, 操作以及固定方法在相关文献中已 经公开。
【76】 在一个具体的实例中, 当洞口直径为 1 微米, 端面 5 12 位于平 面 5 14 的前面, 并且距离为 500纳米, 针顶前端面直径为 4微 米,纤维状组分 504的直径为 50纳米的情况下,施加电压为 2800 伏, 发射电子束的发散角度为 4度, 电子发射体亮度为 3E7 安 培每单位平方厘米单位立体角弧度单位千伏。
【77】 实施例 6 :
【78】 图 8 展示了另一个针状发射体针顶结构 600 的实施例。 在此侧 视剖面图中, 洞状组分 602的中轴线上设置一个针尖组分 604。 此针尖组分 604 由单根纤维状材料组成。 正方向为整体针状发 射体针顶所指方向, 如箭头 608所示。 洞状组分 602 的前端面 平面标注为 6 12。 其后端面平面标注为 6 16。 包含纤维状针尖组 分 604的最前顶点并且平行于 6 12的平面标注为 6 14。洞状针尖 组分 602通过中间组分 606连接在连接组分 6 10之上。 纤维状 针尖组分 604连接在连接组分 6 10之上,其位置部分由组分 6 10 的形状大小控制。 在一个优选的实施例中, 6 12 端面位于 6 14 平面的前端, 而 6 16端面也位于 6 14平面的前端, 即纤维状针 尖组分 604 的前后顶点都位于洞状组分 602 的外部。 带电粒子 束至少从纤维状组分 604的前顶点发出。
【79】 针尖组分 604位于洞状组分 602 的外部, 这样的结构进一步简 化了制作过程。 这是因为在制作过程中, 可以在洞状组分 602 的外部对针尖组分 604 进行操作。 这里的操作包括并不仅限于 切割, 连接, 转移, 固定, 覆盖。 虽然图 9和图 1 1所描述的带 电粒子发射性能是基于另一个具体的发射体形状, 但是它们展 示出的发射体针状形态, 洞状组分以及针尖组分的作用同样适 用于这个实例中由类似形态组合而成的发射体。 这些作用可部 分概括为: 发射体针状形态增强了针顶部分的电场强度, 而洞 状组分 602控制了从针尖组分 604上发射出的带电粒子束的方 向和发散角度。 在一个优选的实例中, 带电粒子束为电子束。
【80】 在一个具体的实施例中, 针状发射体的基本形状由腐蚀一根金 属丝形成。 例如, 一根金属丝, 将一头放入腐蚀溶液中, 金属丝进入液 面部分周围放置一个对电极。在对电极与金属丝之间施加电压直至金属丝 在液面腐蚀断裂。 此时金属丝的一头便形成针状。 然后用聚焦离子束 切出平台状针顶, 中间组分 606 以及连接组分 6 10。 之后, 用聚 焦离子束呈圆形图案, 迎着针顶指向方向扫描平台状针顶, 使 得材料在被扫描的区域被去除。 扫描继续直至针顶形成洞状组 分 602。之后纤维状组分 604被连接在连接组分 6 10之上并固定。 平面 6 16和平面 6 14 的相对位置及距离由纤维组分 604 的长度 及连接位置决定。 在一个优选的实例中, 金属丝为钽丝, 腐蚀 液为磷酸, 醋酸, 硫酸和氢氟酸的混合液; 对电极为铂电极。 纤维组分 604 为氧化锌纤维, 氧化钛纤维, 硼化金属纤维, 硅 纤维或者是碳纤维。 纤维状组分的制作, 操作以及固定方法在 相关文献中已经公开。
【8 1】 在一个具体的实例中, 当洞口直径为 2 微米, 端面 6 12 位于平 面 6 14的前面, 并且距离为 1微米, 针顶前端面直径为 5微米, 纤维状组分 604的直径为 60纳米的情况下,施加电压为负 2900 伏, 发射电子束的发散角度为 2度, 发射体亮度 5E7 为安培每 单位平方厘米单位立体角弧度单位千伏。
【82】 实施例 7 :
【83】 如图 7 所示, 本实施例展示一个使用本发明所描述的针状发射 体的电子发射源 1 100。 其构成为一个针状发射体 100焊接在灯 丝 1 106上。 灯丝 1 106 的两端分别焊接在两个金属柱 1 1 10上。 该两个金属柱 1 1 10 由一个绝缘块 1 1 1 2 机械的联在一起并且提 供电绝缘。 针状发射体 100具有一个小曲率半径的针顶 102, 此 曲率半径应小于 100微米。 灯丝 1 106是用来通过一定的电流从 而以焦尔加热的方式加热针状发射体 100。针状发射体 100 由高 熔点导电材料做成。 这些材料包括但不限于碳, 钨, 铼, 钽, 和钼。 针状发射体 100 既可以是单结晶又可以是多晶。 其针顶 102可以是任意晶体结构取向。 正方向为针顶指向方向, 由箭头 1 108标出。
【84】 实施例 8
【85】 本实施例提供了将本发明针状发射体安装在一个带电粒子仪 器中的应用实例。 如图 14 所示, 本实施例中的电子束仪器是 一个场发射扫描电子显微镜 (SEM ) 1200。 本实施例的场致电 子发射源 1 100选用图 13中所示的电子发射源, 将该发射源安 装在 SEM 的真空腔体 1 220 中, 该发射体的两个灯丝电流引脚 柱连接到腔体 1220的外部。 一个灯丝电源 1204用来提供灯丝 所用的加热电流。 一个引出电极 12 1 2 放在该场致电子发射源 1100的尖端邻近用来使针状发射体能够释放出电子。引出电极 1212通过真空导入端子和腔体 1220 的外界相连。 一个引出电 压电源 1206 被用来维持该场致电子发射源 1100 和引出电极 1212之间的引出电压差。通过施加引出电压, 从该发射源 1100 上产生出了电子束 1218。 一个加速电极 1214用来设定电子束 1218的能量, 并由腔体 1220外的电压源 1210控制。 一个扫描 和聚焦系统 1216用来将此电子束 1218聚焦成一个小的电子探 针并且在样品 1224表面用此探针扫描。 样品 1224是装在一个 用来帮助观察样品的移动台 1226上的。 一个信号探测器 1222 设置在样品 1224 邻近用来采集由电子探针和样品之间相互作 用所产生的信号。 一个真空泵 1228被用来生成腔体 1220 内所 需的真空。
【86】 以上对本发明做了详尽的描述, 其目的在于让熟悉此领域技术 的人士能够了解本发明的内容并加以实施, 并不能以此限制本 发明的保护范围, 凡根据本发明的精神实质所作的等效变化或 修饰, 都应涵盖在本发明的保护范围内。

Claims

权利要求书
【权利要求 1】 1.一种电子发射体, 其特征在于: 所述发射体为针状, 且针 顶端部分至少包含两个组分, 组分一是具有至少朝针 顶指向方向开口的洞状组分, 组分二是设置于组分一 空洞中的针尖组分, 电子至少从组分二的针尖顶点发 射出。
【权利要求 2】 2.根据权利要求 1 中所述电子发射体, 其特征在于: 其组分一 和组分二为电导通状态, 其电压相同。
【权利要求 3】 3.根据权利要求 1中所述电子发射体, 其特征在于: 其组分一, 在发射体针顶指向的方向上, 其最前端面, 如若为平面, 则有 效外直径小于 100微米, 如若为部分球面, 则最小有效曲率直 径小于 100微米。
【权利要求 4】 4.根据权利要求 1 中所述电子发射体, 其特征在于: 其组分一 是在针顶指向方向上朝前后分别开口的空心圆台体结构。
【权利要求 5】 5.根据权利要求 广 4 中任一项所述电子发射体, 其特征在于: 其组分一, 在针顶指向方向上, 其最前端面高于组分二的针尖 顶点。
【权利要求 6】 6.根据权利要求 4 中所述电子发射体, 其特征在于: 其空心圆 台体组分一, 在针顶指向方向上, 其后端面低于组分二的针尖 顶点。
【权利要求 7】 7.根据权利要求 1 中所述电子发射体, 其特征在于: 其针尖组 分二由有效单根纤维状材料构成。
【权利要求 8】 8.根据权利要求 7 中所述电子发射体, 其特征在于: 其纤维状 组分二, 在针顶指向方向上, 其一部分位于组分一空洞之外。
【权利要求 9】 9.根据权利要求 4 中所述电子发射体, 其特征在于: 其组分二 由有效单根纤维状材料构成, 并且此纤维状材料的至少一部分, 在针顶指向的方向上, 低于组分一的圆台体后端面。
【权利要求 10】 10.根据权利要求广 9中任一项所述电子发射体, 其特征在于: 其主要构成材料包括: 钨, 钼, 钽, 铼, 钛, 铬, 铂, 锇, 铱 以及以这些元素为主要成分的合金, 主要成分为碳, 硅, 锗的 材料, 金属氧化物, 金属硼化物, 金属氮化物, 金属碳化物, 且其中的金属元素为钙, 锶, 钡, 钪, 钇, 所有镧系元素, 钍, 钛, 锆和铪中的一种或多种的组合。
【权利要求 11】 11.根据权利要求广 9中任一项所述电子发射体, 其特征在于: 其组分一的主要构成材料为较为不易发射电子的高功函数导电 材料, 组分二的主要构成材料为较为容易发射电子的低功函数 导电材料。
【权利要求 12】 12.根据权利要求广 9中任一项所述电子发射体, 其特征在于: 其组分二的主要构成材料为金属氧化物, 金属硼化物, 金属氮 化物, 金属碳化物, 且其中的金属元素为钙, 锶, 钡, 钪, 钇, 所有镧系元素, 钍, 钛, 锆和铪中的一种或多种的组合。
【权利要求 13】 13.根据权利要求 广 12 中任一项所述电子发射体, 其发射电子 的方法至少包括以下几个步骤: a.在针状发射体附近设置一个 参照电极, b.施加一个相对于此参照电极为负的电压在至少针 尖组分二之上。
【权利要求 14】 14.权力要求 广 13 中任一项作为电子发射体的电子束仪器, 其 包括: 扫描电子显微镜, 透射电子显微镜, 扫描透射电子显微 镜, 电子束刻蚀机器, 电子束激发 X射线能谱仪, 电子能量损 失能谱仪, 俄歇电子能谱仪。
【权利要求 15】 15.—个电子发射体的制备方法, 其特征在于: 所述发射体为 针状, 且针顶端部分至少包含两个组分, 组分一是具 有至少朝针顶指向方向开口的洞状组分, 组分二是设 置于组分一空洞中的针尖组分, 电子至少从组分二的 针尖顶点发射出, 制备此发射体的过程包含以下步骤: a.制备针状的基本体; b .迎着针顶指向方向, 用离子 束轰击此针状基本体的针顶局部限定区域, 从而使被 轰击的区域的材料被除去, 从而形成洞状结构。
【权利要求 16】 16.权力要求 15中所述的制备方法, 其特征在于: 步骤 b中所述局部限定区域为环状, 从而形成空洞的同时, 空洞中央保留部分材料, 此保留部分直接用作或进一 步加工成所述针尖组分二。
PCT/CN2014/085644 2013-10-21 2014-08-31 针状带电粒子束发射体及制作方法 WO2015058588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310494493.4 2013-10-21
CN201310494493.4A CN103531423A (zh) 2013-10-21 2013-10-21 针状带电粒子束发射体及制作方法

Publications (1)

Publication Number Publication Date
WO2015058588A1 true WO2015058588A1 (zh) 2015-04-30

Family

ID=49933353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085644 WO2015058588A1 (zh) 2013-10-21 2014-08-31 针状带电粒子束发射体及制作方法

Country Status (2)

Country Link
CN (1) CN103531423A (zh)
WO (1) WO2015058588A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005166A1 (en) * 2016-06-30 2018-01-04 Kla-Tencor Corporation High brightness boron-containing electron beam emitters for use in a vacuum environment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531423A (zh) * 2013-10-21 2014-01-22 严建新 针状带电粒子束发射体及制作方法
CN110556279A (zh) * 2019-08-13 2019-12-10 河南河大科技发展有限公司 一种阴极电子枪灯丝装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261941A (ja) * 1988-08-26 1990-03-01 Sony Corp 電界電離型イオン源
US20040026629A1 (en) * 2002-08-12 2004-02-12 Tadashi Fujieda Emission source having carbon nanotube, electron microscope using this emission source, and electron beam drawing device
CN101743607A (zh) * 2007-07-26 2010-06-16 电子线技术院株式会社 具有纳米结构针尖的电子发射体以及使用该电子发射体的电子柱
CN102651295A (zh) * 2011-02-22 2012-08-29 Fei公司 稳定冷场发射电子源
CN103531423A (zh) * 2013-10-21 2014-01-22 严建新 针状带电粒子束发射体及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261941A (ja) * 1988-08-26 1990-03-01 Sony Corp 電界電離型イオン源
US20040026629A1 (en) * 2002-08-12 2004-02-12 Tadashi Fujieda Emission source having carbon nanotube, electron microscope using this emission source, and electron beam drawing device
CN101743607A (zh) * 2007-07-26 2010-06-16 电子线技术院株式会社 具有纳米结构针尖的电子发射体以及使用该电子发射体的电子柱
CN102651295A (zh) * 2011-02-22 2012-08-29 Fei公司 稳定冷场发射电子源
CN103531423A (zh) * 2013-10-21 2014-01-22 严建新 针状带电粒子束发射体及制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005166A1 (en) * 2016-06-30 2018-01-04 Kla-Tencor Corporation High brightness boron-containing electron beam emitters for use in a vacuum environment
US9984846B2 (en) 2016-06-30 2018-05-29 Kla-Tencor Corporation High brightness boron-containing electron beam emitters for use in a vacuum environment

Also Published As

Publication number Publication date
CN103531423A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
US8450699B2 (en) Electron beam device and electron beam application device using the same
JP6458727B2 (ja) 低仕事関数及び高い化学的安定性を備えた電極材料
EP3066680B1 (en) Bright and durable field emission source derived from refractory taylor cones
US9837239B2 (en) Techniques for optimizing nanotips derived from frozen taylor cones
WO2015058588A1 (zh) 针状带电粒子束发射体及制作方法
JP2013528914A (ja) 粒子源及びその製造方法
US20030205958A1 (en) High angular intensity Schottky electron point source
JP5559431B2 (ja) 粒子源及びその製造方法
US7556749B2 (en) Electron source
JP3582855B2 (ja) 熱電界放射陰極及びその製造方法
EP2188826B1 (en) X-ray tube with enhanced small spot cathode and methods for manufacture thereof
JP4292108B2 (ja) 電子源及びその製造方法
US20110036810A1 (en) Manufacturing method of electron source
JP2003505833A (ja) 小型電界放出電子銃およびフォーカスレンズ
JP3547531B2 (ja) 電子線装置
WO2007148507A1 (ja) 電子源
JP7403678B2 (ja) 電子源とその製造方法およびそれを用いた電子線装置
JP3766763B2 (ja) 電界放射電子銃
US8593048B2 (en) Electron source having a tungsten single crystal electrode
WO2011040326A1 (ja) 電子源用ロッド、電子源及び電子機器
WO2021130837A1 (ja) 電子源、電子線装置および電子源の製造方法
JPH0684451A (ja) 熱電界放射陰極
JP2003007195A (ja) 電子放射陰極及びその製造方法
JP2002022899A (ja) 電子線照射装置
JPH0684452A (ja) 熱電界放射陰極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856685

Country of ref document: EP

Kind code of ref document: A1