WO2016140177A1 - エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法 - Google Patents

エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法 Download PDF

Info

Publication number
WO2016140177A1
WO2016140177A1 PCT/JP2016/056017 JP2016056017W WO2016140177A1 WO 2016140177 A1 WO2016140177 A1 WO 2016140177A1 JP 2016056017 W JP2016056017 W JP 2016056017W WO 2016140177 A1 WO2016140177 A1 WO 2016140177A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
nanowire
single crystal
electron gun
electron
Prior art date
Application number
PCT/JP2016/056017
Other languages
English (en)
French (fr)
Inventor
捷 唐
ジンシ ユエン
ハン ザン
禄昌 秦
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2017503461A priority Critical patent/JP6459135B2/ja
Priority to DE112016001009.5T priority patent/DE112016001009B4/de
Priority to US15/548,623 priority patent/US10026585B2/en
Publication of WO2016140177A1 publication Critical patent/WO2016140177A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/481Electron guns using field-emission, photo-emission, or secondary-emission electron source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30419Pillar shaped emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30426Coatings on the emitter surface, e.g. with low work function materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30484Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/02Manufacture of cathodes
    • H01J2209/022Cold cathodes
    • H01J2209/0223Field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission

Definitions

  • the present invention relates to an emitter, an electron gun using the emitter, an electronic apparatus using the emitter, and a manufacturing method thereof.
  • an electron source using such an electron gun there are field emission type, Schottky type electron sources and the like. These are characterized by sharpening the tip of an emitter used in an electron gun, thereby generating an electric field concentration effect at the tip and emitting more electrons from the tip.
  • Non-Patent Document 1 Recently, it has been reported that electrons are emitted from hafnium carbide nanowires and function as an emitter (see, for example, Non-Patent Document 1). However, it has been found that the electron emission characteristics from the hafnium carbide nanowire in Non-Patent Document 1 are poor in stability, and improvement in stability is desired.
  • an object of the present invention is to provide an emitter that stably and efficiently emits electrons, an electron gun using the emitter, an electronic device using the emitter, and a manufacturing method thereof.
  • the emitter of the present invention includes a nanowire, and the nanowire is made of a hafnium carbide (HfC) single crystal, and at least an end portion of the hafnium carbide single crystal from which electrons are to be emitted is covered with hafnium oxide (HfO 2 ).
  • HfC hafnium carbide
  • HfO 2 hafnium oxide
  • the thickness of the hafnium oxide may be 1 nm or more and 20 nm or less.
  • the thickness of the hafnium oxide may be 1 nm or more and 10 nm or less.
  • the thickness of the hafnium oxide may be 1 nm or more and 5 nm or less.
  • the shape of the end where the electrons should be emitted may be hemispherical by field evaporation.
  • the longitudinal direction of the nanowire may coincide with the ⁇ 100>, ⁇ 110> or ⁇ 111> crystal direction of the hafnium carbide single crystal.
  • the longitudinal direction of the nanowire may coincide with the ⁇ 100> crystal direction of the hafnium carbide single crystal, and the end may have at least ⁇ 111 ⁇ and ⁇ 110 ⁇ planes.
  • the length of the nanowire in the short direction may be 1 nm or more and 100 nm or less, and the length of the nanowire in the longitudinal direction may be 500 nm or more and 30 ⁇ m or less.
  • the electron gun of the present invention includes at least an emitter, and the emitter is an emitter including the nanowire described above, thereby solving the above-described problem.
  • the emitter further comprises a needle and a filament
  • the nanowire is made of an element selected from the group consisting of tungsten (W), tantalum (Ta), platinum (Pt), rhenium (Re), and carbon (C). It may be attached to the filament via a needle.
  • the electron gun may be a cold cathode field emission gun or a Schottky electron gun.
  • An electronic apparatus according to the present invention includes an electron gun, and the electron gun is the above-described electron gun.
  • the electronic apparatus includes a scanning electron microscope, a transmission electron microscope, a scanning transmission electron microscope, an Auger electron spectrometer, an electron energy It is selected from the group consisting of a loss spectrometer and an energy dispersive electron spectrometer, thereby solving the above problem.
  • the method for producing an emitter of the present invention includes a step of heating a nanowire made of a hafnium carbide single crystal in an atmosphere containing oxygen, thereby solving the above-mentioned problems.
  • the oxygen partial pressure may be in the range of 1 ⁇ 10 ⁇ 9 Pa to 1 ⁇ 10 ⁇ 7 Pa.
  • the heating temperature may be in a range of 400 ° C. to 800 ° C.
  • the heating time may be in the range of 1 minute to 10 minutes.
  • the oxygen partial pressure is in the range of 5 ⁇ 10 ⁇ 9 Pa to 5 ⁇ 10 ⁇ 8 Pa, the heating temperature is in the range of 500 ° C.
  • the nanowires made of the hafnium carbide single crystal include chemical vapor deposition (CVD), vapor-liquid-solid (VLS), physical vapor deposition such as sputtering, laser ablation, and the like, and It may be manufactured by a method selected from the group consisting of template methods.
  • the method may further include a step of performing field evaporation on a surface of one end of the nanowire made of the hafnium carbide single crystal.
  • the method may further include a step of flushing the surface.
  • the emitter of the present invention includes a nanowire, and the nanowire is made of a hafnium carbide (HfC) single crystal, and at least an end of the hafnium carbide single crystal from which electrons are to be emitted is covered with hafnium oxide (HfO 2 ). Since at least the edge where electrons should be emitted is coated with hafnium oxide, the work function of the edge where electrons should be emitted from the nanowire (ie, hafnium carbide single crystal) is reduced by the coated hafnium oxide, making electrons easier To be released. As a result, the emitter of the present invention is excellent in electron emission characteristics.
  • HfC hafnium carbide
  • HfO 2 hafnium oxide
  • the emitter of the present invention can stably emit electrons over a long period of time.
  • FIG. It is the low magnification TEM image (A) and HRTEM image (B) of the nanowire which consists of a HfC single crystal which has a ⁇ 100> crystal direction by the reference example 1.
  • FIG. It is the low magnification TEM image (A) and HRTEM image (B) of the nanowire which consists of a HfC single crystal which has a ⁇ 110> crystal direction by the reference example 1.
  • 10 is a SEM image of an emitter of Comparative Example 2.
  • FIG. 1 It is a figure which shows the FIM image and simulation result of the edge part of the nanowire in the emitter of the comparative examples 2 and 3.
  • FIG. It is a field emission pattern of the edge part of the nanowire in the emitter of the comparative examples 2 and 3. It is a figure which shows the time dependence of the field emission current in the emitter of the comparative example 2 and Example 5.
  • FIG. 1 shows the FIM image and simulation result of the edge part of the nanowire in the emitter of the comparative examples 2 and 3.
  • FIG. 2 It is a field emission pattern of the edge part of the nanowire in the emitter of the comparative examples 2 and 3.
  • FIG. 5 shows the time dependence of the field emission current in the emitter of the comparative example 2 and Example 5.
  • FIG. 1 is a schematic diagram of an emitter according to this embodiment.
  • the emitter of this embodiment includes a nanowire 100, and the nanowire 100 is made of hafnium carbide (hereinafter, also referred to as “HfC”) single crystal 110. At least the end of the HfC single crystal 110 from which electrons should be emitted (the upper end of the nanowire 100 in FIG. 1) is covered with hafnium oxide (hereinafter also referred to as “HfO 2 ”) 120. Since at least the end where electrons should be emitted is covered with HfO 2 120, the work function of the end where the electrons of nanowire 100 should be emitted is lowered. Thereby, the emitter of the present embodiment can easily emit electrons and has excellent electron emission characteristics. Further, since the dangling bonds on the surface of the end portion where the electrons of the HfC single crystal 110 should be emitted disappear due to HfO 2 120, the emitter of this embodiment can emit electrons stably over a long period of time.
  • HfC hafnium carbide
  • FIG 1 shows a diagram in which only the end portion is coated with HfO 2, part or all of HfC single crystal 110 containing the end the same effect be coated with HfO 2.
  • the longitudinal direction of nanowire 100 coincides with the crystal direction of ⁇ 100>, ⁇ 110>, or ⁇ 111> of HfC single crystal 110.
  • the HfC single crystal 110 in the nanowire 100 becomes a good single crystal with few cracks and kinks.
  • the longitudinal direction of the nanowire 100 coincides with the ⁇ 100> crystal direction of the HfC single crystal 110
  • the crystal face of the portion includes a face with a low work function such as ⁇ 111 ⁇ , ⁇ 110 ⁇ , etc., electrons can be efficiently emitted.
  • the crystal plane at the end where electrons should be emitted includes at least a surface with a low work function such as ⁇ 111 ⁇ . Therefore, electrons can be emitted efficiently.
  • the crystal surface at the end where electrons should be emitted includes a surface with a low work function such as ⁇ 111 ⁇ . Electrons can be emitted efficiently.
  • the longitudinal direction of the nanowire 100 coincides with the ⁇ 100> crystal direction of the HfC single crystal 110 from the viewpoint of ease of manufacture and processing, crystal quality, and the like.
  • the HfC single crystal is a cubic crystal
  • the crystal directions of the HfC single crystal are described as ⁇ 100>, ⁇ 110>, and ⁇ 111>, all the crystal directions equivalent to each other Note that this includes Similarly, when ⁇ 111 ⁇ , ⁇ 110 ⁇ , etc. are described as crystal planes of the HfC single crystal, it should be noted that each plane includes equivalent symmetry.
  • FIG. 2A is a schematic diagram of an emitter according to another embodiment of the present invention.
  • an emitter is the same as the emitter of FIG. 1 except for the shape of the end where electrons should be emitted.
  • the shape of the end where electrons should be emitted is hemispherical, and the surface is a hemispherical surface 210. Processing / processing for making the end part into such a hemisphere can be performed by, for example, electric field evaporation.
  • the atoms evaporate from the end portion where the electrons of the HfC single crystal 110 should be emitted by electric field evaporation. Contaminants and impurities adhering to the evaporated atoms are also removed, so that the edges are clean. Furthermore, the crystal plane at the end is exposed due to such evaporation of atoms, and as a result, a hemispherical surface 210 is formed. From such a viewpoint, it is preferable that the end of the HfC single crystal 110 from which electrons should be emitted is hemispherical by field evaporation.
  • FIG. 2B is a schematic diagram showing a crystal plane on the hemispherical surface 210 when the longitudinal direction of the nanowire 100 coincides with the ⁇ 100> crystal direction of the HfC single crystal 110.
  • the hemispherical surface 210 from which electrons should be emitted by field evaporation surely includes a surface with a low work function such as ⁇ 111 ⁇ , ⁇ 110 ⁇ , etc. Can be released.
  • FIG. 2C is a schematic diagram showing a crystal plane on the hemispherical surface 210 when the longitudinal direction of the nanowire 100 coincides with the ⁇ 110> crystal direction of the HfC single crystal 110.
  • the hemispherical surface 210 from which electrons are to be emitted by field evaporation surely includes at least a surface with a low work function of ⁇ 111 ⁇ , so that electrons can be emitted more efficiently. .
  • the nanowire is intended to have a nano-order wire shape.
  • the cross section of the nanowire 100 is preferably circular.
  • the length (that is, the diameter) in the short direction of the nanowire 100 is in the range of 1 nm to 100 nm, and the length in the longitudinal direction is in the range of 500 nm to 30 ⁇ m. With such a size, it is possible to effectively generate electric field concentration at the end where electrons should be emitted, and to emit more electrons from the end.
  • the length in the short direction of the nanowire 100 is in the range of 10 nm to 60 nm, and the length in the longitudinal direction is in the range of 5 ⁇ m to 30 ⁇ m.
  • CVD chemical vapor deposition
  • the nanowire 100 made of a high-quality HfC single crystal having the above-described range and free from cracks and kinks is easily obtained. Can be provided.
  • the thickness of HfO 2 120 is not less than 1 nm and not more than 20 nm.
  • the thickness of HfO 2 120 is less than 1 nm, the work function of the edge where electrons should be emitted does not decrease, and the electron emission characteristics can be impaired.
  • the thickness of HfO 2 120 exceeds 20 nm, electrons from the HfC single crystal 110 cannot be physically emitted by the thickness of HfO 2 120 (electron emission is hindered by HfO 2 120), and electron emission There is a risk that the characteristics will deteriorate.
  • the thickness of HfO 2 120 is 1 nm or more and 10 nm or less. If the thickness of the HfO 2 120 is within this range, the work function of the end where electrons should be emitted is lowered, and good electron emission characteristics can be obtained. More preferably, the thickness of HfO 2 120 is 1 nm or more and 5 nm or less. If the thickness of the HfO 2 120 is within this range, the work function of the end where electrons should be emitted is lowered, and good electron emission characteristics can be obtained with certainty.
  • the nanowire 100 is shown as the emitter itself, but is not limited thereto.
  • the emitter may be the nanowire 100 itself, or the nanowire 100 may be attached to and integrated with the needle, or may be further attached to the filament.
  • FIG. 3 is a flowchart showing a method for manufacturing the emitter of the present embodiment.
  • step S310 the nanowire 100 made of hafnium carbide (HfC) single crystal 110 is heated in an atmosphere containing oxygen. As a result, at least the end portion of the HfC single crystal is oxidized and covered with HfO 2 120 (FIGS. 1 and 2).
  • HfC hafnium carbide
  • the manufacturing method of the nanowire 100 made of the HfC single crystal 110 is not particularly limited, but a chemical vapor deposition method (CVD) using a metal catalyst, a gas phase-liquid phase-solid phase (VLS) method, It may be manufactured by a method selected from the group consisting of a physical vapor deposition method such as a sputtering method and a laser ablation method, and a template method.
  • CVD chemical vapor deposition method
  • VLS gas phase-liquid phase-solid phase
  • the oxygen partial pressure is preferably in the range of 1 ⁇ 10 ⁇ 9 Pa to 1 ⁇ 10 ⁇ 7 Pa.
  • the oxygen partial pressure is less than 1 ⁇ 10 ⁇ 9 Pa, the end of the HfC single crystal is not oxidized, and HfO 2 120 may not be formed.
  • the oxygen partial pressure exceeds 1 ⁇ 10 ⁇ 7 Pa, the film thickness of HfO 2 120 exceeds 20 nm, and the electron emission characteristics may deteriorate. More preferably, the oxygen partial pressure is in the range of 5 ⁇ 10 ⁇ 9 Pa to 5 ⁇ 10 ⁇ 8 Pa. If it is this range, the oxidation of the edge part of the HfC single crystal 110 may be promoted.
  • the heating temperature is preferably in the range of 400 ° C. or higher and 800 ° C. or lower.
  • the heating temperature is less than 400 ° C., the end of the HfC single crystal 110 is not oxidized, and HfO 2 120 may not be formed.
  • the heating temperature exceeds 800 ° C., good quality HfO 2 120 is not formed, and the electron emission characteristics may be deteriorated.
  • the heating temperature is in the range of 500 ° C. or higher and 700 ° C. or lower. Within this range, is promoted oxidation end of HfC single crystal is good HfO 2 is obtained.
  • the heating time is preferably in the range of 1 minute to 10 minutes.
  • the heating temperature is less than 1 minute, the end of the HfC single crystal is not oxidized and HfO 2 120 may not be formed.
  • the heating time exceeds 10 minutes, the high-quality HfO 2 120 is not formed, and the film thickness of the HfO 2 120 exceeds 20 nm, which may deteriorate the electron emission characteristics.
  • the heating time ranges from 3 minutes to 7 minutes. Within this range, it is easy to obtain HfO 2 in the range of 1 nm to 20 nm.
  • step S310 it is preferable to satisfy the oxygen partial pressure, the heating temperature, and the heating time because HfO 2 120 having a thickness of 1 nm to 20 nm is formed.
  • Step S310 may be performed immediately after manufacturing the nanowire 100 made of the HfC single crystal 110, may be performed after the nanowire 100 is attached to a needle, a filament, or the like, or in the process of manufacturing an electron gun including an emitter. You may go.
  • a step of performing field evaporation on the surface of one end of nanowire 100 made of HfC single crystal 110 may be performed prior to step S310.
  • a high electric field of 1 V / nm to 10 V / nm may be applied to one end of the nanowire.
  • the hemispherical surface 210 (FIG. 2) from which the end of the nanowire 100 was cleaned and the crystal plane was exposed is obtained.
  • oxygen can be introduced and step S310 can be performed.
  • a flushing step may be performed following the above-described field evaporation step.
  • C carbon
  • Hf hafnium
  • the flushing step is the same as the normal flushing process.
  • the HfC single crystal may be connected to a flushing power source and energized and heated.
  • FIG. 4 is a schematic diagram showing an electron gun equipped with an emitter according to the present embodiment.
  • the electron gun 400 of the present embodiment includes at least the emitter 410 including the nanowire 100 described in the first embodiment.
  • the emitter 410 further includes a filament 420 and a needle 430 in addition to the nanowire 100.
  • the nanowire 100 is attached to the filament 420 via a needle 430 made of an element selected from the group consisting of tungsten (W), tantalum (Ta), platinum (Pt), rhenium (Re), and carbon (C). Yes. Thereby, since handling of the nanowire 100 becomes easy, it is preferable.
  • the nanowire 100 is attached to the needle 430 by a conductive adhesive sheet such as a carbon pad.
  • the filament 420 has a hairpin shape (U shape), but is not limited thereto, and the shape of the filament 420 is arbitrary such as a V shape.
  • an extraction power source 450 is connected between the electrode 440 and the extraction electrode 460, and the extraction power source 450 applies a voltage between the emitter 410 and the extraction electrode 460.
  • an acceleration power source 470 is connected between the electrode 440 and the acceleration electrode 480, and the acceleration power source 470 applies a voltage between the emitter 410 and the acceleration electrode 480.
  • the electrode 440 may be further connected to a flash power source when the electron gun 400 is a cold cathode field emission electron gun, and may be connected to a heating power source when the electron gun 400 is a Schottky electron gun.
  • the electron gun 400 may be disposed under a vacuum of 10 ⁇ 8 Pa to 10 ⁇ 7 Pa. In this case, the end of the emitter 410 from which electrons are to be emitted can be kept clean.
  • the extraction power source 450 applies a voltage between the emitter 410 and the extraction electrode 460. As a result, an electric field concentration is generated at the end of the nanowire 100 of the emitter 410 where electrons should be emitted, and the electrons are extracted. Further, the acceleration power source 470 applies a voltage between the emitter 410 and the acceleration electrode 480. As a result, electrons extracted at the end of the nanowire 100 of the emitter 410 that is to emit electrons are accelerated and emitted toward the sample. Note that the surface of the nanowire 100 may be cleaned by appropriately performing flushing with a flash power source connected to the electrode 440. These operations are performed under the vacuum described above.
  • the heating power source connected to the electrode 440 heats the emitter 410, and the extraction power source 450 applies a voltage between the emitter 410 and the extraction electrode 460.
  • the acceleration power source 470 applies a voltage between the emitter 410 and the acceleration electrode 480.
  • the electron gun 400 may further include a suppressor (not shown) for shielding the thermoelectrons.
  • the electron gun 400 of the present embodiment includes the emitter 410 including the nanowire 100 described in detail in the first embodiment, electrons are easily emitted and can be stably emitted over a long period of time.
  • Such an electron gun 400 is employed in any electronic device having an electron focusing capability.
  • such an electronic device is selected from the group consisting of a scanning electron microscope, a transmission electron microscope, a scanning transmission electron microscope, an Auger electron spectrometer, an electron energy loss spectrometer, and an energy dispersive electron spectrometer.
  • FIG. 5 is a schematic view showing an apparatus for producing nanowires made of hafnium carbide single crystal.
  • a gas raw material supply source 510 includes a gas raw material supply source 510, a heatable reaction chamber 530 to which raw materials from the gas raw material supply source 510 are supplied via a line 520, unreacted raw materials, by-products, and the like.
  • a dryer 540 for sucking and drying, and a pump 550 for exhausting the inside of the reaction chamber 530 to make a vacuum are provided.
  • the gas raw material supply source 510 was connected to the methane gas line and the H 2 gas line.
  • a quartz tube furnace (inner diameter: 64 mm) is used as the reaction chamber 530, and inside is a HfCl 4 powder 560 (purity: 99.55%, manufactured by Sigma-Aldrich Japan) as a raw material, and a graphite substrate 570 as a synthesis substrate. It was done.
  • HfCl 4 powder 560 was placed in the cold region of reaction chamber 530.
  • the graphite substrate 570 was disposed at the center of the reaction chamber 530. On the graphite substrate 570, nickel (Ni) nanoparticles (particle size: several tens of nanomails) were dispersed as a catalyst.
  • the inside of the reaction chamber 530 was evacuated to 10 ⁇ 1 Pa or less by the pump 550. It heated up until the temperature of the center part in which the graphite board
  • positioned became 1280 degreeC. On the other hand, the temperature in the low temperature region where the HfCl 4 powder 560 was disposed was maintained at 200 ° C.
  • H 2 gas and methane gas were flowed from the gas raw material supply source 510.
  • a vaporized HfCl 4 gas was introduced to the top of the graphite substrate 570 by H 2 gas in the reaction chamber 530.
  • methane gas was introduced up to the top of the graphite substrate 570.
  • the flow rates of H 2 gas and methane gas were 1 L / min and 20 mL / min, respectively.
  • FIG. 6 is an SEM image showing the state of the needle-shaped material synthesized on the graphite substrate according to Reference Example 1.
  • the acicular substance was an aggregate of straight nanowires having a length of several hundred nm to several tens of ⁇ m.
  • HfC hafnium carbide
  • nanowires made of HfC single crystals having a ⁇ 100> crystal direction in the growth direction (longitudinal direction) (hereinafter simply referred to as ⁇ 100> nanowires), ⁇ 110> Extraction of nanowires (hereinafter simply referred to as ⁇ 110> nanowires) made of HfC single crystals having crystal orientation and nanowires (hereinafter simply referred to as ⁇ 111> nanowires) consisting of HfC single crystals having ⁇ 111> crystal orientations
  • TEM transmission electron microscope
  • FIG. 7 is a low-magnification TEM image (A) and HRTEM (high-resolution transmission electron microscope) image (B) of a nanowire made of an HfC single crystal having a ⁇ 100> crystal direction according to Reference Example 1.
  • FIG. 8 is a low-magnification TEM image (A) and HRTEM image (B) of a nanowire made of an HfC single crystal having a ⁇ 110> crystal direction according to Reference Example 1.
  • FIG. 9 is a low-magnification TEM image (A) and HRTEM image (B) of a nanowire made of an HfC single crystal having a ⁇ 111> crystal direction according to Reference Example 1.
  • FIG. 7A shows that the nanowire of FIG. 7A has a length in the short direction of 30 nm to 40 nm and a length in the longitudinal direction of 500 nm to 15 ⁇ m.
  • SAED limited field electron diffraction pattern
  • the nanowire was a single crystal.
  • FIG. 7B it was found that the growth direction of the nanowire coincides with ⁇ 100>.
  • FIG. 8A shows that the nanowire of FIG. 8A has a length in the short direction of 25 nm to 35 nm and a length in the long direction of 500 nm to 15 ⁇ m. According to FIG. 8B, it was found that the growth direction of the nanowire coincides with ⁇ 110>.
  • the nanowire of FIG. 9A had a length in the short direction of 45 nm to 55 nm and a length in the longitudinal direction of 500 nm to 1 ⁇ m.
  • FIG. 9B it was found that the growth direction of the nanowire coincides with ⁇ 111>.
  • Comparative Example 2 In Comparative Example 2, an emitter was manufactured using the ⁇ 100> nanowire obtained in Reference Example 1.
  • the manufacturing procedure of the emitter was as follows. A tantalum wire was etched and processed into a Ta needle with one end tapered. Next, the Ta needle was connected to a hairpin type tungsten filament by welding. The ⁇ 100> nanowire was fixed to a tapered Ta needle using a carbon pad. These operations were performed using a focused ion beam (FIB) system. The emitter thus obtained was observed by SEM. Next, using a field ion microscope (FIM), the tips of the nanowires were field evaporated, and cleaned and smoothed. The state of the nanowire after field evaporation was observed by SEM. These results are shown in FIG.
  • FIB focused ion beam
  • Comparative Example 3 In Comparative Example 3, an emitter was manufactured using the ⁇ 110> nanowire obtained in Reference Example 1. An emitter was manufactured in the same procedure as in Comparative Example 2 except that ⁇ 110> nanowire was used instead of ⁇ 100> nanowire.
  • Comparative Example 4 In Comparative Example 4, an emitter was manufactured using the ⁇ 111> nanowire obtained in Reference Example 1. An emitter was manufactured in the same procedure as in Comparative Example 2 except that ⁇ 111> nanowire was used instead of ⁇ 100> nanowire.
  • Example 5 In the emitter manufactured in Comparative Example 2, the end of the nanowire made of an HfC single crystal having a ⁇ 100> crystal direction was covered with hafnium oxide (HfO 2 ).
  • the procedure for manufacturing the HfO 2 coated emitter was as follows. In Comparative Example 2, field evaporation and flushing were performed, oxygen was introduced into the chamber, and heating was performed in an atmosphere containing oxygen (step S310 in FIG. 3). Specifically, the oxygen pressure in the chamber was set to 1.1 ⁇ 10 ⁇ 8 Pa and heated at 600 ° C. for 5 minutes. From the growth rate of HfO 2 under these conditions, the film thickness of HfO 2 was estimated to be 2 nm.
  • Example 6 In the emitter manufactured in Comparative Example 3, as in Example 5, the end portion of the nanowire made of HfC single crystal having the ⁇ 110> crystal direction was covered with hafnium oxide (HfO 2 ). The time dependency of the field emission current of the obtained emitter was measured.
  • Example 7 In the emitter manufactured in Comparative Example 4, as in Example 5, the end of the nanowire made of HfC single crystal having the ⁇ 111> crystal direction was covered with hafnium oxide (HfO 2 ). The time dependency of the field emission current of the obtained emitter was measured.
  • FIG. 10 is an SEM image of the emitter of Comparative Example 2.
  • FIG. 10A shows the overall state of the emitter 1000 of Comparative Example 2.
  • FIG. 10B shows a state where ⁇ 100> nanowires 1020 are fixed to a tapered Ta needle 1010 by a carbon pad 1030.
  • FIG. 10C shows the state of the end portion of the ⁇ 100> nanowire 1020 after field evaporation that should emit electrons, and the end portion has a hemispherical shape.
  • the whole of the emitters of Comparative Examples 3 to 4 and Examples 5 to 7 and the state of the end where electrons should be emitted were the same.
  • FIG. 11 is a diagram showing FIM images and simulation results of the end portions of nanowires in the emitters of Comparative Examples 2 and 3.
  • FIGS. 11A and 11B show the FIM image and the simulation result of the end of the nanowire in the emitter of Comparative Example 2, respectively.
  • 11C and 11D show the FIM image and the simulation result of the end portion of the nanowire in the emitter of Comparative Example 3, respectively.
  • the hemispherical tip of the ⁇ 100> nanowire in the emitter of Comparative Example 2 has Miller indices ⁇ 100 ⁇ , ⁇ 110 ⁇ , ⁇ 111 ⁇ , ⁇ 311 ⁇ and ⁇ 210 ⁇ Was found to be composed of facets with
  • the HfC single crystal is a cubic crystal, it should be noted that the above Miller index is represented by a plane having symmetry equivalent to the Miller index shown in FIG.
  • the ⁇ 110> nanowire hemispherical tip in the emitter of Comparative Example 3 has Miller indices ⁇ 100 ⁇ , ⁇ 110 ⁇ , ⁇ 111 ⁇ , ⁇ 311 ⁇ . , ⁇ 211 ⁇ and ⁇ 310 ⁇ .
  • the hemispherical tip of the ⁇ 111> nanowire in the emitter of Comparative Example 4 was also composed of facets having at least ⁇ 111 ⁇ .
  • FIG. 12 is a field emission pattern at the end of the nanowire in the emitters of Comparative Examples 2 and 3.
  • FIGS. 12A and 12B show the field emission patterns at the ends of the nanowires in the emitters of Comparative Examples 2 and 3, respectively.
  • Each of FIGS. 12A and 12B has a region (field emission region) that is brightly shown in gray scale, and it was found that the emitters of Comparative Examples 2 and 3 emit field emission.
  • the region corresponding to the ⁇ 111 ⁇ plane is shown most brightly, and then the region corresponding to ⁇ 110 ⁇ is shown brightly, and it was found that field emission occurs from these planes. That is, it was found that the ⁇ 100> nanowire can efficiently emit electrons because the crystal plane at the end where electrons should be emitted contains at least ⁇ 111 ⁇ and ⁇ 110 ⁇ .
  • the region corresponding to the ⁇ 111 ⁇ plane was shown brightest, and it was found that field emission occurred from this plane. That is, it was found that the ⁇ 110> nanowire can efficiently emit electrons because the crystal plane at the end where electrons should be emitted contains at least ⁇ 111 ⁇ .
  • FIG. 13 is a diagram showing the time dependence of the field emission current in the emitters of Comparative Example 2 and Example 5.
  • FIGS. 13A and 13B show the time dependence of the field emission currents in the emitters of Comparative Example 2 and Example 5, respectively.
  • the field emission current of the emitter of Comparative Example 2 dropped rapidly after the electric field was applied, and became almost 0 in just one minute. This is because the tip of the nanowire is terminated with Hf having a low work function due to flushing, so that a large amount of current flows temporarily.
  • the stability is improved. This is because the current does not flow suddenly.
  • the time dependency of the field emission currents of the emitters of Comparative Examples 3 and 4 showed the same tendency.
  • the field emission current of the emitter of Example 5 was stable for a long time after the application of the electric field.
  • the current value was also about 120 nA, which was a high value.
  • the time dependency of the field emission currents of the emitters of Examples 6 and 7 showed the same tendency.
  • the stable field emission current characteristics of the emitters of Examples 5 to 7 over a long period of time are due to the disappearance of dangling bonds by covering the end portions and surfaces where electrons should be emitted with HfO 2. is there.
  • an emitter having nanowires in which hafnium carbide is coated with hafnium oxide at the end to which single-crystal electrons are to be emitted has the work function of the end to which electrons should be emitted by the coated hafnium oxide As a result, the electron emission was accelerated and the electron emission characteristics were excellent. Moreover, it was shown that the dangling bonds on the surface from which electrons of the hafnium carbide single crystal should be emitted disappear due to the coated hafnium oxide, so that electrons can be stably emitted for a long time.
  • the emitter of the present invention By using the emitter of the present invention, electrons can be emitted efficiently and stably, so that a scanning electron microscope, a transmission electron microscope, a scanning transmission electron microscope, an Auger electron spectrometer, an electron energy loss spectrometer, an energy dispersion type It is used for any equipment with electron focusing ability, such as an electron spectrometer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

 本発明のエミッタは、ナノワイヤ(100)を備え、ナノワイヤ(100)は、炭化ハフニウム(HfC)単結晶(110)からなり、少なくとも前記炭化ハフニウム単結晶(110)の電子を放出すべき端部は、酸化ハフニウム(HfO2)(120)で被覆されている。

Description

エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
 本発明は、エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法に関する。
 本願は、2015年3月2日に、日本に出願された特願2015-039959号に基づき優先権を主張し、その内容をここに援用する。
 高分解能かつ高輝度な観察画像を得るために、電子顕微鏡における電子銃は、種々の改良がされてきた。このような電子銃を用いた電子源として、電界放出型、ショットキー型等の電子源がある。これらは、電子銃に用いるエミッタの先端を先鋭にすることにより、先端に電界集中効果を発生させ、先端からより多くの電子を放出させることを特徴としている。
 近年、炭化ハフニウムナノワイヤから電子が放出され、エミッタとして機能することが報告された(例えば、非特許文献1を参照。)。しかしながら、非特許文献1における炭化ハフニウムナノワイヤからの電子放出特性は、安定性に乏しいことが分かり、安定性の改善が望まれている。
J.Yuanら,Applied Physics Letters 100,113111,2012
 したがって、本発明の課題は、電子を高効率に安定して放出するエミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法を提供することである。
 本発明のエミッタはナノワイヤを備え、前記ナノワイヤは、炭化ハフニウム(HfC)単結晶からなり、少なくとも前記炭化ハフニウム単結晶の電子を放出すべき端部は、酸化ハフニウム(HfO)で被覆されており、これにより上記課題を解決する。
 前記酸化ハフニウムの厚さは、1nm以上20nm以下であってもよい。
 前記酸化ハフニウムの厚さは、1nm以上10nm以下であってもよい。
 前記酸化ハフニウムの厚さは、1nm以上5nm以下であってもよい。
 前記電子を放出すべき端部の形状は、電界蒸発処理により半球状とされていてもよい。
 前記ナノワイヤの長手方向は、前記炭化ハフニウム単結晶の<100>、<110>または<111>の結晶方向に一致してもよい。
 前記ナノワイヤの長手方向は、前記炭化ハフニウム単結晶の<100>の結晶方向に一致し、前記端部は、少なくとも{111}および{110}面を有してもよい。
 前記ナノワイヤの短手方向の長さは、1nm以上100nm以下であり、前記ナノワイヤの長手方向の長さは、500nm以上30μm以下であってもよい。
 本発明の電子銃は少なくともエミッタを備え、前記エミッタが、上述のナノワイヤを備えたエミッタであり、これにより上記課題を解決する。
 前記エミッタは、ニードルおよびフィラメントをさらに備えており、前記ナノワイヤは、タングステン(W)、タンタル(Ta)、プラチナ(Pt)、レニウム(Re)およびカーボン(C)からなる群から選択された元素からなるニードルを介してフィラメントに取り付けられていてもよい。
 前記電子銃は、冷陰極電界放出電子銃またはショットキー電子銃であってもよい。
 本発明の電子機器は電子銃を備え、前記電子銃が上述の電子銃であり、前記電子機器は、走査型電子顕微鏡、透過型電子顕微鏡、走査型透過電子顕微鏡、オージェ電子分光器、電子エネルギー損失分光器、および、エネルギー分散型電子分光器からなる群から選択され、これにより上記課題を解決する。
 本発明のエミッタの製造方法は、炭化ハフニウム単結晶からなるナノワイヤを酸素を含有する雰囲気中で加熱するステップを包含し、これにより上記課題を解決する。
 前記加熱するステップにおいて、酸素分圧は1×10-9Pa以上1×10-7Pa以下の範囲であってもよい。
 前記加熱するステップにおいて、加熱温度は、400℃以上800℃以下の範囲であってもよい。
 前記加熱するステップにおいて、加熱時間は、1分以上10分以下の範囲であってもよい。
 前記加熱するステップにおいて、酸素分圧は5×10-9Pa以上5×10-8Pa以下の範囲であり、加熱温度は500℃以上700℃以下の範囲であり、加熱時間は3分以上7分以下の範囲であってもよい。
 前記炭化ハフニウム単結晶からなるナノワイヤは、化学的気相蒸着法(CVD)、気相-液相-固相(VLS)法、スパッタ法、レーザアブレーション法等の物理的気相成長法、および、テンプレート法からなる群から選択される方法で製造されてもよい。
 前記加熱するステップに先立って、前記炭化ハフニウム単結晶からなるナノワイヤの一端の表面を電界蒸発するステップをさらに包含してもよい。
 前記電界蒸発するステップに続いて、前記表面をフラッシングするステップをさらに包含してもよい。
 本発明のエミッタはナノワイヤを備え、ナノワイヤが炭化ハフニウム(HfC)単結晶からなり、少なくとも炭化ハフニウム単結晶の電子を放出すべき端部は、酸化ハフニウム(HfO)で被覆されている。少なくとも電子を放出すべき端部が酸化ハフニウムで被覆されているので、被覆した酸化ハフニウムによりナノワイヤ(すなわち、炭化ハフニウム単結晶)の電子を放出すべき端部の仕事関数が低下し、電子が容易に放出される。その結果、本発明のエミッタは電子放出特性に優れる。また、被覆した酸化ハフニウムにより、炭化ハフニウム単結晶の電子を放出すべき表面のダングリングボンドが消失するので、本発明のエミッタは長時間にわたって安定的に電子を放出できる。
本発明の一実施形態に係るエミッタの模式図である。 本発明の別の実施形態に係るエミッタの模式図である。 本発明の一実施形態に係るエミッタの製造方法を示すフローチャートである。 本発明の一実施形態に係るエミッタを備えた電子銃を示す模式図である。 炭化ハフニウム単結晶からなるナノワイヤを製造する装置を示す模式図である。 参考例1によるグラファイト基板上に合成された針状物質の様子を示すSEM像である。 参考例1による<100>結晶方向を有するHfC単結晶からなるナノワイヤの低倍率TEM像(A)およびHRTEM像(B)である。 参考例1による<110>結晶方向を有するHfC単結晶からなるナノワイヤの低倍率TEM像(A)およびHRTEM像(B)である。 参考例1による<111>結晶方向を有するHfC単結晶からなるナノワイヤの低倍率TEM像(A)およびHRTEM像(B)である。 比較例2のエミッタのSEM像である。 比較例2および3のエミッタにおけるナノワイヤの端部のFIM像およびシミュレーション結果を示す図である。 比較例2および3のエミッタにおけるナノワイヤの端部の電界放出パターンである。 比較例2および実施例5のエミッタにおける電界放出電流の時間依存性を示す図である。
 以下、図面を参照しながら本発明の実施の形態を説明する。なお、同様の要素には同様の符号を付し、その説明を省略する。
 (実施の形態1)
 実施の形態1では、本発明の一実施形態に係るエミッタおよびその製造方法について詳述する。
 図1は、本実施形態に係るエミッタの模式図である。
 本実施形態のエミッタは、ナノワイヤ100を備えており、ナノワイヤ100は、炭化ハフニウム(以下、「HfC」ともいう)単結晶110からなる。少なくともHfC単結晶110の電子を放出すべき端部(図1でナノワイヤ100の上端)は、酸化ハフニウム(以下、「HfO」ともいう)120で被覆されている。少なくとも電子を放出すべき端部がHfO120で被覆されているので、ナノワイヤ100の電子を放出すべき端部の仕事関数が低下する。これにより、本実施形態のエミッタは、電子を容易に放出することができ、電子放出特性に優れる。また、HfO120により、HfC単結晶110の電子を放出すべき端部の表面のダングリングボンドが消失するので、本実施形態のエミッタは、長時間にわたって安定的に電子を放出できる。
 なお、図1では、端部のみがHfOで被覆されている図を示すが、端部を含むHfC単結晶110の一部または全部がHfOで被覆されていても同様の効果を奏する。
 好ましくは、ナノワイヤ100の長手方向(図1の矢印で示す方向)は、HfC単結晶110の<100>、<110>または<111>の結晶方向に一致する。これにより、ナノワイヤ100におけるHfC単結晶110は、クラックやキンク等の少ない良好な単結晶となる。
 例えば、ナノワイヤ100の長手方向が、HfC単結晶110の<100>の結晶方向に一致する場合、クラックやキンク等の少ない良好なHfC単結晶110が得られるだけでなく、電子を放出すべき端部の結晶面が、{111}、{110}等の仕事関数の低い面を含むので、電子を効率的に放出できる。
 例えば、ナノワイヤ100の長手方向が、HfC単結晶110の<110>の結晶方向に一致する場合、電子を放出すべき端部の結晶面が、少なくとも{111}等の仕事関数の低い面を含むので、電子を効率的に放出できる。
 例えば、ナノワイヤ100の長手方向が、HfC単結晶110の<111>の結晶方向に一致する場合、電子を放出すべき端部の結晶面が、{111}等の仕事関数の低い面を含むので、電子を効率的に放出できる。
 製造や加工の容易さ、結晶の質等の観点から、ナノワイヤ100の長手方向が、HfC単結晶110の<100>の結晶方向に一致することがもっとも好ましい。
 なお、HfC単結晶は立方晶であるため、本明細書では、HfC単結晶の結晶方向として<100>、<110>、および、<111>と記載する場合、それぞれに等価なすべての結晶方向を含むことに留意されたい。同様に、HfC単結晶の結晶面として{111}、{110}等と記載する場合、それぞれに等価な対称性を有する面を含むことに留意されたい。
 図2(A)は、本発明の別の実施形態に係るエミッタの模式図である。
 図2(A)に示されるように、別の実施形態に係るエミッタは、図1のエミッタと、電子を放出すべき端部の形状以外は同様である。詳細には、図2のエミッタは、電子を放出すべき端部の形状が半球状であり、その表面が半球状面210となっている。端部をこのような半球状とするための加工・処理は、例えば、電界蒸発処理によって行われ得る。
 電界蒸発により、HfC単結晶110の電子を放出すべき端部から、原子が蒸発する。蒸発した原子に付着している汚染物質や不純物も除去されるので、端部が清浄となる。さらに、このような原子の蒸発により、端部の結晶面が露わとなり、その結果、半球状面210が形成される。このような観点から、HfC単結晶110の電子を放出すべき端部は、電界蒸発により半球状であることが好ましい。
 図2(B)は、ナノワイヤ100の長手方向がHfC単結晶110の<100>の結晶方向に一致する場合の、半球状面210上の結晶面を表す模式図である。図2(B)に示されるように、電界蒸発により、電子が放出すべき半球状面210は、{111}、{110}等の仕事関数の低い面を確実に含むので、電子をより効率的に放出できる。
 同様に、図2(C)は、ナノワイヤ100の長手方向がHfC単結晶110の<110>の結晶方向に一致する場合の、半球状面210上の結晶面を表す模式図である。図2(C)に示されるように、電界蒸発により、電子が放出すべき半球状面210は、少なくとも{111}の仕事関数の低い面を確実に含むので、電子をより効率的に放出できる。
 再度、図1および図2(A)に戻って、ナノワイヤ100について説明する。
 ナノワイヤとは、ナノオーダのワイヤ形状を有するものを意図している。ナノワイヤ100の断面は円形であることが好ましい。また、好ましくは、ナノワイヤ100の短手方向の長さ(すなわち、直径)は、1nm以上100nm以下の範囲であり、長手方向の長さは、500nm以上30μm以下の範囲である。このようなサイズにより、電子を放出すべき端部への電界集中を効果的に発生させ、端部からより多くの電子を放出させることができる。
 より好ましくは、ナノワイヤ100の短手方向の長さは、10nm以上60nm以下の範囲であり、長手方向の長さは、5μm以上30μm以下の範囲である。例えば、後述する化学的気相蒸着法(CVD)を用いてナノワイヤ100を製造する場合には、上述の範囲を有し、クラックやキンク等のない良質なHfC単結晶からなるナノワイヤ100が容易に提供され得る。
 好ましくは、HfO120の厚さは、1nm以上20nm以下である。HfO120の厚さが1nm未満である場合、電子を放出すべき端部の仕事関数が低下せず、電子放出特性を損ない得る。HfO120の厚さが20nmを超える場合、HfC単結晶110からの電子が、HfO120の厚さにより物理的に放出され得ず(電子の放出がHfO120により妨げられ)、電子放出特性が低下する虞がある。
 より好ましくは、HfO120の厚さは、1nm以上10nm以下である。HfO120の厚さがこの範囲であれば、電子を放出すべき端部の仕事関数を低下させ、良好な電子放出特性が得られる。さらに好ましくは、HfO120の厚さは、1nm以上5nm以下である。HfO120の厚さがこの範囲であれば、電子を放出すべき端部の仕事関数を低下させ、良好な電子放出特性が確実に得られる。
 図1および図2では、ナノワイヤ100がエミッタそのものとして示されるが、これに限らない。例えば、エミッタは、ナノワイヤ100そのものであってもよいし、ナノワイヤ100がニードルに取り付けられ、一体化されていてもよいし、さらにフィラメントに取り付けられていてもよい。
 次に、本実施形態のエミッタの製造方法について説明する。
 図3は、本実施形態のエミッタの製造方法を示すフローチャートである。
 ステップS310において、炭化ハフニウム(HfC)単結晶110からなるナノワイヤ100を、酸素を含有する雰囲気中で加熱する。これにより、少なくとも、HfC単結晶の端部が酸化され、HfO120(図1、図2)で被覆される。
 ここで、HfC単結晶110からなるナノワイヤ100の製造方法は、特に制限はないが、金属触媒を利用した化学的気相蒸着法(CVD)、気相-液相-固相(VLS)法、スパッタ法、レーザアブレーション法等の物理的気相成長法、および、テンプレート法からなる群から選択された方法によって製造されてよい。
 ステップS310において、好ましくは、酸素分圧は、1×10-9Pa以上1×10-7Pa以下の範囲である。酸素分圧が1×10-9Pa未満である場合、HfC単結晶の端部が酸化されず、HfO120が形成されない場合がある。酸素分圧が1×10-7Paを超えると、HfO120の膜厚が20nmを超えて、電子放出特性が低下する虞がある。より好ましくは、酸素分圧は、5×10-9Pa以上5×10-8Pa以下の範囲である。この範囲であれば、HfC単結晶110の端部の酸化が促進され得る。
 ステップS310において、好ましくは、加熱温度は、400℃以上800℃以下の範囲である。加熱温度が400℃未満である場合、HfC単結晶110の端部が酸化されず、HfO120が形成されない場合がある。加熱温度が800℃を超えると、良質なHfO120が形成されず、電子放出特性が低下する虞がある。より好ましくは、加熱温度は、500℃以上700℃以下の範囲である。この範囲であれば、HfC単結晶の端部の酸化が促進され、良質なHfOが得られる。
 ステップS310において、好ましくは、加熱時間は、1分以上10分以下の範囲である。加熱温度が1分未満である場合、HfC単結晶の端部が酸化されず、HfO120が形成されない場合がある。加熱時間が10分を超えると、良質なHfO120が形成されず、HfO120の膜厚が20nmを超えて、電子放出特性が低下する虞がある。好ましくは、加熱時間は、3分以上7分以下の範囲である。この範囲であれば、1nm以上20nm以下の範囲のHfOを得られやすい。
 ステップS310において、上述の酸素分圧、加熱温度、および、加熱時間を満たせば、1nm以上20nm以下の厚さを有するHfO120が形成されるので、好ましい。
 ステップS310は、HfC単結晶110からなるナノワイヤ100の製造直後に行ってもよいし、ナノワイヤ100をニードル、フィラメント等に取り付け後に行ってもよいし、あるいは、エミッタを備えた電子銃の製造過程で行ってもよい。
 好ましくは、ステップS310に先立って、HfC単結晶110からなるナノワイヤ100の一端(すなわち、電子を放出すべき端部)の表面を電界蒸発するステップを行ってもよい。この場合、ナノワイヤの一端に1V/nm以上10V/nm以下の高電界を印加すればよい。これにより、ナノワイヤ100の一端が清浄され、結晶面が露わとなった半球状面210(図2)が得られる。電界蒸発するステップに続いて、酸素を導入し、ステップS310を行うことができる。
 さらに、上述の電界蒸発するステップに続いて、フラッシングするステップを行ってもよい。フラッシングにより、HfC単結晶110の表面にあるカーボン(C)(通常、表面は安定なCで終端されている)を飛ばし、ハフニウム(Hf)で終端させることができる。この後に、上述のステップS310を行えば、終端したHfは不安定であるため、確実に、HfC単結晶110の端部を酸化し、HfO120で被覆することができる。なお、フラッシングするステップは、通常のフラッシング処理と同様であるが、例えば、HfC単結晶をフラッシング用の電源に接続し、通電加熱を行えばよい。
 (実施の形態2)
 実施の形態2では、本発明の一実施形態に係るエミッタを備えた電子銃について詳述する。
 図4は、本実施形態のエミッタを備えた電子銃を示す模式図である。
 本実施形態の電子銃400は、少なくとも、実施の形態1で説明したナノワイヤ100を備えたエミッタ410を備える。図4では、エミッタ410は、ナノワイヤ100に加えて、フィラメント420とニードル430とをさらに備える。
 ナノワイヤ100は、タングステン(W)、タンタル(Ta)、プラチナ(Pt)、レニウム(Re)およびカーボン(C)からなる群から選択された元素からなるニードル430を介して、フィラメント420に取り付けられている。これにより、ナノワイヤ100の取り扱いが簡便となるため好ましい。また、ナノワイヤ100は、カーボンパッドなどの導電性を有する接着シート等によってニードル430に取り付けられる。なお、図4では、フィラメント420は、ヘアピン型の形状を有している(U字状である)が、これに限らず、フィラメント420の形状はV字型など任意である。
 電子銃400では、引出電源450が電極440と引出電極460との間に接続されており、引出電源450は、エミッタ410と引出電極460との間に電圧を印加する。さらに、電子銃400では、加速電源470が電極440と加速電極480との間に接続されており、加速電源470は、エミッタ410と加速電極480との間に電圧を印加する。
 電極440は、さらに、電子銃400が冷陰極電界放出電子銃の場合にはフラッシュ電源に接続されてもよく、電子銃400がショットキー電子銃の場合には加熱電源に接続されてもよい。
 なお、電子銃400は、10-8Pa~10-7Paの真空下に配置されてもよく、この場合、エミッタ410の電子が放出されるべき端部を、清浄に保つことができる。
 本実施形態の電子銃400が冷陰極電界放出電子銃である場合の動作を簡単に説明する。
 引出電源450がエミッタ410と引出電極460との間に電圧を印加する。これにより、エミッタ410のナノワイヤ100の電子を放出すべき端部に電界集中を発生させ、電子を引き出す。さらに、加速電源470がエミッタ410と加速電極480との間に電圧を印加する。これにより、エミッタ410のナノワイヤ100の電子を放出すべき端部において引き出された電子は、加速され、試料に向けて出射される。なお、電極440に接続されたフラッシュ電源により、適宜、フラッシングを行い、ナノワイヤ100の表面を清浄化してもよい。これらの動作は上述の真空下で行われる。
 本実施形態の電子銃400がショットキー電子銃である場合の動作を簡単に説明する。
 電極440に接続された加熱電源がエミッタ410を加熱し、引出電源450がエミッタ410と引出電極460との間に電圧を印加する。これにより、エミッタ410のナノワイヤ100の電子を放出すべき端部にショットキー放出を生じさせ、電子を引き出す。さらに、加速電源470がエミッタ410と加速電極480との間に電圧を印加する。これにより、エミッタ410のナノワイヤ100の電子を放出すべき端部において引き出された電子は、加速され、試料に向けて出射される。これらの動作は上述の真空下で行われる。なお、加熱電源によりエミッタ410のナノワイヤ100から熱電子が放出され得るので、電子銃400は、熱電子を遮蔽するためのサプレッサ(図示せず)をさらに備えてもよい。
 本実施形態の電子銃400は、実施の形態1で詳述したナノワイヤ100を備えたエミッタ410を備えるので、電子が容易に放出され、長時間にわたって安定的に電子を放出できる。このような電子銃400は、電子集束能力を持つ任意の電子機器に採用される。例えば、このような電子機器は、走査型電子顕微鏡、透過型電子顕微鏡、走査型透過電子顕微鏡、オージェ電子分光器、電子エネルギー損失分光器、および、エネルギー分散型電子分光器からなる群から選択される。
 次に具体的な実施例を用いて本発明を詳述するが、本発明がこれら実施例に限定されないことに留意されたい。
[参考例1]
 参考例1では、炭化ハフニウム(HfC)単結晶からなるナノワイヤをCVD法により製造した。
 図5は、炭化ハフニウム単結晶からなるナノワイヤを製造する装置を示す模式図である。
 図5の製造装置500は、ガス原料供給源510と、ガス原料供給源510からの原料がライン520を介して供給される加熱可能な反応チャンバ530と、未反応の原料、副生成物等を吸引し、乾燥するドライヤ540と、反応チャンバ530内を排気し、真空にするポンプ550とを備える。
 HfC単結晶の合成は、以下の反応式に基づく。
HfCl(気)+CH(気)→HfC(固)+4HCl(気)
 ガス原料供給源510は、メタンガスラインおよびHガスラインに接続された。反応チャンバ530として石英管炉(内径:64mm)を用い、内部に、原料としてHfCl粉末560(純度:99.55%、シグマ-アルドリッチジャパン製)、および、合成用基板としてグラファイト基板570が配置された。HfCl粉末560は、反応チャンバ530の低温領域に配置された。グラファイト基板570は、反応チャンバ530の中央部に配置された。グラファイト基板570の上には、触媒としてニッケル(Ni)ナノ粒子(粒径:数十ナノメール)が分散された。
 ポンプ550により、反応チャンバ530内を10-1Pa以下まで排気した。グラファイト基板570が配置された中央部の温度が1280℃となるまで昇温した。一方、HfCl粉末560が配置された低温領域の温度は、200℃に保持した。
 次いで、ガス原料供給源510から水素(H)ガスおよびメタンガスを流した。Hガスにより、反応チャンバ530に配置され、気化したHfClガスをグラファイト基板570上まで導入した。また、メタンガスもグラファイト基板570上まで導入した。この際、Hガスおよびメタンガスの流量は、それぞれ、1L/分および20mL/分であった。
 この結果、グラファイト基板570上に針状物質が生成された。この針状物質を、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM、JSM-6500F、JEOL製)により観察した。結果を図6に示す。
 図6は、参考例1によるグラファイト基板上に合成された針状物質の様子を示すSEM像である。
 図6によれば、針状物質は、数百nm~数十μmの長さを有するまっすぐなナノワイヤの集合体であった。図示しないが、針状物質についてEDS測定を行った結果、HfおよびCのみが検出され、その原子比は1:1であった。このことから、合成されたナノワイヤは、炭化ハフニウム(HfC)であることを確認した。
 次に、HfC単結晶からなるナノワイヤの集合体から、成長方向(長手方向)において、<100>結晶方向を有するHfC単結晶からなるナノワイヤ(以降では単に<100>ナノワイヤと称する)、<110>結晶方向を有するHfC単結晶からなるナノワイヤ(以降では単に<110>ナノワイヤと称する)、および、<111>結晶方向を有するHfC単結晶からなるナノワイヤ(以降では単に<111>ナノワイヤと称する)を抽出し、透過型電子顕微鏡(TEM、JEOL-2100F、JEOL製)で観察した。観察結果を図7、図8および図9に示す。
 図7は、参考例1による<100>結晶方向を有するHfC単結晶からなるナノワイヤの低倍率TEM像(A)およびHRTEM(高分解能透過型電子顕微鏡)像(B)である。
 図8は、参考例1による<110>結晶方向を有するHfC単結晶からなるナノワイヤの低倍率TEM像(A)およびHRTEM像(B)である。
 図9は、参考例1による<111>結晶方向を有するHfC単結晶からなるナノワイヤの低倍率TEM像(A)およびHRTEM像(B)である。
 図7(A)によれば、図7(A)のナノワイヤが短手方向の長さ30nm~40nm、および、長手方向の長さ500nm~15μmを有することが分かった。図示しないが、制限視野電子回折図形(SAED)によれば、ナノワイヤは単結晶であった。図7(B)によれば、ナノワイヤの成長方向は<100>に一致することが分かった。
 図8(A)によれば、図8(A)のナノワイヤが短手方向の長さ25nm~35nm、および、長手方向の長さ500nm~15μmを有することが分かった。図8(B)によれば、ナノワイヤの成長方向は<110>に一致することが分かった。
 図9(A)によれば、図9(A)のナノワイヤが短手方向の長さ45nm~55nm、および、長手方向の長さ500nm~1μmを有することが分かった。図9(B)によれば、ナノワイヤの成長方向は<111>に一致することが分かった。
 また、いずれのTEM像も、合成後のナノワイヤの表面が原子的に清浄であることを示した。上述のCVD法を採用すれば、HfC単結晶からなるナノワイヤが得られることを確認した。
 [比較例2]
 比較例2では、参考例1で得た<100>ナノワイヤを用いて、エミッタを製造した。
 エミッタの製造手順は次のとおりであった。タンタル製のワイヤをエッチングし、一端が先細りになったTaニードルに加工した。次いで、Taニードルを溶接によりヘアピン型のタングステンフィラメントに接続した。<100>ナノワイヤを、先細りのTaニードルにカーボンパッドを用いて固定した。これらの作業は、集束イオンビーム(FIB)システムを用いて行った。このようにして得たエミッタをSEMにより観察した。次いで、電界イオン顕微鏡装置(FIM)を用いて、ナノワイヤの先端を電界蒸発し、清浄化および平滑化を行った。電界蒸発後のナノワイヤの様子をSEMにより観察した。これらの結果を図10に示す。
 次に、電界蒸発後のナノワイヤの先端のFIM像を観察し、観察結果から先端のファセットモデルをシミュレーションした。結果を図11(A)および(B)に示す。
 電界蒸発後のナノワイヤの先端の引出電圧極性を反転させ、電界放出を発生させ、電界放出パターンを観察した。結果を図12(A)に示す。さらに、ナノワイヤの先端をフラッシングした後、室温、引出電圧700Vにおける、電界放出電流の時間依存性を測定した。結果を図13(A)に示す。
 [比較例3]
 比較例3では、参考例1で得た<110>ナノワイヤを用いて、エミッタを製造した。<100>ナノワイヤに代えて、<110>ナノワイヤを用いた以外は、比較例2と同様の手順でエミッタを製造した。
 比較例2と同様に、得られたエミッタのFIM像を観察し、そのファセットモデルのシミュレーションを行い、電界放出パターンを観察した。これらの結果を図11(C)、(D)および図12(B)に示す。また、電界放出電流の時間依存性を測定した。
 [比較例4]
 比較例4では、参考例1で得た<111>ナノワイヤを用いて、エミッタを製造した。<100>ナノワイヤに代えて、<111>ナノワイヤを用いた以外は、比較例2と同様の手順でエミッタを製造した。
 比較例2と同様に、得られたエミッタのFIM像を観察し、そのファセットモデルのシミュレーションを行い、電界放出パターンを観察した。また、電界放出電流の時間依存性を測定した。
 [実施例5]
 比較例2で製造したエミッタにおいて、<100>結晶方向を有するHfC単結晶からなるナノワイヤの電子を放出すべき端部を酸化ハフニウム(HfO)で被覆した。
 HfOで被覆したエミッタの製造手順は次のとおりであった。比較例2において、電界蒸発とフラッシングとを行い、チャンバ内に酸素を導入し、酸素を含有する雰囲気中で加熱した(図3のステップS310)。詳細には、チャンバ内の酸素圧力を1.1×10-8Paに設定し、600℃で5分間加熱した。この条件におけるHfOの成長速度からHfOの膜厚は、2nmと見積もられた。
 このようにして得られたエミッタについて、比較例2と同様に、電界放出電流の時間依存性を測定した。結果を図13(B)に示す。
 [実施例6]
 比較例3で製造したエミッタにおいて、実施例5と同様に、<110>結晶方向を有するHfC単結晶からなるナノワイヤの電子を放出すべき端部を酸化ハフニウム(HfO)で被覆した。得られたエミッタの電界放出電流の時間依存性を測定した。
 [実施例7]
 比較例4で製造したエミッタにおいて、実施例5と同様に、<111>結晶方向を有するHfC単結晶からなるナノワイヤの電子を放出すべき端部を酸化ハフニウム(HfO)で被覆した。得られたエミッタの電界放出電流の時間依存性を測定した。
 以上の比較例2~4、実施例5~7の結果を詳述する。
 図10は、比較例2のエミッタのSEM像である。
 図10(A)は、比較例2のエミッタ1000の全体の様子である。図10(B)は、先細りのTaニードル1010に<100>ナノワイヤ1020がカーボンパッド1030により固定されている様子を示す。図10(C)は、電界蒸発後の<100>ナノワイヤ1020の電子を放出すべき端部の様子を示しており、端部の形状は半球状であった。図示しないが、比較例3~4、および、実施例5~7のエミッタの全体、ならびに、電子を放出すべき端部の様子も同様であった。
 図11は、比較例2および3のエミッタにおけるナノワイヤの端部のFIM像およびシミュレーション結果を示す図である。
 図11(A)および(B)は、それぞれ、比較例2のエミッタにおけるナノワイヤの端部のFIM像およびシミュレーション結果を示す。図11(C)および(D)は、それぞれ、比較例3のエミッタにおけるナノワイヤの端部のFIM像およびシミュレーション結果を示す。
 図11(A)および(B)によれば、比較例2のエミッタにおける<100>ナノワイヤの半球状の先端は、ミラー指数{100}、{110}、{111}、{311}および{210}を有するファセットで構成されていることが分かった。ここでは、HfC単結晶は立方晶であるため、上述のミラー指数は、図11(B)に示すミラー指数に等価な対称性を有する面で表していることに留意されたい。
 同様に、図11(C)および(D)によれば、比較例3のエミッタにおける<110>ナノワイヤの半球状の先端は、ミラー指数{100}、{110}、{111}、{311}、{211}および{310}を有するファセットで構成されていることが分かった。
 図示しないが、比較例4のエミッタにおける<111>ナノワイヤの半球状の先端もまた、少なくとも{111}を有するファセットで構成されていることが分かった。
 図12は、比較例2および3のエミッタにおけるナノワイヤの端部の電界放出パターンである。
 図12(A)および(B)は、それぞれ、比較例2および3のエミッタにおけるナノワイヤの端部の電界放出パターンを示す。図12(A)および(B)のいずれも、グレースケールにおいて明るく示される領域(電界放出する領域)を有しており、比較例2および3のエミッタが電界放出することが分かった。
 図12(A)によれば、{111}面に相当する領域がもっとも明るく示され、次いで、{110}に相当する領域が明るく示され、これらの面から電界放出することが分かった。すなわち、<100>ナノワイヤは、電子を放出すべき端部の結晶面が、少なくとも{111}および{110}を含むので、電子を効率的に放出できることが分かった。
 同様に、図12(B)によれば、{111}面に相当する領域がもっとも明るく示され、この面から電界放出することが分かった。すなわち、<110>ナノワイヤは、電子を放出すべき端部の結晶面が、少なくとも{111}を含むので、電子を効率的に放出できることが分かった。
 図示しないが、比較例4のエミッタもまた、{111}面に相当する領域がもっとも明るく示され、電界放出することを確認した。
 図13は、比較例2および実施例5のエミッタにおける電界放出電流の時間依存性を示す図である。
 図13(A)および(B)は、それぞれ、比較例2および実施例5のエミッタにおける電界放出電流の時間依存性を示す。図13(A)によれば、比較例2のエミッタの電界放出電流は、電界印加後、急激に低下し、わずか1分足らずでほぼ0となった。これは、フラッシングによりナノワイヤの先端が、仕事関数の低いHfで終端されるため、一時的に多くの電流が流れるが、Hfで終端した表面には多くのダングリングボンドが存在するため、安定性が悪く、急激に電流が流れなくなるためである。図示しないが、比較例3および4のエミッタの電界放出電流の時間依存性も同様の傾向を示した。
 一方、図13(B)によれば、実施例5のエミッタの電界放出電流は、電界印加後、長時間にわたって安定していた。その電流値も約120nAであり、高い値であった。図示しないが、実施例6および7のエミッタの電界放出電流の時間依存性も同様の傾向を示した。
 実施例5~7のエミッタの高い電流値は、電子を放出すべき端部および表面がHfOで被覆されることにより、電子を放出すべき端部の仕事関数が低下し、電子の放出が促進されたためである。
 また、実施例5~7のエミッタの長時間にわたる安定した電界放出電流特性は、電子を放出すべき端部および表面がHfOで被覆されることにより、ダングリングボンドが消失しているためである。
 以上の結果から、本発明による炭化ハフニウムに単結晶の電子を放出すべき端部が酸化ハフニウムで被覆されたナノワイヤを備えたエミッタは、被覆した酸化ハフニウムにより電子を放出すべき端部の仕事関数が低下し、電子の放出が促進され、電子放出特性に優れることが分かった。また、被覆した酸化ハフニウムにより、炭化ハフニウム単結晶の電子を放出すべき表面のダングリングボンドが消失するので、長時間にわたって安定的に電子を放出できることが示された。
 本発明のエミッタを用いれば、効率的かつ安定して電子を放出できるので、走査型電子顕微鏡、透過型電子顕微鏡、走査型透過電子顕微鏡、オージェ電子分光器、電子エネルギー損失分光器、エネルギー分散型電子分光器等の電子集束能力をもつ任意の機器に採用される。
 100、1020 ナノワイヤ
 110 炭化ハフニウム(HfC)単結晶
 120 酸化ハフニウム(HfO
 210 半球状面
 400 電子銃
 410、1000 エミッタ
 420 フィラメント
 430、1010 ニードル
 440 電極
 450 引出電源
 460 引出電極
 470 加速電源
 480 加速電極
 500 製造装置
 510 ガス原料供給源
 520 ライン
 530 反応チャンバ
 540 ドライヤ
 550 ポンプ
 560 HfCl粉末
 570 グラファイト基板
 1030 カーボンパッド

Claims (20)

  1.  ナノワイヤを備えたエミッタであって、
     前記ナノワイヤは、炭化ハフニウム(HfC)単結晶からなり、
     少なくとも前記炭化ハフニウム単結晶の電子を放出すべき端部は、酸化ハフニウム(HfO)で被覆されている、エミッタ。
  2.  前記酸化ハフニウムの厚さは、1nm以上20nm以下である、請求項1に記載のエミッタ。
  3.  前記酸化ハフニウムの厚さは、1nm以上10nm以下である、請求項1または2に記載のエミッタ。
  4.  前記酸化ハフニウムの厚さは、1nm以上5nm以下である、請求項1~3のいずれか一項に記載のエミッタ。
  5.  前記電子を放出すべき端部の形状は、電界蒸発処理により半球状である、請求項1~4のいずれか一項に記載のエミッタ。
  6.  前記ナノワイヤの長手方向は、前記炭化ハフニウム単結晶の<100>、<110>または<111>の結晶方向に一致する、請求項1~5のいずれか一項に記載のエミッタ。
  7.  前記ナノワイヤの長手方向は、前記炭化ハフニウム単結晶の<100>の結晶方向に一致し、
     前記端部は、少なくとも{111}および{110}面を有する、請求項1~6のいずれか一項に記載のエミッタ。
  8.  前記ナノワイヤの短手方向の長さは、1nm以上100nm以下であり、前記ナノワイヤの長手方向の長さは、500nm以上30μm以下である、請求項1~7のいずれか一項に記載のエミッタ。
  9.  少なくともエミッタを備えた電子銃であって、
     前記エミッタは、請求項1~8のいずれか一項に記載のエミッタである、電子銃。
  10.  前記エミッタは、ニードルおよびフィラメントをさらに備えており、
     前記ナノワイヤは、タングステン(W)、タンタル(Ta)、プラチナ(Pt)、レニウム(Re)およびカーボン(C)からなる群から選択された元素からなるニードルを介してフィラメントに取り付けられている、請求項9に記載の電子銃。
  11.  前記電子銃は、冷陰極電界放出電子銃またはショットキー電子銃である、請求項9または10に記載の電子銃。
  12.  電子銃を備えた電子機器であって、
     前記電子銃は、請求項9~11のいずれか一項に記載の電子銃であり、
     前記電子機器は、走査型電子顕微鏡、透過型電子顕微鏡、走査型透過電子顕微鏡、オージェ電子分光器、電子エネルギー損失分光器、および、エネルギー分散型電子分光器からなる群から選択される、電子機器。
  13.  請求項1~8のいずれか一項に記載のエミッタの製造方法であって、
     炭化ハフニウム単結晶からなるナノワイヤを、酸素を含有する雰囲気中で加熱するステップ
     を包含する、方法。
  14.  前記加熱するステップにおいて、酸素分圧は1×10-9Pa以上1×10-7Pa以下の範囲である、請求項13に記載の方法。
  15.  前記加熱するステップにおいて、加熱温度は、400℃以上800℃以下の範囲である、請求項13または14に記載の方法。
  16.  前記加熱するステップにおいて、加熱時間は、1分以上10分以下の範囲である、請求項13~15のいずれか一項に記載の方法。
  17.  前記加熱するステップにおいて、酸素分圧は5×10-9Pa以上5×10-8Pa以下の範囲であり、加熱温度は500℃以上700℃以下の範囲であり、加熱時間は3分以上7分以下の範囲である、請求項13に記載の方法。
  18.  前記炭化ハフニウム単結晶からなるナノワイヤは、化学的気相蒸着法(CVD)、気相-液相-固相(VLS)法、スパッタ法、レーザアブレーション法等の物理的気相成長法、および、テンプレート法からなる群から選択される方法で製造される、請求項13~17のいずれか一項に記載の方法。
  19.  前記加熱するステップに先立って、前記炭化ハフニウム単結晶からなるナノワイヤの一端の表面を電界蒸発するステップをさらに包含する、請求項13~18
    のいずれか一項に記載の方法。
  20.  前記電界蒸発するステップに続いて、前記表面をフラッシングするステップをさらに包含する、請求項19に記載の方法。
PCT/JP2016/056017 2015-03-02 2016-02-29 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法 WO2016140177A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017503461A JP6459135B2 (ja) 2015-03-02 2016-02-29 エミッタの製造方法
DE112016001009.5T DE112016001009B4 (de) 2015-03-02 2016-02-29 Emitter, Elektronenkanone verwendenden Emitter, die Elektronenkanone verwendende elektronische Vorrichtung und Verfahren zur Herstellung des Emitters
US15/548,623 US10026585B2 (en) 2015-03-02 2016-02-29 Emitter, electron gun using emitter, electronic apparatus using electron gun, and method of producing emitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039959 2015-03-02
JP2015-039959 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016140177A1 true WO2016140177A1 (ja) 2016-09-09

Family

ID=56848158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056017 WO2016140177A1 (ja) 2015-03-02 2016-02-29 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法

Country Status (4)

Country Link
US (1) US10026585B2 (ja)
JP (1) JP6459135B2 (ja)
DE (1) DE112016001009B4 (ja)
WO (1) WO2016140177A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107113A1 (ja) 2017-11-29 2019-06-06 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP2019087702A (ja) * 2017-11-10 2019-06-06 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP2020013984A (ja) * 2018-07-19 2020-01-23 東京エレクトロン株式会社 基板処理装置
WO2020158297A1 (ja) 2019-01-30 2020-08-06 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃および電子機器
WO2021002305A1 (ja) 2019-07-02 2021-01-07 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
WO2021079855A1 (ja) 2019-10-21 2021-04-29 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
WO2022064557A1 (ja) * 2020-09-23 2022-03-31 株式会社日立ハイテク 電子源とその製造方法およびそれを用いた電子線装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103311B1 (fr) * 2019-11-19 2021-10-15 Centre Nat Rech Scient Source d’electrons basee sur l’emission par effet de champ et son procede de fabrication
CN113072071A (zh) * 2021-04-14 2021-07-06 西北工业大学 电泳碳纳米管和热蒸发技术零催化原位合成HfC纳米线的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747799A (en) * 1980-09-02 1982-03-18 Natl Inst For Res In Inorg Mater Manufacture of hafnium carbide crystal body
JP2014026921A (ja) * 2012-07-30 2014-02-06 National Institute For Materials Science 金属ホウ化物フィールドエミッター作製方法
US20150054398A1 (en) * 2012-04-13 2015-02-26 TongYuan textile limited, Electrode material with low work function and high chemical stability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842432B2 (en) * 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
EP2991824A4 (en) * 2013-05-02 2016-12-28 Tera-Barrier Films Pte Ltd CAPACITATION BARRIER STACKS WITH DENDRIMER-CAPTIVATED NANOPARTICLES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747799A (en) * 1980-09-02 1982-03-18 Natl Inst For Res In Inorg Mater Manufacture of hafnium carbide crystal body
US20150054398A1 (en) * 2012-04-13 2015-02-26 TongYuan textile limited, Electrode material with low work function and high chemical stability
JP2014026921A (ja) * 2012-07-30 2014-02-06 National Institute For Materials Science 金属ホウ化物フィールドエミッター作製方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002921B2 (ja) 2017-11-10 2022-01-20 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP2019087702A (ja) * 2017-11-10 2019-06-06 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JPWO2019107113A1 (ja) * 2017-11-29 2020-07-02 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
WO2019107113A1 (ja) 2017-11-29 2019-06-06 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
US11417491B2 (en) 2017-11-29 2022-08-16 National Institute For Materials Science Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same
JP2020013984A (ja) * 2018-07-19 2020-01-23 東京エレクトロン株式会社 基板処理装置
JP7164487B2 (ja) 2018-07-19 2022-11-01 東京エレクトロン株式会社 基板処理装置
WO2020158297A1 (ja) 2019-01-30 2020-08-06 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃および電子機器
JPWO2021002305A1 (ja) * 2019-07-02 2021-01-07
WO2021002305A1 (ja) 2019-07-02 2021-01-07 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP7168269B2 (ja) 2019-07-02 2022-11-09 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
EP3996126A4 (en) * 2019-07-02 2023-05-31 National Institute for Materials Science TRANSMITTER, ELECTRON GUN USING IT, ELECTRONIC DEVICE USING IT AND METHOD FOR PRODUCING IT
US11984294B2 (en) 2019-07-02 2024-05-14 National Institute For Materials Science Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same
WO2021079855A1 (ja) 2019-10-21 2021-04-29 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
US11915920B2 (en) 2019-10-21 2024-02-27 National Institute For Materials Science Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same
WO2022064557A1 (ja) * 2020-09-23 2022-03-31 株式会社日立ハイテク 電子源とその製造方法およびそれを用いた電子線装置

Also Published As

Publication number Publication date
JPWO2016140177A1 (ja) 2017-10-05
JP6459135B2 (ja) 2019-01-30
US10026585B2 (en) 2018-07-17
DE112016001009T5 (de) 2017-11-23
US20180019091A1 (en) 2018-01-18
DE112016001009B4 (de) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6459135B2 (ja) エミッタの製造方法
US7997950B2 (en) Field emission electron source having carbon nanotubes and method for manufacturing the same
US9771267B2 (en) Method for making carbon nanotube needle
CA2578725A1 (en) Carbon nanotube assembly and manufacturing method thereof
WO2021079855A1 (ja) エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
WO2004027127A1 (ja) 針状シリコン結晶およびその製造方法
US20090117808A1 (en) Method for manufacturing field emission electron source having carbon nanotubes
US7828622B1 (en) Sharpening metal carbide emitters
JP6804120B2 (ja) エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP6028277B2 (ja) 金属ホウ化物フィールドエミッター作製方法
JP7145533B2 (ja) エミッタ、それを用いた電子銃および電子機器
JP2007242253A (ja) 先鋭化カーボンナノチューブ及びそれを用いた電子源
JP4292108B2 (ja) 電子源及びその製造方法
JP2007179867A (ja) 繊維状炭素物質を用いた電子源
JP7168269B2 (ja) エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
US20100258724A1 (en) Tip-sharpened carbon nanotubes and electron source using thereof
KR101038670B1 (ko) 금속 팁에 직접 탄소나노튜브를 성장한 무버퍼층 구조의 탄소나노튜브 음극의 제조방법
US10822236B2 (en) Method of manufacturing carbon nanotubes using electric arc discharge
JP2010272504A (ja) 炭素系材料からなる電子源及びその製造方法
Wang et al. Room-temperature synthesis and characterisation of ion-induced iron-carbon nanocomposite fibres
Chiu Synthesis and Field Emission Properties of Transition Metal Carbide Nanowire
Tsai et al. Selectively grown carbon nanotubes (CNTs): Characterization and field emission properties
TW201230139A (en) Method for making carbon nantoube wire tip and method for making field emission structure
CN111048382A (zh) 电子源制造方法
Dumpala Nanoscale diamond and carbon materials and architectures for field emission and thermionic energy conversion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15548623

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001009

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758870

Country of ref document: EP

Kind code of ref document: A1