Stellarmantrieb
Die vorliegende Erfindung betrifft einen Stellarmantrieb für zumindest einen schwenkbar gelagerten Stellarm mit den Merkmalen des Oberbegriffs des Anspruchs 1 , ein Möbel mit einem solchen Stellarmantrieb und ein Verfahren zur Herstellung eines solchen Stellarmantriebs.
Im Stand der Technik ist eine Vielzahl an Stellarmantrieben mit gelenkig miteinander verbundenen Hebeln bekannt. Um einen qualitativ hochwertig wirkenden, insbesondere spielfreien, Stellarmantrieb herstellen zu können, müssen die einzelnen Teile, dabei insbesondere die Teile der Hebel des Stellarmantriebs, mit hoher Präzision und Genauigkeit gefertigt werden. Einzelne Teile, die etwa durch Stanzen gefertigt werden können, und deren Verbindung untereinander können ausschlaggebend für die Qualität des zusammengestellten Stellarmantriebs sein, wobei oftmals ein Kompromiss zwischen herstellbarer Präzision der Bauteile und Zeit- und Fertigungsaufwand eingegangen werden muss. Komplizierte Verbindungen zwischen einzelnen Hebeln eines Stellarmantriebs können zudem zu einem erhöhten Materialaufwand und zu erhöhtem Raumbedarf führen.
Aufgabe der Erfindung ist die Bereitstellung eines Stellarmantriebs, bei welchem die zuvor genannten Nachteile nicht auftreten.
Diese Aufgabe wird durch einen Stellarmantrieb mit den Merkmalen des Anspruchs 1 , einem Möbel mit zumindest einem solchen Stellarmantrieb und ein Verfahren zur Herstellung eines solchen Stellarmantriebs gelöst. Vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen definiert.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass zumindest ein erster und ein zweiter Hebel des Stellarmantriebs parallel mit einem seitlichen Abstand zueinander angeordnet sind und die Hebel jeweils zwei Achsbohrungen mit einem ersten Normabstand aufweisen, durch die jeweils ein Achsbolzen hindurchragt, wobei ein dritter Hebel vorgesehen ist, der Aufnahmen für die Achsbolzen mit einem zweiten Normabstand aufweist, wobei der zweite Normabstand größer oder kleiner ist als der
erste Normabstand und wobei die Achsbolzen jeweils durch die Achsbohrungen des ersten und des zweiten Hebels hindurchragen und in den Aufnahmen des dritten Hebels zumindest teilweise aufgenommen sind. Dadurch kann erreicht werden, dass der mittels Achsbolzen geschaffene Verbund aus dem ersten und dem zweiten Hebel durch Hinzunahme eines dritten Hebels stabilisiert wird. Unter einem ersten Normabstand kann dabei der gewünschte Abstand der Bohrungen zur Aufnahme der Achsbolzen im ersten und im zweiten Hebel verstanden werden, wobei sich der in der Produktion der Hebel ergebende tatsächliche Abstand der Achsbohrungen von dem Normabstand abweichen kann. Als Achsbolzen kann ein im Wesentlichen stift- oder zylinderförmiges Bauteil, beispielsweise ein Stahlstift, mit einem im Wesentlichen dem Durchmesser der Achsbohrungen entsprechendem Bauteildurchmesser verstanden werden. Der tatsächliche Durchmesser des Achsbolzens sowie der Achsbohrungen kann dabei in der Produktion jeweils von den gewünschten Durchmessern geringfügig abweichen. Dadurch, dass die jeweils durch die Achsbohrungen des ersten und des zweiten Hebels hindurchragenden Achsbolzen auch zumindest teilweise in den Aufnahmen des dritten Hebels, welche einen vom ersten Normabstand abweichenden zweiten Stand aufweisen, können etwaige in der Produktion auftretende Abweichungen ausgeglichen werden. Die Achsbolzen können dabei derart in den Aufnahmen und Achsbohrungen verspannt werden, dass es zu einem spielfreien Verbund des ersten und des zweiten Hebels mittels des dritten Hebels kommen kann.
Dabei kann vorteilhaft sein, dass der erste und der zweite Hebel im Wesentlichen flächig ausgebildet sind. Eine flächige Ausbildung der Hebel ist verfahrenstechnisch einfach, beispielsweise durch Stanzen, herstellbar und erleichtert auch das Anbringen der Achsbohrungen, welche auch in einem Ausstanzverfahren hergestellt werden können. Eine flächige Ausbildung der Hebel mit im Wesentlichen quer (normal) zu den Flächen verlaufenden Achsbolzen zur Verbindung der Hebel kann sich zudem durch vorteilhaft große Biegefestigkeit auszeichnen. Auch kann dabei vorteilhaft sein, dass der erste und der zweite Hebel identisch ausgebildet sind. Dadurch kann ermöglicht werden, dass bei der Herstellung des Stellarmantriebs und insbesondere der Hebel keine Unterscheidung der mit dem ersten und dem zweiten Hebel korrespondierenden Bauteile und den zu deren Herstellung und Bearbeitung nötigen Werkzeugen gemacht werden muss.
Weiter kann vorteilhaft sein, dass der dritte Hebel im Wesentlichen flächig ausgebildet ist. Zum einen kann dadurch ein kompakter Verbund des ersten, zweiten und dritten Hebels ermöglicht werden. Zum anderen kann sich eine flächige Ausbildung des dritten Hebels insbesondere bei einer federelastischen Verformung des dritten Hebels zur zumindest teilweisen Aufnahme der Achsbolzen als vorteilhaft erweisen.
Vorteilhaft kann sein, dass der dritte Hebel elastisch federnd ausgebildet ist. Dadurch kann der dritte Hebel zur zumindest teilweisen Aufnahme der jeweils durch die Achsbohrungen des ersten und des zweiten Hebels hindurchragenden Achsbolzen verformt werden. Durch eine dadurch auf die Achsbolzen ausgeübte Federkraft kann es vorteilhaft zu einem spielfreien Verspannen des Verbunds der Hebel kommen.
Weiter kann vorteilhaft sein, dass der dritte Hebel eine im Wesentlichen gekrümmte, vorzugsweise wellige, Form aufweist. Dadurch kann eine federelastische Verformbarkeit des Hebels erleichtert werden.
Dabei kann vorteilhaft sein, wenn der dritte Hebel eine Federkonstante in einem Bereich von 50 bis 250 N/mm, vorzugsweise in einem Bereich von 100 bis 150 N/mm (Newton pro Millimeter), aufweist. In anderen Worten gesagt kann es vorteilhaft sein, wenn der dritte Hebel bei einer Verformung, also bei einer Änderung des Abstands der Aufnahmen der Achsbolzen bei elastischer Verformung, um 1 mm eine Federkraft von 50 bis 250 Newton, vorzugsweise eine Federkraft von 100 bis 150 Newton, aufbringt. Eine Federkonstante in einem solchen Bereich stellt einen guten Kompromiss zwischen einfacher Montage und Spielausgleich einerseits und leichter Bewegbarkeit im Betrieb des Stellarmantriebs andererseits dar.
Auch kann vorteilhaft sein, dass die Aufnahmen der Achsbolzen im dritten Hebel in Form von Achsbohrung und/oder als Einbuchtung ausgebildet sind. Durch eine Ausbildung zumindest einer Aufnahme des dritten Hebels in Form einer Achsbohrung kann eine sichere und unverlierbare Verbindung mit den anderen Hebeln und einem durch Achsbohrungen dieser hindurchragenden Achsbolzen sichergestellt werden. Auch kann sich dadurch eine schwenkbare Lagerung des dritten Hebels an einem Achsbolzen ermöglichen lassen. Die Ausbildung zumindest einer der Aufnahmen des
dritten Hebels in Form einer Einbuchtung keine lösbare Verbindung des dritten Hebels mit einem der Achsbolzen ermöglicht werden. Als Einbuchtung kann dabei eine zur zumindest teilweisen Aufnahme eines Achsbolzens geeignete Ausnehmung aus dem dritten Hebel verstanden werden. Eine solche Einbuchtung kann insbesondere von Vorteil sein, wenn der dritte Hebel nach bereits erfolgter Verbindung des ersten Hebels mit dem zweiten Hebel mittels der Achsbolzen erfolgen soll. Dabei kann beispielsweise ein mit einer Achsbohrung und einer Einbuchtung versehener dritter Hebel mit der Achsbohrung schwenkbar an einem der Achsbolzen gelagert sein und mit der Einbuchtung auf den zweiten Achsbolzen aufgeschwenkt bzw. aufgeklipst werden.
Auch kann vorteilhaft sein, dass der dritte Hebel - vorzugsweise im Wesentlichen vollständig - zwischen dem ersten und dem zweiten Hebel angeordnet ist. Durch eine Anordnung des dritten Hebels zwischen den anderen Hebeln kann dieser zumindest teilweise abgedeckt werden. Insbesondere kann es dabei bei einer federelastischen Verspannung des dritten Hebels zwischen den Achsbolzen zu einer im Wesentlichen symmetrischen Kraftausübung auf den ersten und den zweiten Hebel kommen.
Es kann weiter von Vorteil sein, dass der seitliche Abstand des ersten Hebels zum zweiten Hebel im Wesentlichen der Dicke des dritten Hebels entspricht. Dadurch kann ein besonders kompakter und stabiler Verbund der Hebel erreicht werden.
Es kann von Vorteil sein, dass die Abweichung des zweiten Normabstands zum ersten Normabstand in einem Bereich von 1 bis 10 %, vorzugsweise in einem Bereich von 5 bis 10 %, ist. Dadurch kann einerseits erreicht werden, dass es zu einem genügend großen Toleranzausgleich der in den Achsbohrungen gelagerten Achsbolzen kommt und andererseits auch vermieden werden, dass bei einer schwenkbaren Lagerung der Achsbolzen in den Achsbohrungen sich negativ auf den Betrieb des Stellarmantriebs auswirkende Reibungskräfte auftreten. Es kann von Vorteil sein, dass die Abweichung des zweiten Normabstands zum ersten Normabstand in einem Bereich von 0, 1 bis 5 mm, vorzugsweise in einem Bereich von 0, 1 bis 1 mm, ist. Durch eine Abweichung in diesem Bereich kann einerseits sichergestellt werden, dass sich der gewünschte zweite Normabstand innerhalb der
Fertigungstoleranzen herstellen lässt und andererseits kann durch eine Abweichung in diesem Bereich ein wirksamer Toleranzausgleich sichergestellt werden.
Prinzipiell kann es von Vorteil sein, dass der zweite Normabstand größer ist als der erste Normabstand. Dabei kann der Abstand der Aufnahmen des dritten Hebels zur Aufnahme der durch die Achsbohrungen des ersten und des zweiten Hebels hindurchragenden Achsbolzen durch Stauchen im Wesentlichen auf den ersten Normabstand verringert werden - beispielsweise durch elastische Verformung des dritten Hebels - und es so zu einer Auseinanderspreizung der beiden Achsbolzen kommen. Vorzugsweise wird dabei die Abweichung des zweiten Normabstands zum ersten Normabstand derart gewählt, dass die Belastung der Achsbolzen der Hebel durch den dritten Hebel gleichgeartet ist, wie die Belastung auf die Achsbolzen durch die Gewichtskraft einer am Stellarmantrieb montierten Klappe in einer Montagelage des Stellarmantriebs.
Vorteilhaft kann sein, wenn das Verhältnis der Höhe des dritten Hebels zum zweiten Normabstand des dritten Hebels 0,35 oder weniger, bevorzugt 0,25 oder weniger, besonders bevorzugt 0, 15 oder weniger, ist. Bevorzugt kann der dritte Hebel zumindest abschnittsweise ein solches Verhältnis zwischen der Höhe und dem Abstand der Aufnahmen aufweisen. Als Höhe des dritten Hebels kann dabei eine, zumindest abschnittsweise, im Wesentlichen quer zur Verbindungslinie der Aufnahmen der Achsbolzen (zweiter Normabstand) verlaufende Erstreckung des dritten Hebels verstanden werden. Schutz wird auch begehrt für ein Möbel mit zumindest einem wie zuvor beschriebenen Stellarmantrieb.
Auch wird Schutz für ein Verfahren zur Herstellung eines wie zuvor beschriebenen Stellarmantriebs gesucht. Bei einem solchen Verfahren wird der dritte Hebel beim Zusammensetzen des Stellarmantriebs durch Dehnen oder Stauchen auf den ersten Normabstand vorgespannt, wobei er diese Vorspannung im eingebauten Zustand behält. Der dritte Hebel kann dabei beispielsweise eine Aufnahme in Form einer Achsbohrung und eine weitere Aufnahme in Form einer Einbuchtung aufweisen. Bei einem Herstellungsverfahren kann dabei der dritte Hebel in einem Verfahrensschritt
zwischen dem ersten und dem zweiten Hebel angeordnet werden, die Hebel in einem weiteren Verfahrensschritt mit einem Achsbolzen durch die jeweiligen Achsbohrungen versehen werden, der erste und der zweite Hebel in einem weiteren Verfahrensschritt mit einem weiteren Achsbolzen versehen werden und in einem letzten Verfahrensschritt der dritte, nunmehr schwenkbar an einem der Achsbolzen gelagerte dritte Hebel, auf den weiteren Achsbolzen aufgeschwenkt bzw. aufgeklipst werden, sodass der dritte Hebel durch Dehnen oder Stauchen auf den ersten Normabstand vorgespannt wird und im eingebauten Zustand diese Vorspannung behält. Anders gesagt kann bei einem solchen Verfahren zur Herstellung eines wie zuvor beschriebenen Stellarmantriebs vorgesehen sein, dass, die Aufnahmen der Achsbolzen im dritten Hebel in Form von einer Achsbohrung und einer Einbuchtung ausgebildet sind und in einem ersten Verfahrensschritt der dritte Hebel zwischen dem ersten Hebel und dem zweiten Hebel angeordnet wird, in einem zweiten Verfahrensschritt ein erster Achsbolzen in eine erste Achsbohrung des ersten Hebels, eine erste Achsbohrung des zweiten Hebels und die eine Achsbohrung des dritten Hebel eingebracht wird, in einem dritten Verfahrensschritt ein zweiter Achsbolzen in eine zweite Achsbohrung des ersten Hebels, eine zweite Achsbohrung des zweiten Hebels eingebracht wird und in einem vierten Verfahrensschritt der dritte Hebel durch eine Schwenkbewegung auf den zweiten Achsbolzen aufgeschwenkt wird, wobei durch das Aufschwenken der Achsbolzen in die Einbuchtung des dritten Hebels eingebracht wird. Die Achsbolzen werden dabei in die in Form von Achsbohrungen ausgebildeten Aufnahmen der Hebel jeweils axial eingebracht. Die Aufnahme für den Achsbolzen in Form einer Einbuchtung unterscheidet sich von den Aufnahmen in Form von Achsbohrungen darin, dass ein Achsbolzen auch radial in die Einbuchtung eingebracht werden kann, beispielsweise durch eine Schwenkbewegung des entsprechenden Hebels.
Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand der Figurenbeschreibung unter Bezugnahme auf die in den Zeichnungen dargestellten Ausführungsbeispiele im Folgenden näher erläutert. Darin zeigen:
Fig. 1 a eine perspektivische Ansicht eines Möbels,
Fig. 1 b eine perspektivische Schnittdarstellung eines Möbels,
Fig. 2a bis 2d eine Seitenansicht einer Schnittdarstellung eines Möbels mit
verschiedenen Stellungen des Stellarmantriebs,
Fig. 3 eine perspektivische Ansicht eines Stellarmantriebs,
Fig. 4a bis 4c eine Seitenansicht eines Stellarmantriebs in verschiedenen
Schwenkstellungen,
Fig. 5a eine Seitenansicht einer Schnittdarstellung eines
Stellarmantriebs,
Fig. 5b eine Detailansicht des in Fig. 5a gezeigten Stellarmantriebs,
Fig. 6 eine Seitenansicht zweier Hebel eines Stellarmantriebs,
Fig. 7a bis 7d eine Seitenansicht einer Schnittdarstellung eines Möbels,
Fig. 8 und 8a eine Seiten- und Detailansicht eines Möbels mit einem
Stellarmantrieb in einer ersten Einstellung,
Fig. 9 und 9a eine Seiten- und Detailansicht eines Möbels mit einem
Stellarmantrieb in einer zweiten Einstellung und
Fig. 10 und 10a eine weitere Seiten- und Detailansicht eines Möbels mit einem
Stellarmantrieb in verschiedenen Einstellungen.
Fig. 1 a zeigt ein Möbel 3 mit einem Möbelkorpus 30, in dessen Innenraum unterhalb eines Korpusdeckels 31 zwei Stellarmantriebe 1 montiert sind. An den Stellarmen 2 der Stellarmantriebe 1 ist eine bewegbare Klappe 4 befestigt und somit mittels der Stellarmantriebe 1 schwenkbar am Möbelkorpus 30 gelagert. Der Stellarmantrieb 1 ist über ein mit einem Gehäusedeckel 55 versehenes Gehäuse 5 am Möbelkorpus 30 befestigt.
Fig. 1 b zeigt eine perspektivische Ansicht einer Schnittdarstellung des in Fig. 1 a gezeigten Möbels 3, wobei der Stellarmantrieb 1 ohne den Gehäusedeckel 55 des Gehäuses 5 gezeigt ist. Wie zuvor ist eine Klappe 4 am Stellarm 2 des Stellarmantriebs 1 befestigt.
Fig. 2a bis 2d zeigen den Verlauf einer Öffnungsbewegung - oder in umgekehrter Reihenfolge den Verlauf einer Schließbewegung - eines Möbels 3 mit einer schwenkbar gelagerten Klappe 4. Dabei ist in Fig. 2a die Schließstellung des Stellarmantriebs 1 gezeigt, in welchem der Möbelkorpus 30 von der Klappe 4 abgeschlossen wird. Wie in der Ausführung der Fig. 2a gezeigt, weist der Stellarmantrieb 1 einen schwenkbar gelagerten Stellarm 2 mit mehreren gelenkig miteinander verbundenen Hebeln auf,
wobei hier Teile des schwenkbar am Gehäuse 5 gelagerten Haupthebels 6, des schwenkbar an diesem gelagerten Zwischenhebel 7 und ein Teil des zur Befestigung der Klappe 4 ausgebildeten Traghebels 10 zu sehen sind. In der gezeigten Schließstellung des Stellarmantriebs 1 steht der Haupthebel 6 und der gelenkig mit diesem verbundene Zwischenhebel 7, sowie der Traghebel 10 aus einer Längsseite 52 des Gehäuses 5 vor. Die der Innenseite der Klappe 4 zugewandte Stirnseite 51 des Gehäuses 5 des Stellarmantriebs 1 ist in der Schließstellung der gezeigten Ausführung frei von vorstehenden Hebeln des Stellarms 2 und schließt im Wesentlichen bündig mit dem Möbelkorpus 30 ab.
Fig. 2b zeigt ein Möbel 3 mit einer teilweise geöffneten Klappe 4. Der die Klappe 4 tragende Stellarm 2 des Stellarmantriebs 1 ist dabei teilweise aus der Schließstellung herausgeschwenkt. In dieser in Richtung der Offenstellung verschwenkten Stellung des Stellarms 2 stehen die gelenkig miteinander verbundenen Hebel des Stellarms 2 teilweise aus der Längsseite 52 des Gehäuses 5 und teilweise aus der Stirnseite 51 des Gehäuses 5 hervor. Dabei sind neben dem Haupthebel 6 die verschachtelt ineinander angeordneten Zwischenhebel 7, 8 sowie der schwenkbar an diesen gelagerte Traghebel 10 sichtbar. Fig. 2c zeigt ein Möbel 3 mit einer weiter in Richtung der Offenstellung verschwenkten Möbelklappe 4. Der die Klappe 4 tragende Stellarm 2 ist dabei weiter in Richtung der Offenstellung verschwenkt, sodass nun neben dem Haupthebel 6 und den verschachtelt ineinander angeordneten Zwischenhebeln 7, 8 und dem Traghebel 10 auch der schwenkbar am Gehäuse 5 gelagerte Führungshebel 9 zu sehen ist. Von den Hebeln wird wie gezeigt eine verschachtelte Siebengelenk-Kinematik ausgebildet. In dieser Schwenkstellung des Stellarms 2 ist die Längsseite 52 des Gehäuses 5 bereits frei von vorstehenden Hebeln, wodurch einem Benutzer ein Eingreifen in den Innenraum des Möbels 3 deutlich erleichtert werden kann. Die den Stellarm 2 ausbildenden Hebel stehen demzufolge in dieser der Offenstellung nahen Schwenkstellung des Stellarmantriebs 1 nur mehr aus der Stirnseite 51 des Gehäuses 5 vor.
In Fig. 2d ist ein Möbel 3 mit einer vollständig geöffneten Klappe 4 gezeigt. Der Stellarm 2 des Stellarmantriebs 1 befindet sich dabei in der Offenstellung, welche dadurch gekennzeichnet ist, dass die den Stellarm 2 ausbildenden Hebel aus der Stirnseite 51
des Gehäuses 5 vorstehen. Im Gegensatz zur Schließstellung des Stellarmantriebs 1 ist die direkt an die Stirnseite 51 anschließende Längsseite 52 des Gehäuses 5 in der Offenstellung des Stellarmantriebs 1 frei von vorstehenden Hebeln. Fig. 3 zeigt eine perspektivische Ansicht eines Stellarmantriebs 1 mit abgenommenem Gehäusedeckel. Die Ausrichtung des Stellarmantriebs 1 entspricht dabei im Wesentlichen der in den vorangehenden Figuren gezeigten Montagelage in einem Möbel 3. Im Gehäuse 5 des Stellarmantriebs 1 ist ein Kraftspeicher 1 1 mit einer liegend eingebauten, im Wesentlichen horizontal verlaufenden Feder 12, einem gelenkig mit dieser verbundenen und schwenkbar am Gehäuse 5 gelagerten Umlenkhebel 13 und einem schwenkbar mit diesem verbundenen Übertragungshebel 14 untergebracht. Auch weist der Stellarmantrieb 1 eine Dämpfungsvorrichtung 24 zur Dämpfung der Schwenkbewegung des Stellarms 2 bei einer Schließbewegung auf. Der Stellarm 2 wird in der in Fig. 3 gezeigten Ausführung des Stellarmantriebs 1 von einem schwenkbar um eine erste Schwenkachse S1 am Gehäuse 5 gelagerten Haupthebel 6, zwei am Haupthebel 6 schwenkbar gelagerten Zwischenhebeln 7, 8, einem an dem zweiten Zwischenhebel 8 und um eine zweite Schwenkachse S2 am Gehäuse 5 schwenkbar gelagerten Führungshebel 9 und einem an den Zwischenhebeln 7, 8 schwenkbar gelagerten Traghebel 10 ausgebildet. Der Führungshebel 9 wird von einem ersten Hebel 91 und einem mit diesem verbundenem zweiten Hebel 92, sowie einem hier nicht sichtbaren dritten Hebel 93 ausgebildet. Der Haupthebel 6 sowie der erste Zwischenhebel 7 weisen einen profilierten, im Wesentlichen einem U-Profil entsprechenden Querschnitt auf und sind ineinander verschachtelt angeordnet. Zudem sind der erste Zwischenhebel 7 und der zweite Zwischenhebel 8 ineinander verschachtelt angeordnet, wie dies auch für den zweiten Zwischenhebel 8 und den Führungshebel 9 zutreffend ist. Insgesamt kann durch die verschachtelte Anordnung des Haupthebels 6, der Zwischenhebel 7, 8 und des Führungshebels 9 eine besonders stabile Ausführung des Stellarms 2 mit besonders geringem Raumbedarf erreicht werden. Der Hauptarm 6 wird vom Kraftspeicher 1 1 über ein Krafteinleitelement 16 mit einer Kraft beaufschlagt. Das Krafteinleitelement 16 ist dabei schwenkbar mit dem Übertragungshebel 14 des Kraftspeichers 1 1 sowie schwenkbar mit der am Haupthebel 6 angebrachten Einsteilvorrichtung 15 verbunden. Die Krafteinleitstelle x1 des Krafteinleitelements 16 ist am Haupthebel unterhalb der Schwenkachse S1 gelegen, wodurch vom Kraftspeicher 1 1 effektiv ein Drehmoment auf den Haupthebel 6
ausgewirkt wird, sodass der Stellarm 2 ohne äußere Einwirkung in Richtung der Offenstellung verschwenkt wird.
Fig. 4a zeigt eine Seitenansicht eines Stellarmantriebs 1 mit abgenommenem Gehäusedeckel. Der Stellarm 2 des Stellarmantriebs 1 befindet sich wie gezeigt in der Geschlossenstellung, wobei dabei die vom Kraftspeicher 1 1 über den Übertragungshebel 14 derart auf den Haupthebel 6 des Stellarms 2 wirkt, dass dieser aktiv in die Geschlossenstellung gedrängt wird. So verläuft die Wirklinie der aus dem Kraftspeicher 1 1 stammenden Kraft entlang dem Übertragungshebel 14 derart in Relation zur Schwenkachse S1 des Haupthebels 6 (oberhalb der Schwenkachse S1 ), dass der Haupthebel 6 über das mittels der Einsteilvorrichtung 15 mit dem Hauptarm 6 verbundene Krafteinleitelement 16 aktiv in die Geschlossenstellung geschwenkt und in dieser gehalten wird. Die Einsteilvorrichtung 15 ist in Form einer drehbar am Hauptarm 6 gelagerten Gewindespindel 20 (siehe dazu auch Fig. 5a), einem in der Gewindespindel 20 und einer im Wesentlichen geradlinig im Hauptarm 6 ausgebildeten Führungsbahn 22 verschiebbar gelagerten Nutenstein 21 und einem gelenkig mit dem Nutenstein 21 und dem Krafteinleitelement 16 verbundenen Zwischenstück 23 ausgebildet. Die Gewindespindel 20, der Nutenstein 21 und das Zwischenstück 23 sind dabei zumindest teilweise im Innenbereich des profiliert ausgebildeten Haupthebels 6 angeordnet. Zur Anlage des Krafteinleitelements 16 ist an Stirnflächen 18 des Haupthebels 6 eine Anlagekontur 17 ausgebildet, wobei die Einsteilvorrichtung 15 dazu ausgebildet ist, das Krafteinleitelement 16 entlang der Anlagekontur 17 zu verstellen.
In Fig. 4b ist ein Stellarmantrieb 1 mit einem teilweise aus der Geschlossenstellung heraus verschwenkten Stellarm 2 gezeigt. Dabei ist durch Vergleich mit der Fig. 4a der verschachtelte Aufbau der eine Siebengelenk-Kinematik ausbildenden Hebel des Stellarms 2 erkennbar. In dieser Schwenkstellung des Stellarms 2 verläuft die entlang des Übertragungshebels 14 des Kraftspeichers 1 1 verlaufende Wirklinie der auf den Hauptarm 6 wirkenden Kraft derart in Relation zur Schwenkachse S1 des Haupthebels 6 (unterhalb der Schwenkachse S1 ), dass der Stellarm 2 weiter in Richtung der Offenstellung gedrängt wird. Deutlich erkennbar ist auch der in eine seitliche Richtung zur Schwenkbewegung des Stellarms 2 im Wesentlichen spaltfreie Überlapp der zwei Zwischenhebel 7, 8. In Fig. 4c ist ein Stellarmantrieb 1 mit einem sich in der Offenstellung befindenden Stellarm 2 gezeigt. Die den Stellarm 2 ausbildenden Hebel
stehen dabei aus der Stirnseite 51 des Gehäuses 5 des Stellarmantriebs 1 hervor. Wie gezeigt, befindet sich die Einsteilvorrichtung in einer Einstellung, in welcher das Krafteinleitelement 16 an der Anlagekontur 17 an einer ersten Krafteinleitstelle x1 positioniert ist. In dieser Einstellung ist der Abstand (radial) zwischen der Schwenkachse S1 des Haupthebels 6 und der ersten Krafteinleitstelle x1 maximal groß, wodurch vom Kraftspeicher 1 1 eine große Kraft auf den Stellarm 2 wirkt. Weiter in Richtung der Schwenkachse S1 ist eine weitere Einstellung der Einsteilvorrichtung 15 gelegen, in welcher das stilistisch angedeutete Krafteinleitelement an der zweiten Krafteinleitstelle x2 gelegen ist (siehe dazu auch Fig. 9a). Eine Verstellung der Krafteinleitstelle des Krafteinleitelements 16 an der Anlagekontur 17 des Haupthebels 6 erfolgt in der Offenstellung des Stellarmantriebs im Wesentlichen quer zur entlang des Übertragungshebels 14 verlaufenden Wirklinie der Kraft. Bei einer, wie in Fig. 7d gezeigten, Verwendung des Stellarmantriebs 1 mit einem Möbel 3 mit einer vom Stellarmantrieb 1 angetriebenen Klappe 4 hat dies den Vorteil, dass eine Einstellung der Einsteilvorrichtung 15 direkt mit der auf die Klappe 4 wirkenden Kraft (Kompensation der von der Gewichtskraft der Klappe 4 ausgeübten Kraft auf den Stellarm 2) korrespondiert.
Fig. 5a zeigt eine Seitenansicht einer Schnittdarstellung eines Stellarmantriebs 1 in einer wie in Fig. 4c gezeigten Schwenkstellung des Stellarms 2. Dabei ist neben dem im Gehäuse 5 untergebrachten Kraftspeicher 1 1 der Haupthebel 6 mit der an einer der Stirnflächen 18 ausgebildeten Stellkontur 17 gezeigt. Ebenso sind in dieser Schnittdarstellung die Einzelteile der Einsteilvorrichtung 15 gezeigt. Im Speziellen sind dies die drehbar an einer im Hauptarm 6 ausgebildeten Lagerstelle 28 gelagerte Gewindespindel 20 und der darin gelagerte Nutenstein 21 , sowie das schwenkbar mit dem Nutenstein 21 und dem Krafteinleitelement 16 verbundene Zwischenstück 23. Bei einer Rotation der Gewindespindel 20 kann der drehfest gelagerte Nutenstein 21 entlang der Spindel in der hier nicht sichtbaren Führungsbahn 22 des Haupthebels 6 verschoben werden, wobei dabei das schwenkbar mit dem Nutenstein 21 verbundene Zwischenstück 23, sowie das Krafteinleitelement 16 mitverschoben wird und - durch den Übertragungshebel 14 des Kraftspeichers 1 1 mit Kraft beaufschlagt - dadurch das Krafteinleitelement 16 an einer anderen Stelle der Anlagekontur 17 zu liegen kommt.
Um in jeder Schwenkstellung des Stellarms 2 einen effektiven Sicht- und Klemmschutz zu gewährleisten, können Blenden 29 vorgesehen sein, die sich bei Verschwenken ergebende Öffnungen im Gehäuse 5 oder im Stellarm 2 selbst abdecken. Weiter sind in Fig. 5a der zweite Hebel 92 des Führungshebels 9 sowie der zwischen die Achsbolzen 27 des Führungshebels 9 eingebrachte, einem Toleranzausgleich dienende dritte Hebel 93 gezeigt. Darauf soll nun im Folgenden weiter eingegangen werden.
Fig. 5b zeigt eine Detailansicht der in Fig. 5a gezeigten Schnittdarstellung des Stellarmantriebs 1 . Dabei sind insbesondere die Teile der Einsteilvorrichtung 15 sowie zwei der Hebel des Führungshebels 9 gezeigt. So ist vom Führungshebel 9 der zweite Hebel 92 mit dem die Schwenkachse S1 ausbildenden, gehäuseseitigen Achsbolzen 27 und dem der schwenkbaren Lagerung des zweiten Zwischenhebels 8 dienenden weiteren Achsbolzen 27 gezeigt. Der eine wellige Form aufweisende dritte Hebel 93 weist an einem Ende eine Achsbohrung 25 auf, mit welcher er am weiteren Achsbolzen 27 aufgenommen ist. Am anderen Ende weist der dritte Hebel 93 eine Einbuchtung 26 auf, mittels welcher der dritte Hebel 93 auf den die Schwenkachse S1 ausbildenden Achsbolzen 27 aufgeschwenkt bzw. aufgeklipst ist. Dabei kann vorgesehen sein, dass die Achsbolzen 27 durch den federelastisch verformten Hebel 93 derart auseinandergespreizt werden, dass ein eventuell aufgrund von Fertigungstoleranzen bestehendes radiales Spiel der Achsbolzen 27 in den Lagerstellen des Gehäuses 5 oder der Hebel ausgeglichen werden kann. Der dritte Hebel 93 weist zumindest abschnittsweise eine Höhe H auf und die Aufnahmen 25, 26 des dritten Hebels 93 weisen den zweiten Normabstand d2 auf.
In Fig. 6 sind der erste Hebel 91 und der dritte Hebel 93 dargestellt. Die Darstellung des ersten Hebels 91 kann dabei auch der Darstellung des zweiten Hebels 92 entsprechen, sofern diese in ihrer Form identisch ausgebildet sind. Der erste Hebel 91 weist dabei zwei Achsbohrungen 25 auf, deren Zentren einen ersten Normabstand d1 aufweisen. Um eine schwenkbare Lagerung des ersten Hebels 91 (bzw. auch des zweiten Hebels 92) gewährleisten zu können, können die Achsbohrungen 25 einen geringfügig größeren Bohrungsdurchmesser aufweisen, als die zur Aufnahme darin vorgesehenen
Achsbolzen 27 (hier nicht gezeigt). Der eine gekrümmte, wellige Form aufweisende dritte Hebel 93 verfügt in dieser Ausführung ebenso über zwei Achsbohrungen 25, wobei deren Zentren jedoch einen vom ersten Normabstand d1 abweichenden zweiten Normabstand d2 aufweisen. Bei einem Zusammensetzen des Führungshebels 9 aus dem ersten Hebel 91 , dem zweiten Hebel 92 und dem vorzugsweise zwischen diesen angeordneten dritten Hebel 93 kann der dritte Hebel 93 durch Dehnen oder Stauchen auf den ersten Normabstand d1 vorgespannt werden, sodass dieser im eingebauten Zustand seine Vorspannung behält. Dadurch kann es zu einer Stabilisierung des aus den einzelnen Hebeln zusammengesetzten Führungshebels 9 kommen.
In den Figuren 7a bis 7d ist analog zu den Figuren 2a bis 2d ein Öffnungs- bzw. in umgekehrter Reihenfolge ein Schließvorgang eines Möbels 3 mit einer von einem Stellarmantrieb 1 angetriebenen Klappe 4 gezeigt, wobei der Stellarmantrieb 1 ohne den Gehäusedeckel 55 dargestellt ist.
In Fig. 8 und Fig. 8a ist eine Seiten- und Detailansicht eines Möbels 3 mit einer im Wesentlichen vollständig geöffneten Klappe 4 gezeigt. Wie dem Detailausschnitt A von Fig. 8a zu entnehmen ist, befindet sich die Einsteilvorrichtung 15 des Stellarmantriebs 1 in einer ersten Einstellung, in welcher sich das die Kraft aus dem Kraftspeicher 1 1 auf den Hauptarm 6 einleitende Krafteinleitelement 16 an einer ersten Krafteinleitstelle x1 entlang der am Haupthebel 6 ausgebildeten Anlagekontur 17 befindet. Der durch die Gewindespindel in der Führungsbahn 22 verschiebbare Nutenstein 21 befindet sich in dieser ersten Einstellung der Einsteilvorrichtung 15 wie gezeigt an einem ersten, von der Anlagekontur 17 entfernten Ende der Führungsbahn 22, wodurch durch die mittels des Zwischenstücks 23 bestehende Verbindung des Nutensteins 21 mit dem Krafteinleitelement 16 dieses an einer von der Schwenkachse S1 entfernten Krafteinleitstelle x1 an der Anlagekontur 17 positioniert ist.
Fig. 9 und Fig. 9a zeigen eine Seiten- und Detailansicht eines Möbels 3 mit einer im Wesentlichen vollständig geöffneten Klappe 4, wobei sich wie im Detailausschnitt A von Fig. 9a die Einsteilvorrichtung 15 des Stellarmantriebs 1 in einer zweiten Einstellung befindet. Der an der Gewindespindel 20 gelagerte Nutenstein 21 befindet sich in dieser zweiten Einstellung an einem zweiten, der Anlagekontur 17 zugewandten Ende der Führungsbahn 22, wodurch durch die über das Zwischenstück 23 bestehende
Verbindung des Nutensteins 21 mit dem Krafteinleitelement 16 dieses an einer der Schwenkachse S1 angenäherten zweiten Krafteinleitstelle x2 entlang der Anlagekontur 17 positioniert ist. Im Gegensatz zur ersten Einstellung (siehe Fig. 8 und Fig. 8a) ist in dieser zweiten Einstellung der Einsteilvorrichtung 15 das auf den Haupthebel 6 ausgeübte Drehmoment minimal, womit sich diese Einstellung zur Kompensation der Gewichtskraft von Klappen 4 mit geringem Eigengewicht eignet.
In den Figuren 8, 8a, 9 und 9a ist dabei eindeutig erkennbar, dass die Anlagekontur 17 einen konkav gekrümmten Verlauf aufweist, welcher zur entlang des Übertragungshebel 14 verlaufenden Wirklinie der Kraft aus dem Kraftspeicher 1 1 im Wesentlichen quer und zu dieser hin geneigt verläuft. Durch die gekrümmte Ausbildung der Anlagekontur 17 kann zum Einen erreicht werden, dass bei einer Verstellung der Einsteilvorrichtung 15 - und der damit verbundenen Verstellung der auf den Hauptarm 6 wirkenden Kraft aus dem Kraftspeicher 1 1 - die Federvorspannung der Feder 12 des Kraftspeichers 1 1 durch ein mit Verstellen der Einsteilvorrichtung 15 verbundenes Verschwenken des Übertragungshebels 14 im Wesentlichen unverändert bleibt. Auch kann dadurch erreicht werden, dass in jeder Schwenkstellung des Stellarmantriebs 1 zwischen der Geschlossen- und der Offenstellung das Krafteinleitelement 16 entlang der Anlagekontur 17 stets in die gleiche Richtung gedrängt wird, wodurch sich bei der Bedienung des Stellarmantriebs 1 unerwünschte Lastwechsel vermeiden lassen. In den in den vorhergehenden Figuren gezeigten Ausführungen des Stellarmantriebs bedeutet dies speziell, dass das Krafteinleitelement 16 entlang der Anlagekontur 17 in jeder Schwenkstellung des Stellarmantriebs 1 zwischen der Offen- und der Geschlossenstellung im Wesentlichen stets in Richtung der Schwenkachse S1 gedrängt wird, wodurch die Einsteilvorrichtung stets auf Zug belastet wird. Bei einer Umkehr der Richtung, in welche das Krafteinleitelement 16 entlang der Anlagekontur 17 gedrängt wird, würde es zu einer Richtungsänderung der Belastung (Lastwechsel) speziell der Einsteilvorrichtung 15 kommen, wodurch sich eine ungewünschte Instabilität des Stellarmantriebs 1 sowie potentiell eine durch ein Umkehrspiel gegebene Geräuschentwicklung des Stellarmantriebs 1 ergeben.
Fig. 10 und Fig. 10a zeigen eine Seiten- und Detailansicht eines Möbels 3 mit einer sich in der Offenstellung befindenden Klappe 4, wobei im Detailausschnitt A von Fig. 10a die entlang des Übertragungshebels 14 verlaufenden Wirklinien der aus dem Kraftspeicher
1 1 auf den Hauptarm 6 wirkenden Kraft gezeigt sind. In einer ersten Einstellung der Einsteilvorrichtung 15 befindet sich das Krafteinleitelement 16 an einer ersten Krafteinleitstelle x1 entlang der Anlagekontur 17. Die Tangente t1 veranschaulicht die Neigung der Anlagekontur 17 an der ersten Krafteinleitstelle x1 . Bei einer geradlinigen Ausbildung der Anlagekontur 17 würde das Krafteinleitelement 16 bei einer Verstellung der Einsteilvorrichtung 15 entlang der Tangente t1 verschoben werden. An einer zweiten Krafteinleitstelle x2 würde sich somit zwischen der zur zweiten Krafteinleitstelle x2 verlaufenden Wirklinie und der Tangente an die Anlagekontur ein stumpfer (größer als 90°) Winkel ß ergeben. Wird hingegen die Anlagekontur 17 gekrümmt ausgebildet, speziell konkav zur Wirklinie der Kraft hin gewölbt, kann erreicht werden, dass der von der Wirklinie der Kraft in der Krafteinleitstelle x2 und der durch die Tangente t2 veranschaulichten Neigung der Anlagekontur 17 eingeschlossene Winkel α ein spitzer Winkel (kleiner als 90°) ist.