WO2017142206A1 - 전극조립체 및 그의 제조방법 - Google Patents

전극조립체 및 그의 제조방법 Download PDF

Info

Publication number
WO2017142206A1
WO2017142206A1 PCT/KR2017/000398 KR2017000398W WO2017142206A1 WO 2017142206 A1 WO2017142206 A1 WO 2017142206A1 KR 2017000398 W KR2017000398 W KR 2017000398W WO 2017142206 A1 WO2017142206 A1 WO 2017142206A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
electrode
mask
separator sheet
separator
Prior art date
Application number
PCT/KR2017/000398
Other languages
English (en)
French (fr)
Inventor
이상균
구자훈
표정관
조주현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17753367.6A priority Critical patent/EP3300156B1/en
Priority to PL17753367T priority patent/PL3300156T3/pl
Priority to CN202110366685.1A priority patent/CN113270690B/zh
Priority to CN201780002349.0A priority patent/CN108701855B/zh
Priority to JP2018512162A priority patent/JP6699874B2/ja
Priority to US15/737,964 priority patent/US10749160B2/en
Publication of WO2017142206A1 publication Critical patent/WO2017142206A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly and a method of manufacturing the same, and more particularly, to an electrode assembly and a method of manufacturing the same, which are easily adhered, wetted, and degassed.
  • a secondary battery refers to a battery that can be charged and discharged, unlike a primary battery that cannot be charged.
  • Such a secondary battery is widely used in advanced electronic devices such as phones, notebook computers, and camcorders.
  • the secondary battery according to the prior art includes an electrode assembly, the electrode assembly is a positive electrode (negative electrode) and a negative electrode (negative electrode) on the upper and lower surfaces of the separator, respectively, lamination by pressure (lamination) and then folding ( It is manufactured by folding.
  • the electrode assembly has a higher adhesive strength than the negative electrode, and thus, when the positive electrode and the negative electrode are bonded to the separator under the same conditions, the adhesion force between the positive electrode and the negative electrode may occur, and as a result, an electrode assembly of uniform quality may be produced. There was a problem that could not be.
  • the present invention has been invented to solve such a problem, and an object of the present invention is to pattern the adhesive layer on the upper and lower surfaces of the separator to bond the positive electrode and the negative electrode with the same adhesive force, wetting (wetting) and gas It is to provide an electrode assembly and a method of manufacturing the same that can be easily discharged.
  • the first electrode sheet may be attached to a mask of a first surface having adhesive strength
  • the second electrode sheet may be attached to a mask of a second surface having low adhesive strength.
  • Both surfaces of the first separator sheet may have a mask in which a predetermined pattern and adhesive force are activated by plasma treatment, and the second surface may be weakly plasma treated on the first surface.
  • the first separator sheet may be formed by treating the plasma on only the first surface to form a mask having a predetermined pattern and adhesive force activated.
  • Surfaces other than the mask on both surfaces or the first surface of the first separator sheet may have no adhesive force or may have a lower adhesive force than the mask.
  • the first separator sheet may have a binder coating layer having a mask having a predetermined pattern on both surfaces thereof, and the second surface may have a binder coating layer having a mask having a smaller area and a smaller thickness than the first surface. have.
  • the binder coating layer may be formed to protrude a mask having a predetermined pattern and adhesive force activated by a plasma treatment.
  • the second surface may be plasma treated weaker than the first surface.
  • the surface except for the mask may have no adhesive force or may have a lower adhesive force than the mask.
  • the first electrode sheet may be a cathode, and the second electrode sheet may be an anode.
  • the display device may further include a second separator sheet adhered to an outer surface of any one of the first electrode sheet or the second electrode sheet.
  • the surface of the second separator sheet adhered to the first electrode sheet or the second electrode sheet may have a mask in which a predetermined pattern and adhesive force are activated by plasma treatment.
  • the mask formed on the second separator sheet and the mask formed on the second surface of the first separator sheet may have the same adhesive force.
  • the mark formed on the second separator sheet and the mask formed on the first surface of the first separator sheet may have the same adhesive force.
  • the manufacturing method of the electrode assembly according to the present invention having such a configuration step of preparing a first separator sheet to form a patterned mask having a different adhesive strength on both sides (S10);
  • the first electrode sheet is disposed on a mask of a first surface having a relatively high adhesive strength among both surfaces of the first separator sheet, and the second electrode is disposed on a mask of a second surface having a relatively low adhesive strength of both surfaces of the first separator sheet.
  • the step S10 may be performed by plasma treatment on both surfaces of the first separator sheet to form a mask having a predetermined pattern and adhesive force activated, and the second surface may be weaker than the plasma applied to the first surface. .
  • step S10 only the first surface may be plasma treated to form a mask having a predetermined pattern and adhesive force activated.
  • step S10 a binder coating layer is formed on both surfaces of the first separator sheet to protrude a mask having a predetermined pattern, and the mask provided on the second surface has a smaller area and a smaller thickness than the mask provided on the first surface. Can be formed.
  • step S30 After the step S30, and attaching the second separator sheet to the second electrode sheet of the base unit by applying heat and pressure, and winding the base unit to prepare an electrode assembly (S40).
  • the present invention has the following effects.
  • the adhesion of the first electrode sheet and the second electrode sheet can be uniformly controlled, and in particular, the gas is discharged through the space between the patterned masks. Or improves the impregnation force as the electrolyte flows, and as a result, there is an effect that can improve the quality of the electrode assembly.
  • Second By changing the plasma applied to the first surface and the second surface of the first separator sheet, there is an effect that can form a patterned mask by applying the adhesive force of both sides of the first separator sheet.
  • the adhesive force of both sides of the first separator sheet may be differently applied.
  • FIG. 1 is a cross-sectional view showing an electrode assembly according to a first embodiment of the present invention.
  • Figure 2 is a plan view showing a first surface of the first separation sheet included in the electrode assembly according to the present invention.
  • Figure 3 is a plan view showing a second surface of the first separation sheet included in the electrode assembly according to the present invention.
  • FIG. 4 is an enlarged view of a portion 'A' shown in FIG. 1;
  • FIG. 5 is a cross-sectional view showing an electrode assembly according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an electrode assembly including a second separator sheet in a first embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an electrode assembly according to the present invention.
  • FIG. 8 is a view showing a first separator sheet manufacturing process according to a first embodiment of the present invention.
  • FIG. 9 is a view showing a first separator sheet manufacturing process according to a second embodiment of the present invention.
  • the electrode assembly 100 is adhered to both surfaces of the first separator sheet 130 and the first separator sheet 130, that is, the upper and lower surfaces respectively when viewed in FIG. 1.
  • the first electrode sheet 110 and the second electrode sheet 120 to be included.
  • the first electrode sheet 110 is a cathode
  • the second electrode sheet 120 is an anode.
  • the electrode assembly 100 has a higher adhesive strength of the second electrode sheet 112 as the anode than the first electrode sheet 110 as the cathode, and thus the first electrode sheet 110 and the second electrode sheet 120 When bonding to both surfaces of the first separator sheet 130 with the same adhesive force, the adhesive force of the second electrode sheet 120 is excessively larger than that of the first electrode sheet 110, causing a factor of inhibiting interfacial adhesion.
  • the electrode assembly 100 may be formed through a first separator sheet 130 having a patterned mask having different adhesive strength on both sides, as shown in FIGS. 2 and 3.
  • the adhesion between the first electrode sheet 110 and the second electrode sheet 120 may be uniformly adjusted.
  • through the passage between the patterned mask it is possible to quickly discharge the gas generated during the adhesion of the electrode assembly to the outside, as well as to improve the impregnation force as the electrolyte flows.
  • patterned masks 133 and 134 having different adhesive strengths are formed, respectively.
  • the first electrode sheet 110 is adhered to the mask 133 of the first surface 131 having the high adhesive strength among the two surfaces, and the second electrode sheet is attached to the mask 134 of the second surface 132 having the low adhesive strength. 120 is bonded.
  • patterned masks 133 and 134 having adhesive strength are formed on both surfaces of the first separator sheet 130, respectively, and the first separator sheet 130 to which the second electrode sheet 120 is bonded is formed.
  • the adhesive force of the first electrode sheet 110 and the second electrode sheet 120 may be uniformly adjusted by lowering the adhesive force of the mask 134 provided on the second surface 132.
  • the masks 133 and 134 formed on both surfaces of the first separator sheet 130 are formed in a predetermined pattern to form passages in the longitudinal direction or the width direction between the masks 133 and 134, and through the passages.
  • the gas generated when the electrode assembly 100 is adhered may be discharged to the outside or the electrolyte may be introduced to improve the impregnation force.
  • the first separator sheet 130 in the electrode assembly 100 has a predetermined pattern by both the plasma treatment of the plasma (200) plasma device 200, both sides have a predetermined pattern
  • Each of the activated masks 133 and 134 is formed, wherein the second surface 132 is weaker than the first surface 131, and thus the patterned mask 133 of the second surface 132 is formed. It has a lower adhesion than the patterned mask 134 of the first side 131.
  • the second electrode sheet 120 is adhered to the mask 134 of the second surface 132 that is weakly plasma-treated, and the mask 133 of the first surface 131 that is more strongly plasma-processed than the second surface 132.
  • the adhesive force of the first electrode sheet 110 and the second electrode sheet 120 can be uniformly matched.
  • the masks 133 and 134 may be formed to protrude in a predetermined pattern on both sides of the first separator sheet 130, and thus a gas discharge space is formed between the masks 133 and 134 to form the electrode assembly 100.
  • the gas can be discharged more easily during adhesion.
  • the masks 133 and 134 may have any one of a circle, an oval, a rectangle, a polygon, and a long bar shape.
  • the surface of the gas discharge space without the masks 133 and 134 may have no adhesive force or may have a smaller adhesive force than the masks 133 and 134, thereby simultaneously obtaining the adhesive force and the gas discharge power.
  • the electrode assembly 100 of the present invention has a second separator sheet 140 adhered to an outer surface of either the first electrode sheet 110 or the second electrode sheet 120. It further includes.
  • the second separator sheet 140 in order to manufacture the electrode assembly 100 in a jelly-roll form, the second separator sheet 140 must be included in the outermost part.
  • the electrode assembly 100 of the present invention adheres the second separator sheet 140 to the lower portion of the second electrode sheet 120 to form the first electrode sheet 110 and the first separator.
  • a stacked structure of the sheet 130, the second electrode sheet 120, and the second separator sheet 140 is formed and wound to prepare a jelly-roll type electrode assembly.
  • the second separator sheet 140 is plasma-treated on the surface bonded to the first electrode sheet 110 or the second electrode sheet 120 to form a mask 141 with a predetermined pattern and adhesive force is activated.
  • the adhesion of the electrode sheet adhered to the second separator sheet 140 may be increased.
  • the mask 141 of the second separator sheet 140 and the second surface 132 of the first separator sheet 130 are formed.
  • the mask 134 provided at the same may have the same adhesive force, and thus the two-side adhesive force of the second electrode sheet 120 may be equally matched.
  • the mask 141 of the second separator sheet 140 and the first surface 131 of the first separator sheet 130 are formed.
  • the mask 133 provided at) has the same adhesive force, so that both sides of the first electrode sheet 110 can be equally matched.
  • the first separator sheet 130 in the electrode assembly 100 is plasma-treated only on the first surface 131 by referring to FIGS. 5 and 9 so that a predetermined pattern and adhesive force are activated. Is formed. That is, the adhesion of the first electrode sheet 110 and the second electrode sheet 120 may be uniformly matched by increasing the adhesion of the first surface 131 to the adhesion of the second surface 132 through plasma treatment.
  • manufacturing the first separator sheet 130 so that the patterned masks 133 and 134 having different adhesive strengths on both surfaces thereof are formed S10).
  • Disposing the first electrode sheet 110 and the second electrode sheet 120 on both sides of the first separator sheet 130 S20
  • adhering the first electrode sheet 110 and the second electrode sheet 120 to the masks 133 and 134 formed on both surfaces of the first separator sheet 130, respectively S30.
  • Step S10 forms patterned masks 133 and 134 having different adhesive strengths on both surfaces of the first separator sheet 130.
  • the plasma mask 200 performs plasma treatment on both surfaces of the first separator sheet 130 to activate a predetermined pattern and adhesive force.
  • the plasma treatment is weaker than the plasma applied to the first surface 131, so that the mask 134 of the second surface 132 is a mask of the first surface 131.
  • (133) has a weaker adhesion.
  • the mask 133 of the first surface 131 having high adhesion and the first electrode sheet 110 which is a negative electrode having weak adhesive strength, are bonded to each other, and the mask 134 and the adhesive force of the second surface 132 having weak adhesive strength are adhered to each other. While the second electrode sheet 120, which is a high anode, is bonded, the adhesive strength of the first electrode sheet 110 and the second electrode sheet 120 may be uniformly matched. In particular, the gas generated during adhesion to the space between the patterned masks 133 and 134 is discharged, thereby preventing adhesion failure due to the gas.
  • a second method as shown in FIG. 9, only the first surface 131 of both surfaces of the first separator sheet 130 is selectively plasma-processed through the plasma apparatus 200 to activate a predetermined pattern and adhesive force.
  • the mask 133 is formed, and thus the second surface 132 has a weaker adhesive force than the first surface 131 and uniformly matches the adhesive force of the first electrode sheet 110 and the second electrode sheet 120. have.
  • the first electrode sheet 110 is disposed on the first surface 131 having a relatively high adhesive strength among both surfaces of the first separator sheet 130, and the lower surface of the first separator sheet 130 is relatively low.
  • the second electrode sheet 120 is disposed on the second surface 132 having the adhesive force.
  • the first electrode sheet 110 and the second electrode sheet 120 are adhered to both surfaces of the first separator sheet 130 to prepare an unfinished electrode assembly.
  • step S30 After the step S30, and bonding the second separator sheet 140 to the outermost part of the unfinished electrode assembly (S40).
  • step S40 as shown in FIG. 6, the second separator sheet 140 is bonded to the second electrode sheet 120 of the unfinished electrode assembly by applying heat and pressure, and wound into a jelly-roll to prepare an electrode assembly. do.
  • the mask 141 of the second separator sheet 140 has the same adhesive strength as that of the mask 134 provided on the second surface 132 of the first separator sheet 130.
  • the first electrode sheet 110 and the second electrode sheet 120 are adhered to the separator having two sides having different adhesive strengths from each other. )
  • the adhesive strength of the can be uniformly matched, thereby improving the quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전극조립체에 관한 것으로서, 제1 분리막시트; 및 상기 제1 분리막시트의 양면에 각각 접착되는 제1 전극시트 및 제2 전극시트를 포함하며, 상기 제1 분리막시트의 양면은 서로 다른 접착력을 가지는 패턴화된 마스크가 형성되되, 상기 양면 중 높은 접착력을 가지는 제1 면의 마스크에 상기 제1 전극시트가 접착되고, 낮은 접착력을 가지는 제2 면의 마스크에 상기 제2 전극시트가 접착될 수 있다.

Description

전극조립체 및 그의 제조방법
관련출원과의 상호인용
본 출원은 2016년 02월 16일자 한국특허출원 제10-2016-0018002호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전극조립체 및 그의 제조방법에 관한 것으로서, 특히 전극과 분리막의 접착성, 웨팅(wetting)성 및 가스 제거가 용이한 전극조립체 및 그의 제조방법에 관한 것이다.
일반적으로 이차 전지(secondary battery)는 충전이 불가능한 일차 전지와는 달리 충전 및 방전이 가능한 전지를 말하며, 이러한 이차 전지는 폰, 노트북 컴퓨터 및 캠코더 등의 첨단 전자 기기 분야에서 널리 사용되고 있다.
종래기술에 따른 이차전지는 전극조립체를 포함하며, 상기 전극조립체는 분리막의 상면과 하면에 양극(positive electrode) 및 음극(negative electrode)을 각각 배치하고, 압력으로 라미네이션(lamination)한 다음, 폴딩(folding)하여 제조된다.
그러나 상기한 전극조립체는 음극에 비해 양극의 접착력이 높으며, 이에 따라 양극과 음극을 동일한 조건으로 분리막에 접착할 경우 양극과 음극의 접착력 편차가 발생하고, 그 결과 균일한 품질의 전극조립체를 제조할 수 없는 문제점이 있었다.
본 발명은 이와 같은 문제를 해결하기 위한 발명된 것으로서, 본 발명에 목적은 분리막의 상면과 하면의 접착층을 패턴화함으로써 양극과 음극을 동일한 접착력으로 접착할 수 있고, 웨팅(wetting)성 및 가스를 용이하게 배출할 수 있는 전극조립체 및 그의 제조방법을 제공하는데 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 전극조립체는 제1 분리막시트; 및 상기 제1 분리막시트의 양면에 각각 접착되는 제1 전극시트 및 제2 전극시트를 포함하며, 상기 제1 분리막시트의 양면은 서로 다른 접착력을 가지는 패턴화된 마스크가 형성되되, 상기 양면 중 높은 접착력을 가지는 제1 면의 마스크에 상기 제1 전극시트가 접착되고, 낮은 접착력을 가지는 제2 면의 마스크에 상기 제2 전극시트가 접착될 수 있다.
상기 제1 분리막시트의 양면은 플라즈마(plasma) 처리에 의하여 일정한 패턴과 접착력이 활성화된 마스크가 형성되되, 상기 제2 면은 상기 제1 면에 보다 약하게 플라즈마 처리될 수 있다.
상기 제1 분리막시트는 상기 제1 면에만 플라즈마 처리하여 일정한 패턴과 접착력이 활성화된 마스크를 형성할 수 있다.
상기 제1 분리막시트의 양면 또는 제1 면에서 상기 마스크를 제외한 표면은 접착력이 없거나 또는 상기 마스크 보다 낮은 접착력을 가질 수 있다.
상기 제1 분리막시트는 양면에 일정한 패턴의 마스크가 구비된 바인더(binder) 코팅층이 형성되되, 상기 제2 면은 상기 제1 면 보다 작은 면적과 작은 두께의 마스크가 구비된 바인더 코팅층이 형성될 수 있다.
상기 바인더 코팅층은 플라즈마(plasma) 처리에 의하여 일정한 패턴과 접착력이 활성화된 마스크가 돌출되게 형성될 수 있다.
상기 제2 면은 상기 제1 면 보다 약하게 플라즈마 처리될 수 있다.
상기 플라즈마 처리된 상기 바인더 코티층에서 상기 마스크를 제외한 표면은 접착력이 없거나 또는 상기 마스크 보다 낮은 접착력을 가질 수 있다.
상기 제1 전극시트는 음극이고, 상기 제2 전극시트는 양극일 수 있다.
상기 제1 전극시트 또는 상기 제2 전극시트 중 어느 하나의 외측면에 접착되는 제2 분리막시트를 더 포함할 수 있다.
상기 제2 분리막시트에서 상기 제1 전극시트 또는 상기 제2 전극시트에 접착되는 면은 플라즈마(plasma) 처리에 의하여 일정한 패턴과 접착력이 활성화된 마스크가 형성될 수 있다.
상기 제2 전극시트의 외측면에 상기 제2 분리막시트가 접착되면, 상기 제2 분리막시트에 형성된 마스크와 상기 제1 분리막시트의 제2 면에 형성된 마스크는 동일한 접착력을 가질 수 있다.
상기 제1 전극시트의 외측면에 상기 제2 분리막시트가 접착되면, 상기 제2 분리막시트에 형성된 마크스와 상기 제1 분리막시트의 제1 면에 형성된 마스크는 동일한 접착력을 가질 수 있다.
한편, 이와 같은 구성을 가지는 본 발명에 따른 전극조립체의 제조방법은 양면이 서로 다른 접착력을 가지는 패턴화된 마스크가 형성되도록 제1 분리막시트를 제조하는 단계(S10); 상기 제1 분리막시트의 양면 중 상대적으로 높은 접착력을 가지는 제1 면의 마스크에 제1 전극시트를 배치하고, 상기 제1 분리막시트의 양면 중 상대적으로 낮은 접착력을 가지는 제2 면의 마스크에 제2 전극시트를 배치하는 단계(S20); 및 열과 압력을 가하여 상기 제1 분리막시트의 양면에 상기 제1 전극시트 및 상기 제2 전극시트를 접착하여 기본단위체를 제조하는 단계(S30)를 포함할 수 있다.
상기 S10 단계는 상기 제1 분리막시트의 양면에 플라즈마(plasma) 처리하여 일정한 패턴과 접착력이 활성화된 마스크를 형성하되, 상기 제2 면에는 상기 제1 면에 가해지는 플라즈마 보다 약하게 플라즈마 처리할 수 있다.
상기 S10 단계는 상기 제1 면만 플라즈마 처리하여 일정한 패턴과 접착력이 활성화된 마스크를 형성할 수 있다.
상기 S10 단계에서는 상기 제1 분리막시트의 양면에 일정한 패턴의 마스크가 돌출되게 형성된 바인더 코팅층을 형성되되, 상기 제2 면에 구비된 마스크는 상기 제1 면에 구비된 마스크 보다 작은 면적과 작은 두께로 형성될 수 있다.
상기 S30 단계 후, 상기 기본 단위체의 제2 전극시트에 제2 분리막시트를 열과 압력을 가하여 접착하고, 상기 기본 단위체를 권취하여 전극조립체를 제조하는 단계(S40)를 더 포함할 수 있다.
본 발명은 하기와 같은 효과가 있다.
첫째: 제1 분리막시트의 양면의 접착력을 달리 적용한 패턴화된 마스크를 형성함으로써 제1 전극시트 및 제2 전극시트의 접착력을 균일하게 조절할 수 있고, 특히 패턴화된 마스크 사이 공간을 통해 가스가 배출되거나 또는 전해액이 유입되면서 함침력을 향상시키며, 그 결과 전극조립체의 품질성을 향상시킬 수 있는 효과가 있다.
둘째: 제1 분리막시트의 제1 면과 제2 면에 가해지는 플라즈마를 달리함으로써 제1 분리막시트 양면의 접착력을 달리 적용한 패턴화된 마스크를 형성할 수 있는 효과가 있다.
셋째: 제1 분리막시트의 제1 면에만 플라스마를 처리하여 패턴화된 마스크를 활성화시킴으로써 제1 분리막시트 양면의 접착력을 달리 적용할 수 있는 효과가 있다.
넷째: 제1 분리막시트의 양면에 코팅되는 바인더 코팅층에 면적과 두께가 서로 다른 패턴화된 마스크를 적용함으로써 제1 분리막시트 양면의 접착력을 달리 적용할 수 있는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 전극조립체를 도시한 단면도.
도 2는 본 발명에 따른 전극조립체에 포함된 제1 분리시트의 제1 면을 도시한 평면도.
도 3은 본 발명에 따른 전극조립체에 포함된 제1 분리시트의 제2 면을 도시한 평면도.
도 4는 도 1에 표시된 'A'부분 확대도.
도 5는 본 발명의 제2 실시예에 따른 전극조립체를 도시한 단면도.
도 6은 본 발명의 제1 실시예에서 제2 분리막시트를 포함하는 전극조립체를 도시한 단면도.
도 7은 본 발명에 따른 전극조림체의 제조방법을 도시한 순서도.
도 8은 본 발명의 제1 실시예에 따른 제1 분리막시트 제조공정을 도시한 도면.
도 9는 본 발명의 제2 실시예에 따른 제1 분리막시트 제조공정을 도시한 도면.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
[전극조립체]
본 발명에 따른 전극조립체(100)는 도 1에 도시되어 있는 것과 같이, 제1 분리막시트(130)와 상기 제1 분리막시트(130)의 양면, 즉 도 1에서 보았을 때 상면과 하면에 각각 접착되는 제1 전극시트(110) 및 제2 전극시트(120)를 포함한다. 여기서 제1 전극시트(110)는 음극이고, 제2 전극시트(120)는 양극이다.
한편, 전극조립체(100)는 음극인 제1 전극시트(110)에 비해서 양극인 제2 전극시트(112)의 접착력이 높으며, 이에 제1 전극시트(110) 및 제2 전극시트(120)를 제1 분리막시트(130)의 양면에 동일한 접착력으로 접착할 경우 제2 전극시트(120)의 접착력이 제1 전극시트(110) 보다 과도하게 크기 때문에 계면 접착성을 저해하는 요인이 발생하고 있다.
특히 전극조립체(100)의 접착시 제1 분리막시트(130)와 제1 전극시트(110) 사이, 및 제1 분리막시트(130)와 제2 전극시트(120) 사이에 가스가 발생하는데, 이 가스가 외부로 배출되지 못하면서 접착성을 저해하는 요인이 발생하고 있다.
이와 같은 문제를 해결하기 위해 본 발명에 따른 전극조립체(100)는 도 2 및 도 3에 도시되어 있는 것과 같이, 양면의 접착력이 다른 패턴화된 마스크를 가진 제1 분리막시트(130)를 통해 제1 전극시트(110) 및 제2 전극시트(120)의 접착력을 균일하게 조절할 수 있다. 특히 패턴화된 마스크 사이 통로를 통해 전극조립체의 접착시 발생된 가스를 신속하게 외부로 배출시킬 수 있고, 더불어 전해액이 유입되면서 함침력을 향상시킬 수 있다.
즉, 본 발명에 따른 전극조립체(100)에서 제1 분리막시트(130)의 양면은 도 4에 도시되어 있는 것과 같이, 서로 다른 접착력을 가진 패턴화된 마스크(133)(134)가 각각 형성되며, 양면 중 높은 접착력을 가지는 제1 면(131)의 마스크(133)에 제1 전극시트(110)가 접착되고, 낮은 접착력을 가지는 제2 면(132)의 마스크(134)에 제2 전극시트(120)가 접착된다.
다시 말해, 제1 분리막시트(130)의 양면에 접착력을 가진 패턴화된 마스크(133)(134)를 각각 형성하되, 제2 전극시트(120)가 접착되는 제1 분리막시트(130)의 제2 면(132)에 구비되는 마스크(134)의 접착력을 낮춤으로써 제1 전극시트(110)와 제2 전극시트(120)의 접착력을 균일하게 조절할 수 있다.
특히 제1 분리막시트(130)의 양면에 형성되는 마스크(133)(134)는 일정한 패턴으로 형성되면서 마스크(133)(134) 사이에 길이방향 또는 폭방향으로 통로를 형성하며, 이 통로를 통해 전극조립체(100)의 접착시 발생된 가스가 외부로 배출되거나 또는 전해액이 유입되면서 함침력을 향상시킬 수 있다.
이하, 본 발명에 따른 전극조립체(100)의 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
첫 번째 실시예
첫 번째 실시예로, 전극조립체(100)에서 제1 분리막시트(130)는 도 1 및 도 8을 참조하면, 양면이 플라즈마(plasma) 장치(200)의 플라즈마 처리에 의하여 일정한 패턴을 가지며 접착력이 활성화된 마스크(133)(134)가 각각 형성되는데, 이때 제2 면(132)은 제1 면(131) 보다 약하게 플라즈마 처리되며, 이에 제2 면(132)의 패턴화된 마스크(133)는 제1 면(131)의 패턴화된 마스크(134) 보다 낮은 접착력을 가진다.
이와 같이 약하게 플라즈마 처리된 제2 면(132)의 마스크(134)에 제2 전극시트(120)를 접착하고, 제2 면(132) 보다 강하게 플라즈마 처리된 제1 면(131)의 마스크(133)에 제1 전극시트(110)를 접착함에 따라 제1 전극시트(110) 및 제2 전극시트(120)의 접착력을 균일하게 맞출 수 있다.
이때 마스크(133)(134)는 제1 분리막시트(130)의 양면에 일정한 패턴으로 돌출되게 형성될 수 있으며, 이에 마스크(133)(134) 사이에 가스배출공간을 형성하여 전극조립체(100)의 접착시 가스를 보다 용이하게 배출시킬 수 있다.
여기서 마스크(133)(134)는 원형, 타원형, 사각형, 다각형, 긴 바형 중 어느 하나의 형태를 가질 수 있다.
특히 마스크(133)(134)가 없는 가스배출공간인 표면은 접착력이 없거나 또는 마스크(133)(134) 보다 작은 접착력을 가질 수 있으며, 이에 접착력과 가스배출력을 동시에 얻을 수 있다.
여기서 본 발명의 전극조립체(100)는 도 7에 되시되어 있는 것과 같이, 제1 전극시트(110) 또는 제2 전극시트(120) 중 어느 하나의 외측면에 접착되는 제2 분리막시트(140)를 더 포함한다.
즉, 전극조립체(100)를 권취하여 젤리-롤 형태로 제조하기 위해서는 최외각에 제2 분리막시트(140)를 포함해야 한다. 이에, 본 발명의 전극조립체(100)는 도 6에 도시된 바와 같이, 제2 전극시트(120)의 하부에 제2 분리막시트(140)를 접착하여 제1 전극시트(110), 제1 분리막시트(130), 제2 전극시트(120) 및 제2 분리막시트(140)로 적층된 구조를 형성하고, 권취하여 젤리-롤 형태의 전극조립체를 제조한다.
한편, 제2 분리막시트(140)는 제1 전극시트(110) 또는 제2 전극시트(120)에 접착되는 면에 플라즈마(plasma) 처리되어 일정한 패턴과 접착력이 활성화된 마스크(141)가 형성되며, 이에 제2 분리막시트(140)에 접착되는 전극시트의 접착력을 높일 수 있다.
여기서 제2 전극시트(120)의 외측면에 제2 분리막시트(140)가 접착되면, 제2 분리막시트(140)의 마스크(141)와 제1 분리막시트(130)의 제2 면(132)에 구비된 마스크(134)는 동일한 접착력을 가지며, 이에 제2 전극시트(120)의 양면 접착력을 동일하게 맞출 수 있다.
또한, 제1 전극시트(110)의 외측면에 제2 분리막시트(140)가 접착되면, 제2 분리막시트(140)의 마스크(141)와 제1 분리막시트(130)의 제1 면(131)에 구비된 마스크(133)는 동일한 접착력을 가지며, 이에 제1 전극시트(110)의 양면 접착력을 동일하게 맞출 수 있다.
두 번째 실시예
두 번째 실시예로, 전극조립체(100)에서 제1 분리막시트(130)는 도 5 및 도 9를 참조하면, 제1 면(131)에만 플라즈마 처리되어 일정한 패턴과 접착력이 활성화된 마스크(133)가 형성된다. 즉, 플라즈마 처리를 통해 제1 면(131)의 접착력을 제2 면(132)의 접착력 보다 높여 줌으로써 제1 전극시트(110) 및 제2 전극시트(120)의 접착력을 균일하게 맞출 수 있다.
[전극조립체 제조방법]
이와 같은 구성을 가지는 본 발명에 따른 전극조립체 제조방법을 설명하면 다음과 같다.
본 발명에 따른 전극조립체 제조방법는 도 7에 도시되어 있는 것과 같이, 양면이 서로 다른 접착력을 가지는 패턴화된 마스크(133)(134)가 형성되도록 제1 분리막시트(130)를 제조하는 단계(S10), 제1 분리막시트(130)의 양면에 제1 전극시트(110) 및 제2 전극시트(120)를 배치하는 단계(S20); 및 제1 분리막시트(130)의 양면에 형성된 마스크(133)(134)에 제1 전극시트(110) 및 제2 전극시트(120)를 각각 접착하는 단계(S30)를 포함하며, 미완성된 전극조립체는 젤리-롤 형태로 권취하면 완성된 전극조립체(100)가 제조된다.
S10 단계는 제1 분리막시트(130)의 양면에 서로 다른 접착력을 가지는 패턴화된 마스크(133)(134)를 형성한다.
첫 번째 방법으로, 도 8에 도시되어 있는 것과 같이, 플라즈마장치(200)를 통해 제1 분리막시트(130)의 양면을 플라즈마(plasma) 처리하여 일정한 패턴과 접착력을 활성화된 마스크(133)(134)를 각각 형성시키되, 제2 면(132)에는 제1 면(131)에 가해지는 플라즈마 보다 약하게 플라즈마 처리하며, 이에 제2 면(132)의 마스크(134)는 제1 면(131)의 마스크(133) 보다 약한 접착력을 가지게 된다.
즉, 접착력이 높은 제1 면(131)의 마스크(133)와 접착력이 약한 음극인 제1 전극시트(110)가 접착되고, 접착력이 약한 제2 면(132)의 마스크(134)와 접착력이 높은 양극인 제2 전극시트(120)가 접착되면서 제1 전극시트(110) 및 제2 전극시트(120)의 접착력을 균일하게 맞출 수 있다. 특히 패턴화된 마스크(133)(134) 사이 공간으로 접착시 발생된 가스가 배출되며, 이에 가스로 인한 접착불량을 방지할 수 있다.
두 번째 방법으로, 도 9에 도시되어 있는 것과 같이, 플라즈마장치(200)를 통해 제1 분리막시트(130)의 양면 중 제1 면(131)만 선택적으로 플라즈마 처리하여 일정한 패턴과 접착력이 활성화된 마스크(133)를 형성시키며, 이에 제2 면(132)은 제1 면(131) 보다 약한 접착력을 가지게 되면서 제1 전극시트(110) 및 제2 전극시트(120)의 접착력을 균일하게 맞출 수 있다.
S20 단계에서는 제1 분리막시트(130)의 양면 중 상대적으로 높은 접착력을 가지는 제1 면(131)에 제1 전극시트(110)를 배치하고, 제1 분리막시트(130)의 양면 중 상대적으로 낮은 접착력을 가지는 제2 면(132)에 제2 전극시트(120)를 배치한다.
S30 단계에서는 열과 압력을 가하여 제1 분리막시트(130)의 양면에 제1 전극시트(110) 및 제2 전극시트(120)를 접착하여 미완성된 전극조립체를 제조한다.
S30 단계 후, 미완성된 전극조립체의 최외각에 제2 분리막시트(140)를 접착하는 단계(S40)를 포함한다.
S40 단계에서는 도 6에 도시된 바와 같이, 미완성된 전극조립체의 제2 전극시트(120)에 제2 분리막시트(140)를 열과 압력을 가하여 접착하고, 젤리-롤 형태로 권취하여 전극조립체를 제조한다. 여기서 제2 분리막시트(140)의 마스크(141)는 제1 분리막시트(130)의 제2 면(132)에 구비된 마스크(134)와 동일한 접착력을 가진다.
따라서 본 발명에 따른 전극조립체는 접착력이 서로 다른 양면을 가지는 분리막에 제1 전극시트(110) 및 제2 전극시트(120)를 각각 접착함으로써 제1 전극시트(110) 및 제2 전극시트(120)의 접착력을 균일하게 맞출 수 있으며, 이에 품질성을 높일 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 가능하다.

Claims (13)

  1. 제1 분리막시트; 및
    상기 제1 분리막시트의 양면에 각각 접착되는 제1 전극시트 및 제2 전극시트를 포함하며,
    상기 제1 분리막시트의 양면은 서로 다른 접착력을 가지는 패턴화된 마스크가 형성되되, 상기 양면 중 높은 접착력을 가지는 제1 면의 마스크에 상기 제1 전극시트가 접착되고, 낮은 접착력을 가지는 제2 면의 마스크에 상기 제2 전극시트가 접착되는 것을 특징으로 하는 전극조립체.
  2. 청구항 1에 있어서,
    상기 제1 분리막시트의 양면은 플라즈마(plasma) 처리에 의하여 일정한 패턴과 접착력이 활성화된 마스크가 형성되되, 상기 제2 면은 상기 제1 면에 보다 약하게 플라즈마 처리되는 것을 특징으로 하는 전극조립체.
  3. 청구항 1에 있어서,
    상기 제1 분리막시트는 상기 제1 면에만 플라즈마 처리하여 일정한 패턴과 접착력이 활성화된 마스크를 형성하는 것을 특징으로 하는 전극조립체.
  4. 청구항 2 또는 청구항 3에 있어서,
    상기 제1 분리막시트의 양면 또는 제1 면에서 상기 마스크를 제외한 표면은 접착력이 없거나 또는 상기 마스크 보다 낮은 접착력을 가지는 것을 특징으로 하는 전극조립체.
  5. 청구항 1에 있어서,
    상기 제1 전극시트는 음극이고, 상기 제2 전극시트는 양극인 것을 특징으로 하는 전극조립체.
  6. 청구항 1에 있어서,
    상기 제1 전극시트 또는 상기 제2 전극시트 중 어느 하나의 외측면에 접착되는 제2 분리막시트를 더 포함하는 것을 특징으로 하는 전극조립체.
  7. 청구항 6에 있어서,
    상기 제2 분리막시트에서 상기 제1 전극시트 또는 상기 제2 전극시트에 접착되는 면은 플라즈마(plasma) 처리에 의하여 일정한 패턴과 접착력이 활성화된 마스크가 형성되는 것을 특징으로 하는 전극조립체.
  8. 청구항 7에 있어서,
    상기 제2 전극시트의 외측면에 상기 제2 분리막시트가 접착되면, 상기 제2 분리막시트에 형성된 마스크와 상기 제1 분리막시트의 제2 면에 형성된 마스크는 동일한 접착력을 가지는 것을 특징으로 하는 전극조립체.
  9. 청구항 7에 있어서,
    상기 제1 전극시트의 외측면에 상기 제2 분리막시트가 접착되면, 상기 제2 분리막시트에 형성된 마크스와 상기 제1 분리막시트의 제1 면에 형성된 마스크는 동일한 접착력을 가지는 것을 특징으로 하는 전극조립체.
  10. 양면이 서로 다른 접착력을 가지는 패턴화된 마스크가 형성되도록 제1 분리막시트를 제조하는 단계(S10);
    상기 제1 분리막시트의 양면 중 상대적으로 높은 접착력을 가지는 제1 면의 마스크에 제1 전극시트를 배치하고, 상기 제1 분리막시트의 양면 중 상대적으로 낮은 접착력을 가지는 제2 면의 마스크에 제2 전극시트를 배치하는 단계(S20); 및
    열과 압력을 가하여 상기 제1 분리막시트의 양면에 상기 제1 전극시트 및 상기 제2 전극시트를 접착하여 기본단위체를 제조하는 단계(S30)를 포함하는 것을 특징으로 하는 전극조립체의 제조방법.
  11. 청구항 10에 있어서,
    상기 S10 단계는 상기 제1 분리막시트의 양면에 플라즈마(plasma) 처리하여 일정한 패턴과 접착력이 활성화된 마스크를 형성하되, 상기 제2 면에는 상기 제1 면에 가해지는 플라즈마 보다 약하게 플라즈마 처리하는 것을 특징으로 하는 전극조립체의 제조방법.
  12. 청구항 10에 있어서,
    상기 S10 단계는 상기 제1 면만 플라즈마 처리하여 일정한 패턴과 접착력이 활성화된 마스크를 형성하는 것을 특징으로 하는 전극조립체의 제조방법.
  13. 청구항 10에 있어서,
    상기 S30 단계 후, 상기 기본 단위체의 제2 전극시트에 제2 분리막시트를 열과 압력을 가하여 접착하고, 상기 기본 단위체를 권취하여 전극조립체를 제조하는 단계(S40)를 더 포함하는 것을 특징으로 하는 전극조립체의 제조방법.
PCT/KR2017/000398 2016-02-16 2017-01-12 전극조립체 및 그의 제조방법 WO2017142206A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17753367.6A EP3300156B1 (en) 2016-02-16 2017-01-12 Electrode assembly and manufacturing method therefor
PL17753367T PL3300156T3 (pl) 2016-02-16 2017-01-12 Zespół elektrodowy i sposób jego wytwarzania
CN202110366685.1A CN113270690B (zh) 2016-02-16 2017-01-12 电极组件及其制造方法
CN201780002349.0A CN108701855B (zh) 2016-02-16 2017-01-12 电极组件及其制造方法
JP2018512162A JP6699874B2 (ja) 2016-02-16 2017-01-12 電極組立体およびその製造方法
US15/737,964 US10749160B2 (en) 2016-02-16 2017-01-12 Electrode assembly and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0018002 2016-02-16
KR1020160018002A KR101977639B1 (ko) 2016-02-16 2016-02-16 전극조립체 및 그의 제조방법

Publications (1)

Publication Number Publication Date
WO2017142206A1 true WO2017142206A1 (ko) 2017-08-24

Family

ID=59625312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000398 WO2017142206A1 (ko) 2016-02-16 2017-01-12 전극조립체 및 그의 제조방법

Country Status (7)

Country Link
US (1) US10749160B2 (ko)
EP (1) EP3300156B1 (ko)
JP (1) JP6699874B2 (ko)
KR (1) KR101977639B1 (ko)
CN (2) CN113270690B (ko)
PL (1) PL3300156T3 (ko)
WO (1) WO2017142206A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6691856B2 (ja) * 2016-09-28 2020-05-13 株式会社エンビジョンAescジャパン 二次電池
JP7186747B2 (ja) * 2020-07-27 2022-12-09 プライムプラネットエナジー&ソリューションズ株式会社 二次電池およびその製造方法
KR20230052713A (ko) * 2021-10-13 2023-04-20 주식회사 엘지에너지솔루션 접착코팅부가 부가된 리튬 이차전지용 전극 및 이의 제조방법
JP7525528B2 (ja) 2022-01-28 2024-07-30 プライムプラネットエナジー&ソリューションズ株式会社 捲回電極体及び電池、並びに捲回電極体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172531A (ja) * 1996-12-16 1998-06-26 Nitto Denko Corp 多孔質フィルム及び電池用セパレータ
KR20010039510A (ko) * 1999-11-15 2001-05-15 다니구찌 이찌로오, 기타오카 다카시 리튬이온전지 및 그의 형성법
KR20140065053A (ko) * 2012-11-21 2014-05-29 주식회사 엘지화학 이종 분리막들을 포함하고 있는 전극조립체 및 이를 포함하는 이차전지
KR20150037643A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지
KR20150051901A (ko) * 2013-11-04 2015-05-13 주식회사 엘지화학 이차 전지용 접착층 형성 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628471A (ja) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd 空気ボタン電池
WO2000060690A1 (en) * 1999-03-31 2000-10-12 Koninklijke Philips Electronics N.V. Method of bonding a separator and an electrode, more particularly a cathode or an anode, as well as a battery
JP3447610B2 (ja) * 1999-04-23 2003-09-16 日本電気株式会社 電極セパレータ積層体、その製造方法およびそれを用いた電池
JP3745593B2 (ja) * 2000-06-29 2006-02-15 三菱電機株式会社 電池およびその製造方法
KR100958649B1 (ko) 2002-12-27 2010-05-20 삼성에스디아이 주식회사 전지부와, 이의 감는 방법과, 이를 채용하여 제조된 리튬이차 전지
JP4429851B2 (ja) * 2004-09-08 2010-03-10 日東電工株式会社 耐久性に優れた電解質膜
WO2007129839A1 (en) * 2006-05-04 2007-11-15 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
KR101171835B1 (ko) 2009-07-03 2012-08-14 한국생산기술연구원 친수성 고분자로 표면개질된 폴리올레핀 미세다공성막, 그의 표면개질방법 및 표면개질된 폴리올레핀 미세다공성막을 구비한 리튬이온폴리머전지
KR101100990B1 (ko) * 2009-12-15 2011-12-29 삼성에스디아이 주식회사 이차전지
KR20110075631A (ko) * 2009-12-28 2011-07-06 롯데알미늄 주식회사 나노기공을 갖는 세퍼레이터 및 이를 이용한 에너지 저장 장치
JP5499758B2 (ja) * 2010-02-22 2014-05-21 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP5831924B2 (ja) * 2011-03-31 2015-12-09 Necエナジーデバイス株式会社 電池パック
JP5606416B2 (ja) * 2011-09-26 2014-10-15 株式会社東芝 電極のプレス装置、電極の製造装置及び電極の製造方法
KR101457546B1 (ko) 2011-11-04 2014-11-04 주식회사 엘지화학 분리막의 제조방법 및 이로부터 제조되는 분리막
JP2013157121A (ja) 2012-01-27 2013-08-15 Nagano Automation Kk 二次電池用の電極組立体を組み立てるシステムおよび方法
JP6138019B2 (ja) * 2013-10-03 2017-05-31 Aiメカテック株式会社 電極形成装置、電極形成システム、及び電極形成方法
EP2996188B1 (en) * 2013-10-31 2018-09-19 LG Chem, Ltd. Electrode assembly and lithium secondary battery comprising the same
CN103956450B (zh) * 2014-05-16 2016-08-24 中国东方电气集团有限公司 一种锂离子电池用复合隔膜及其制备方法
KR101950448B1 (ko) * 2015-07-10 2019-02-20 주식회사 엘지화학 전극조립체 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172531A (ja) * 1996-12-16 1998-06-26 Nitto Denko Corp 多孔質フィルム及び電池用セパレータ
KR20010039510A (ko) * 1999-11-15 2001-05-15 다니구찌 이찌로오, 기타오카 다카시 리튬이온전지 및 그의 형성법
KR20140065053A (ko) * 2012-11-21 2014-05-29 주식회사 엘지화학 이종 분리막들을 포함하고 있는 전극조립체 및 이를 포함하는 이차전지
KR20150037643A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지
KR20150051901A (ko) * 2013-11-04 2015-05-13 주식회사 엘지화학 이차 전지용 접착층 형성 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3300156A4 *

Also Published As

Publication number Publication date
US10749160B2 (en) 2020-08-18
CN108701855A (zh) 2018-10-23
JP2018526794A (ja) 2018-09-13
KR101977639B1 (ko) 2019-05-14
US20180323415A1 (en) 2018-11-08
PL3300156T3 (pl) 2020-08-24
CN113270690B (zh) 2022-11-25
EP3300156A1 (en) 2018-03-28
EP3300156B1 (en) 2020-05-13
EP3300156A4 (en) 2018-07-04
JP6699874B2 (ja) 2020-05-27
KR20170096517A (ko) 2017-08-24
CN113270690A (zh) 2021-08-17
CN108701855B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2017142206A1 (ko) 전극조립체 및 그의 제조방법
WO2017010725A1 (ko) 전극조립체 및 그의 제조방법
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2018216900A1 (ko) 이차전지용 플라즈마 발생장치
WO2014042424A1 (ko) 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
WO2017166344A1 (zh) 叠层柔性基板及制作方法
WO2018236033A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2018155811A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2016171519A1 (ko) 리튬 이차전지용 분리막 및 그의 제조방법
WO2018048165A1 (ko) 적층형 전극 조립체 및 이를 포함하는 플렉서블 이차 전지
WO2014133303A1 (ko) 안정성이 향상된 이차전지용 바이셀 및 그 제조방법
WO2017191910A2 (ko) 이차전지의 제조방법 및 전극 조립체의 제조방법
WO2021118033A1 (ko) 전극조립체, 그의 제조장치 및 제조방법
WO2020209539A1 (ko) 이차전지 및 그의 제조방법
WO2021015459A1 (ko) 이차전지용 전극 조립체, 이의 제조 방법 및 이를 포함하는 리튬이차전지
WO2020197246A1 (ko) 전극조립체 및 그 전극조립체 제조용 라미네이션 장치 및 그 전극조립체의 제조 방법
WO2022092616A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2022186639A1 (ko) 파우치 포밍 방법
WO2018070701A1 (ko) 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법
WO2021091169A1 (ko) 막-전극 어셈블리의 제조를 위한 방법 및 장치
WO2017082594A1 (ko) 이차전지 및 그의 제조방법
WO2018009042A1 (ko) 전극 조립체 및 그의 제조 방법
WO2022149921A1 (ko) 절연성 코팅층이 형성된 분리막을 포함하는 이차전지용 유닛셀, 및 이의 제조방법
WO2013125747A1 (ko) 디바이스 웨이퍼와 캐리어 웨이퍼의 본딩과 디본딩 처리방법 및 장치
WO2024049243A1 (ko) 플라즈마 처리 장치 및 이를 포함하는 이차 전지용 라미네이션 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15737964

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017753367

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018512162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE