WO2022092616A1 - 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템 - Google Patents

이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템 Download PDF

Info

Publication number
WO2022092616A1
WO2022092616A1 PCT/KR2021/013936 KR2021013936W WO2022092616A1 WO 2022092616 A1 WO2022092616 A1 WO 2022092616A1 KR 2021013936 W KR2021013936 W KR 2021013936W WO 2022092616 A1 WO2022092616 A1 WO 2022092616A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
adhesive
plasma
electrode
secondary battery
Prior art date
Application number
PCT/KR2021/013936
Other languages
English (en)
French (fr)
Inventor
이상균
김덕회
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21886610.1A priority Critical patent/EP4123775A1/en
Priority to US17/923,157 priority patent/US20230223576A1/en
Priority to CN202180029605.1A priority patent/CN115428208A/zh
Publication of WO2022092616A1 publication Critical patent/WO2022092616A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32073Corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/14Corona, ionisation, electrical discharge, plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a plasma generator for a secondary battery capable of forming a patterned adhesive surface on a surface of a separator by generating plasma, and a lamination system including the same.
  • a secondary battery refers to a battery that can be charged and discharged, unlike a primary battery that cannot be charged, and such secondary batteries are widely used in the field of advanced electronic devices such as phones, notebook computers, and camcorders.
  • the secondary battery is classified into a can-type secondary battery in which the electrode assembly is embedded in a metal can and a pouch-type secondary battery in which the electrode assembly is embedded in a pouch
  • the pouch-type secondary battery is an electrode assembly, an electrolyte, the electrode assembly and the It includes a pouch for accommodating the electrolyte.
  • a positive electrode and a negative electrode are disposed with a separator interposed therebetween, an electrode tab is attached to each of the positive electrode and the negative electrode, and an electrode lead is coupled to the electrode tab, respectively.
  • a lamination process is performed in order to increase the adhesion of the electrode assembly stacked with the positive electrode and the separator negative electrode.
  • the secondary battery has a problem in that the adhesion of the positive electrode, the separator, and the negative electrode is increased by the lamination process, but the impregnating power of the electrolyte is greatly reduced.
  • An object of the present invention to solve the above problems is to increase the bondability of the positive electrode, the separator and the negative electrode during the lamination process and at the same time to increase the impregnating power of the electrolyte, and to easily discharge the gas generated between the positive electrode and the separator or the negative electrode and the separator
  • An object of the present invention is to provide a plasma generator for a secondary battery capable of doing so, and a lamination system including the same.
  • a plasma generator for a secondary battery of the present invention for achieving the above object includes: a transfer roller for transferring a separator; A plasma generating unit for forming an adhesive surface having an adhesive force on a portion of the surface of the separation film transferred by the transfer roller and forming a non-adhesive surface without adhesive force on the remaining portion, wherein the plasma generating unit is built in the transfer roller metal member; a plasma generating member provided to be spaced apart from the transfer roller and generating plasma by interaction with the metal member to form an adhesive surface having an adhesive force on a portion of the surface of the separation film; and a blocking member provided on the outer circumferential surface of the transfer roller to block a mutual reaction between the metal member and the plasma generating member to form a non-adhesive surface having no adhesive force on the remaining portion of the surface of the separation membrane.
  • the blocking member may be made of a non-conductive material to block a mutual reaction between the metal member and the plasma generating member.
  • the blocking member may be provided as a ring-shaped blocking band extending along the circumference of the conveying roller and having both ends connected.
  • the blocking member may be provided with a plurality of blocking films arranged at regular or irregular intervals on the conveying roller.
  • the blocking member may be formed by attaching a non-conductive film to the outer peripheral surface of the conveying roller.
  • the blocking member may be formed by coating a non-conductive material on the outer peripheral surface of the conveying roller.
  • An insertion groove is formed on the outer peripheral surface of the conveying roller, and the blocking member may be provided in the insertion groove of the conveying roller.
  • the outer peripheral surface of the blocking member provided in the insertion groove and the outer peripheral surface of the conveying roller may have the same height.
  • the plasma generating member may include: a body provided to correspond to a longitudinal direction of the conveying roller; and an electrode piece provided in the body, generating plasma by interaction with the metal member to form an adhesive surface having adhesive force on the surface of the separator, wherein the electrode piece is to be provided as a corona discharge electrode can
  • a plurality of the blocking strips may be formed at regular intervals or at different intervals in the longitudinal direction of the conveying roller.
  • the lamination system of the present invention includes a plurality of supply rollers for supplying the electrode and the separator to be alternately stacked; a first cutter for cutting the electrode; a plasma generator for forming an adhesive surface having an adhesive force on a portion of the surface of the separator, and forming a non-adhesive surface having no adhesive force on the other portion; a laminator for producing a basic unit by thermally bonding the electrode and the separator; and a second cutter for cutting the basic unit into the same size.
  • the plasma generator may form an adhesive surface and a non-adhesive surface on the surface of the separator before the separator and the electrode are thermally fused.
  • the plasma generator for a secondary battery of the present invention includes a transfer roller and a plasma generator, wherein the plasma generator includes a metal member, a plasma generator, and a blocking member. Due to these characteristics, an adhesive surface having an adhesive force and a non-adhesive surface having no adhesive force can be alternately formed on the surface of the separator, and thus a separator having an adhesive surface patterned can be manufactured.
  • the plasma generating unit generates plasma by a mutual reaction with the metal member to form an adhesive surface having an adhesive force on a part of the surface of the separation membrane, and the blocking member blocks the mutual reaction between the metal member and the plasma generating member.
  • a non-adhesive surface having no adhesive force may be formed on the remaining portion of the surface of the separator.
  • FIG. 1 is a cross-sectional view showing an electrode assembly including a basic unit of the present invention.
  • Figure 2 is a process diagram showing a lamination system according to the first embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a plasma generator for a secondary battery according to a first embodiment of the present invention.
  • Figure 4 is a perspective view showing a transfer roller provided with a blocking member in Figure 3;
  • Fig. 5 is a plan view of Fig. 4;
  • Fig. 6 is a side view of Fig. 4;
  • FIG. 7 is a plan view showing an operating state of the plasma generator for a secondary battery according to the first embodiment of the present invention.
  • FIG 8 is a plan view showing a separator manufactured by the plasma generator for a secondary battery according to the first embodiment of the present invention.
  • FIG. 9 is a perspective view showing a transfer roller provided with a blocking member in the plasma generating apparatus for a secondary battery according to a second embodiment of the present invention.
  • Fig. 10 is a partial cross-sectional view of Fig. 9;
  • FIG. 11 is a front view showing a transfer roller provided with a blocking member in the plasma generating apparatus for a secondary battery according to a third embodiment of the present invention.
  • FIG. 13 is a photograph of an electrolytic solution impregnating power of a basic unit, which is a comparative example.
  • the electrode assembly 10 according to the first embodiment of the present invention may be formed by repeatedly stacking one type of basic unit 11 or by stacking two or more types of basic unit 11 according to a predetermined order.
  • the electrode assembly 10 according to the first embodiment of the present invention may be formed by vertically stacking a plurality of basic units 11 having the same stacked structure.
  • a first electrode 11a as an anode, a separator 11b, a second electrode 11c as a cathode, and a separator 11b are sequentially disposed.
  • the basic unit 11 having a four-layer structure may have a structure in which it is repeatedly stacked.
  • the basic unit 11 is manufactured through a lamination system.
  • the basic unit 11 may increase adhesion, electrolyte impregnation, and gas discharge through the lamination system.
  • the lamination system has a plurality of supply rollers 200 for supplying the electrodes 11a and 11c and the separator 11b to be alternately stacked, the electrode A first cutter 300 for cutting (11a) and (11c), a laminator 400 for manufacturing a basic unit sheet by thermally bonding the electrodes 11a and 11c and the separator 11b, and the basic unit sheet may include a second cutter 500 for manufacturing the basic unit 11 by cutting it to a predetermined size.
  • the plurality of supply rollers 200 include a first electrode supply roller 210 for supplying a first electrode 11a as an anode, a first separation film supply roller 220 for supplying one separation film 11b, and a second as a negative electrode. It includes a second electrode supply roller 230 for supplying the electrode 11c, and a second separation film supply roller 240 for supplying the other separator 11b.
  • the first cutter 300 includes a first cutter member 310 for cutting the one electrode 11a to a predetermined size, and a second cutter member 320 for cutting the other electrode 11c to a predetermined size. ) is included.
  • the laminator 400 adheres by applying heat to the electrodes 11a and 11c and the separator 11b in a pressurized state.
  • the second cutter 500 cuts the separator 11b between the electrodes 11a and 11c corresponding to each other to manufacture the basic unit 11 .
  • the basic unit 11 can be manufactured by alternately stacking and bonding the electrodes 11a and 11c and the separator 11b, and the The electrode assembly 10 may be manufactured by stacking one or more basic units 11 .
  • the lamination system includes a plasma generating device 100 to increase the adhesion of the basic unit 11, the electrolyte impregnation force, and the gas discharge power. That is, the plasma generator 100 can pattern-bond the separator and the electrode by forming an adhesive surface having a patterned adhesive force on the surface of the separator, thereby increasing the adhesive force, the electrolyte impregnation force, and the gas discharge force.
  • the plasma generator 100 is for forming an adhesive surface having a patterned adhesive force on the surface of the separator, as shown in FIGS. 3 to 8 .
  • the plasma generating device 100 has an adhesive surface 11b-1 having an adhesive force on the surface of the separator 11b and a non-adhesive surface 11b having no adhesive force or a smaller adhesive force than the adhesive surface 11b-1. -2) are alternately formed, and accordingly, the adhesive surface 11b-1 on the surface of the separator 11b may be patterned at intervals of the non-adhesive surface 11b-2.
  • the adhesive force can be increased.
  • the electrolyte or gas passes through the non-adhesive surface 11b-2 formed on the surface of the separator 11b, the electrolyte impregnation power and the gas discharge power can be increased.
  • the plasma generator 100 is a separation membrane 11b between the first separation membrane supply roller 220 and the laminator 400 or the second separation membrane supply roller 240 and the laminator 400 . ) to be provided in each of the separation membranes 11b between them, and includes a transfer roller 110 and a plasma generator 120 .
  • the conveying roller 110 is disposed to be long in the width direction of the separation membrane and supports the bottom surface of the separation membrane 11b and simultaneously transports the separation membrane 11b in the direction of the laminator 400 .
  • the plasma generating unit 120 forms an adhesive surface having a patterned adhesive force on the surface of the separator supported by the transfer roller. That is, the plasma generating unit 120 forms an adhesive surface 11b-1 having an adhesive force on a part or a plurality of parts of the surface of the separation film 11b supported on the transfer roller 110, and adhesive force on the remaining part. A non-adhesive surface 11b-2 having no or less adhesive strength than the adhesive surface 11b-1 is formed. Accordingly, it is possible to form an adhesive surface having a patterned adhesive force on the surface of the separator.
  • the plasma generating unit 120 includes a metal member 121 , a plasma generating member 122 , and a blocking member 123 .
  • the metal member 121 has a cylindrical shape, is embedded in the conveying roller 110 , and is configured to extend in the longitudinal direction of the conveying roller 110 .
  • the plasma generating member 122 is provided to be spaced apart from the transfer roller 110, and generates plasma by interaction with the metal member 121 built into the transfer roller 110 to form the separation film 11b.
  • An adhesive surface 11b-1 having an adhesive force is formed on the surface.
  • the plasma generating member 122 includes a main body 122a provided to correspond to the longitudinal direction of the transfer roller 110 , and a plasma generated by a mutual reaction between the main body 122a and the metal member 121 . and an electrode piece 122b that generates plasma to form an adhesive surface 11b-1 having an adhesive force on the surface of the separator 11b.
  • the body 122a may be formed of a non-metal material. Accordingly, generation of resistance between the metal member 121 and the electrode piece 122b can be prevented, and as a result, plasma can be stably generated between the metal member 121 and the body 122a.
  • the body 122a may be made of ceramic among non-metal materials, and the ceramic is a non-metallic inorganic material obtained through a heat treatment process, has heat resistance, high strength, and corrosion resistance, and is particularly light, so that it is possible to increase the efficiency of use.
  • the electrode piece 122b is provided on the outer surface of the main body 122a that does not face the separator 11b, and is provided to extend in the longitudinal direction (ie, the width direction of the separator) of the main body 122a.
  • the electrode piece 122b may be a corona discharge electrode, and the corona discharge electrode may stably generate plasma between the metal member 121 and the body 122a.
  • the blocking member 123 is provided on the outer circumferential surface of the conveying roller 110, and blocks the mutual reaction between the metal member 121 and the plasma generating member 122, so that the adhesive force is applied to the rest of the surface of the separation membrane 11b.
  • a non-adhesive surface 11b-2 is formed.
  • the plasma generating unit 120 having such a configuration includes a metal member 121 and a plasma generating member 122 on the surface of the separation film 11b supported on the transfer roller 110 without the blocking member 123 . Due to the plasma generated by the reaction, an adhesive surface 11b-1 having an adhesive force is formed, and a metal member 121 and a plasma generating member ( 122) as the mutual reaction is blocked, plasma is not generated, and thus the non-adhesive surface 11b-2 having no adhesive force is formed. As a result, an adhesive layer having a pattern structure in which an adhesive surface and a non-adhesive surface are alternately formed can be formed on the surface of the separator 11b.
  • the plasma generating apparatus 100 includes a transfer roller 110 and a plasma generating unit 120 , wherein the plasma generating unit 120 includes a metal member 121 , a plasma generating member 122 and a blocking member 123 .
  • the plasma generating unit 120 includes a metal member 121 , a plasma generating member 122 and a blocking member 123 .
  • the blocking member 123 is provided with a non-conductive material, and accordingly, the metal member 121 and the plasma generating member 122 can be blocked from reacting with each other, and as a result, non-adhesive to the surface of the separation membrane.
  • the surface can be formed stably.
  • the blocking member may be any one of synthetic resin, silicone, rubber material, and urethane.
  • the blocking member 123 is provided as a ring-shaped blocking band extending along the outer circumferential surface of the conveying roller 110 and connecting both ends. Accordingly, the blocking member 1230 can be stably attached to the outer circumferential surface of the conveying roller 110, and as a result, the coupling force can be increased.
  • the blocking strip is not provided on the outer peripheral surface of the transfer roller 110 where both ends of the separation membrane are located. Accordingly, an adhesive surface having an adhesive force may be formed on both ends of the separator, and as a result, the adhesive force between an end of the separator and an end of the electrode may be increased.
  • a plurality of blocking strips are provided at regular or irregular intervals in the longitudinal direction of the conveying roller 110, and accordingly, a plurality of non-adhesive surfaces 11b-2 and A plurality of adhesive surfaces 11b-1 may be alternately formed.
  • a plurality of blocking bands are provided on the outer circumferential surface of the conveying roller 110, and the width of the blocking band can be formed gradually smaller toward both ends from the center line dividing the longitudinal direction of the conveying roller equally. That is, the blocking band provided at the center line of the conveying roller is formed with a first width to form a non-adhesive surface of the first width size at the center in the width direction of the separation membrane, and the blocking band provided at both ends of the conveying roller is the first By forming a second width smaller than the width, a non-adhesive surface having a second width is formed at both ends in the width direction of the separator.
  • a large non-adhesive surface is secured at the center of the separator to increase electrolyte impregnation power and gas discharging power, and a small non-adhesive surface is secured at both ends of the separator to increase adhesion between the electrode and the separator.
  • the plasma generator 100 may further include an air supply member 130 for supplying air between the transfer roller 110 and the plasma generator 120 , and the air supply member 130 . can more stabilize the plasma by supplying air between the transfer roller 110 and the plasma generator 120 .
  • a separator having a patterned adhesive surface as shown in FIG. 8 can be manufactured, and the separator and the electrode By bonding, a basic unit with high bonding strength, electrolyte impregnation power, and gas discharging power can be manufactured.
  • the plasma generating apparatus includes a blocking member 123 , wherein the blocking member 123 is disposed on the outer peripheral surface of the conveying roller 110 . It is provided in the formed insertion groove (111).
  • the insertion groove 111 has a structure connected along the circumferential direction of the conveying roller 110 . Accordingly, the blocking member 123 can be more conveniently provided on the outer peripheral surface of the conveying roller 110 .
  • the outer circumferential surface of the blocking member 123 provided in the insertion groove 111 and the outer circumferential surface of the conveying roller 110 have the same height, thereby preventing the occurrence of a step between the conveying roller 110 and the blocking member 123 . and, as a result, the separation membrane can be more stably transported through the transport roller.
  • the plasma generating apparatus includes a blocking member 123, wherein the blocking member 123 is provided with a plurality of blocking films arranged at regular or irregular intervals on the outer circumferential surface of the conveying roller 110 do.
  • the plurality of blocking films may be provided to be arranged at set intervals along the longitudinal direction and the circumferential direction of the conveying roller 110 . Accordingly, it is possible to pattern an adhesive surface having a checkerboard adhesive force on the surface of the separator.
  • the blocking member 123 may be formed by coating a non-conductive material on the outer peripheral surface of the conveying roller 110 along the circumference of the conveying roller. Accordingly, it is possible to greatly increase the bondability between the conveying roller 110 and the blocking member 123 .
  • Three basic units prepared by the lamination system according to the first embodiment of the present application are prepared. That is, the lamination system according to the first embodiment of the present application manufactures a separator 11b in which an adhesive surface 11b-1, a non-adhesive surface 11b-2, and an adhesive surface 11b-1 are alternately formed. , to prepare a basic unit by laminating and bonding the separator and the electrode.
  • a load of approximately 35 g/mm is generated on the first bonding portion (ie, the bonding surface) between the electrode and the separator.
  • a load of 5 g/mm occurred in the non-adhesive portion of the electrode and the separator.
  • 5 g/mm generated in the portion where the electrode and the separator are not bonded may be bonding force generated by the laminator.
  • a load of about 32 g/mm was generated on the second bonding portion of the electrode and the separator.
  • the patterned adhesive surface is stably formed on the surface of the separator in the basic unit manufactured through the lamination system according to the first embodiment of the present invention through the experimental results as described above.
  • the electrolyte was impregnated to a depth of 5.5 mm to 6.0 mm when the impregnation force of three basic units of the electrolyte was measured.
  • FIG. 14 for the manufacturing example it can be seen that the electrolyte is impregnated to a minimum of 6 mm and a maximum of 26 mm. In this case, it can be confirmed that the minimum electrolyte-impregnated portion is a junction portion between the electrode and the separator, and the maximum electrolyte-impregnated portion is a non-bonded portion between the electrode and the separator.
  • the preparation example has a significantly increased electrolyte impregnation power than the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 이차전지용 플라즈마 발생장치로서, 분리막을 이송하는 이송롤러; 상기 이송롤러에 의해 이송되는 분리막의 표면 중 일부분에는 접착력을 가진 접착면을 형성하고 나머지 부분에는 접착력이 없는 비접착면을 형성하는 플라즈마 발생부를 포함하며, 상기 플라즈마 발생부는, 상기 이송롤러에 내장되는 금속부재; 상기 이송롤러로부터 이격되게 구비되고, 상기 금속부재와의 상호 반응에 의해 플라즈마(plasma)를 발생시켜서 상기 분리막 표면 중 일부분에 접착력을 가진 접착면을 형성시키는 플라즈마 발생부재; 및 상기 이송롤러의 외주면에 구비되고, 상기 금속부재와 상기 플라즈마 발생부재의 상호 반응을 차단하여 상기 분리막 표면 중 나머지 부분에 접착력이 없는 비접착면을 형성시키는 차단부재를 포함한다.

Description

이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
관련출원과의 상호인용
본 출원은 2020년 10월 30일자 한국특허출원 제10-2020-0143819호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 플라즈마를 발생시켜서 분리막 표면에 패턴화된 접착면을 형성할 수 있는 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템에 관한 것이다.
일반적으로 이차전지(secondary battery)는 충전이 불가능한 일차 전지와는 달리 충전 및 방전이 가능한 전지를 말하며, 이러한 이차전지는 폰, 노트북 컴퓨터 및 캠코더 등의 첨단 전자 기기 분야에서 널리 사용되고 있다.
그리고 상기한 이차전지는 전극조립체가 금속 캔에 내장되는 캔형 이차전지와, 전극조립체가 파우치에 내장되는 파우치형 이차전지로 분류되며, 상기 파우치형 이차전지는 전극조립체, 전해액, 상기 전극조립체와 상기 전해액을 수용하는 파우치를 포함한다. 그리고 상기 전극조립체는 양극 및 음극이 분리막을 사이에 두고 배치되고, 상기 양극 및 음극의 각각에는 전극탭이 부착되며, 상기 전극탭에는 전극리드가 각각 결합된다.
한편, 상기한 이차전지는 양극, 분리막 음극으로 적층된 전극조립체의 접착성을 높이기 위해 라미네이션 공정을 진행한다.
그러나 상기한 이차전지는 라미네이션 공정에 의해 양극, 분리막 및 음극의 접착성은 증대되지만, 전해액의 함침력은 크게 떨어지는 문제점이 있었다.
특히 양극과 분리막 또는 음극과 분리막 사이에 발생한 가스가 원활하게 배출되지 못하는 문제점이 있고, 그 결과 균일한 품질의 전극조립체를 제조하는데 어려움이 있었다.
상기와 같은 문제점을 해결하기 위한 본 발명의 과제는 라미네이션 공정시 양극, 분리막 및 음극의 접합성을 증대시킴과 동시에 전해액의 함침력을 높이고, 양극과 분리막 또는 음극과 분리막 사이에 발생한 가스를 용이하게 배출할 수 있는 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템을 제공하는데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 이차전지용 플라즈마 발생장치는 분리막을 이송하는 이송롤러; 상기 이송롤러에 의해 이송되는 분리막의 표면 중 일부분에는 접착력을 가진 접착면을 형성하고 나머지 부분에는 접착력이 없는 비접착면을 형성하는 플라즈마 발생부를 포함하며, 상기 플라즈마 발생부는, 상기 이송롤러에 내장되는 금속부재; 상기 이송롤러로부터 이격되게 구비되고, 상기 금속부재와의 상호 반응에 의해 플라즈마(plasma)를 발생시켜서 상기 분리막의 표면 중 일부분에 접착력을 가진 접착면을 형성시키는 플라즈마 발생부재; 및 상기 이송롤러의 외주면에 구비되고, 상기 금속부재와 상기 플라즈마 발생부재의 상호 반응을 차단하여 상기 분리막의 표면 중 나머지 부분에 접착력이 없는 비접착면을 형성시키는 차단부재를 포함할 수 있다.
상기 차단부재는, 상기 금속부재와 상기 플라즈마 발생부재의 상호 반응을 차단하도록 비전도성 재질로 마련될 수 있다.
상기 차단부재는, 상기 이송롤러의 둘레를 따라 연장되고 양끝단이 연결되는 링 형태의 차단띠로 마련될 수 있다.
상기 차단부재는, 상기 이송롤러에 규칙 또는 불규칙한 간격으로 배열되는 복수개의 차단막으로 마련될 수 있다.
상기 차단부재는, 비전도성 필름을 상기 이송롤러의 외주면에 부착하여 형성할 수 있다.
상기 차단부재는, 비전도성 물질을 상기 이송롤러의 외주면에 코팅하여 형성할 수 있다.
상기 이송롤러의 외주면에는 삽입홈이 형성되고, 상기 차단부재는, 상기 이송롤러의 삽입홈에 구비될 수 있다.
상기 삽입홈에 구비된 차단부재의 외주면과 상기 이송롤러의 외주면은 동일한 높이를 가질 수 있다.
상기 플라즈마 발생부재는, 상기 이송롤러의 길이방향과 대응되게 구비되는 본체; 상기 본체에 구비되고, 상기 금속부재와의 상호 반응에 의해 플라즈마(plasma)를 발생시켜서 상기 분리막 표면에 접착력을 가진 접착면을 형성하는 전극편을 포함하고, 상기 전극편은 코로나 방전전극으로 마련될 수 있다.
상기 차단띠는 상기 이송롤러의 길이방향으로 복수개가 일정한 간격 또는 서로 다른 간격으로 형성될 수 있다.
한편, 본 발명의 라미네이션 시스템은 전극과 분리막이 교대로 적층되게 공급하는 복수개의 공급롤러; 상기 전극을 절단하는 제1 커터; 상기 분리막의 표면 중 일부분에는 접착력을 가진 접착면을 형성하고, 나머지 부분에는 접착력이 없는 비접착면을 형성하는 플라즈마 발생장치; 상기 전극과 상기 분리막을 열융착하여 기본단위체를 제조하는 라미네이터; 및 상기 기본단위체를 동일 크기로 절단하는 제2 커터를 포함할 수 있다.
상기 플라즈마 발생장치는, 상기 분리막과 전극이 열융착하기 전에 상기 분리막의 표면에 접착면과 비접착면을 형성할 수 있다.
본 발명의 이차전지용 플라즈마 발생장치는 이송롤러와 플라즈마 발생부를 포함하되, 상기 플라즈마 발생부는 금속부재, 플라즈마 발생부재, 및 차단부재를 포함하는 것에 특징을 가진다. 이와 같은 특징으로 인해 분리막의 표면에 접착력을 가진 접착면과 접착력이 없는 비접착면을 교대로 형성할 수 있고, 그에 따라 접착면이 패턴화된 분리막을 제조할 수 있다.
즉, 플라즈마 발생부는 금속부재와의 상호 반응에 의해 플라즈마(plasma)를 발생시켜서 상기 분리막 표면 중 일부분에 접착력을 가진 접착면을 형성하고, 차단부재는 금속부재와 플라즈마 발생부재의 상호 반응을 차단하여 상기 분리막 표면 중 나머지부분에 접착력이 없는 비접착면을 형성할 수 있다. 그 결과 분리막과 전극의 접착력을 증대할 수 있고, 분리막과 전극 사이의 전해액 함침력과 가스 배출력을 높일 수 있다.
도 1은 본 발명의 기본단위체를 포함한 전극조립체를 도시한 단면도.
도 2는 본 발명의 제1 실시예에 따른 라미네이션 시스템을 도시한 공정도.
도 3은 본 발명의 제1 실시예에 따른 이차전지용 플라즈마 발생장치를 도시한 단면도.
도 4는 도 3에서 차단부재가 구비된 이송롤러를 도시한 사시도.
도 5는 도 4의 평면도.
도 6은 도 4의 측면도.
도 7은 본 발명의 제1 실시예에 따른 이차전지용 플라즈마 발생장치의 작동상태를 도시한 평면도.
도 8은 본 발명의 제1 실시예에 따른 이차전지용 플라즈마 발생장치에 의해 제조된 분리막을 도시한 평면도.
도 9는 본 발명의 제2 실시예에 따른 이차전지용 플라즈마 발생장치에서 차단부재가 구비된 이송롤러를 도시한 사시도.
도 10은 도 9의 부분 단면도.
도 11은 본 발명의 제3 실시예에 따른 이차전지용 플라즈마 발생장치에서 차단부재가 구비된 이송롤러를 도시한 정면도.
도 12는 본 발명의 제조예인 기본단위체의 접합력을 실험한 그래프.
도 13은 비교예인 기본단위체의 전해액 함침력을 실험한 사진.
도 14는 제조예인 기본단위체의 전해액 함침력을 실험한 사진.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
[본 발명의 제1 실시예에 따른 전극조립체]
본 발명의 제1 실시예에 따른 전극조립체(10)는 1종의 기본단위체(11)를 반복적으로 적층하거나 또는 2종 이상의 기본단위체(11)를 정해진 순서에 따라 적층하여 형성할 수 있다.
즉, 본 발명의 제1 실시예에 따른 전극조립체(10)는 도 1에 도시되어 있는 것과 같이, 동일한 적층 구조를 가진 복수개의 기본단위체(11)를 상하방향으로 적층하여 형성할 수 있다.
일례로, 본 발명의 제1 실시예에 따른 전극조립체(10)는 양극인 제1 전극(11a), 분리막(11b), 음극인 제2 전극(11c) 및 분리막(11b)이 순차적으로 배치된 4층 구조를 가진 기본단위체(11)가 반복적으로 적층되는 구조를 가질 수 있다.
한편, 상기 기본단위체(11)는 라미네이션 시스템을 통해 제조되는데, 이때 기본단위체(11)는 라미네이션 시스템을 통해 접착력, 전해액 함침력, 및 가스 배출력을 높일 수 있다.
[본 발명의 제1 실시예에 따른 라미네이션 시스템]
본 발명의 제1 실시예에 따른 라미네이션 시스템은 도 2에 도시되어 있는 것과 같이, 전극(11a)(11c)과 분리막(11b)이 교대로 적층되게 공급하는 복수개의 공급롤러(200), 상기 전극(11a)(11c)을 절단하는 제1 커터(300), 상기 전극(11a)(11c)과 상기 분리막(11b)을 열융착하여 기본단위시트를 제조하는 라미네이터(400), 및 상기 기본단위시트를 소정 크기로 절단하여 기본단위체(11)를 제조하는 제2 커터(500)를 포함할 수 있다.
공급롤러
복수개의 공급롤러(200)는 양극인 제1 전극(11a)을 공급하는 제1 전극 공급롤러(210), 하나의 분리막(11b)을 공급하는 제1 분리막 공급롤러(220), 음극인 제2 전극(11c)을 공급하는 제2 전극 공급롤러(230), 및 다른 하나의 분리막(11b)을 공급하는 제2 분리막 공급롤러(240)를 포함한다.
제1 커터
상기 제1 커터(300)는 상기 하나의 전극(11a)을 소정 크기로 절단하는 제1 커터부재(310)와, 상기 다른 하나의 전극(11c)을 소정 크기로 절단하는 제2 커터부재(320)를 포함한다.
라미네이터
상기 라미네이터(400)는 상기 전극(11a)(11c)과 상기 분리막(11b)을 가압한 상태로 열을 가하여 접착한다.
제2 커터
상기 제2 커터(500)는 상호 대응하는 전극(11a)(11c) 사이의 분리막(11b)을 절단하여 기본단위체(11)를 제조한다.
이와 같은 구성을 가진 본 발명의 제1 실시예에 따른 라미네이션 시스템은 상기 전극(11a)(11c)과 상기 분리막(11b)을 교대로 적층하고 접합하여 기본단위체(11)를 제조할 수 있고, 상기 기본단위체(11)를 하나 이상 적층하여 전극조립체(10)를 제조할 수 있다.
한편, 본 발명은 제1 실시예에 따른 라미네이션 시스템은 기본단위체(11)의 접착력, 전해액 함침력 및 가스 배출력을 높이기 위해 플라즈마 발생장치(100)를 포함한다. 즉, 상기 플라즈마 발생장치(100)는 분리막 표면에 패턴화된 접착력을 가진 접착면을 형성함으로써 분리막과 전극을 패턴 접합할 수 있고, 그에 따라 접착력, 전해액 함침력 및 가스 배출력을 높일 수 있다.
플라즈마 발생장치
플라즈마 발생장치(100)는 도 3 내지 도 8에 도시되어 있는 것과 같이, 분리막의 표면에 패턴화된 접착력을 가진 접착면을 형성하기 위한 것이다.
보다 상세하게는 플라즈마 발생장치(100)는 분리막(11b)의 표면에 접착력을 가진 접착면(11b-1)과 접착력이 없거나 상기 접착면(11b-1) 보다 작은 접착력을 가진 비접착면(11b-2)을 교대로 형성하며, 이에 따라 분리막(11b) 표면에 접착면(11b-1)을 비접착면(11b-2) 간격으로 패턴화할 수 있다. 그 결과 전극과 분리막이 패턴 접착되면서 접착력을 높일 수 있다. 특히 분리막(11b)의 표면에 형성된 비접착면(11b-2)으로 전해액 또는 가스가 통과하면서 전해액 함침력과 가스 배출력을 높일 수 있다.
예를 들면, 상기 플라즈마 발생장치(100)는 도 3을 참조하면, 제1 분리막 공급롤러(220)와 라미네이터(400) 사이의 분리막(11b) 또는 제2 분리막 공급롤러(240)와 라미네이터(400) 사이의 분리막(11b)에 각각 구비되는 것으로, 이송롤러(110)와 플라즈마 발생부(120)를 포함한다.
상기 이송롤러(110)는 분리막의 폭방향으로 길게 배치되면서 상기 분리막(11b)의 저면을 지지함과 동시에 상기 분리막(11b)을 라미네이터(400) 방향으로 이송한다.
상기 플라즈마 발생부(120)는 이송롤러에 지지되는 분리막의 표면에 패턴화된 접착력을 가진 접착면을 형성시킨다. 즉, 상기 플라즈마 발생부(120)는 상기 이송롤러(110)에 지지된 분리막(11b)의 표면 중 일부분 또는 복수의 부분에 접착력을 가진 접착면(11b-1)을 형성하고, 나머지 부분에 접착력이 없거나 상기 접착면(11b-1) 보다 작은 접착력을 가진 비접착면(11b-2)을 형성시킨다. 이에 따라 분리막 표면에 패턴화된 접착력을 가진 접착면을 형성시킬 수 있다.
보다 구체적으로 설명하면, 상기 플라즈마 발생부(120)는, 금속부재(121), 플라즈마 발생부재(122), 및 차단부재(123)를 포함한다.
상기 금속부재(121)는 원통 형태를 가지고, 상기 이송롤러(110)의 내부에 내장되며, 상기 이송롤러(110)의 길이방향으로 연장되게 구성된다.
상기 플라즈마 발생부재(122)는 상기 이송롤러(110)로부터 이격되게 구비되고, 이송롤러(110)에 내장된 금속부재(121)와의 상호 반응에 의해 플라즈마(plasma)를 발생시켜서 상기 분리막(11b) 표면에 접착력을 가진 접착면(11b-1)을 형성한다.
즉, 상기 플라즈마 발생부재(122)는 상기 이송롤러(110)의 길이방향과 대응되게 구비되는 본체(122a)와, 상기 본체(122a)에 구비되고 상기 금속부재(121)와의 상호 반응에 의해 플라즈마(plasma)를 발생시켜서 상기 분리막(11b) 표면에 접착력을 가진 접착면(11b-1)을 형성하는 전극편(122b)을 포함한다.
상기 본체(122a)는 비금속 재질로 형성될 수 있다. 이에 따라 상기 금속부재(121)와 상기 전극편(122b) 사이의 저항 발생을 방지할 수 있고, 그 결과 상기 금속부재(121)와 상기 본체(122a) 사이에 플라즈마를 안정적으로 발생시킬 수 있다.
한편, 상기 본체(122a)는 비금속 소재 중 세라믹으로 구비될 수 있으며, 상기 세라믹은 열처리 공정을 거쳐 얻어지는 비금속무기재료로, 내열성, 고강도, 내식성을 가지며, 특히 가볍기 때문에 사용의 효율성을 높일 수 있다.
상기 전극편(122b)은 상기 분리막(11b)을 향하지 않는 상기 본체(122a)의 외측면에 구비되고, 상기 본체(122a)의 길이방향(즉, 분리막의 폭방향)으로 연장되게 구비된다. 특히 전극편(122b)은 코로나 방전전극(corona discharge)일 수 있으며, 상기 코로나 방전전극은 상기 금속부재(121)와 상기 본체(122a) 사이에 플라즈마를 안정적으로 발생시킬 수 있다.
차단부재(123)는 상기 이송롤러(110)의 외주면에 구비되고, 상기 금속부재(121)와 상기 플라즈마 발생부재(122)의 상호 반응을 차단하여 상기 분리막(11b) 표면 중 나머지 부분에 접착력이 없는 비접착면(11b-2)을 형성한다.
이와 같은 구성을 가진 상기 플라즈마 발생부(120)는, 차단부재(123)가 없는 이송롤러(110)에 지지된 분리막(11b)의 표면에는 금속부재(121)와 플라즈마 발생부재(122)의 상호 반응에 의해 발생하는 플라즈마로 인해 접착력을 가진 접착면(11b-1)이 형성되고, 차단부재(123)가 있는 이송롤러(110)에 지지된 분리막 표면에는 금속부재(121)와 플라즈마 발생부재(122)가 상호 반응이 차단되면서 플라즈마가 발생하지 않으며, 이에 따라 접착력이 없는 비접착면(11b-2)이 형성된다. 그 결과 분리막(11b) 표면에는 접착면과 비접착면이 교대로 형성된 패턴 구조의 접착층을 형성할 수 있다.
따라서 플라즈마 발생장치(100)는 이송롤러(110)와 플라즈마 발생부(120)를 포함하되, 상기 플라즈마 발생부(120)는 금속부재(121), 플라즈마 발생부재(122) 및 차단부재(123)를 포함함으로써 분리막 표면에 접착력을 가진 접착면을 패턴화할 수 있고, 패턴화된 접착면을 통해 전극과 분리막을 패턴 접착하여 접착력을 높일 수 있다. 특히 전극과 분리막의 비접착 부분을 통해 전해액 및 가스가 통과하면서 전해액 함침력과 가스 배출력을 높일 수 있다.
한편, 상기 차단부재(123)는, 비전도성 재질로 마련되며, 이에 따라 상기 금속부재(121)와 상기 플라즈마 발생부재(122)가 상호 반응하지 못하도록 차단할 수 있고, 그 결과 분리막의 표면에 비접착면을 안정적으로 형성시킬 수 있다. 예로, 차단부재는 합성수지, 실리콘, 고무소재 및 우레탄 중 어느 하나일 수 있다.
특히 차단부재(123)는 상기 이송롤러(110)의 외주면을 따라 연장되고 양끝단이 연결되는 링 형태의 차단띠로 마련된다. 이에 따라 이송롤러(110)의 외주면에 차단부재(1230를 안정적으로 부착할 수 있고, 그 결과 결합력을 높일 수 있다.
한편, 차단띠는 상기 분리막의 양쪽 단부가 위치한 이송롤러(110)의 외주면에는 구비되지 않는다. 이에 따라 상기 분리막의 양쪽 단부에는 접착력을 가진 접착면을 형성할 수 있고, 그 결과 분리막의 단부와 전극의 단부의 접착력을 높일 수 있다.
특히 차단띠는 이송롤러(110)의 길이방향으로 복수개가 일정한 간격 또는 불규칙한 간격으로 구비되며, 이에 따라 분리막(11b)의 표면에 일정한 간격 또는 불규칙한 간격으로 복수개의 비접착면(11b-2)과 복수개의 접착면(11b-1)을 교대로 형성할 수 있다.
한편, 이송롤러(110)의 외주면에 복수개의 차단띠를 구비하되, 상기 이송롤러의 길이방향을 균등분할하는 중심선으로부터 양쪽 단부로 갈수록 차단띠의 폭을 점차 작게 형성할 수 있다. 즉, 이송롤러의 중심선에 구비된 차단띠는 제1 폭으로 형성하여 분리막의 폭방향으로 중심에 제1 폭 크기의 비접착면을 형성하고, 이송롤러의 양쪽 단부에 구비된 차단띠는 제1 폭 보다 작은 제2 폭으로 형성하여 분리막의 폭방향으로 양쪽 단부에 제2 폭 크기의 비접착면을 형성한다. 이에 따라 분리막의 중심에는 비접착면을 크게 확보하여 전해액 함침력과 가스 배출력을 높이고, 분리막의 양쪽 단부에는 비접착면을 작게 확보하여 전극과 분리막의 접착력을 높일 수 있다.
한편, 상기 플라즈마 발생장치(100)는 상기 이송롤러(110)와 상기 플라즈마 발생부(120) 사이에 공기를 공급하는 공기공급부재(130)를 더 포함할 수 있으며, 상기 공기공급부재(130)는 상기 이송롤러(110)와 상기 플라즈마 발생부(120) 사이에 공기를 공급함에 따라 플라즈마를 보다 안정화시킬 수 있다.
따라서 본 발명의 제1 실시예에 따른 라미네이션 시스템은 상기 플라즈마 발생장치(100)를 포함함으로써 도 8에 도시되어 있는 것과 같은 패턴화된 접착면을 가진 분리막을 제조할 수 있고, 상기 분리막과 전극을 접합함으로써 접합력, 전해액 함침력, 가스 배출력이 높은 기본단위체를 제조할 수 있다.
이하, 본 발명의 다른 실시예를 설명함에 있어 전술한 실시예와 동일한 구성 및 기능을 가지는 구성에 대해서는 동일한 구성부호를 사용하며, 중복되는 설명은 생략한다.
[본 발명의 제2 실시예에 따른 플라즈마 발생장치]
본 발명의 제2 실시예에 따른 플라즈마 발생장치는 도 9 및 도 10에 도시되어 있는 것과 같이, 차단부재(123)를 포함하되, 상기 차단부재(123)는 상기 이송롤러(110)의 외주면에 형성되는 삽입홈(111)에 구비된다. 여기서 상기 삽입홈(111)은 이송롤러(110)의 둘레방향을 따라 연결되는 구조를 가진다. 이에 따라 이송롤러(110)의 외주면에 차단부재(123)를 보다 간편하게 구비할 수 있다.
특히 상기 삽입홈(111)에 구비된 차단부재(123)의 외주면과 상기 이송롤러(110)의 외주면은 동일한 높이는 가지며, 이에 따라 이송롤러(110)와 차단부재(123) 사이에 단차 발생을 방지할 수 있고, 그 결과 이송롤러를 통해 분리막을 보다 안정적으로 이송할 수 있다.
[본 발명의 제3 실시예에 따른 플라즈마 발생장치]
본 발명의 제3 실시예에 따른 플라즈마 발생장치는 차단부재(123)를 포함하되, 상기 차단부재(123)는 상기 이송롤러(110)의 외주면에 규칙 또는 불규칙한 간격으로 배열되는 복수개의 차단막으로 마련된다.
일례로, 복수개의 차단막은 도 11에 도시되어 있는 것과 같이, 이송롤러(110)의 길이방향과 둘레방향을 따라 설정된 간격으로 배열되게 구비될 수 있다. 이에 따라 분리막 표면에 바둑판 형태의 접착력을 가진 접착면을 패턴화할 수 있다.
한편, 본 발명의 다른 실시예로, 차단부재(123)는, 비전도성 물질을 상기 이송롤러(110)의 외주면에 이송롤러의 둘레를 따라 코팅하여 형성할 수 있다. 이에 따라 이송롤러(110)와 차단부재(123)의 결합성을 크게 높일 수 있다.
[실험예]
실험 준비
본 출원의 제1 실시예에 따른 라미네이션 시스템에 의해 제조된 기본단위체 3개를 준비한다. 즉, 본 출원의 제1 실시예에 따른 라미네이션 시스템은 접착면(11b-1), 비접착면(11b-2), 접착면(11b-1)이 교대로 형성된 분리막(11b)을 제조한 다음, 상기 분리막과 전극을 적층하고 접합하여 기본단위체를 제조한다.
제조예는 상기와 같이 제조된 기본단위체 3개를 준비한다.(도 12에 도시된 도면 참조).
접합강도 실험
상기와 같이 준비한 3개의 제조예에 포함된 전극과 분리막을 분리시켜서 접착 계면에 대한 부하를 측정한다. 그 결과 도 12과 같은 그래프를 얻을 수 있다.
즉, 도 12를 참조하면, 전극과 분리막의 첫번째 접착부분(즉, 접착면)은 대략 35g/mm의 부하가 발생한 것을 알 수 있다. 그리고 전극과 분리막의 미접착부분은 5g/mm의 부하가 발생한 것을 확인할 수 있다. 여기서 전극과 분리막이 접합되지 않은 부분에 발생한 5g/mm는 라미네이터에 의해 발생한 접합력일 수 있다. 그리고 전극과 분리막의 두번째 접착부분은 대략 32 g/mm의 부하가 발생한 것을 알 수 있다.
따라서 상기와 같은 실험결과를 통해 본 발명의 제1 실시예에 따른 라미네이션 시스템을 통해 제조된 기본단위체는 분리막 표면에 패턴화된 접착면이 안정적으로 형성된 것을 확인할 수 있다.
전해액 함침력 실험
제조예는 본 발명의 제1 실시예에 따른 라미네이션 시스템을 통해 제조된 전극과 분리막이 패턴 접합된 기본단위체를 3개 준비한다.
비교예는 전극과 분리막 전체가 접합된 기본단위체 3개를 준비한다.
상기와 같이 준비한 비교예의 기본단위체와 제조예의 기본단위체를 전해액에 저장된 동일한 수조에 1분간 넣었다 뺀다.
실험결과, 비교예는 도 13을 참조하면 3개의 기본단위체 전해액 함침력을 측정하면 5.5mm에서 6.0mm의 깊이까지 전해액이 함침된 것을 확인할 수 있다. 그리고 제조예는 도 14를 참조하면, 최소 6mm, 최대 26mm까지 전해액이 함침된 것을 확인할 수 있다. 이때 최소 전해액 함침 부분은 전극과 분리막의 접합부분인 것을 확인할 수 있고, 최대 전해액 함침부분은 전극과 분리막의 비접합부분인 것을 확인할 수 있다.
따라서 제조예는 비교예 보다 전해액 함침력이 크게 증대된 것을 확인할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 가능하다.
[부호의 설명]
11: 기본단위체
10: 전극 조립체
100: 플라즈마 발생장치
110: 이송롤러
111: 삽입홈
120: 플라즈마 발생부
121: 금속부재
122: 플라즈마 발생부재
122a: 본체
122b: 전극편
123: 차단부재
200: 공급롤러
300: 제1 커터
400: 라미네이터
500: 제2 커터

Claims (12)

  1. 분리막을 이송하는 이송롤러;
    상기 이송롤러에 의해 이송되는 분리막의 표면 중 일부분에는 접착력을 가진 접착면을 형성하고 나머지 부분에는 접착력이 없는 비접착면을 형성하는 플라즈마 발생부를 포함하며,
    상기 플라즈마 발생부는,
    상기 이송롤러에 내장되는 금속부재;
    상기 이송롤러로부터 이격되게 구비되고, 상기 금속부재와의 상호 반응에 의해 플라즈마(plasma)를 발생시켜서 상기 분리막의 표면 중 일부분에 접착력을 가진 접착면을 형성시키는 플라즈마 발생부재; 및
    상기 이송롤러의 외주면에 구비되고, 상기 금속부재와 상기 플라즈마 발생부재의 상호 반응을 차단하여 상기 분리막의 표면 중 나머지 부분에 접착력이 없는 비접착면을 형성시키는 차단부재를 포함하는 이차전지용 플라즈마 발생장치.
  2. 청구항 1에 있어서,
    상기 차단부재는, 상기 금속부재와 상기 플라즈마 발생부재의 상호 반응을 차단하도록 비전도성 재질로 마련되는 이차전지용 플라즈마 발생장치.
  3. 청구항 2에 있어서,
    상기 차단부재는, 상기 이송롤러의 둘레를 따라 연장되고 양끝단이 연결되는 링 형태의 차단띠로 마련되는 이차전지용 플라즈마 발생장치.
  4. 청구항 2에 있어서,
    상기 차단부재는, 상기 이송롤러에 규칙 또는 불규칙한 간격으로 배열되는 복수개의 차단막으로 마련되는 이차전지용 플라즈마 발생장치.
  5. 청구항 2에 있어서,
    상기 차단부재는, 비전도성 필름을 상기 이송롤러의 외주면에 부착하여 형성하는 이차전지용 플라즈마 발생장치.
  6. 청구항 2에 있어서,
    상기 차단부재는, 비전도성 물질을 상기 이송롤러의 외주면에 코팅하여 형성하는 이차전지용 플라즈마 발생장치.
  7. 청구항 1에 있어서,
    상기 이송롤러의 외주면에는 삽입홈이 형성되고,
    상기 차단부재는, 상기 이송롤러의 삽입홈에 구비되는 이차전지용 플라즈마 발생장치.
  8. 청구항 7에 있어서,
    상기 삽입홈에 구비된 차단부재의 외주면과 상기 이송롤러의 외주면은 동일한 높이를 가지는 이차전지용 플라즈마 발생장치.
  9. 청구항 1에 있어서,
    상기 플라즈마 발생부재는,
    상기 이송롤러의 길이방향과 대응되게 구비되는 본체;
    상기 본체에 구비되고, 상기 금속부재와의 상호 반응에 의해 플라즈마(plasma)를 발생시켜서 상기 분리막 표면에 접착력을 가진 접착면을 형성하는 전극편을 포함하고,
    상기 전극편은 코로나 방전전극으로 마련되는 이차전지용 플라즈마 발생장치.
  10. 청구항 3에 있어서,
    상기 차단띠는 상기 이송롤러의 길이방향으로 복수개가 일정한 간격 또는 서로 다른 간격으로 형성되는 이차전지용 플라즈마 발생장치.
  11. 전극과 분리막이 교대로 적층되게 공급하는 복수개의 공급롤러;
    상기 전극을 절단하는 제1 커터;
    청구항 1 내지 청구항 10 중 어느 하나의 청구항에 의해 구비되면서 상기 분리막의 표면 중 일부분에는 접착력을 가진 접착면을 형성하고, 나머지 부분에는 접착력이 없는 비접착면을 형성하는 플라즈마 발생장치;
    상기 전극과 상기 분리막을 열융착하여 기본단위체를 제조하는 라미네이터; 및
    상기 기본단위체를 동일 크기로 절단하는 제2 커터를 포함하는 라미네이션 시스템.
  12. 청구항 11에 있어서,
    상기 플라즈마 발생장치는, 상기 분리막과 전극이 열융착하기 전에 상기 분리막의 표면에 접착면과 비접착면을 형성하는 라미네이션 시스템.
PCT/KR2021/013936 2020-10-30 2021-10-08 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템 WO2022092616A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21886610.1A EP4123775A1 (en) 2020-10-30 2021-10-08 Apparatus for generating plasma for secondary batteries and lamination system comprising same
US17/923,157 US20230223576A1 (en) 2020-10-30 2021-10-08 Plasma Generator for Secondary Battery and Lamination System Comprising the Same
CN202180029605.1A CN115428208A (zh) 2020-10-30 2021-10-08 用于二次电池的等离子体发生器和包括该等离子体发生器的层压系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0143819 2020-10-30
KR1020200143819A KR20220058249A (ko) 2020-10-30 2020-10-30 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템

Publications (1)

Publication Number Publication Date
WO2022092616A1 true WO2022092616A1 (ko) 2022-05-05

Family

ID=81382739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013936 WO2022092616A1 (ko) 2020-10-30 2021-10-08 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템

Country Status (5)

Country Link
US (1) US20230223576A1 (ko)
EP (1) EP4123775A1 (ko)
KR (1) KR20220058249A (ko)
CN (1) CN115428208A (ko)
WO (1) WO2022092616A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240032672A (ko) * 2022-09-02 2024-03-12 주식회사 엘지에너지솔루션 플라즈마 처리 장치 및 이를 포함하는 이차 전지용 라미네이션 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005472A (ko) * 2016-07-06 2018-01-16 주식회사 플라즈맵 대기압 유전체 장벽 방전 플라즈마를 이용한 이차전지의 분리막 처리 방법
KR20180018177A (ko) * 2016-08-12 2018-02-21 주식회사 엘지화학 전극조립체 및 이의 제조방법
KR20180039452A (ko) * 2016-10-10 2018-04-18 주식회사 엘지화학 패턴 전극접착층을 구비한 세퍼레이터를 용매없이 제조하는 방법
KR20180128757A (ko) * 2017-05-24 2018-12-04 주식회사 엘지화학 이차전지용 플라즈마 발생장치
KR102054467B1 (ko) * 2017-06-23 2019-12-11 주식회사 엘지화학 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958649B1 (ko) 2002-12-27 2010-05-20 삼성에스디아이 주식회사 전지부와, 이의 감는 방법과, 이를 채용하여 제조된 리튬이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005472A (ko) * 2016-07-06 2018-01-16 주식회사 플라즈맵 대기압 유전체 장벽 방전 플라즈마를 이용한 이차전지의 분리막 처리 방법
KR20180018177A (ko) * 2016-08-12 2018-02-21 주식회사 엘지화학 전극조립체 및 이의 제조방법
KR20180039452A (ko) * 2016-10-10 2018-04-18 주식회사 엘지화학 패턴 전극접착층을 구비한 세퍼레이터를 용매없이 제조하는 방법
KR20180128757A (ko) * 2017-05-24 2018-12-04 주식회사 엘지화학 이차전지용 플라즈마 발생장치
KR102054467B1 (ko) * 2017-06-23 2019-12-11 주식회사 엘지화학 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템

Also Published As

Publication number Publication date
EP4123775A1 (en) 2023-01-25
CN115428208A (zh) 2022-12-02
KR20220058249A (ko) 2022-05-09
US20230223576A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2014123363A1 (ko) 스텝 유닛셀을 포함하는 단차를 갖는 전극 조립체
WO2021194285A1 (ko) 셀 제조 장치 및 방법
WO2014073751A1 (ko) 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지, 전지팩 및 디바이스, 상기 전극 조립체 제조방법
WO2019190145A1 (ko) 배터리 셀 및 그 제조 방법
WO2018216900A1 (ko) 이차전지용 플라즈마 발생장치
WO2015046703A1 (ko) 테이프를 이용한 전극조립체의 고정방법
WO2018236033A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2018155811A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2015046894A1 (ko) 전극조립체의 제조방법
WO2013180449A1 (ko) 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법
WO2020159116A1 (ko) 전극 탭 용접부의 압접부 크기가 상이한 전극조립체 및 이를 제조하는 초음파 용접 장치
WO2014104795A1 (ko) 두께 방향의 형상 자유도가 우수한 전극 조립체, 상기 전극 조립체를 포함하는 이차 전지, 전지팩 및 디바이스
WO2021080210A1 (ko) 가열과 가압을 동시에 적용하는 단계를 포함하는 전극조립체 제조방법
WO2022030839A1 (ko) 단선 방지층을 포함하는 전극 조립체 및 이의 제조방법
WO2022092616A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2021118197A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2021080239A1 (ko) 전극 조립체 제조방법 및 이를 통해 제조된 전극 조립체
WO2019208912A1 (ko) 전극 조립체 및 그 전극 조립체 제조방법
WO2022191612A1 (ko) 전지셀 및 이를 제조하는 전지셀 제조 장치
WO2018004185A1 (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2017191910A2 (ko) 이차전지의 제조방법 및 전극 조립체의 제조방법
WO2020153594A1 (ko) 전극조립체, 그를 포함하는 이차전지, 이차전지 제조방법 및 전지팩
WO2020197246A1 (ko) 전극조립체 및 그 전극조립체 제조용 라미네이션 장치 및 그 전극조립체의 제조 방법
WO2021006543A1 (ko) 단위셀을 포함하는 전극조립체, 이의 제조 방법 및 이를 포함하는 리튬이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021886610

Country of ref document: EP

Effective date: 20221020

NENP Non-entry into the national phase

Ref country code: DE