WO2019190145A1 - 배터리 셀 및 그 제조 방법 - Google Patents

배터리 셀 및 그 제조 방법 Download PDF

Info

Publication number
WO2019190145A1
WO2019190145A1 PCT/KR2019/003460 KR2019003460W WO2019190145A1 WO 2019190145 A1 WO2019190145 A1 WO 2019190145A1 KR 2019003460 W KR2019003460 W KR 2019003460W WO 2019190145 A1 WO2019190145 A1 WO 2019190145A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing member
battery cell
core layer
adhesive layer
sealing
Prior art date
Application number
PCT/KR2019/003460
Other languages
English (en)
French (fr)
Inventor
김진고
김동주
이승노
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to US16/758,306 priority Critical patent/US11764394B2/en
Priority to DE112019001619.9T priority patent/DE112019001619T5/de
Priority to CN201980005888.9A priority patent/CN111712939A/zh
Publication of WO2019190145A1 publication Critical patent/WO2019190145A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery cell and a method of manufacturing the same.
  • Lithium secondary battery is used as a power source for portable electronic devices with a working voltage of 3.6V or higher, or used in high-power hybrid vehicles by connecting several in series.
  • the lithium secondary battery has a higher operating voltage than a nickel-cadmium battery or a nickel-metal hydride battery. Three times higher, the energy density per unit weight is also excellent, the use is increasing rapidly.
  • lithium secondary batteries are manufactured in units of battery cells.
  • a lithium secondary battery is a pouch type secondary battery in which an electrode assembly is embedded in a metal can and an electrode assembly is embedded in a pouch of an aluminum laminate sheet. Can be classified.
  • the pouch type secondary battery is manufactured through a process in which an electrolyte is injected and a case is sealed while the electrode assembly is accommodated in the case.
  • the conventional pouch-type secondary battery is sealed on four or three sides, due to such a sealing portion is inevitably generated dead space (Dead Volume) that does not express the electrical energy.
  • An object of the present invention is to provide a battery cell and a method of manufacturing the same that can minimize the volume of the sealing portion of the pouch to maximize the volumetric efficiency of the secondary battery.
  • a battery cell includes an electrode assembly, a case including an accommodating part in which the electrode assembly is accommodated, and a sealing part formed along a circumference of the accommodating part, and interposed between the accommodating part and the sealing part. And a fixing member for joining each other to the sealing portion, wherein the fixing member includes a core layer and an adhesive layer respectively laminated on both surfaces of the core layer.
  • the sealing portion may be bent at least once and joined to the receiving portion.
  • the core layer may be made of a material having a lower elongation than the adhesive layer.
  • the adhesive layer may be formed of a polyurethane (polyurethane) resin.
  • the core layer may be formed of polyethylene terephthalate (PET) material.
  • PET polyethylene terephthalate
  • the fixing member may have a thickness greater than that of the core layer.
  • the thickness of the fixing member is formed to 100 ⁇ 300 ⁇ m
  • the thickness of the adhesive layer may be formed more than twice the thickness of the core layer.
  • the fixing member may have an elongation of 20% or less.
  • the fixing member may have a tensile strength of 30N / m 2 or more.
  • the battery cell manufacturing method disposing the electrode assembly in the housing portion of the case, bending the sealing portion of the case, attaching a fixing member to the sealing portion, and the fixing member Bonding the sealing part to the receiving part through a medium; and the fixing member may include a core layer and an adhesive layer respectively laminated on both surfaces of the core layer.
  • the bonding of the sealing part to the accommodation part may include melting and curing the adhesive layer by thermocompression bonding the sealing part.
  • the core layer may be formed of polyethylene terephthalate (PET), and the adhesive layer may be formed of a polyurethane-based resin.
  • PET polyethylene terephthalate
  • the adhesive layer may be formed of a polyurethane-based resin.
  • the attaching of the fixing member to the sealing part may include exposing a surface of the fixing member having adhesive force by removing the release paper attached to the fixing member, and sealing one surface of the fixing member. And attaching to the portion.
  • the battery cell and the method of manufacturing the same according to an embodiment of the present invention can maximize the volumetric efficiency of the battery cell by bending and bonding the sealing portion of the pouch.
  • the sealing member and the receiving portion are bonded to each other by using a fixing member having an adhesive layer disposed on both sides of the core layer, the fixing member may be minimized from being deformed in the process of attaching the fixing member to the sealing portion. Excessive diffusion of the adhesive layer can be suppressed. Accordingly, the bonding reliability of the sealing portion and the accommodating portion can be improved, and it is possible to suppress occurrence of an insulation failure that can be fatal to the battery cell during the manufacturing process.
  • FIG. 1 is a perspective view schematically showing a battery cell according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the battery cell shown in FIG. 1.
  • FIG. 2 is an exploded perspective view of the battery cell shown in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line A-A 'of FIG.
  • FIG. 4 is an enlarged view illustrating an enlarged portion B of FIG. 3;
  • 5 to 9 are views for explaining a battery cell manufacturing method according to the present embodiment.
  • FIG. 1 is a perspective view schematically showing a pouch-type battery cell according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view of the battery cell shown in FIG. 3 is a cross-sectional view taken along line AA ′ of FIG. 1
  • FIG. 4 is an enlarged view illustrating an enlarged portion B of FIG. 3. 2 illustrates a state in which the second sealing unit is not folded for convenience of description.
  • the pouch type battery cell according to the present invention includes an electrode assembly 100 and a pouch type case 200.
  • the electrode assembly 100 includes a plurality of electrode plates and electrode tabs 110 and is housed in the receiving portion 204 of the case 200.
  • the electrode plate is composed of a positive electrode plate and a negative electrode plate
  • the electrode assembly 100 may be configured such that the positive electrode plate and the negative electrode plate is stacked so that a wide surface facing each other with the separator therebetween.
  • the positive electrode plate and the negative electrode plate are formed as a structure in which the active material slurry is applied to the current collector, and the slurry may be formed by stirring the granular active material, the auxiliary conductor, the binder, the plasticizer, and the like in a state where a solvent is added.
  • the electrode assembly 100 has a plurality of positive electrode plates and a plurality of negative electrode plates are stacked in the vertical direction.
  • the plurality of positive electrode plates and the plurality of negative electrode plates are provided with electrode tabs 110, respectively, and may be connected to the same electrode lead 120 by contacting the same polarities.
  • the case 200 may be composed of a first case 210 and a second case 220.
  • the first case 210 and the second case 220 each include a sealing part 202 and a receiving part 204.
  • Receiving portion 204 is formed in the form of a container to provide an interior space.
  • the sealing portion 202 is formed in the form of a flange extending from the inlet of the receiving portion 204 formed in the form of a container.
  • the electrode assembly 100 and the electrolyte (not shown) are accommodated in the inner space of the accommodation portion 204.
  • the accommodation part 204 is formed in both the first case 210 and the second case 220. However, if necessary, it can be formed in only one place.
  • the sealing part 202 is disposed in the form of an edge along the outer edge of the receiving part 204.
  • the sealing part 202 of the first case 210 and the sealing part 202 of the second case 220 are bonded to each other to seal an internal space formed by the accommodation part 204.
  • Bonding between the sealing portion 202 may be a heat fusion method, but is not limited thereto.
  • the sealing part 202 may be divided into a first sealing part 2021 in which the electrode lead 120 is disposed and a second sealing part 2022 in which the electrode lead 120 is not disposed.
  • the receiving portion 204 is formed in a square shape, the sealing portion 202 is disposed along the circumference of the square shape. Therefore, four sealing parts 202 are provided.
  • the electrode leads 120 are disposed to face in opposite directions in the present embodiment, the two electrode leads 120 are disposed in different sealing parts 202. Accordingly, the first sealing portion 2021 is composed of two, and the second sealing portion 2022 is composed of two.
  • the configuration of the present invention is not limited thereto, and when the two electrode leads 120 are all disposed in one sealing unit 202, the second sealing unit 2022 may be configured as three.
  • the sealing unit 202 is configured to be folded at least once in order to increase the bonding reliability of the sealing unit 202 and minimize the area of the sealing unit 202.
  • the second sealing part 2022 in which the electrode lead 120 is not disposed among the sealing parts 202 according to the present exemplary embodiment is folded and then fixed.
  • the second sealing part 2022 is folded along the first bend line C1 shown in FIG. 5 by 180 ° and then folded along the second bend line C2 shown in FIG. 204 may be bonded to the side (204a of FIG. 4).
  • the angle at which the sealing portion 202 is folded along the second bend line C2 may be changed according to the angle ( ⁇ in FIG. 4) of the receiving side surface 204a.
  • the angle ⁇ at which the sealing portion 202 is folded along the second bend line C2 is smaller than 90 degrees and is configured to be 75 degrees or more.
  • the sealing part 202 When the angle ⁇ is greater than or equal to 90 °, since the sealing part 202 penetrates toward the receiving part 204, the sealing part 202 may contact the electrode assembly 100. In addition, when the angle is less than 75 °, since the dead volume is increased in the pouch, the electrode assembly 100 is difficult to be firmly fixed in the receiving portion 204 and the volume energy density is low.
  • the angle ⁇ is limited to a range of 75 ° or more and 90 ° or less.
  • the sealing property of the 2nd sealing part 2022 can be strengthened, and joining reliability can also be improved.
  • the sealing portion 202 folded along the second bent line is fixedly bonded to the receiving portion side 204a through the fixing member 250.
  • the fixing member 250 is a film or tape-shaped member is used, and melted and cured by a thermocompression bonding method to bond the sealing portion 202 and the receiving portion 204 to each other.
  • the fixing member 250 includes a core layer 251 and an adhesive layer 253 stacked on both surfaces of the core layer 251.
  • the core layer 251 prevents the fixing member 250 from being excessively stretched in the process of attaching the fixing member 250 to the sealing portion 202.
  • the core layer 251 may be formed of polyethylene terephthalate (PET) material, but is not limited thereto.
  • the core layer 251 is provided to limit the elongation of the fixing member 250.
  • the adhesive layer 253 is formed of a polyurethane-based material
  • the adhesive layer 253 has a very large elongation percentage. Therefore, when the fixing member 250 is formed only by the adhesive layer 253, the fixing member 250 is excessively excessive in the process of applying a force to the fixing member 250 to attach the fixing member 250 to the sealing portion 202. Can be stretched. In this case, since the width of the fixing member 250 is reduced, the adhesive force of the fixing member 250 may be reduced. In addition, when the tensile strength of the fixing member 250 is low, the fixing member 250 may be easily broken in the process of attaching the fixing member 250 to the sealing part 202.
  • the elongation is maintained at 20% or less through the core layer 251 between the adhesive layers 253.
  • the core layer 251 has a smaller elongation than the adhesive layer 253, does not easily stretch, and is made of a material (eg, PET) that is not easily melted at a temperature at which the adhesive layer 253 is melted.
  • the core layer 251 suppresses excessive diffusion of the molten adhesive layer when the adhesive layer 253 is melted in the battery cell manufacturing process. In the absence of the core layer 251, the entire fixing member 250 is melted, so that the molten adhesive layer 253 is likely to diffuse out of the sealing portion 202. In this case, a defect may be caused by the spread adhesive layer 253.
  • the core layer 251 is provided as in the present embodiment, since the surface tension is generated by the core layer 251, the diffusion is suppressed. Therefore, the defect generated as the adhesive layer 253 is excessively spread may be minimized.
  • the adhesive layer 253 is laminated on both surfaces of the core layer 251 and bonded to the sealing portion 202 and the receiving portion 204, respectively.
  • the adhesive layer 253 may be a polyurethane resin, a polyolefin resin, a polyester resin, a polyamide resin, or the like.
  • the surface of the case 200 is formed of polyethylene terephthalate (PET) material. Therefore, in consideration of adhesiveness with polyethylene terephthalate (PET), a polyurethane-based material is used as the adhesive layer 253.
  • PET polyethylene terephthalate
  • the adhesive layer 253 may be selectively used among the various resins described above.
  • the fixing member 250 configured as described above is formed in a film or tape form, the fixing member 250 may be excessively extended or broken in the process of applying a force to the fixing member 250 to attach the fixing member 250 to the sealing portion 202. Can be.
  • the elongation percentage of the fixing member 250 is limited to 20% or less, and the tensile strength is limited to 30N / m 2 or more.
  • the tensile strength of the fixing member 250 was measured with 30N / m 2 ⁇ 45N / m 2, an elongation (elongation percentage ) was measured at 20% or less. Therefore, when using the fixing member 250 of the present embodiment, it can be seen that the above problem can be solved.
  • the core layer 251 is provided to limit the elongation of the fixing member 250, it does not need to be formed thick if such a function can be performed.
  • the thickness of the core layer 251 may be defined in the range of 10 to 50 ⁇ m, but is not limited thereto.
  • the adhesive layer 253 is formed thicker than the core layer 251.
  • the thickness of each adhesive layer 253 may be formed to be twice or more than that of the fixing sheet.
  • the width of each adhesive layer 253 may be defined in the range of 50 ⁇ 120 ⁇ m, but is not limited thereto.
  • the width W1 of the fixing member 250 is formed to be narrower than the width W2 of the outer sealing part (2022b of FIG. 7) described later.
  • the width W2 of the outer sealing part 2022b is formed to be narrower than the width of the side surface 204a of the receiving part 204. Accordingly, the entirety of one surface of the fixing member 250 is joined to the outer sealing portion 2022b, and the other surface of the fixing member 250 is joined to the side surface 204a of the accommodation portion 204.
  • the outer sealing part 2022b is disposed to face the side surface 204a of the receiving portion 204, the outer sealing portion 2022b does not protrude out of the side surface 204a of the receiving portion 204.
  • the fixing member 250 may be formed to have a width of 1 mm to 5 mm, but is not limited thereto.
  • the thickness of the fixing member 250 when the thickness of the fixing member 250 is less than 100 ⁇ m, the thickness of the adhesive layer 253 is too thin and the adhesive force is lowered. In addition, when the thickness of the fixing member 250 exceeds 300 ⁇ m, the gap between the sealing portion 202 and the receiving portion 204 increases due to the thickness of the fixing member 250, thereby increasing the size of the battery cell. Therefore, the thickness of the fixing member 250 in the present embodiment may be limited to the range of 100 ⁇ m or more, 300 ⁇ m or less.
  • FIG. 5 is a view for explaining a battery cell manufacturing method according to the present embodiment.
  • the electrode assembly 100 is disposed in the accommodating part 204 of the first and second cases 210 and 220, and the electrolyte is filled in the space inside the accommodating part 204.
  • the sealing part 202 of the 210 and the sealing part 202 of the second case 220 are bonded and sealed.
  • the case 200 may be a sheet in which an aluminum thin film is interposed between insulating layers formed of an insulating material.
  • the insulating layers may be formed of a polymer material such as nylon (Nylon), polyethylene terephthalate (PET), and polypropylene (PP), but are not limited thereto.
  • a first bending step of bending the second sealing unit 2022 by 180 ° along the first bending line C1 is performed.
  • a portion disposed outside the first bend line C1 will be referred to as an outer sealing part 2022b, and a portion disposed inside the first bend line C1 will be referred to as an inner sealing part ( 2022a).
  • the outer sealing portion 2022b is disposed above the inner sealing portion 2022a in a state of being superimposed with the inner sealing portion 2022a.
  • the outer sealing part 2022b and the inner sealing part 2022a may be heated while pressing the outer sealing part 2022b and the inner sealing part 2022a so that the overlapped shape is maintained.
  • the first bend line C1 may be defined as a line dividing the second sealing portion 2022 in the longitudinal direction.
  • the inner sealing part 2022a and the outer sealing part 2022b may be divided into the same width.
  • the present invention is not limited thereto.
  • the outer sealing part 2022b defines a first bend line C1 such that the width of the outer sealing part 2022b is smaller than the width of the inner sealing part 2022a.
  • Various modifications are possible as long as the entire area can face the inner sealing portion 2022a.
  • the fixing member 250 is disposed on the outer sealing part 2022b positioned above the inner sealing part 2022a.
  • the fixing member 250 is provided in the form of a film or a tape. As described above, when the surface of the case 200 is a polyethylene terephthalate (PET) material, the adhesive layer 253 is formed of a polyurethane-based material.
  • PET polyethylene terephthalate
  • one surface of the fixing member 250 which is in surface contact with the outer sealing part 2022b has an adhesive force or an adhesive force. Therefore, the fixing member 250 disposed on the outer sealing part 2022b is not easily separated from the outer sealing part 2022b.
  • the fixing member 250 is supplied with a release paper attached to one surface, and may be attached to the outer sealing part 2022b after the release paper is controlled in this step.
  • the fixing member 250 is tensioned with a constant force so that the fixing member 250 is flatly bonded on the outer sealing portion 2022b. Is applied.
  • the fixing member 250 may be stretched by the aforementioned tension.
  • the fixing member according to the present embodiment has a core layer, the fixing member is stretched to 20% or less, and has a tensile strength of 30 N / m 2 or more. Therefore, the fixing member 250 can be prevented from being excessively stretched and deformed or broken.
  • the second bend line C2 is formed along a boundary between the receiving portion 204 and the second sealing portion 2022 or at a position adjacent to the boundary.
  • the fixing member 250 joined to the outer sealing part 2022b has the other surface contacting the side surface 204a of the receiving part, and the outer sealing part ( 2022b and the inner sealing part 2022a are disposed in a state overlapped with the side surface 204a of the receiving part.
  • the fixing member 250 is thermocompressed outside the sealing part 202.
  • the high pressure device 270 presses the sealing unit 202 and the fixing member 250 together and supplies heat.
  • the fixing member 250 may be subjected to heat of 110 ° C. to 150 ° C. and a pressure of 0.2 to 1 MPa for 5 to 30 seconds. However, it is not limited thereto.
  • the adhesive layer 253 of the fixing member 250 is melted and then hardened again. In this process, both surfaces of the fixing member 250 are bonded to the sealing portion 202 and the receiving portion 204, respectively.
  • the sealing unit 202 is bonded to the side surface 204a of the receiving unit through the fixing member 250 through the above process, the battery cell according to the present embodiment is completed.
  • the sealing part of the case and then the sealing part is bonded to the receiving part the electrolyte solution and the gas can be prevented from being externally exposed at the sealing part.
  • the sealing part and the accommodating part are bonded together using the fixing member by which the contact bonding layer is arrange
  • the second sealing part is bent twice, but the present invention is not limited thereto, and various modifications are possible, such as bending only once or bending three or more times. .
  • the fixing member is formed in a continuous linear form in the above-described embodiment, it is also possible to configure a plurality of short fixing members spaced apart to form a dashed line.
  • the fixing member is disposed only between the sealing portion and the receiving portion, but if necessary, the fixing member may be disposed between the outer sealing portion and the inner sealing portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 실시예에 따른 배터리 셀은, 전극 조립체, 상기 전극 조립체가 수용되는 수용부와 상기 수용부의 둘레를 따라 형성된 실링부를 포함하는 케이스, 및 상기 수용부와 상기 실링부 사이에 개재되어 상기 수용부와 상기 실링부를 상호 접합하는 고정 부재를 포함하며, 상기 고정 부재는, 코어층과 상기 코어층의 양면에 각각 적층되는 접착층을 포함한다.

Description

배터리 셀 및 그 제조 방법
본 발명은 배터리 셀과 그 제조 방법에 관한 것이다.
리튬 이차 전지는 작동 전압이 3.6V 이상으로 휴대용 전자 기기의 전원으로 사용되거나, 또는 수개를 직렬 연결하여 고출력의 하이브리드 자동차에 사용되는데, 니켈-카드뮴 전지나, 니켈-메탈 하이드라이드 전지에 비하여 작동 전압이 3배가 높고, 단위 중량당 에너지 밀도의 특성도 우수하여 급속도로 사용이 증가되고 있는 추세이다.
일반적으로 리튬 이차 전지는 배터리 셀의 단위로 제조되며, 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
이 중 파우치형 이차 전지는, 대체로 전극 조립체가 외장재에 수납된 상태에서 전해액이 주입되고, 외장재가 실링되는 과정을 통해 제조된다
그런데, 종래의 파우치형 이차전지는 4면 혹은 3면으로 실링을 하고 있으며, 이러한 실링부로 인해 전기에너지를 발현하지 못하는 무용 공간(Dead Volume)이 필연적으로 발생하게 된다.
이에, 실링부가 이차전지에서 차지하는 공간 비율을 최소화 하여 체적효율 또는 체적에너지 밀도를 극대화 하는 것이 파우치형 이차전지가 극복해야 할 큰 문제점으로 대두되고 있다.
따라서, 상기의 문제점을 해결할 수 있는 배터리 셀이 요구되고 있다.
본 발명은 파우치의 실링부 체적을 최소화하여 이차전지의 체적효율을 극대화 할 수 있는 배터리 셀과 그 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 실시예에 따른 배터리 셀은, 전극 조립체, 상기 전극 조립체가 수용되는 수용부와 상기 수용부의 둘레를 따라 형성된 실링부를 포함하는 케이스, 및 상기 수용부와 상기 실링부 사이에 개재되어 상기 수용부와 상기 실링부를 상호 접합하는 고정 부재를 포함하며, 상기 고정 부재는, 코어층과 상기 코어층의 양면에 각각 적층되는 접착층을 포함한다.
본 실시예에 있어서, 상기 실링부는 적어도 1회 절곡되어 상기 수용부와 접합될 수 있다.
본 실시예에 있어서, 상기 코어층은 상기 접착층보다 낮은 연신율을 갖는 소재로 구성될 수 있다.
본 실시예에 있어서, 상기 케이스는 PET(Polyethylene terephthalate) 소재로 형성되고, 상기 접착층은 폴리우레탄(Polyurethane)계 수지로 형성될 수 있다.
본 실시예에 있어서, 상기 코어층은 PET(Polyethylene terephthalate) 재질로 형성될 수 있다.
본 실시예에 있어서 상기 고정 부재는, 상기 접착층의 두께가 상기 코어층의 두께보다 두껍게 형성될 수 있다.
본 실시예에 있어서, 상기 고정 부재의 두께는 100~300㎛으로 형성되고, 상기 접착층의 두께는 상기 코어층 두께의 2배 이상으로 형성될 수 있다.
본 실시예에 있어서, 상기 고정 부재는 20% 이하의 연신율을 가질 수 있다.
본 실시예에 있어서, 상기 고정 부재는 30N/m2 이상의 인장 강도를 가질 수 있다.
또한 본 발명의 실시예에 따른 배터리 셀 제조 방법은, 전극 조립체를 케이스의 수용부 내에 배치하는 단계, 상기 케이스의 실링부를 절곡하는 단계, 상기 실링부에 고정 부재를 부착하는 단계, 및 상기 고정 부재를 매개로 상기 실링부를 상기 수용부에 접합하는 단계를 포함하며, 상기 고정 부재는, 코어층과 상기 코어층의 양면에 각각 적층되는 접착층을 포함할 수 있다.
본 실시예에 있어서, 상기 실링부를 상기 수용부에 접합하는 단계는, 상기 실링부를 열압착하여 상기 접착층을 용융 및 경화시키는 단계를 포함할 수 있다.
본 실시예에 있어서, 상기 코어층은 PET(Polyethylene terephthalate) 재질로 형성되고, 상기 접착층은 폴리우레탄(Polyurethane)계 수지로 형성될 수 있다.
본 실시예에 있어서, 상기 실링부에 상기 고정 부재를 부착하는 단계는, 상기 고정 부재에 부착된 이형지를 제거하여 점착력을 갖는 상기 고정 부재의 일면을 노출시키는 단계 및 상기 고정 부재의 일면을 상기 실링부에 부착하는 단계를 포함할 수 있다.
본 발명의 실시예에 따른 배터리 셀 및 그 제조 방법은 파우치의 실링부를 절곡 및 접합 함으로써 배터리 셀의 체적 효율을 극대화 할 수 있다.
또한 코어층의 양면에 접착층이 배치되는 고정 부재를 이용하여 실링부와 수용부를 접합하므로, 고정 부재를 실링부에 부착하는 과정에서 고정 부재가 변형되는 것을 최소화할 수 있으며, 열압착 과정에서 용융된 접착층이 과도하게 확산되는 것을 억제할 수 있다. 이에, 실링부와 수용부의 접합 신뢰성을 높일 수 있으며, 제조 과정에서 배터리 셀에 치명적일 수 있는 절연 불량이 발생되는 것을 억제할 수 있다.
도 1은 본 발명의 실시예에 따른 배터리 셀을 개략적으로 도시한 사시도.
도 2는 도 1에 도시된 배터리 셀의 분해 사시도.
도 3은 도 1의 A-A′ 에 따른 단면도.
도 4는 도 3의 B 부분을 확대하여 도시한 확대도
도 5 내지 도 9는 본 실시예에 따른 배터리 셀 제조 방법을 설명하기 위한 도면.
본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음을 유의해야 한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지의 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다.
도 1은 본 발명의 실시예에 따른 파우치형 배터리 셀을 개략적으로 도시한 사시도이고, 도 2는 도 1에 도시된 배터리 셀의 분해 사시도이다. 또한 도 3은 도 1의 A-A′ 에 따른 단면도이고, 도 4는 도 3의 B 부분을 확대하여 도시한 확대도이다. 여기서 도 2의 경우, 설명의 편의를 위해 제2 실링부가 접히지 않은 상태를 도시하였다.
도 1 내지 도 4를 참조하면, 본 발명에 따른 파우치형 배터리 셀은, 전극 조립체(100) 및 파우치형 케이스(200)를 포함한다.
전극 조립체(100)는, 다수의 전극판 및 전극 탭(110)을 구비하며 케이스(200)의 수용부(204) 내에 수납된다. 여기서, 전극판은 양극판과 음극판으로 구성되며, 전극 조립체(100)는 이러한 양극판과 음극판이 세퍼레이터를 사이에 두고 넓은 면이 서로 마주보는 형태가 되도록 적층된 형태로 구성될 수 있다.
양극판과 음극판은 집전체에 활물질 슬러리가 도포된 구조로서 형성되는데, 슬러리는 통상적으로 입상의 활물질, 보조도체, 바인더 및 가소제 등이 용매가 첨가된 상태에서 교반되어 형성될 수 있다.
또한 전극 조립체(100)는 다수의 양극판과 다수의 음극판이 상하 방향으로 적층된다. 이때, 다수의 양극판과 다수의 음극판에는 각각 전극 탭(110)이 구비되며, 서로 동일한 극성끼리 접촉하여 동일한 전극 리드(120)에 연결될 수 있다.
케이스(200)는 제1 케이스(210)와 제2 케이스(220)로 구성될 수 있다. 제1 케이스(210)와 제2 케이스(220)는 각각 실링부(202)와 수용부(204)를 포함한다.
수용부(204)는 용기 형태로 형성되어 내부 공간을 제공한다. 이때, 실링부(202)는 용기 형태로 형성되는 수용부(204)의 입구에서 확장되는 플랜지 형태로 형성된다.
수용부(204)의 내부 공간에는 전극 조립체(100) 및 전해액(미도시)이 수용된다. 수용부(204)는 도 2에 도시된 바와 같이, 제1 케이스(210)와 제2 케이스(220)에 모두 형성된다. 그러나 필요에 따라 어느 한 곳에만 형성하는 것도 가능하다.
실링부(202)는 수용부(204)의 외곽을 따라 테두리 형태로 배치된다.
제1 케이스(210)의 실링부(202)와 제2 케이스(220)의 실링부(202)는 상호 접합되어 수용부(204)에 의해 형성되는 내부 공간을 밀폐한다.
실링부(202) 간의 접합은 열융착 방식이 이용될 수 있으나 이에 한정되지 않는다.
실링부(202)는 전극 리드(120)가 배치되는 제1 실링부(2021)와, 전극 리드(120)가 배치되지 않는 제2 실링부(2022)로 구분될 수 있다. 본 실시예에서 수용부(204)는 사각 형상으로 형성되며, 실링부(202)는 사각 형상의 둘레를 따라 배치된다. 따라서 4개의 실링부(202)를 구비한다.
또한 본 실시예에서 전극 리드(120)는 서로 반대 방향을 향하도록 배치되므로, 2개의 전극 리드(120)는 서로 다른 실링부(202)에 배치된다. 이에 따라서, 제1 실링부(2021)는 2개로 구성되고, 제2 실링부(2022)도 2개로 구성된다.
그러나 본 발명의 구성이 이에 한정되는 것은 아니며, 2개의 전극 리드(120)가 하나의 실링부(202)에 모두 배치되는 경우, 제2 실링부(2022)는 3개로 구성될 수 있다.
또한 본 실시예의 배터리 셀은 실링부(202)의 접합 신뢰성을 높이고 실링부(202)의 면적을 최소화하기 위해, 실링부(202)는 적어도 한 번 접힌 형태로 구성한다.
보다 구체적으로, 본 실시예에 따른 실링부(202)들 중 전극 리드(120)가 배치되지 않는 제2 실링부(2022)는 2회 접힌 후 고정된다.
예를 들어, 제2 실링부(2022)는 도 5에 도시된 제1 절곡선(C1)을 따라 180° 접힌 후, 다시 도 7에 도시된 제2 절곡선(C2)을 따라 접혀 수용부(204)의 측면(도 4의 204a)에 접합될 수 있다. 여기서, 실링부(202)가 제2 절곡선(C2)을 따라 접히는 각도는 수용부 측면(204a)의 각도(도 4의 θ)에 따라 변경될 수 있다.
한편, 본 실시예에서 실링부(202)가 제2 절곡선(C2)을 따라 접히는 각도(θ)는 90°보다 작고, 75°도 이상으로 구성된다.
상기 각도(θ)가 90°이상이 경우, 실링부(202)가 수용부(204) 측으로 파고드는 형상이 되므로, 실링부(202)가 전극 조립체(100)와 접촉할 수 있다. 또한 상기 각도가 75° 미만인 경우, 파우치 내에 무용 공간(Dead Volume)이 증가되므로, 전극 조립체(100)가 수용부(204) 내에서 견고하게 고정되기 어려우며, 체적에너지밀도가 낮아진다는 문제가 있다.
따라서, 본 실시예에서는 이러한 문제들을 해소하기 위해, 상기 각도(θ)를 75°도 이상, 90°이하의 범위로 한정한다.
이와 같은 구조에 의해, 제2 실링부(2022)의 밀봉성을 강화할 수 있으며, 접합 신뢰성도 높일 수 있다.
한편, 제2 절곡선을 따라 접힌 실링부(202)는 고정 부재(250)를 통해 수용부 측면(204a)에 고정 접합된다.
본 실시예에서 고정 부재(250)는 필름 또는 테이프 형태의 부재가 이용되며, 열압착 방식에 의해 용융 및 경화되어 실링부(202)와 수용부(204)를 상호 접합한다.
고정 부재(250)는 코어층(251)과 코어층(251)의 양면에 각각 적층 배치되는 접착층(253)을 포함한다.
코어층(251)은 고정 부재(250)를 실링부(202)에 부착하는 과정에서 고정 부재(250)가 과도하게 연신되는 것을 억제한다. 코어층(251)은 PET(Polyethylene terephthalate) 재질로 형성될 수 있으나 이에 한정되는 것은 아니다.
코어층(251)은 고정 부재(250)의 연신율을 제한하기 위해 구비된다. 후술되는 바와 같이 접착층(253)을 폴리우레탄(Polyurethane) 계열의 소재로 형성하게 되면, 매우 큰 연신율(elongation percentage)을 갖는다. 따라서 접착층(253)만으로 고정 부재(250)를 구성하는 경우, 고정 부재(250)를 실링부(202)에 부착하기 위해 고정 부재(250)에 힘을 가하는 과정에서 고정 부재(250)가 과도하게 신장될 수 있다. 이 경우 고정 부재(250)의 폭은 축소되므로, 고정 부재(250)의 접착력이 감소될 수 있다. 또한 고정 부재(250)의 인장 강도가 낮은 경우, 고정 부재(250)를 실링부(202)에 부착하는 과정에서 고정 부재(250)가 쉽게 파단될 수 있다.
따라서 본 실시예에서는 접착층(253) 사이에 코어층(251)을 개재하여 연신율을 20% 이하로 유지한다. 이를 위해 코어층(251)은, 접착층(253)에 비해 연신율이 작고, 쉽게 늘어나지 않으며, 접착층(253)이 용융되는 온도에서 쉽게 용융되지 않는 재질(예컨대, PET)로 구성된다.
또한 코어층(251)은 배터리 셀 제조 과정에서 접착층(253)이 용융될 때 용융된 접착층이 과도하게 확산되는 것을 억제한다. 코어층(251)이 없는 경우, 고정 부재(250) 전체가 용융되므로, 용융된 접착층(253)은 실링부(202)의 외부로 확산되기 쉽다. 이 경우, 확산된 접착층(253)에 의해 불량이 유발될 수 있다.
그러나 본 실시예와 같이 코어층(251)을 구비하는 경우, 용융된 접착층(253)은 코어층(251)에 의해 표면 장력이 발생되므로 확산이 억제된다. 따라서 접착층(253)이 과도하게 확산됨에 따라 발생되는 불량을 최소화할 수 있다.
접착층(253)은 코어층(251)의 양면에 적층되어 각각 실링부(202)와 수용부(204)에 접합된다. 접착층(253)으로는 폴리우레탄(Polyurethane)계 수지, 폴리올레핀(Polyolefine)계 수지, 폴리에스테르(Polyester)계 수지 및 폴리아마이드(Polyamide)계 수지 등이 이용될 수 있다.
본 실시예에서는 케이스(200)의 표면이 PET (Polyethylene terephthalate) 소재로 형성된다. 따라서, PET (Polyethylene terephthalate)와의 접착성을 고려하여 접착층(253)으로 폴리우레탄(Polyurethane) 계열의 소재를 이용한다.
그러나, 케이스(200)의 표면이 나일론(Nylon) 등과 같이 다른 소재로 구성되는 경우, 접착층(253)은 전술한 다양한 수지들 중에서 선택적으로 이용될 수 있다.
이와 같이 구성되는 고정 부재(250)는 필름 또는 테이프 형태로 구성되므로, 고정 부재(250)를 실링부(202)에 부착하기 위해 고정 부재(250)에 힘을 가하는 과정에서 과도하게 신장되거나 파단될 수 있다.
이에, 본 실시예에서 고정 부재(250)의 연신율(elongation percentage)은 20% 이하로 한정되고, 인장 강도는 30N/m2 이상으로 한정된다.
크기가 10mm X 120mm 인 시편을 대상으로, 표점 거리 100mm, 인장 속도 100mm/min로 인장 강도와 연신율을 측정해본 결과, 폴리우레탄(PUR)만으로 고정 부재를 구성하는 경우 인장 강도가 1N/m2 이하인 것으로 측정되었으며, 연신율은 400%를 초과하는 측정되었다. 따라서 폴리우레탄(PUR)만으로는 본 실시예의 고정 부재(250)로 이용하기 어렵다는 것을 알 수 있다.
반면에, 본 실시예와 같이 접착층(253) 사이에 코어층(251)을 개재하는 경우, 고정 부재(250)의 인장 강도는 30N/m2 ~ 45N/m2 로 측정되었으며, 연신율(elongation percentage)은 20% 이하로 측정되었다. 따라서, 본 실시예의 고정 부재(250)를 이용하는 경우, 상기한 문제를 해소할 수 있음을 알 수 있다.
한편, 전술한 바와 같이, 코어층(251)은 고정 부재(250)의 연신율을 제한하기 위해 구비되므로, 이러한 기능이 수행될 수만 있다면 두껍게 형성될 필요가 없다. 예를 들어, 코어층(251)의 두께는 10 ~ 50㎛의 범위로 규정될 수 있으나, 이에 한정되는 것은 아니다.
이에 본 실시예의 고정 부재(250)는 접착층(253)이 코어층(251)보다 두껍게 형성된다. 예를 들어, 각 접착층(253)의 두께는 고정 시트의 2배 이상으로 형성될 수 있다. 예를 들어, 각 접착층(253)의 폭은 50 ~ 120㎛의 범위로 규정될 수 있으나, 이에 한정되는 것은 아니다.
또한 고정 부재(250)의 폭(W1)은 후술되는 외측 실링부(도 7의 2022b)의 폭(W2)보다 좁게 형성된다. 그리고 외측 실링부(2022b)의 폭(W2)은 수용부(204) 측면(204a)의 폭보다 좁게 형성된다. 따라서 고정 부재(250)는 일면 전체가 외측 실링부(2022b)에 접합되고, 타면 전체가 수용부(204)의 측면(204a)에 접합된다. 또한 외측 실링부(2022b)는 전체가 수용부(204)의 측면(204a)과 마주보도록 배치되므로, 수용부(204)의 측면(204a) 외부로 돌출되지 않는다.
예컨대, 고정 부재(250)는 1mm ~ 5mm의 폭으로 형성될 수 있으나 이에 한정되는 것은 아니다.
한편, 고정 부재(250)의 두께가 100㎛ 미만인 경우, 접착층(253)의 두께가 너무 얇아 접착력이 저하된다. 또한 고정 부재(250)의 두께가 300㎛를 초과하는 경우, 고정 부재(250)의 두께로 인해 실링부(202)와 수용부(204) 사이의 간격이 증가하여 배터리 셀의 크기가 증가된다. 따라서 본 실시예에서 고정 부재(250)의 두께는 100㎛ 이상, 300㎛ 이하의 범위로 한정될 수 있다.
이어서, 본 발명의 실시예에 따른 배터리 셀 제조 방법을 설명한다.
도 5는 본 실시예에 따른 배터리 셀 제조 방법을 설명하기 위한 도면이다.
도 5를 참조하면, 먼저 제1, 제2 케이스(210, 220)의 수용부(204) 내에 전극 조립체(100)를 배치하고 수용부(204) 내부 공간에 전해액을 채운 후, 제1 케이스(210)의 실링부(202)와 제2 케이스(220)의 실링부(202)를 접합 및 밀봉한다.
여기서, 케이스(200)는 절연물질로 형성된 절연층들 사이에 알루미늄 박막이 개재된 시트가 이용될 수 있다. 또한 절연층들은 나일론(Nylon)이나 PET(Polyethylene Terephthalate), PP(polypropylene) 등의 고분자 재료로 형성될 수 있으나 이에 한정되는 것은 아니다.
이어서 제1 절곡선(C1)을 따라 제2 실링부(2022)를 180° 절곡하는 1차 절곡 단계가 수행된다. 이하에서는 설명의 편의를 위해, 제1 절곡선(C1)의 외측에 배치되는 부분을 외측 실링부(2022b)로 지칭하고, 제1 절곡선(C1)의 내측에 배치되는 부분을 내측 실링부(2022a)로 지칭한다.
제2 실링부(2022)를 절곡함에 따라, 도 6에 도시된 바와 같이, 외측 실링부(2022b)는 내측 실링부(2022a)와 포개진 상태로 내측 실링부(2022a)의 상부에 배치된다. 이때, 외측 실링부(2022b)와 내측 실링부(2022a)가 포개진 형상이 유지되도록, 외측 실링부(2022b)와 내측 실링부(2022a)를 가압하며 열을 가할 수 있다.
제1 절곡선(C1)은 제2 실링부(2022)를 길이방향으로 분할하는 선으로 정의될 수 있다. 내측 실링부(2022a)와 외측 실링부(2022b)는 동일한 폭으로 분할될 수 있다. 그러나 이에 한정되는 것은 아니며, 본 실시예와 같이 외측 실링부(2022b)의 폭이 내측 실링부(2022a)의 폭보다 작게 구성되도록 제1 절곡선(C1)을 규정하는 등 외측 실링부(2022b) 전체 영역이 내측 실링부(2022a)와 대면할 수만 있다면 다양한 변형이 가능하다.
이어서, 도 7에 도시된 바와 같이, 내측 실링부(2022a)의 상부에 위치한 외측 실링부(2022b) 상에 고정 부재(250)를 배치한다.
고정 부재(250)는 필름 또는 테이프 형태로 마련된다. 전술한 바와 같이 케이스(200)의 표면이 PET (Polyethylene terephthalate) 소재인 경우, 접착층(253)은 폴리우레탄(Polyurethane) 계열의 소재로 형성된다.
또한 외측 실링부(2022b)에 면접촉하는 고정 부재(250)의 일면은 점착력 또는 접착력을 갖는다. 따라서 외측 실링부(2022b) 상에 배치된 고정 부재(250)는 외측 실링부(2022b)에서 쉽게 분리되지 않는다. 이를 위해, 고정 부재(250)는 일면에 이형지가 부착된 상태로 공급되고, 본 단계에서 이형지가 제어된 후 외측 실링부(2022b)에 부착될 수 있다.
한편, 고정 부재(250)를 외측 실링부(2022b) 상에 접합하는 과정에서, 고정 부재(250)가 외측 실링부(2022b) 상에 편평하게 접합되도록 고정 부재(250)에는 일정한 힘으로 장력이 가해진다. 이 과정에서 상기한 장력에 의해 고정 부재(250)는 연신될 수 있다. 그러나 전술한 바와 같이 본 실시예에 따른 고정 부재는 코어층을 구비하므로, 20% 이하로 연신되며, 30N/m2 이상의 인장 강도를 갖는다. 따라서 고정 부재(250)가 과도하게 연신되어 변형되거나 파단되는 것을 방지할 수 있다.
이어서, 제2 절곡선(C2)을 따라 제2 실링부(2022)를 절곡하는 2차 절곡 단계가 수행된다.
제2 절곡선(C2)은 수용부(204)와 제2 실링부(2022)의 경계를 따라 형성되거나, 상기 경계와 인접한 위치에 형성된다.
실링부(202)를 절곡함에 따라, 도 8에 도시된 바와 같이, 외측 실링부(2022b)에 접합된 고정 부재(250)는 타면이 수용부의 측면(204a)에 면접촉하며, 외측 실링부(2022b)와 내측 실링부(2022a)는 수용부의 측면(204a)과 포개진 상태로 배치된다.
이어서, 도 9에 도시된 바와 같이 실링부(202)의 외부에서 고정 부재(250)를 열압착한다.
본 단계는 고온 가압 장치(270)로 실링부(202)와 고정 부재(250)를 함께 가압하며 열을 공급한다. 이 과정에서 고정 부재(250)에는 110℃~150℃의 열과, 0.2~1 MPa의 압력이 5~30 초 동안 가해질 수 있다. 그러나 이에 한정되는 것은 아니다.
이로 인해, 고정 부재(250)의 접착층(253)은 용융된 후 다시 경화되며, 이 과정에서 고정 부재(250)의 양면은 실링부(202)와 수용부(204)에 각각 접합된다.
이상의 과정을 통해 실링부(202)가 고정 부재(250)를 매개로 수용부의 측면(204a)에 접합되면, 본 실시예에 따른 배터리 셀이 완성된다.
이상에서 설명한 본 실시예에 따른 배터리 셀 및 그 제조 방법은 케이스의 실링부를 절곡한 후, 실링부를 수용부에 접합하므로, 실링 부위에서 전해액 및 가스가 외부 노출되는 것을 방지할 수 있다.
또한 코어층의 양면에 접착층이 배치되는 구성되는 고정 부재를 이용하여 실링부와 수용부를 접합한다. 따라서 고정 부재를 실링부에 부착하는 과정에서 고정 부재가 변형되는 것을 최소화할 수 있으며, 열압착 과정에서 용융된 접착층이 과도하게 확산되는 것을 억제할 수 있다. 이에, 실링부와 수용부의 접합 신뢰성을 높일 수 있으며, 제조 과정에서 불량이 발생되는 것을 억제할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
예를 들어 전술한 실시예에서는 제2 실링부가 2회 절곡되는 경우를 예로 들었으나, 본 발명이 이에 한정되는 것은 아니며, 1회만 절곡하거나, 3회 이상 절곡하는 등 필요에 따라 다양한 변형이 가능하다.
또한 전술한 실시예에서는 고정 부재가 연속적인 선형으로 형성되나, 짧은 길이의 고정 부재를 다수개 이격 배치하여 파선 형태로 구성하는 것도 가능하다.
더하여, 본 실시예에서는 실링부와 수용부 사이에만 고정 부재를 배치하였으나, 필요에 따라 외측 실링부와 내측 실링부 사이에도 고정 부재를 배치할 수 있다.

Claims (13)

  1. 전극 조립체;
    상기 전극 조립체가 수용되는 수용부와, 상기 수용부의 둘레를 따라 형성된 실링부를 포함하는 케이스; 및
    상기 수용부와 상기 실링부 사이에 개재되어 상기 수용부와 상기 실링부를 상호 접합하는 고정 부재;
    를 포함하며,
    상기 고정 부재는,
    코어층과 상기 코어층의 양면에 각각 적층되는 접착층을 포함하는 배터리 셀.
  2. 제1항에 있어서, 상기 실링부는
    적어도 1회 절곡되어 상기 수용부와 접합되는 배터리 셀.
  3. 제1항에 있어서,
    상기 코어층은 상기 접착층보다 낮은 연신율을 갖는 소재로 구성되는 배터리 셀.
  4. 제1항에 있어서,
    상기 케이스는 PET(Polyethylene terephthalate) 소재로 형성되고,
    상기 접착층은 폴리우레탄(Polyurethane)계 수지로 형성되는 배터리 셀.
  5. 제4항에 있어서,
    상기 코어층은 PET (Polyethylene terephthalate) 재질로 형성되는 배터리 셀.
  6. 제1항에 있어서, 상기 고정 부재는,
    상기 접착층의 두께가 상기 코어층의 두께보다 두껍게 형성되는 배터리 셀.
  7. 제1항에 있어서,
    상기 고정 부재의 두께는 100~300㎛으로 형성되고, 상기 접착층의 두께는 상기 코어층 두께의 2배 이상으로 형성되는 배터리 셀.
  8. 제1항에 있어서,
    상기 고정 부재는 20% 이하의 연신율을 갖는 배터리 셀.
  9. 제1항에 있어서,
    상기 고정 부재는 30N/m2 이상의 인장 강도를 갖는 배터리 셀.
  10. 전극 조립체를 케이스의 수용부 내에 배치하는 단계;
    상기 케이스의 실링부를 절곡하는 단계;
    상기 실링부에 고정 부재를 부착하는 단계; 및
    상기 고정 부재를 매개로 상기 실링부를 상기 수용부에 접합하는 단계;
    를 포함하며,
    상기 고정 부재는,
    코어층과 상기 코어층의 양면에 각각 적층되는 접착층을 포함하는 배터리 셀 제조 방법.
  11. 제10항에 있어서, 상기 실링부를 상기 수용부에 접합하는 단계는,
    상기 실링부를 열압착하여 상기 접착층을 용융 및 경화시키는 단계를 포함하는 배터리 셀 제조 방법.
  12. 제11항에 있어서,
    상기 코어층은 PET(Polyethylene terephthalate) 재질로 형성되고, 상기 접착층은 폴리우레탄(Polyurethane)계 수지로 형성되는 배터리 셀 제조 방법.
  13. 제11항에 있어서, 상기 실링부에 상기 고정 부재를 부착하는 단계는,
    상기 고정 부재에 부착된 이형지를 제거하여 점착력을 갖는 상기 고정 부재의 일면을 노출시키는 단계; 및
    상기 고정 부재의 일면을 상기 실링부에 부착하는 단계;
    를 포함하는 배터리 셀 제조 방법.
PCT/KR2019/003460 2018-03-27 2019-03-25 배터리 셀 및 그 제조 방법 WO2019190145A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/758,306 US11764394B2 (en) 2018-03-27 2019-03-25 Battery cell and manufacturing method thereof
DE112019001619.9T DE112019001619T5 (de) 2018-03-27 2019-03-25 Batteriezelle und Verfahren zu deren Herstellung
CN201980005888.9A CN111712939A (zh) 2018-03-27 2019-03-25 电池单元及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0035346 2018-03-27
KR1020180035346A KR102642969B1 (ko) 2018-03-27 2018-03-27 배터리 셀 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2019190145A1 true WO2019190145A1 (ko) 2019-10-03

Family

ID=68062322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003460 WO2019190145A1 (ko) 2018-03-27 2019-03-25 배터리 셀 및 그 제조 방법

Country Status (5)

Country Link
US (1) US11764394B2 (ko)
KR (1) KR102642969B1 (ko)
CN (1) CN111712939A (ko)
DE (1) DE112019001619T5 (ko)
WO (1) WO2019190145A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220223950A1 (en) * 2021-01-12 2022-07-14 Sk On Co., Ltd. Battery cell and method of manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065764A1 (ko) * 2020-09-28 2022-03-31 주식회사 엘지에너지솔루션 파우치 전지셀 및 이를 포함하는 전지 모듈
WO2022155855A1 (zh) * 2021-01-21 2022-07-28 宁德新能源科技有限公司 电芯、电池及用电装置
DE102021103376A1 (de) * 2021-02-12 2022-08-18 Volkswagen Aktiengesellschaft Batteriezelle und Verfahren zur Herstellung einer Batteriezelle
KR20220161969A (ko) * 2021-05-31 2022-12-07 현대자동차주식회사 파우치형 리튬이차전지 실러, 실링 방법 및 이에 의해 제조된 파우치형 리튬이차전지
CN115642351A (zh) * 2021-07-19 2023-01-24 Sk新能源株式会社 袋型二次电池及其制造方法
KR20230055116A (ko) * 2021-10-18 2023-04-25 에스케이온 주식회사 배터리 셀 및 이를 구비하는 배터리 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110111826A (ko) * 2010-04-05 2011-10-12 (주)엘지하우시스 터치 패널용 점착제 조성물, 점착필름 및 터치 패널
KR20130100701A (ko) * 2012-03-02 2013-09-11 삼성에스디아이 주식회사 이차 전지
KR20140061148A (ko) * 2012-11-13 2014-05-21 주식회사 엘지화학 파우치형 이차전지 및 그 제조방법
US20140220413A1 (en) * 2013-02-05 2014-08-07 Samsung Sdi Co., Ltd. Battery pack and method for manufacturing the same
KR20160077871A (ko) * 2014-12-24 2016-07-04 주식회사 엘지화학 에너지가 증대된 파우치형 이차전지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553735B1 (ko) 1999-08-09 2006-02-20 삼성에스디아이 주식회사 이차전지 및 그 제조방법
DE102006033796A1 (de) * 2006-07-19 2008-01-31 Tesa Ag Haftklebestoffe aus einem harzmodifizierten Polyurethan
JP2010007023A (ja) 2008-06-30 2010-01-14 Three M Innovative Properties Co 硬化性接着シート
KR101083959B1 (ko) 2010-02-01 2011-11-16 닛토덴코 가부시키가이샤 반도체 장치 제조용 필름 및 반도체 장치의 제조 방법
JP6223922B2 (ja) 2014-07-23 2017-11-01 日東電工株式会社 伸長性粘着シート
KR101863703B1 (ko) 2014-10-20 2018-06-01 주식회사 엘지화학 파우치형 이차 전지 및 이의 제조방법
KR20160080559A (ko) 2014-12-30 2016-07-08 주식회사 엘지화학 실링부가 보강된 파우치형 이차 전지 및 이의 제조 방법
CN106032458A (zh) 2015-03-13 2016-10-19 德莎欧洲公司 压敏粘合剂组合物和红外透明黑色胶带、其制备方法及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110111826A (ko) * 2010-04-05 2011-10-12 (주)엘지하우시스 터치 패널용 점착제 조성물, 점착필름 및 터치 패널
KR20130100701A (ko) * 2012-03-02 2013-09-11 삼성에스디아이 주식회사 이차 전지
KR20140061148A (ko) * 2012-11-13 2014-05-21 주식회사 엘지화학 파우치형 이차전지 및 그 제조방법
US20140220413A1 (en) * 2013-02-05 2014-08-07 Samsung Sdi Co., Ltd. Battery pack and method for manufacturing the same
KR20160077871A (ko) * 2014-12-24 2016-07-04 주식회사 엘지화학 에너지가 증대된 파우치형 이차전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220223950A1 (en) * 2021-01-12 2022-07-14 Sk On Co., Ltd. Battery cell and method of manufacturing the same

Also Published As

Publication number Publication date
KR102642969B1 (ko) 2024-03-04
KR20190113113A (ko) 2019-10-08
US11764394B2 (en) 2023-09-19
DE112019001619T5 (de) 2020-12-17
CN111712939A (zh) 2020-09-25
US20200343575A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019190145A1 (ko) 배터리 셀 및 그 제조 방법
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2014168397A1 (ko) 라운드 코너를 포함하는 전지셀
WO2020071833A1 (ko) 용접 불량을 방지할 수 있는 전지팩 프레임을 포함하는 전지팩 및 이를 제조하기 위한 가압 지그
WO2019098545A1 (ko) 이차 전지 및 그의 제조 방법, 이차 전지용 파우치 및 그의 제조 방법
WO2019245214A1 (ko) 이차 전지 및 버스바를 포함한 배터리 모듈
WO2020159116A1 (ko) 전극 탭 용접부의 압접부 크기가 상이한 전극조립체 및 이를 제조하는 초음파 용접 장치
WO2015046703A1 (ko) 테이프를 이용한 전극조립체의 고정방법
WO2021118091A1 (ko) 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법
WO2018074773A1 (ko) 이차전지
WO2022030839A1 (ko) 단선 방지층을 포함하는 전극 조립체 및 이의 제조방법
WO2019103302A1 (ko) 파우치 타입 이차 전지
WO2013065962A1 (en) Battery cell, manufacturing method thereof, and battery module including the same
WO2023014071A1 (ko) 전극리드 일체형 전극조립체 및 이의 제조방법
WO2022203232A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022092616A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2022005233A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022149897A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2021085977A1 (ko) 전극 리드 제조 방법 및 가압기
WO2021096035A1 (ko) 이차 전지 및 실링 블록
WO2020171372A1 (ko) 이차 전지 및 그의 제조 방법
WO2022065810A1 (ko) 이차전지 제조방법 및 이차전지
WO2024063383A1 (ko) 전극 조립체 및 이의 제조방법
WO2023058955A1 (ko) 전극 조립체 및 이를 포함하는 전지 셀
WO2023146242A1 (ko) 온도 측정이 가능한 전지팩용 인쇄회로기판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777306

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777306

Country of ref document: EP

Kind code of ref document: A1