WO2021118091A1 - 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법 - Google Patents

벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법 Download PDF

Info

Publication number
WO2021118091A1
WO2021118091A1 PCT/KR2020/016230 KR2020016230W WO2021118091A1 WO 2021118091 A1 WO2021118091 A1 WO 2021118091A1 KR 2020016230 W KR2020016230 W KR 2020016230W WO 2021118091 A1 WO2021118091 A1 WO 2021118091A1
Authority
WO
WIPO (PCT)
Prior art keywords
pouch
type battery
layer
battery case
battery cell
Prior art date
Application number
PCT/KR2020/016230
Other languages
English (en)
French (fr)
Inventor
황수지
최용수
김상훈
유형균
김나윤
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022505284A priority Critical patent/JP7377591B2/ja
Priority to US17/769,104 priority patent/US20230231234A1/en
Priority to CN202080054322.8A priority patent/CN114175370A/zh
Priority to EP20899163.8A priority patent/EP4009432B1/en
Publication of WO2021118091A1 publication Critical patent/WO2021118091A1/ko
Priority to JP2023183642A priority patent/JP2024012380A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a pouch-type battery cell having a venting part attached thereto and a method for manufacturing the same, and specifically, it is possible to open and close the pouch-type battery case on the outer surface so that gas can be smoothly discharged when the internal pressure of the pouch-type battery cell increases. It relates to a pouch-type battery cell with a venting part attached thereto and a method for manufacturing the same.
  • Lithium secondary batteries which are reusable and have a high energy density, are attracting attention as a new energy source with eco-friendly characteristics because they can dramatically reduce the use of fossil fuels and do not generate by-products due to the use of energy.
  • the lithium secondary battery may be classified into a pouch-type battery cell made of a laminate sheet, a cylindrical battery cell made of a metal can, or a prismatic battery cell according to the type and shape of the exterior material, and the electrode assembly is a jelly-roll type electrode assembly according to the shape. , it is divided into a stack-type electrode assembly, a stack/folding-type electrode assembly, and a lamination/stack-type electrode assembly.
  • the pouch-type lithium secondary battery is easy to manufacture in various sizes, light and has high energy density, it is used as a power source for electric vehicles or hybrid vehicles requiring high output and high capacity energy sources.
  • Patent Document 1 discloses only a valve member applied to a battery module housing, but does not disclose a venting member applicable to a pouch-type battery cell.
  • the pouch-type battery cell has a structure in which gas is smoothly discharged when the internal pressure of the pouch-type battery cell is increased without increasing the external size of the battery case in the pouch-type battery cell, and the battery can be continuously used after the gas is discharged. And there is a high need for a manufacturing method thereof.
  • Patent Document 1 Korean Patent Publication No. 2012-0009592 (02.02.2012)
  • Patent Document 2 Korean Patent Publication No. 2018-0038880 (2018.04.17)
  • An object of the present invention is to provide a pouch-type battery cell attached to the inside of an opening formed in a pouch-type battery case, and a venting part of a form that can be opened and closed is attached, and a method for manufacturing the same .
  • a pouch-type battery cell with a venting part according to the present invention for achieving this object is a pouch-type battery case made of a laminate sheet, an electrode assembly accommodated inside the pouch-type battery case, and internal gas of the pouch-type battery case It may include a venting part for discharging the battery, and the pouch-type battery case has an opening, and the opening may have a structure that is opened and closed by a venting part attached to the inside of the opening.
  • the first layer and the second layer may be made of the same material.
  • the inner resin layer and the first layer may be combined.
  • the pouch-type battery case includes a first battery case having an electrode assembly accommodating part and a second battery case coupled to the first battery case to seal the pouch-type battery case, and the venting part includes a central portion of the first battery case and It may be attached to at least one of the central portions of the second battery case.
  • the present invention provides a method for manufacturing the pouch-type battery cell, specifically, the method for manufacturing the pouch-type battery cell comprises the steps of: (a) preparing a laminate sheet having an opening, (b) in the opening It may include the steps of attaching a venting part, (c) manufacturing the pouch-type battery case by molding the laminate sheet, and (d) accommodating and sealing the electrode assembly in the pouch-type battery case.
  • the venting part may have a structure in which a pore-formed first layer and a pore-free second layer are stacked.
  • the first layer and the second layer may be made of the same material.
  • the material may be polytetrafluoroethylene (PTFE).
  • the present invention also provides a battery pack including the pouch-type battery cell.
  • FIG. 1 is a perspective view of a pouch-type battery cell in which a venting part is formed according to a first embodiment.
  • FIG. 3 is a partially enlarged view of a vertical cross-sectional view taken along line A-A' of FIG. 1 .
  • FIG. 7 is a SEM photograph of a pouch-type battery case and a venting portion overlapped and combined.
  • FIG. 1 is a perspective view of a pouch-type battery cell in which a venting part is formed according to a first embodiment.
  • the pouch-type battery cell 100 accommodates an electrode assembly and an electrolyte in a pouch-type battery case made of a laminate sheet and has an outer periphery sealed.
  • the electrode assembly may be a unidirectional electrode assembly in which the positive electrode lead 101 and the negative electrode lead 102 protrude in one direction, or, unlike shown in FIG. 1, a bidirectional electrode in which the positive electrode lead and the negative electrode lead protrude in different directions. It may be an assembly.
  • the pouch-type battery case 110 is combined with the first battery case 111 and the first battery case 111 having the electrode assembly accommodating part 113 formed thereon to seal the pouch-type battery case 110 ( 112), an opening is formed in the center of the second battery case 112, and a venting part 130 is attached to the inside of the opening.
  • the pouch-type battery case 110 expands due to a gas generated by a side reaction inside the pouch-type battery cell 100, the central portions of the first battery case and the second battery case are most inflated and inflated. pressure can be concentrated. In this case, as the difference between the gas pressure of the venting part and the external pressure of the pouch-type battery cell increases, the gas may be discharged through the pores of the venting part.
  • the venting unit according to the present invention has no or small difference between the pressure inside the pouch-type battery cell and the external pressure, gas is not discharged and the inflow of external substances into the battery cell is blocked, but the pouch-type battery cell
  • the pressure difference between the inside and the outside of the battery cell is 0.1 atm or more
  • the internal gas is discharged through the first layer and the second layer of the venting part by the atmospheric pressure difference.
  • the pressure difference between the inside and the outside of the pouch-type battery cell is 0.1 atm or less or disappears as the gas is discharged to some extent, the process in which the gas discharge is blocked again may be performed reversibly.
  • the venting part 230 of FIG. 2 has a structure in which three spaced apart venting parts 230 are attached to an adjacent part of the sealing part 215 .
  • the radius of the venting part 230 shown in FIG. 2 is smaller than the radius of the venting part 210 shown in FIG. 1, taking into consideration the attachment position of the venting part, the size of the battery case and the amount of gas generated, etc.
  • the number, size and location of the parts can be selectively applied.
  • FIG. 3 is a partially enlarged view of a vertical cross-sectional view taken along line A-A' of FIG. 1 , and specifically shows the structure of a pouch-type battery case to which a venting part according to the present invention is attached.
  • the outer resin layer serves to protect the battery cell from the outside, it must have excellent resistance from the external environment, and excellent tensile strength and weather resistance compared to the thickness are required, for example, polyethylene terephthalate (PET), Polyester-based resins such as polybutylene terephthalate (PBT) and polyethylene naphthalate (PEN), polyolefin-based resins such as polyethylene (PE) and polypropylene (PP), polystyrene-based resins such as polystyrene, poly A vinyl chloride-based resin, a polyvinylidene chloride-based resin, etc. may be used. These materials may be used alone or in combination of two or more, and ONy (stretched nylon film) may be additionally used.
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • polyolefin-based resins such as polyethylene (PE) and polypropylene (PP)
  • polystyrene-based resins such as poly
  • Aluminum (Al) or an aluminum alloy may be used for the metal layer to exhibit a function of improving the strength of the battery case in addition to the function of preventing the inflow of foreign substances such as gas and moisture or the leakage of the electrolyte, and the aluminum alloy is, for example, For example, alloy numbers 8079, 1N30, 8021, 3003, 3004, 3005, 3104, 3105, etc. may be mentioned, and these may be used alone or in combination of two or more.
  • the inner resin layer has heat-sealing properties (thermal adhesiveness), low hygroscopicity to the electrolyte in order to suppress the penetration of the electrolyte, and a polymer resin that does not expand or corrode by the electrolyte may be used, preferably poly Propylene, acid-modified polypropylene, or combinations thereof may be used.
  • the thickness of the outer coating layer is 5 ⁇ m to 40 ⁇ m
  • the thickness of the metal layer is 20 ⁇ m to 150 ⁇ m
  • the thickness of the inner resin layer is 10 ⁇ m to 50 ⁇ m.
  • the venting unit 130 has a structure in which a first layer 131 having pores and a second layer 132 without pores are stacked, and the first layer 131 and the second layer 132 are stacked.
  • Silver is made of the same material in that it is made of polytetrafluoroethylene (PTFE).
  • the PTFE has excellent electrolyte resistance, heat resistance and hydrophobicity, and thus may be used as a material for a venting part attached to the inside of a pouch-type battery case.
  • the first layer 131 has a structure in which pores are formed, whereas the second layer 132 has a shape in which pores are not formed.
  • the first layer of FIG. 4 has a structure in which open pores are communicated between the inside and the outside
  • the second layer of FIG. 5 has a curved surface but no pores are formed. form can be seen.
  • gas may be discharged through a minute gap formed between the polymers.
  • the inner resin layer of the pouch-type battery case melts into the pores of the first layer of the venting part so that the venting part can be stably attached to the inner surface of the pouch-type battery case, and the gas formed inside the pouch-type battery case may be discharged to the outside through the first layer and the second layer of the venting part.
  • PTFE has a melting point of 327 °C, which is different from that of polypropylene (PP), which is mainly used as an inner resin layer of a pouch-type battery case, which has a melting point of about 160 °C.
  • the PP when heating and pressurizing the venting part of the PTFE material to attach it to the inner resin layer made of PP, if the heating temperature is a temperature enough to melt the PTFE, the PP may be damaged. On the other hand, when the PP is not damaged but heated to a temperature sufficient to melt the PP, since the PTEF does not melt, it is difficult to bond with each other.
  • a structure is used in which the venting part is attached to the pouch-type battery case so that the first layer 131 having pores is in contact with the inner resin layer 110c of the pouch-type battery case.
  • the portion where the pouch-type battery case and the venting part overlap to be attached to the battery case is heated and pressurized at a high temperature, a part of the internal resin layer 110c is melted into the pores of the first layer 131 and cured. While being coupled to the first layer 131, the inner resin layer 110c is anchored in the form of anchoring.
  • FIG. 6 is another embodiment of FIG. 3 and specifically shows the structure of a pouch-type battery case to which a venting part according to the present invention is attached.
  • the pouch-type battery case 310 has an outer resin layer 310a, an adhesive layer 310d, a metal layer 310b, an adhesive layer 310d, and an inner resin layer 310c from top to bottom in the drawing.
  • an adhesive layer is additionally introduced between the outer resin layer and the metal layer, and between the metal layer and the inner resin layer, compared to the pouch-type battery case shown in FIG. 3 . That is, due to the addition of the adhesive layer, the pouch-type battery case of FIG. 6 may have improved adhesion between the respective layers than the pouch-type battery case of FIG. 3 .
  • the venting part 330 includes a first layer 331 having pores and a second layer 332 having no pores, and the first layer 331 is attached to the inner resin layer 310c.
  • the inner resin layer 310c melts and moves to the pores of the first layer 331, anchoring ( bonding by anchoring).
  • the venting part is attached to the outside of the opening of the pouch-type battery case, the gas discharge effect can be achieved when the gas internal pressure is increased, but in this case, the metal layer of the pouch-type battery case is exposed at the part where the opening is formed. Since there is a problem that hydrofluoric acid generated by the side reaction of the electrolyte corrodes the metal layer made of aluminum, it is not preferable.
  • FIG 7 shows an SEM photograph of the pouch-type battery case and the venting part overlapped and combined.
  • the pouch-type battery case includes an outer resin layer 410a, a metal layer 410b, and an inner resin layer 410c.
  • the venting part 430 has a structure in which a first layer 431 and a second layer 432 are stacked.
  • the outer resin layer 410a has a structure in which a PET layer, an adhesive layer, a nylon layer, and an adhesive layer are sequentially stacked from the outside to the inside, the metal layer 410b is a layer made of aluminum, and the inner resin layer 410c is made of polypropylene and It may be a combination of acid-modified polypropylene, or an unstretched polypropylene film.
  • the venting part 430 is made of a PTFE material, and includes a first layer 431 having pores and a second layer 432 made of a PTFE material and not having pores.
  • the total thickness of the outer resin layer may be 33.1 ⁇ m
  • the thickness of the metal layer may be 41.4 ⁇ m
  • the thickness of the inner resin layer may be 80 ⁇ m.
  • the inner resin layer may be manufactured in the form of extruding each of polypropylene and acid-modified polypropylene onto a metal layer, and laminating the inner resin layer with a metal layer and an outer resin layer to manufacture a pouch-type battery case,
  • the thickness of the polypropylene may be 40 ⁇ m and the thickness of the acid-modified polypropylene may be 40 ⁇ m.
  • the inner resin layer may be in the form of a non-stretched polypropylene (CPP) film having a thickness of 80 ⁇ m, and the non-stretched polypropylene film is attached to the metal layer using an adhesive, and laminated with the outer resin layer to form a pouch.
  • CPP non-stretched polypropylene
  • the polypropylene of the inner resin layer melts and enters the pores of the first layer. As shown in FIG. 7, the thickness of the inner resin layer is reduced to 12.2 ⁇ m, The pores are not visible in the first layer 431 .
  • the internal resin layer is introduced into the pores of the first layer, and it can be confirmed that the adhesion is made uniformly in the entire part while anchoring is made, and the venting part is stably attached to the inside of the pouch-type battery case.
  • the temperature for adhering the first layer and the inner resin layer is 180° C. to 220° C.
  • the pressure is 0.05 MPa to 0.5 MPa
  • the pressing time may be selectively applied within the range of 1 second to 5 seconds.
  • the internal pressure of the pouch-type battery cell becomes higher than the external atmospheric pressure, and the opening and the venting portion formed in the pouch-type battery case A gas may be discharged through the first layer and the second layer.
  • the pouch-type battery cell according to the present invention discharges the internal gas through the venting unit when the internal pressure of the battery cell increases, and when the same state as the external atmospheric pressure of the battery cell, the gas emission is blocked and the process of preventing the inflow of external moisture can be done reversibly.
  • a method for manufacturing a pouch-type battery cell (a) preparing a laminate sheet having an opening, (b) attaching a venting part to the opening, (c) molding the laminate sheet It may include manufacturing a pouch-type battery case, and (d) accommodating and sealing the electrode assembly in the pouch-type battery case.
  • the pouch-type battery cell has an opening formed before molding, and it is preferable in consideration of process convenience to mold the electrode assembly housing part with a vent part attached to the opening.
  • step (b) may be performed between the steps (c) and (d), or between the steps (c) and (d), an opening is formed in the laminate sheet and vented
  • the step of attaching the part may proceed.
  • the venting part may have a structure in which a first layer having pores and a second layer having no pores are stacked, and the first layer and the second layer may be made of PTFE.
  • the pouch-type battery cell according to the present invention has a structure in which a venting part is attached to the inside of the battery case, an increase in the size of the battery cell can be minimized by adding the venting part.
  • venting part according to the present invention is not in the form of being broken while being opened, but since the opening and closing of the venting part is possible to enable reversible use, the battery cell can be continuously used after exhaust.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

본 발명은 라미네이트 시트로 이루어진 파우치형 전지케이스, 상기 파우치형 전지케이스 내부에 수납된 전극조립체, 및 상기 파우치형 전지케이스의 내부 가스를 배출하기 위한 벤팅부를 포함하고, 상기 파우치형 전지케이스는 개구가 형성되어 있으며, 상기 개구는 상기 개구의 내측에 부착되어 있는 벤팅부에 의해 개폐가 이루어지는 파우치형 전지셀에 대한 것으로서, 파우치형 전지셀의 내압 증가시 개방되어 신속하게 가스를 배출하고, 가역적으로 전지셀의 내부와 외부를 차단할 수 있는 형태의 파우치형 전지셀 및 이의 제조방법에 대한 것이다. (대표도) 도 1

Description

벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법
본 출원은 2019년 12월 13일자 한국 특허 출원 제 2019-0166594 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본원 발명은 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법에 대한 것으로서, 구체적으로, 파우치형 전지셀의 내압 증가시 가스의 배출이 원활하게 이루어질 수 있도록, 파우치형 전지케이스의 외면에 개폐가 가능한 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법에 대한 것이다.
재사용이 가능하며 높은 에너지 밀도를 갖는 리튬 이차전지는 화석 연료의 사용을 획기적으로 줄일 수 있을 뿐 아니라 에너지의 사용에 따른 부산물이 발생하지 않기 때문에 친환경 특성을 갖는 새로운 에너지원으로 주목받고 있다.
상기 리튬 이차전지는 외장재의 종류 및 형태에 따라 라미네이트 시트로 이루어진 파우치형 전지셀, 금속 캔으로 이루어진 원통형 전지셀 또는 각형 전지셀로 분류될 수 있으며, 전극조립체는 그 형태에 따라 젤리-롤형 전극조립체, 스택형 전극조립체, 스택/폴딩형 전극조립체 및 라미네이션/스택형 전극조립체로 구분된다.
상기 파우치형 리튬 이차전지는 다양한 크기로 제작이 용이하고 가벼우며 에너지 밀도가 높은 특성이 있기 때문에 고출력 및 고용량의 에너지원이 필요한 전기자동차 또는 하이브리드 자동차 등의 동력으로 사용되고 있다.
상기 파우치형 리튬 이차전지는 라미네이트 시트로 이루어진 파우치형 전지케이스에 전극조립체와 전해액을 수납한 후 전지케이스 외주변을 가열가압하는 방법으로 밀봉하여 제조한다.
리튬 이차전지는 제조과정 중 활성화 과정 등에서 전해액의 분해반응에 의해 가스가 발생할 뿐 아니라, 충전 및 방전 과정 및 비정상적인 사용 환경에서도 전지셀 내부에서 발생하는 가스에 의해 내압이 증가하게 된다.
이와 같은 내압증가는 전지셀의 폭발을 야기할 수 있는 바, 전지의 폭발 단계 이전에 가스를 외부로 배출하여 안전성을 확보하기 위한 연구가 진행되고 있다.
이와 관련하여, 특허문헌 1은 테프론계 수지로 이루어진 통기성 필름을 포함하는 벨브부재가 부가된 전지모듈에 대한 것으로서, 상기 벨브부재는 PTFE 소재의 통기성 필름으로 이루어지고, 상기 통기성 필름은 하우징 덮개에 형성된 벤트 홀의 하측에서 지지부재에 의해 고정되는 구조이다.
즉, 상기 특허문헌 1은 전지모듈 하우징에 적용되는 벨브부재를 개시하고 있을 뿐, 파우치형 전지셀에 적용가능한 형태의 벤팅부재를 개시하지 못하고 있다.
특허문헌 2는 케이스와 일체로 형성되는 돌출부 내부에 있는 연통로를 통해 케이스 내부의 가스를 배출하는 구조의 이차전지에 대한 것으로서, 상기 돌출부 및 연통로는 전지케이스의 외주변 일측에서 돌출된 구조입니다.
이와 같이, 파우치형 전지셀에서 전지케이스의 외형 크기가 증가하지 않으면서, 파우치형 전지셀의 내압증가시 가스 배출이 원활하게 이루어지고, 가스 배출 후 전지의 지속적인 사용이 가능한 구조의 파우치형 전지셀 및 이의 제조방법에 대한 필요성이 높은 실정이다.
(선행기술문헌)
(특허문헌 1) 한국 공개특허공보 제2012-0009592호 (2012.02.02)
(특허문헌 2) 한국 공개특허공보 제2018-0038880호 (2018.04.17)
본원 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 파우치형 전지케이스에 형성된 개구 내측에 부착되어 있고, 개폐가 가능한 형태의 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법을 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위한 본원 발명에 따른 벤팅부가 부착된 파우치형 전지셀은, 라미네이트 시트로 이루어진 파우치형 전지케이스, 상기 파우치형 전지케이스 내부에 수납된 전극조립체, 및 상기 파우치형 전지케이스의 내부 가스를 배출하기 위한 벤팅부를 포함하고, 상기 파우치형 전지케이스는 개구가 형성되어 있으며, 상기 개구는 상기 개구의 내측에 부착되어 있는 벤팅부에 의해 개폐가 이루어지는 구조일 수 있다.
상기 벤팅부는 기공이 형성된 제1층과 기공이 없는 제2층이 적층된 구조일 수 있다.
상기 제1층과 상기 제2층은 동일한 소재로 이루어질 수 있다.
상기 소재는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)일 수 있다.
상기 파우치형 전지케이스는 외부 수지층, 금속층 및 내부 수지층을 포함하고, 상기 제1층과 상기 내부 수지층이 접촉하도록 벤팅부가 부착될 수 있다.
상기 내부 수지층의 일부가 상기 제1층의 기공 내부로 녹아 들어간 상태로 경화되면서, 상기 내부 수지층과 상기 제1층이 결합되는 형태일 수 있다.
상기 벤팅부는 상기 파우치형 전지케이스의 실링부 인접부에 부착될 수 있다.
상기 파우치형 전지케이스는 전극조립체 수납부가 형성된 제1전지케이스 및 상기 제1전지케이스와 결합하여 파우치형 전지케이스를 밀봉하는 제2전지케이스를 포함하고, 상기 벤팅부는 상기 제1전지케이스의 중심부 및 상기 제2전지케이스의 중심부 중 적어도 어느 하나에 부착될 수 있다.
한편, 본 발명은 상기 파우치형 전지셀의 제조방법을 제공하는 바, 구체적으로, 상기 파우치형 전지셀의 제조방법은, (a) 개구가 형성된 라미네이트 시트를 준비하는 단계, (b) 상기 개구에 벤팅부를 부착하는 단계, (c) 상기 라미네이트 시트를 성형하여 파우치형 전지케이스를 제조하는 단계, 및 (d) 상기 파우치형 전지케이스에 전극조립체를 수납하고 밀봉하는 단계를 포함할 수 있다.
상기 벤팅부는 기공이 형성된 제1층과 기공이 없는 제2층이 적층된 구조로 이루어질 수 있다.
상기 제1층과 상기 제2층은 동일한 소재로 이루어질 수 있다.
상기 소재는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)일 수 있다.
본 발명은 또한, 상기 파우치형 전지셀을 포함하는 전지팩을 제공한다.
도 1은 제1실시예에 따른 벤팅부가 형성된 파우치형 전지셀의 사시도이다.
도 2는 제2실시예에 따른 벤팅부가 형성된 파우치형 전지셀의 사시도이다.
도 3은 도 1의 A-A'에 따른 수직 단면도의 부분 확대도이다.
도 4는 벤팅부 제1층의 SEM 사진이다.
도 5는 벤팅부 제2층의 SEM 사진이다.
도 6은 도 3의 다른 실시예이다.
도 7은 파우치형 전지케이스와 벤팅부가 중첩되어 결합된 부분의 SEM 사진이다.
이하 첨부된 도면을 참조하여 본원 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본원 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본원 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본원 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
구성요소를 한정하거나 부가하여 구체화하는 설명은, 특별한 제한이 없는 한 모든 발명에 적용될 수 있으며, 특정한 발명으로 한정하지 않는다.
본원 발명을 도면에 따라 상세한 실시예와 같이 설명한다.
도 1은 제1실시예에 따른 벤팅부가 형성된 파우치형 전지셀의 사시도이다.
도 1을 참조하면, 파우치형 전지셀(100)은 라미네이트 시트로 이루어진 파우치형 전지케이스 내부에 전극조립체와 전해액을 수납하고 외주변이 밀봉된 형태이다.
전극조립체는 일측 방향으로 양극리드(101) 및 음극리드(102)가 돌출된 일방향 전극조립체일 수 있고, 또는 도 1에 도시된 바와 달리, 양극리드와 음극리드가 서로 다른 방향으로 돌출된 양방향 전극조립체일 수 있다.
파우치형 전지케이스(110)는 전극조립체 수납부(113)가 형성된 제1전지케이스(111) 및 제1전지케이스(111)와 결합하여 파우치형 전지케이스(110)를 밀봉하는 제2전지케이스(112)를 포함하고, 제2전지케이스(112)의 중심부에 개구가 형성되어 있으며, 상기 개구의 내측에 벤팅부(130)가 부착되어 있다.
벤팅부(130)는 평면상 원형 형태로서, 파우치형 전지케이스(110)에 형성된 개구의 지름보다 크기가 크기 때문에 파우치형 전지케이스의 개구를 내측에서 막고 있는 형태이다.
도 1에는 도시하지 않고 있지만, 제2전지케이스(112)의 중심부 이외에, 제1전지케이스(111)의 중심부에 벤팅부가 더 형성될 수 있으며, 또는, 제1전지케이스의 중심부에만 벤팅부가 형성될 수 있다.
파우치형 전지셀(100)의 내부에서 부반응에 의해 발생하는 가스로 인하여, 파우치형 전지케이스(110)가 팽창하는 경우, 제1전지케이스 및 제2전지케이스의 중심부가 가장 많이 팽창되어 부풀어 오른 상태가 되면서 압력이 집중될 수 있다. 이와 같은 경우 상기 벤팅부의 가스 압력과 파우치형 전지셀의 외부 압력의 차이가 커지면서 벤팅부의 기공을 통해 가스가 배출될 수 있다.
즉, 본 발명에 따른 벤팅부는, 파우치형 전지셀 내부의 압력과 외부의 압력 차이가 없거나 적은 경우에는, 가스 배출이 이루어지지 않고 전지셀 내부로 외부 물질이 유입되는 것을 차단한 상태이나, 파우치형 전지셀의 내부와 외부 간의 압력 차이가 0.1 atm 이상 발생하면, 기압차에 의해 내부 가스가 벤팅부의 제1층 및 제2층을 통해 배출된다. 이후, 가스 배출이 어느 정도 이루어짐에 따라 파우치형 전지셀의 내부와 외부 간의 압력 차이가 0.1 atm 이하이거나 없어지는 경우에는, 다시 가스 배출이 차단된 상태가 되는 과정이 가역적으로 진행될 수 있다.
도 2는 제2실시예에 따른 벤팅부가 형성된 파우치형 전지셀의 사시도이다.
도 2를 참조하면, 파우치형 전지셀(200)은 벤팅부(230)의 위치가 도 1의 파우치형 전지셀에 형성된 벤팅부(130)의 위치와 차이가 있는 점을 제외하고, 다른 구성은 도 1의 설명과 같다.
도 2의 벤팅부(230)는 3개의 이격된 벤팅부(230)들이 실링부(215) 인접부에 부착된 구조이다.
도 2에 도시된 벤팅부(230)의 반경은 도 1에 도시된 벤팅부(210)의 반경보다 작은 크기로 이루어지는 바, 벤팅부의 부착 위치, 전지케이스의 크기 및 가스발생량 등을 고려하여, 벤팅부의 개수, 크기 및 위치를 선택적으로 적용할 수 있다.
도 3은 도 1의 A-A'에 따른 수직 단면도의 부분 확대도로서, 본 발명에 따른 벤팅부가 부착된 파우치형 전지케이스의 구조를 구체적으로 나타내고 있다.
도 3을 참조하면, 파우치형 전지케이스(110)는 외부 수지층(110a), 금속층(110b) 및 내부 수지층(110c)을 포함한다.
상기 외부 수지층은 외부로부터 전지셀을 보호하는 역할을 하므로 외부 환경으로부터 우수한 내성을 가져야 하는 바, 두께 대비 우수한 인장강도와 내후성 등이 요구되며, 예를 들어, 폴리에틸렌 테레프탈레이트 (polyethyleneterephthalate; PET), 폴리부틸렌 테레프탈레이트 (polybuthyleneterephthalate; PBT), 폴리에틸렌 나프탈레이트 (polyethylenenaphthalate; PEN) 등의 폴리에스테르계 수지, 폴리에틸렌(PE), 폴리프로필렌(PP) 등의 폴리올레핀계 수지, 폴리스티렌 등의 폴리스티렌계 수지, 폴리염화비닐계 수지, 폴리염화비닐리덴계 수지 등이 사용될 수 있다. 이러한 소재는 단독으로 또는 2종 이상 혼합하여 사용할 수 있으며, 추가적으로 ONy(연신 나일론 필름)이 사용될 수 있다.
상기 금속층은 가스, 습기 등 이물질의 유입 내지 전해액의 누출을 방지하는 기능 이외에 전지케이스의 강도를 향상시키는 기능을 발휘할 수 있도록, 알루미늄(Al) 또는 알루미늄 합금이 사용될 수 있으며, 알루미늄 합금으로는 예를 들어, 합금번호 8079, 1N30, 8021, 3003, 3004, 3005, 3104, 3105 등을 들 수 있으며, 이들은 단독 또는 둘 이상의 조합으로 사용될 수 있다.
상기 내부 수지층은 열융착성(열접착성)을 가지고, 전해액의 침입을 억제하기 위해 전해액에 대한 흡습성이 낮으며, 전해액에 의해 팽창하거나 침식되지 않는 고분자 수지가 사용될 수 있으며, 바람직하게는 폴리프로필렌, 산변성 폴리프로필렌, 또는 이들의 조합이 사용될 수 있다.
하나의 바람직한 예에서, 본 발명에 따른 파우치형 전지케이스는, 상기 외부 피복층의 두께가 5 ㎛ 내지 40 ㎛이고, 상기 금속층의 두께가 20 ㎛ 내지 150 ㎛이며, 상기 내부 수지층의 두께가 10 ㎛ 내지 50 ㎛인 구조로 이루어질 수 있다. 상기 라미네이트 시트의 각 층들의 두께가 너무 얇은 경우에는 물질에 대한 차단 기능과 강도 향상을 기대하기 어렵고, 반대로 너무 두꺼우면 가공성이 떨어지고 시트의 두께 증가를 유발하므로 바람직하지 않다.
본 발명에 따른 벤팅부(130)는 기공이 형성된 제1층(131)과 기공이 없는 제2층(132)이 적층된 구조로 이루어지며, 제1층(131)과 제2층(132)은 폴리테트라플루오로에틸렌(PTFE)으로 이루어진 점에서 동일한 소재로 구성된다.
상기 PTFE는 내전해액성, 내열성 및 소수성이 우수한 특성이 있는 바, 파우치형 전지케이스의 내측에 부착되는 벤팅부 소재로 이용될 수 있다.
벤팅부(130)에서 제1층(131)은 기공이 형성된 구조인 반면, 제2층(132)은 기공이 형성되지 않는 형태인 점에서 형태상 차이가 있다.
이와 관련하여, 도 4는 벤팅부 제1층의 SEM 사진을, 도 5는 벤팅부 제2층의 SEM 사진을 나타내고 있다.
도 4 및 도 5를 참조하면, 도 4의 제1층은 내부 및 외부가 연통되는 개방형 기공이 형성된 구조임을 확인할 수 있으며, 도 5의 제2층은 표면에 굴곡이 형성되나 기공은 형성되지 않은 형태임을 알 수 있다. 다만, 상기 제2층은 PTFE소재로 이루어지기 때문에 폴리머 사이에 형성되는 미세한 틈을 통해 가스가 배출될 수 있다.
즉, 파우치형 전지케이스의 내부 수지층이 상기 벤팅부 제1층의 기공 내부로 녹아 들어가서 상기 벤팅부가 상기 파우치형 전지케이스 내측면에 안정적으로 부착될 수 있고, 파우치형 전지케이스의 내부에 형성된 가스는 상기 벤팅부의 제1층 및 제2층을 통과하여 외부로 배출될 수 있다.
한편, PTFE는 녹는점이 327 ℃인 바, 파우치형 전지케이스의 내부 수지층으로 주로 사용되는 폴리프로필렌(PP)의 녹는점이 약 160 ℃인 것과 차이가 크다.
따라서, PTFE 소재의 벤팅부를 PP로 이루어진 내부 수지층에 부착하기 위하여 가열 가압하는 경우, 가열 온도가 PTFE가 녹을 정도의 온도인 경우에는 PP가 손상될 수 있다. 반면에, PP가 손상되지 않지만 PP가 녹을 수 있는 정도의 온도로 가열하는 경우에는 PTEF가 녹지 않기 때문에 서로 결합하기 어렵다.
이에, 본 발명에서는, 기공이 형성된 제1층(131)이 파우치형 전지케이스의 내부 수지층(110c)에 접촉하도록 벤팅부를 파우치형 전지케이스에 부착시키는 구조를 사용하고 있는 바, 벤팅부를 파우치형 전지케이스에 부착하기 위하여 파우치형 전지케이스와 벤팅부가 중첩되는 부분을 고온으로 가열 및 가압하는 경우, 내부 수지층(110c)의 일부가 상기 제1층(131)의 기공 내부로 녹아 들어간 상태로 경화되면서, 제1층(131)에 대해 내부 수지층(110c)이 앵커링(anchoring)되는 형태로 결합이 이루어진다.
도 6은 도 3의 다른 실시예로서, 본 발명에 따른 벤팅부가 부착된 파우치형 전지케이스의 구조를 구체적으로 나타내고 있다.
도 6을 참조하면, 파우치형 전지케이스(310)는 도면상 위에서 아래 방향으로 외부 수지층(310a), 접착층(310d), 금속층(310b), 접착층(310d) 및 내부 수지층(310c)이 순차적으로 적층된 구조로서, 도 3에 도시된 파우치형 전지케이스와 비교할 때, 외부 수지층과 금속층 사이에, 및 금속층과 내부 수지층 사이에 접착층이 추가로 도입된 점에 차이가 있다. 즉, 상기 접착층의 부가로 인하여, 상기 도 6의 파우치형 전지케이스는 도 3의 파우치형 전지케이스 보다 각각의 층들 간의 접착력이 향상될 수 있다.
벤팅부(330)는 기공이 형성된 제1층(331)과 기공이 형성되지 않은 제2층(332)을 포함하며, 제1층(331)이 내부 수지층(310c)에 부착되어 있다.
따라서, 벤팅부와 파우치형 전지케이스(310)를 결합하기 위하여 서로 간에 중첩된 부분을 가열 및 가압하면, 내부 수지층(310c)이 녹아서 제1층(331)의 기공으로 이동하는 바, 앵커링(anchoring)에 의한 결합이 이루어진다.
한편, 벤팅부를 파우치형 전지케이스의 개구 외측에 부착하더라도 가스 내압 증가시 가스 배출 효과를 달성할 수 있으나, 이와 같은 경우에는, 개구가 형성되는 부분에서 파우치형 전지케이스의 금속층이 노출되게 되는 바, 전해액의 부반응에 의해 생성된 불산이 알루미늄으로 이루어진 금속층을 부식시키는 문제가 있으므로 바람직하지 않다.
도 7은 파우치형 전지케이스와 벤팅부가 중첩되어 결합된 부분의 SEM 사진을 나타내고 있다.
도 7을 참조하면, 파우치형 전지케이스는 외부 수지층(410a), 금속층(410b) 및 내부 수지층(410c)으로 구성된다. 벤팅부(430)는 제1층(431)과 제2층(432)이 적층된 구조이다.
외부 수지층(410a)은 PET층, 접착층, 나일론층 및 접착층이 외측에서 내측 방향으로 순차적으로 적층된 구조이고, 금속층(410b)은 알루미늄으로 구성된 층이며, 내부 수지층(410c)은 폴리프로필렌과 산변성 폴리프로필렌을 조합한 형태이거나, 또는 무연신 폴리프로필렌 필름일 수 있다.
벤팅부(430)는 PTFE 소재로 이루어지고, 기공이 형성된 제1층(431)과 PTFE 소재로 이루어지고 기공이 형성되지 않은 제2층(432)으로 구성된다.
파우치형 전지케이스와 벤팅부가 결합하기 전 상태에서, 외부 수지층의 전체 두께는 33.1 ㎛이고, 금속층의 두께는 41.4 ㎛이며, 내부 수지층의 두께는 80 ㎛일 수 있다.
상기 내부 수지층은 폴리프로필렌과 산변성 폴리프로필렌 각각을 금속층에 압출하는 형태로 제조될 수 있고, 상기 내부 수지층을 금속층 및 외부 수지층과 함께 라미네이션하여 파우치형 전지케이스를 제조할 수 있으며, 상기 폴리프로필렌의 두께가 40 ㎛이고 산변성 폴리프로필렌의 두께가 40 ㎛일 수 있다.
또는, 상기 내부 수지층은 두께가 80 ㎛인 무연신 폴리프로필렌(CPP) 필름의 형태일 수 있고, 상기 무연신 폴리프로필렌 필름을 접착제를 사용하여 금속층에 부착하고, 외부 수지층과 함께 라미네이션하여 파우치형 전지케이스를 제조할 수 있다.
파우치형 전지케이스와 벤팅부를 가열 및 가압하여 결합하면, 내부 수지층의 폴리프로필렌이 녹아서 제1층의 기공으로 들어가게 되는 바, 도 7에 도시한 바와 같이 내부 수지층의 두께가 12.2 ㎛로 줄어들고, 제1층(431)에서 기공이 보이지 않게 된다.
즉, 제1층의 기공에 내부 수지층이 도입되어 앵커링되는 결합이 이루어지면서 전체 부분에서 균일하게 접착이 이루어진 것을 확인할 수 있으며, 벤팅부가 파우치형 전지케이스 내측에 안정적으로 부착된 상태가 된다.
상기 제1층과 내부 수지층을 접착시키기 위한 온도는 180 ℃ 내지 220 ℃이고, 압력은 0.05 MPa 내지 0.5 MPa이며, 가압 시간은 1초 내지 5초의 범위 내에서 선택적으로 적용될 수 있다.
하나의 구체적인 예에서, 파우치형 전지셀 내부에서 발생하는 전해액의 부반응 등에 의해 가스가 발생하는 경우, 파우치형 전지셀의 내압이 외부의 기압보다 높아지게 되는 바, 파우치형 전지케이스에 형성된 개구 및 벤팅부의 제1층 및 제2층을 통해 가스 배출이 이루어질 수 있다.
따라서, 본 발명에 따른 파우치형 전지셀은 전지셀의 내압 증가시 내부 가스를 벤팅부를 통해 배출하고, 전지셀의 외부 기압과 동일한 상태가 되면 가스 배출이 차단되고, 외부 수분 유입도 방지하는 과정을 가역적으로 할 수 있다.
한편, 본 발명에 따른 파우치형 전지셀을 제조하는 방법으로서, (a) 개구가 형성된 라미네이트 시트를 준비하는 단계, (b) 상기 개구에 벤팅부를 부착하는 단계, (c) 상기 라미네이트 시트를 성형하여 파우치형 전지케이스를 제조하는 단계, 및 (d) 상기 파우치형 전지케이스에 전극조립체를 수납하고 밀봉하는 단계를 포함할 수 있다.
즉, 상기 파우치형 전지셀은 성형하기 이전에 개구가 형성되어 있고, 상기 개구에 벤팅부를 부착한 상태에서, 전극조립체 수납부를 성형하는 것이 공정 편의성을 고려할 때 바람직하다.
다만, 필요에 따라, 상기 단계 (b)가 상기 단계 (c)와 단계 (d) 사이에 진행될 수 있으며, 또는, 상기 단계 (c)와 단계 (d) 사이에 라미네이트 시트에 개구를 형성하고 벤팅부를 부착하는 단계가 진행될 수 있다.
상기 벤팅부는 기공이 형성된 제1층과 기공이 없는 제2층이 적층된 구조로 이루어지며, 상기 제1층과 제2층은 PTFE로 이루어질 수 있다.
본원 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
(부호의 설명)
100, 200: 파우치형 전지셀
101: 양극리드
102: 음극리드
110, 310: 파우치형 전지케이스
110a, 310a, 410a: 외부 수지층
110b, 310b, 410b: 금속층
110c, 310c, 410c: 내부 수지층
111: 제1전지케이스
112: 제2전지케이스
113: 전극조립체 수납부
130, 230, 330, 430: 벤팅부
131, 331, 431: 제1층
132, 332, 432: 제2층
215: 실링부
310d: 접착층
이상에서 설명한 바와 같이, 본원 발명에 따른 파우치형 전지셀은 전지케이스의 내측에 벤팅부가 부착되는 구조이기 때문에, 벤팅부가 부가됨으로써 전지셀의 크기가 증가하는 것을 최소화할 수 있다.
또한, 전지셀의 내압 증가시 가스 배출이 즉각적으로 이루어질 수 있기 때문에 전지셀의 내압을 일정수준으로 유지할 수 있다.
또한, 본 발명에 따른 벤팅부는 개방되면서 파단되는 형태가 아니고, 가역적인 사용이 가능하도록 벤팅부의 개폐가 가능하기 때문에 배기 후 전지셀의 지속적인 사용이 가능한 형태이다.

Claims (13)

  1. 라미네이트 시트로 이루어진 파우치형 전지케이스;
    상기 파우치형 전지케이스 내부에 수납된 전극조립체; 및
    상기 파우치형 전지케이스의 내부 가스를 배출하기 위한 벤팅부;
    를 포함하고,
    상기 파우치형 전지케이스는 개구가 형성되어 있으며, 상기 개구는 상기 개구의 내측에 부착되어 있는 벤팅부에 의해 개폐가 이루어지는 파우치형 전지셀.
  2. 제 1 항에 있어서, 상기 벤팅부는 기공이 형성된 제1층과 기공이 없는 제2층이 적층된 구조로 이루어진 파우치형 전지셀.
  3. 제 2 항에 있어서, 상기 제1층과 상기 제2층은 동일한 소재로 이루어진 파우치형 전지셀.
  4. 제 3 항에 있어서, 상기 소재는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)인 파우치형 전지셀.
  5. 제 2 항에 있어서, 상기 파우치형 전지케이스는 외부 수지층, 금속층 및 내부 수지층을 포함하고,
    상기 제1층과 상기 내부 수지층이 접촉하도록 벤팅부가 부착되는 파우치형 전지셀.
  6. 제 5 항에 있어서, 상기 내부 수지층의 일부가 상기 제1층의 기공 내부로 녹아 들어간 상태로 경화되면서, 상기 내부 수지층과 상기 제1층이 결합되는 파우치형 전지셀.
  7. 제 1 항에 있어서, 상기 벤팅부는 상기 파우치형 전지케이스의 실링부 인접부에 부착되는 파우치형 전지셀.
  8. 제 1 항에 있어서, 상기 파우치형 전지케이스는 전극조립체 수납부가 형성된 제1전지케이스 및 상기 제1전지케이스와 결합하여 파우치형 전지케이스를 밀봉하는 제2전지케이스를 포함하고,
    상기 벤팅부는 상기 제1전지케이스의 중심부 및 상기 제2전지케이스의 중심부 중 적어도 어느 하나에 부착되는 파우치형 전지셀.
  9. (a) 개구가 형성된 라미네이트 시트를 준비하는 단계;
    (b) 상기 개구에 벤팅부를 부착하는 단계;
    (c) 상기 라미네이트 시트를 성형하여 파우치형 전지케이스를 제조하는 단계; 및
    (d) 상기 파우치형 전지케이스에 전극조립체를 수납하고 밀봉하는 단계;
    를 포함하는 파우치형 전지셀의 제조방법.
  10. 제 9 항에 있어서, 상기 벤팅부는 기공이 형성된 제1층과 기공이 없는 제2층이 적층된 구조로 이루어진 파우치형 전지셀의 제조방법.
  11. 제 10 항에 있어서, 상기 제1층과 상기 제2층은 동일한 소재로 이루어진 파우치형 전지셀의 제조방법.
  12. 제 11 항에 있어서, 상기 소재는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)인 파우치형 전지셀의 제조방법.
  13. 제 1 항 내지 제 8 항 중 어느 하나에 따른 파우치형 전지셀을 포함하는 전지팩.
PCT/KR2020/016230 2019-12-13 2020-11-18 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법 WO2021118091A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022505284A JP7377591B2 (ja) 2019-12-13 2020-11-18 ベンティング部が付着されたパウチ型電池セル及びその製造方法
US17/769,104 US20230231234A1 (en) 2019-12-13 2020-11-18 Pouch-Shaped Battery Cell Having Venting Portion Attached Thereto and Method of Manufacturing the Same
CN202080054322.8A CN114175370A (zh) 2019-12-13 2020-11-18 附接有通气部的袋形电池单元及其制造方法
EP20899163.8A EP4009432B1 (en) 2019-12-13 2020-11-18 Pouch-shaped battery cell having venting portion attached thereto and method of manufacturing the same
JP2023183642A JP2024012380A (ja) 2019-12-13 2023-10-26 ベンティング部が付着されたパウチ型電池セル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0166594 2019-12-13
KR1020190166594A KR20210075476A (ko) 2019-12-13 2019-12-13 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2021118091A1 true WO2021118091A1 (ko) 2021-06-17

Family

ID=76330519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016230 WO2021118091A1 (ko) 2019-12-13 2020-11-18 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20230231234A1 (ko)
EP (1) EP4009432B1 (ko)
JP (2) JP7377591B2 (ko)
KR (1) KR20210075476A (ko)
CN (1) CN114175370A (ko)
WO (1) WO2021118091A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210025405A (ko) * 2019-08-27 2021-03-09 주식회사 엘지화학 이차 전지용 전지 케이스 및 가스 배출부 제조 방법
US11824220B2 (en) * 2020-09-03 2023-11-21 Apple Inc. Electronic device having a vented battery barrier
KR102608407B1 (ko) * 2022-01-04 2023-11-29 주식회사 엘지에너지솔루션 이차전지
KR20230123695A (ko) * 2022-02-17 2023-08-24 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
CN115275458B (zh) * 2022-07-22 2023-11-21 深圳新源柔性科技有限公司 一种翻盖薄膜电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131833A (ja) * 2007-10-29 2009-06-18 Shin Etsu Polymer Co Ltd 非対称膜及びこれを用いた空調システム
KR20120009592A (ko) 2010-07-19 2012-02-02 에스비리모티브 주식회사 전지 모듈
EP2783844A1 (en) * 2013-03-25 2014-10-01 Nitto Denko Corporation Waterproof ventilation structure, waterproof ventilation member, and waterproof air-permeable membrane
KR20150034498A (ko) * 2013-09-26 2015-04-03 주식회사 엘지화학 벤팅 커버를 구비하는 배터리 셀 및 이를 포함하는 이차전지
JP2016031934A (ja) * 2014-07-29 2016-03-07 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. パウチ型リチウム二次電池のベンティングシステム
KR20180038880A (ko) 2016-10-07 2018-04-17 주식회사 엘지화학 2차 전지 및 그 2차 전지의 사이클 수명 특성 개선 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237526A (en) 1978-05-19 1980-12-02 Union Carbide Corporation Battery operated device having a waterproof housing and gas discharge vent
JP3889029B1 (ja) * 2006-02-10 2007-03-07 株式会社パワーシステム 電子部品のガス抜き部の構造
JP5320255B2 (ja) 2009-10-26 2013-10-23 日本電気株式会社 携帯端末
JP2011108433A (ja) * 2009-11-16 2011-06-02 Sumitomo Heavy Ind Ltd 蓄電装置
EP3785787B1 (en) 2015-08-31 2023-11-15 Atlas Copco Airpower N.V. Adsorption device for compressed gas
EP3556802B1 (en) 2016-12-19 2021-11-17 Nitto Denko Corporation Polytetrafluoroethylene porous membrane, and waterproof breathable membrane and waterproof breathable member using same
KR102425151B1 (ko) * 2017-10-16 2022-07-26 주식회사 엘지에너지솔루션 가스 배출구를 포함하는 이차전지용 파우치형 케이스
KR102555751B1 (ko) * 2017-10-17 2023-07-14 주식회사 엘지에너지솔루션 가스 배출이 가능한 이차전지용 파우치형 케이스
KR102160201B1 (ko) 2017-10-26 2020-09-25 주식회사 엘지화학 불소계 수지 다공성 막 및 그 제조방법
JP2019192749A (ja) * 2018-04-24 2019-10-31 日本ゴア株式会社 電子部品用ポリテトラフルオロエチレン膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131833A (ja) * 2007-10-29 2009-06-18 Shin Etsu Polymer Co Ltd 非対称膜及びこれを用いた空調システム
KR20120009592A (ko) 2010-07-19 2012-02-02 에스비리모티브 주식회사 전지 모듈
EP2783844A1 (en) * 2013-03-25 2014-10-01 Nitto Denko Corporation Waterproof ventilation structure, waterproof ventilation member, and waterproof air-permeable membrane
KR20150034498A (ko) * 2013-09-26 2015-04-03 주식회사 엘지화학 벤팅 커버를 구비하는 배터리 셀 및 이를 포함하는 이차전지
JP2016031934A (ja) * 2014-07-29 2016-03-07 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. パウチ型リチウム二次電池のベンティングシステム
KR20180038880A (ko) 2016-10-07 2018-04-17 주식회사 엘지화학 2차 전지 및 그 2차 전지의 사이클 수명 특성 개선 방법

Also Published As

Publication number Publication date
EP4009432A1 (en) 2022-06-08
JP2024012380A (ja) 2024-01-30
KR20210075476A (ko) 2021-06-23
JP7377591B2 (ja) 2023-11-10
EP4009432B1 (en) 2024-05-22
CN114175370A (zh) 2022-03-11
US20230231234A1 (en) 2023-07-20
EP4009432A4 (en) 2022-08-24
JP2022540506A (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2021118091A1 (ko) 벤팅부가 부착된 파우치형 전지셀 및 이의 제조방법
WO2019208911A1 (ko) 가스배출수단이 구비된 파우치형 이차전지
WO2011099793A2 (ko) 파우치형 리튬 2차전지
WO2016175590A1 (ko) 배터리 팩 및 그 제조 방법
WO2019190145A1 (ko) 배터리 셀 및 그 제조 방법
WO2021040380A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지 제조 방법
WO2021040357A1 (ko) 이차 전지용 전지 케이스 및 가스 배출부 제조 방법
WO2020175773A1 (ko) 벤팅 장치
WO2019216520A1 (ko) 벤팅 장치 및 그의 제조 방법
WO2018203593A1 (ko) 배터리 팩 및 이의 제조방법
WO2019245125A1 (ko) 벤팅 장치 및 그의 제조 방법
WO2022039508A1 (ko) 안전성이 향상된 전지 셀 및 이의 제조방법
WO2022124802A1 (ko) 이차전지 및 이를 포함하는 전지 모듈
WO2022039442A1 (ko) 단열 부재를 포함하는 배터리 모듈
WO2022149892A1 (ko) 발포층을 포함하는 파우치형 전지셀 및 상기 파우치형 전지셀을 포함하는 전지모듈
WO2022203232A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021040377A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지 제조 방법
WO2022080673A1 (ko) 파우치형 이차 전지 및 이를 포함하는 전지 모듈
WO2022005233A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2021096035A1 (ko) 이차 전지 및 실링 블록
WO2022255822A1 (ko) 실링부 벤팅 조절 수단을 포함하는 파우치형 전지셀
WO2020116780A1 (ko) 두께의 편차가 있는 전지케이스용 라미네이트 시트 및 이를 이용하여 제조된 파우치형 전지케이스
WO2020017826A1 (ko) 파우치형 이차전지의 제조방법
WO2023038338A1 (ko) 전극 리드와 리드필름 사이에 안전 소자를 구비한 파우치형 전지 셀
WO2023214644A1 (ko) 가스 배출 부재 및 이를 구비한 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505284

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020899163

Country of ref document: EP

Effective date: 20220302

NENP Non-entry into the national phase

Ref country code: DE