WO2015046894A1 - 전극조립체의 제조방법 - Google Patents

전극조립체의 제조방법 Download PDF

Info

Publication number
WO2015046894A1
WO2015046894A1 PCT/KR2014/008922 KR2014008922W WO2015046894A1 WO 2015046894 A1 WO2015046894 A1 WO 2015046894A1 KR 2014008922 W KR2014008922 W KR 2014008922W WO 2015046894 A1 WO2015046894 A1 WO 2015046894A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
electrode assembly
anode
manufacturing
Prior art date
Application number
PCT/KR2014/008922
Other languages
English (en)
French (fr)
Inventor
구대근
김혁수
허준우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/417,910 priority Critical patent/US9768440B2/en
Priority to JP2015539535A priority patent/JP5987119B2/ja
Priority to EP14837058.8A priority patent/EP2892102B1/en
Priority to CN201480002526.1A priority patent/CN104718656B/zh
Publication of WO2015046894A1 publication Critical patent/WO2015046894A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrode assembly by a third method other than the stack folding method or the stack method.
  • Secondary batteries are proposed to solve air pollution in conventional gasoline and diesel vehicles that use fossil fuels, such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and parallel hybrid electric vehicles (PHEVs). Although it is also attracting attention as a power source, such as automobiles, due to the necessity of high output and large capacity, a medium-large battery module electrically connecting a plurality of battery cells is used.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs parallel hybrid electric vehicles
  • the medium-large battery module is preferably made as small and light as possible, it can be filled with a high degree of integration, and a light-weight square battery, a pouch-type battery, etc. are mainly used as a battery cell of a medium-large battery module.
  • the electrode assembly is accommodated in the case of the battery cell, and is generally classified according to the structure of the electrode assembly having the anode / separation membrane / cathode structure.
  • a jelly-roll (wound) electrode assembly having a structure in which long sheets of anodes and cathodes are wound with a separator interposed therebetween, and a plurality of anodes and cathodes cut in predetermined size units through the separator It can be classified into a stack type (laminated) electrode assembly and a stack / fold type electrode assembly sequentially stacked in a state.
  • an electrode assembly 1 having a stack / folding structure is a full cell in which anode / separation membrane / cathode is sequentially positioned as a unit cell (hereinafter, referred to as a “full cell”) (2, 3, 4) are superimposed, and the separator sheet 5 is interposed in each overlapping portion.
  • the separator sheet 5 has a unit length that can wrap the full cell, and each unit length is folded inward to wrap each full cell continuously from the center full cell 1b to the outermost full cell 4 so as to overlap the full cell. Intervened in The end of the separator sheet 5 is finished by heat fusion or by attaching an adhesive tape 6 or the like.
  • Such a stack / foldable electrode assembly is arranged in sequence, starting at one end of the separator sheet 5, for example, by arranging the full cells 2, 3, 4... On the long separator sheet 5. It is manufactured by winding up. However, in such a structure, a temperature gradient is generated between the full cells 1a, 1b and 2 at the center and the full cells 3 and 4 at the outer part, and thus the heat dissipation efficiency is different.
  • the process of forming such an electrode assembly has two limitations in reducing the tact time of the process, as the folding process is added as two separate equipments from the lamination facility forming each electrode assembly.
  • the alignment between the electrode assemblies disposed in the upper and lower parts is difficult to be precisely implemented in the structure of folding and implementing the stacked structure, there are many difficulties in implementing an assembly of reliable quality.
  • the bicell in the structure of the electrode assembly to which such a folding process is applied, a folding facility is required separately.
  • the bicell is also manufactured in two types (ie, A type and C type) to stack the stack.
  • a type and C type there is a great difficulty in accurately maintaining the gap between the bicell and the bicell disposed on the long separator sheet before folding. That is, when folding, it becomes difficult to implement accurate alignment between the upper and lower unit cells (meaning a full cell or a bicell), and when a high capacity cell is manufactured, a problem that requires a long time of type exchange occurs.
  • stack type electrode assembly will be described, and since the stack type structure is well known in the art, only a problem of the stack type electrode assembly will be described below.
  • the separator is generally made wider in width and length than the electrode, and the separator is laminated on a magazine or jig having a width corresponding to the width or length of the separator and the electrode is stacked thereon. Iteratively performed to prepare a stacked electrode assembly.
  • the electrodes and the separators must be stacked one by one, thus increasing the time required for the work, thereby significantly reducing productivity.
  • the horizontal and vertical alignment of the plurality of separators is possible, but since there is no magazine or jig for aligning the positions of the electrodes placed on the separator to the correct position, the plurality of electrodes of the stacked electrode assembly may be There is a problem of misalignment and misalignment.
  • the present invention has been conceived to solve the above problems, and an object of the present invention is to provide a method for producing an electrode assembly having a structure that can be manufactured with a simple process and low cost.
  • Another object of the present invention is to provide a method of manufacturing an electrode assembly having high efficiency since the positions of a plurality of electrodes are precisely aligned.
  • Still another object of the present invention is to provide a method of manufacturing an electrode assembly which can improve the structural stability and performance of the electrode assembly by increasing the contact uniformity between the layers constituting the electrode assembly.
  • a method of manufacturing an electrode assembly includes: a structure stacked in the order of the first electrode / first separator / second electrode / second separator, or the structure Forming a unit structure including a structure repeated a plurality of times (S10); Stacking the unit structures into a plurality of layers to form an electrode assembly (S20); And discharging the gas interposed between the layers by pressing the electrode assembly (S30).
  • FIG. 1 is a schematic structural diagram of an electrode assembly having a stack / foldable structure according to the prior art.
  • FIG. 2 is a side view showing a first structure of a unit structure provided in an electrode assembly manufactured by the method of manufacturing an electrode assembly according to the present invention.
  • FIG 3 is a side view illustrating a second structure of a unit structure provided in an electrode assembly manufactured by the method of manufacturing an electrode assembly according to the present invention.
  • step S10 of the method of manufacturing a unit structure according to the present invention.
  • FIG. 5 is a side view illustrating a first structure of an electrode assembly including a unit structure and a first auxiliary unit.
  • FIG. 6 is a side view illustrating a second structure of an electrode assembly including a unit structure and a first auxiliary unit.
  • FIG. 7 is a side view illustrating a third structure of an electrode assembly including a unit structure and a second auxiliary unit.
  • FIG. 8 is a side view illustrating a fourth structure of an electrode assembly including a unit structure and a second auxiliary unit.
  • FIG. 9 is a side view illustrating a fifth structure of an electrode assembly including a unit structure, a first auxiliary unit, and a second auxiliary unit.
  • FIG. 10 is a side view illustrating a sixth structure of an electrode assembly including a unit structure and a first auxiliary unit.
  • FIG. 11 is a side view illustrating a seventh structure of an electrode assembly including a unit structure and a second auxiliary unit.
  • step S30 is being performed by a roll press.
  • FIG. 13 is a plan view of FIG. 12.
  • step S30 is modified.
  • a method of manufacturing an electrode assembly according to a preferred embodiment of the present invention has a structure in which the first electrode 111 / first separator 112 / second electrode 113 / second separator 114 is laminated in the order.
  • the step (S10) of forming a unit structure 110 having a structure in which the structure is repeated a plurality of times is performed, and then forming the electrode assembly 100 by stacking the unit structure 110 in a plurality of layers. (S20) and pressurizing the electrode assembly 100 to discharge the gas interposed between each layer (S30).
  • step S10 the unit structure 110 is formed through a laminating process by pressing, or is formed through a laminating process by pressing and heating.
  • the pressure in the laminating process may be 800kgf / cm2 ⁇ 1000 kgf / cm2
  • the temperature in the laminating process may be 60 °C ⁇ 80 °C, as described above the laminating process is a process of applying both pressure and temperature This may be a process of applying only pressure.
  • the unit structures 110 may be stacked in a plurality of layers, or the auxiliary units 130 and 140 may be stacked in addition to the unit structures 110.
  • the step S30 is completed in a state in which only the unit structures 110 are stacked or the unit structures 110 and the auxiliary units 130 and 140 are stacked up to step S20.
  • the manufacturing of the electrode assembly 100 is completed by performing, the laminate completed until the step S20 is identical to the finished electrode assembly 100 in appearance, such a laminate is also referred to as an electrode assembly 100 for convenience.
  • step S30 the details of the unit structure 110 formed by the step S10 and the exemplary structure of the electrode assembly 100 stacked by the step S20 will be described.
  • the electrode assembly 100 manufactured by the method of manufacturing an electrode assembly according to the present invention includes at least one unit structure 110a, 110b (see FIGS. 2 and 3).
  • the unit structure 110 is formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114.
  • the unit structure 110 basically has a four-layer structure. More specifically, in the unit structure 110, as illustrated in FIG. 2, the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 sequentially move from the upper side to the lower side.
  • the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 are sequentially stacked from the lower side to the upper side as shown in FIG. 3. Can be formed.
  • the first electrode 111 and the second electrode 113 are opposite electrodes. For example, when the first electrode 111 is an anode, the second electrode 113 is a cathode. Of course, this may be the opposite.
  • the first electrode 111 provided in the unit structure 110 includes a current collector and an active material layer (active material), and the active material layer is coated on both surfaces of the current collector.
  • the second electrode 113 included in the unit structure 110 also includes a current collector and an active material layer (active material), and the active material layer is applied to both surfaces of the current collector.
  • step S10 may be made of the following continuous process (see Figure 4).
  • the first electrode material 121, the first separator material 122, the second electrode material 123, and the second separator material 124 are prepared.
  • the electrode materials 121 and 123 are cut to a predetermined size to form the electrodes 111 and 113 as will be described below.
  • separator materials 122 and 124 In order to automate the process, the electrode materials 121 and 123 and the separator materials 122 and 124 may have a form wound on a roll.
  • the first electrode material 121 is cut to a predetermined size through the cutter C 1 .
  • the second electrode material 123 is also cut into a predetermined size through the cutter C 2 . Then, a first electrode material 121 of a predetermined size is supplied onto the first separator material 122. A second electrode material 123 of a predetermined size is also supplied onto the second separator material 124. Then all materials are fed together into the laminators (L 1 , L 2 ).
  • the electrode assembly 100 is formed by repeatedly stacking the unit structures 110.
  • the electrodes and the separator provided in the unit structure 110 are preferably bonded to each other, and the laminators L 1 and L 2 are used to bond the electrodes and the separator to each other. That is, the laminators L 1 and L 2 apply pressure to the materials or heat and pressure to bond the electrode material and the separator material to each other. As such, the electrode material and the separator material are adhered to each other by laminating processes by laminators L 1 and L 2 , and the unit structure 110 may maintain its shape more stably by such adhesion.
  • the first separator material 122 and the second separator material 124 are cut to a predetermined size through the cutter C 3 .
  • the unit structure 110 may be formed by such cutting.
  • various inspections may be performed on the unit structure 110 as necessary. For example, inspections such as thickness inspection, vision inspection, and short inspection may be additionally performed.
  • Step S10 may be performed in a continuous process as above, but is not necessarily to be performed in a continuous process. That is, the first structure 111, the first separator 112, the second electrode 113, and the second separator 114 are first cut to an appropriate size, and then stacked to form the unit structure 110. It is possible.
  • the separators 112 and 114 or the separator materials 122 and 124 may be coated with a coating material having an adhesive force.
  • the coating material may be a mixture of inorganic particles and a binder polymer.
  • the inorganic particles may improve thermal stability of the separator. That is, the inorganic particles can prevent the membrane from shrinking at a high temperature.
  • the binder polymer may fix the inorganic particles, and thus a predetermined pore structure may be formed between the inorganic particles fixed between the binder polymers. Due to the pore structure, ions can smoothly move from the positive electrode to the negative electrode even though the inorganic particles are coated on the separator.
  • the binder polymer may stably maintain the inorganic particles in the separator to improve the mechanical stability of the separator. Moreover, the binder polymer can more stably bond the separator to the electrode.
  • the separator may be formed of a polyolefin-based separator substrate.
  • electrodes 111 and 113 are positioned on both surfaces of the first separator 112, whereas electrodes 113 are positioned only on one surface of the second separator 114. Therefore, a coating material may be coated on both surfaces of the first separator 112, and a coating material may be coated on only one surface of the second separator 114. That is, the first separator 112 may be coated with a coating material on both sides facing the first electrode 111 and the second electrode 113, and the second separator 114 may face the second electrode 113. The coating material can be coated only on one side.
  • the second separator 114 may be coated on only one surface thereof.
  • the second separator 114 may be coated on both surfaces as necessary. That is, the second separator 114 may also be coated with a coating material on one surface facing the second electrode 113 and the opposite surface thereof. In this case, the unit structure 110 positioned above and the unit structure 110 positioned directly below may be adhered to each other through a coating material on the outer surface of the second separator 114.
  • a coating material having an adhesive force is applied to the separator, it is not preferable to directly press the separator with a predetermined object.
  • the separator typically extends longer than the electrode. Therefore, an attempt may be made to couple the ends of the first separator 112 and the ends of the second separator 114 with each other. For example, an attempt may be made to fuse the end of the first separator 112 and the end of the second separator 114 by ultrasonic welding, and in the case of ultrasonic welding, it is necessary to press the object directly with a horn. have. However, when the end of the separator is directly pressed by the horn in this manner, the horn may stick to the separator due to the coating material having the adhesive force. This can lead to device failure. Therefore, when a coating material having an adhesive force is applied to the separator, it is not preferable to apply a process of directly applying pressure to the separator with a predetermined object.
  • the unit structure 110 does not necessarily have a four-layer structure.
  • the unit structure 110 may include the first electrode 111, the first first separator 112, the second electrode 113, the second second separator 114, the first electrode 111, and the first electrode 111. 1 may have an eight-layer structure in which the first separator 112, the second electrode 113, and the second second separator 114 are sequentially stacked. That is, the unit structure 110 may have a structure in which a four-layer structure is repeatedly stacked.
  • the electrode assembly 100 is formed by repeatedly stacking the unit structures 110. Therefore, although the electrode assembly 100 may be formed by repeatedly stacking a four-layer structure, for example, the electrode assembly 100 may be formed by repeatedly stacking an eight-layer structure.
  • the electrode assembly 100 may further include at least one of the first auxiliary unit 130 and the second auxiliary unit 140.
  • the first auxiliary unit 130 will be described.
  • the unit structure 110 is formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side, or from the lower side to the upper side. . Accordingly, when the unit structure 110 is repeatedly stacked to form the electrode assembly 100, the first electrode 111 may be disposed at the top (see FIG. 2) or the bottom (see FIG. 3) of the electrode assembly 100. ) 116 (hereinafter referred to as 'first terminal electrode'). (The first end electrode may be an anode or a cathode.)
  • the first auxiliary unit 130 is additionally stacked on the first end electrode 116.
  • the first auxiliary unit 130a is sequentially formed from the first terminal electrode 116 when the first electrode 111 is an anode and the second electrode 113 is a cathode.
  • the separator 114, the cathode 113, the separator 112, and the anode 111 may be sequentially stacked from the first terminal electrode 116 to the outside (upper side based on FIG. 5).
  • the first auxiliary unit 130b is sequentially formed from the first terminal electrode 116, that is, the first auxiliary unit 130b.
  • the separator 114 and the anode 113 may be sequentially stacked outward from the terminal electrode 116. As shown in FIG. 5 or FIG. 6, the electrode assembly 100 may position an anode on the outermost side of the first terminal electrode 116 side due to the first auxiliary unit 130.
  • an electrode in general, includes a current collector and an active material layer (active material), and the active material layer is applied to both surfaces of the current collector. Accordingly, the active material layer positioned below the current collector among the active material layers of the positive electrode reacts with the active material layer positioned above the current collector among the active material layers of the negative electrode through the separator.
  • the active material layer can be provided on both surfaces of the current collector.
  • the active material layer located on the outside of the active material layers of the first terminal electrode may not react with other active material layers. Therefore, the problem that the active material layer is wasted is caused.
  • the first auxiliary unit 130 is to solve this problem. That is, the first auxiliary unit 130 is formed separately from the unit structure 110. Therefore, the first auxiliary unit 130 may include a positive electrode having an active material layer formed on only one surface of the current collector. That is, the first auxiliary unit 130 may include a positive electrode coated with an active material layer on only one surface (one surface facing down based on FIG. 5) facing the unit structure 110 on both surfaces of the current collector.
  • the electrode assembly 100 is formed by further stacking the first auxiliary unit 130 on the first terminal electrode 116, the anode having only one end surface coated on the outermost side of the first terminal electrode 116 is positioned. You can. Therefore, the problem of waste of the active material layer can be solved.
  • the positive electrode is configured to emit (for example) nickel ions, it is advantageous for battery capacity to place the positive electrode on the outermost side.
  • the second auxiliary unit 140 basically plays the same role as the first subunit 130. It demonstrates more concretely.
  • the unit structure 110 is formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side, or from the lower side to the upper side. . Therefore, when the unit structure 110 is repeatedly stacked to form the electrode assembly 100, the second separator 114 is disposed at the top (see FIG. 3) or the bottom (see FIG. 2) of the electrode assembly 100. (117, hereinafter referred to as 'second terminal separator'). The second auxiliary unit 140 is further stacked on the second terminal separation membrane 117.
  • the second auxiliary unit 140a may be formed of an anode 111 when the first electrode 111 is an anode and the second electrode 113 is a cathode.
  • the second auxiliary unit 140b is sequentially formed from the second terminal separator 117, that is, the second auxiliary unit 140b.
  • the cathode 111, the separator 112, and the anode 113 may be sequentially stacked from the terminal separator 117 to the outside (the lower side based on FIG. 8).
  • the second auxiliary unit 140 Similar to the first auxiliary unit 130, the second auxiliary unit 140 also has an active material layer coated on only one surface (one surface facing upward based on FIG. 8) facing the unit structure 110 on both surfaces of the current collector. An anode may be provided. As a result, when the electrode assembly 100 is formed by additionally stacking the second auxiliary unit 140 on the second terminal separation membrane 117, the anode coated with only the cross-section is positioned on the outermost side of the second terminal separation membrane 117. Can be.
  • FIGS. 5 and 6, and FIGS. 7 and 8 sequentially illustrate the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 sequentially from top to bottom.
  • the case of lamination is illustrated.
  • the case in which the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 are sequentially stacked from the lower side to the upper side may be described in the same manner as described above.
  • the first auxiliary unit 130 and the second auxiliary unit 140 may further include a separator at the outermost side as necessary.
  • the first auxiliary unit 130 and the second auxiliary unit 140 may further include a separator outside the anode.
  • a separator may be further included in the anode exposed to the opposite side (ie, the uppermost side of the electrode assembly 100 of FIG. 7) on which the second auxiliary unit 140 is stacked as shown in FIG. 7.
  • the electrode assembly 100e may be formed.
  • the unit structure 110b may be formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the lower side to the upper side.
  • the first electrode 111 may be an anode and the second electrode 113 may be a cathode.
  • the first auxiliary unit 130c may have a separator 114, a cathode 113, a separator 112, and an anode 111 sequentially from the first terminal electrode 116, that is, from top to bottom with reference to FIG. 9. It can be stacked and formed.
  • the active material layer may be formed on only one surface of the anode 111 of the first auxiliary unit 130c facing the unit structure 110b.
  • the second auxiliary unit 140c is sequentially formed from the second terminal separation membrane 117, that is, from the lower side to the upper side based on FIG. 9, the anode 111 and the separator 112, the cathode 113, and the separator 113.
  • the 114 and the anode 118 may be formed by being stacked.
  • the active material layer may be formed only on one surface of the anode 118 (the second anode) positioned at the outermost side of the anode of the second auxiliary unit 140c facing the unit structure 110b.
  • the auxiliary unit comprises a separator, it is advantageous for the alignment of the unit.
  • the electrode assembly 100f may be formed.
  • the unit structure 110b may be formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the lower side to the upper side.
  • the first electrode 111 may be an anode and the second electrode 113 may be a cathode.
  • the first auxiliary unit 130d may be formed by sequentially stacking the separator 114, the cathode 113, and the separator 112 from the first terminal electrode 116.
  • the second auxiliary unit may not be provided.
  • the cathode may cause a reaction with the aluminum layer of the electrode case (eg, a pouch) due to the potential difference. Therefore, the cathode is preferably insulated from the electrode case through the separator.
  • the electrode assembly 100g may be formed.
  • the unit structure 110c may be formed by stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side.
  • the first electrode 111 may be a cathode and the second electrode 113 may be an anode.
  • the second auxiliary unit 140d may be formed by sequentially stacking the cathode 111, the separator 112, the anode 113, the separator 114, and the cathode 119 from the second terminal separator 117. have.
  • the first auxiliary unit may not be provided.
  • step S30 to pressurize the electrode assembly 100 completed until step S20 to discharge the gas between the unit structures 110, or discharge the gas between the unit structure 110 and the auxiliary unit (130, 140). It demonstrates in detail.
  • step S30 may be performed by a roll press R.
  • FIG. Since the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 are pressurized with sufficient pressure when the unit structure 110 is formed in step S10, step S30.
  • a pressure may be structurally applied to the electrode assembly 100.
  • step S30 it is preferable to pressurize the electrode assembly 100 at a lower pressure than in step S10.
  • the electrode assembly 100 may be pressurized at a pressure of 500 kgf / cm 2 to 700 kgf / cm 2.
  • step S30 may further include a step of heating the electrode assembly 100, in this case, heating the electrode assembly 100 to a temperature lower than the temperature applied to each unit structure 110 in step S10 of the separation membrane It is advantageous to keep the performance as it is. Specifically, in step S30 may be applied to a temperature of 45 °C ⁇ 55 °C to the electrode assembly 100.
  • the gas between the layers forming the electrode assembly 100 is external. It may not be discharged smoothly and may remain between layers. In this case, the contact uniformity between the electrode and the separator may be poor, vulnerable to external vibration, and may shorten the life of the secondary battery.
  • the roll-shaped press R moves toward the other end of the upper surface of the electrode assembly 100 while pressing the upper end of the upper surface of the electrode assembly 100, between the layers of the electrode assembly 100. It is possible to discharge the gas contained in the.
  • step S30 as shown in Figure 14, the roll-shaped press (R) while moving toward the vertex of the other end of the upper surface located in the diagonal direction of the vertex while pressing the vertex of the upper end of the electrode assembly 100, Gas interposed between the layers of the electrode assembly 100 may be discharged.
  • the gas interposed between the layers of the electrode assembly 100 when the gas interposed between the layers of the electrode assembly 100 is pushed in a specific direction by using the roll-shaped press R, the gas may be smoothly discharged to the outside of the electrode assembly 100 and the electrode assembly 100
  • the contact uniformity of each layer forming the) can be increased, and the structural stability and performance of the electrode assembly 100 can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 스택 폴딩 공법 또는 스택 공법이 아닌 제3의 공법으로 전극조립체를 제조하는 방법에 관한 것으로서, 본 발명의 바람직한 실시예에 따른 전극조립체의 제조방법은: 제1 전극/제1 분리막/제2 전극/제2 분리막의 순서로 적층된 구조를 포함하거나, 상기 구조가 복수 회 반복된 구조를 포함하는 단위구조체를 형성하는 단계(S10); 상기 단위구조체를 복수 층으로 적층하여 전극조립체를 형성하는 단계(S20); 및 상기 전극조립체를 가압하여 각층 사이에 개재된 가스를 배출하는 단계(S30);를 포함한다.

Description

전극조립체의 제조방법
본 발명은 스택 폴딩 공법 또는 스택 공법이 아닌 제3의 공법으로 전극조립체를 제조하는 방법에 관한 것이다.
이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV), 병렬형 하이브리드 전기자동차(PHEV) 등의 동력원으로서도 주목 받고 있는데, 자동차 등과 같은 중대형 디바이스에는 고출력, 대용량의 필요성으로 인해, 다수의 배터리 셀들을 전기적으로 연결한 중대형 전지모듈이 사용된다.
그런데, 중대형 전지모듈은 가능한 한 작고 가볍게 제조되는 것이 바람직하므로, 높은 집적도로 충적될 수 있고 용량 대비 가벼운 각형 전지, 파우치형 전지 등이 중대형 전지모듈의 전지셀로서 주로 사용되고 있다.
전지셀의 케이스 내에는 전극조립체가 수용되어 있으며, 일반적으로는 양극/분리막/음극 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류된다.
대표적으로, 긴 시트 형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조로 이루어진 젤리-롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체, 그리고, 스택/폴딩형 전극조립체로 분류할 수 있다.
먼저, 본 출원인의 한국 특허출원공개 제2001-0082058호, 제2001-0082059호 및 제2001-0082060호에 개시되어 있는 스택/폴딩형 전극조립체에 대하여 먼저 설명하도록 한다.
도 1을 참조하면, 스택/폴딩형 구조의 전극조립체(1)는 단위 셀로서 순차적으로 양극/분리막/음극이 위치되는 풀셀(full cell, 이하, '풀셀'이라 한다.)(2, 3, 4...)이 복수 개 중첩되어 있고, 각각의 중첩부에는 분리막 시트(5)가 개재되어 있다. 분리막 시트(5)는 풀셀을 감쌀 수 있는 단위 길이를 갖고, 단위 길이마다 내측으로 꺾여서 중앙의 풀셀(1b)로부터 시작되어 최외각의 풀셀(4)까지 연속하여 각각의 풀셀을 감싸서 풀셀의 중첩부에 개재되어 있다. 분리막 시트(5)의 말단부는 열융착하거나 접착 테이프(6) 등을 붙여서 마무리한다. 이러한 스택/폴딩형 전극조립체는 예를 들어, 긴 길이의 분리막 시트(5) 상에 풀셀들(2, 3, 4...)을 배열하고 분리막 시트(5)의 일단부에서 시작하여 순차적으로 권취함으로써 제조된다. 그러나 이러한 구조에서 중심부의 풀셀(1a, 1b, 2)과 외각부의 풀셀(3, 4) 사이에는 온도 구배가 일어나 방열효율이 상이하게 되는바, 장시간 사용하는 경우 수명이 짧아지게 되는 문제가 있다.
이러한 전극조립체를 형성하는 공정은 각 전극조립체를 형성하는 라미네이션 설비 2대와 별개의 장비로 폴딩 장비 1대가 추가되어, 공정이 진행되는바, 공정의 택타임(tact time)을 줄이는 데에는 한계가 있었으며, 특히 폴딩되어 적층구조를 구현하는 구조에서 상하부에 배치되는 전극조립체간에 정렬(aligning)이 정밀하게 구현하기 어려워 신뢰성 있는 품질의 조립체를 구현하는 데에는 많은 어려움이 있다.
즉, 이러한 폴딩 공정이 적용되는 전극조립체의 구조에서는 폴딩 설비가 별도로 필요하게 되며, 바이셀 구조를 적용하는 경우에는 바이셀도 2가지의 타입(즉, A타입, C타입)으로 제작하여 적층을 수행하게 되며, 폴딩 전 긴 분리막 시트 상에 배치하는 바이셀과 바이셀 간의 간격을 정확하게 유지하는 것에 큰 어려움이 존재하게 된다. 즉 폴딩하게 되는 경우, 상하 유닛셀(풀셀 또는 바이셀을 의미함) 간의 정확한 정렬을 구현하기 어려워지며, 고용량의 셀을 제작하는 경우 형교환의 시간이 많이 소요되는 문제도 아울러 발생하게 된다.
다음으로, 스택형 전극조립체에 대하여 설명하도록 하며, 스택형 구조는 당업계에 널리 공지되어 있으므로, 이하에서는 스택형 전극조립체의 문제점에 대해서만 간단하게 설명하도록 한다.
스택형 전극조립체는 통상적으로 분리막이 전극보다 가로 및 세로의 폭이 더 넓게 제조되며, 분리막의 가로 또는 세로의 폭에 대응되는 폭을 갖는 매거진 또는 지그에 분리막을 적층하고 그 위에 전극을 적층하는 단계를 반복적으로 수행하여 스택형 전극조립체를 제조하게 된다.
그러나, 이러한 방식으로 스택형 전극조립체를 제조하게 되면 전극 및 분리막을 하나씩 적층하여야 하므로 작업에 소요되는 시간이 길어져 생산성이 현저히 저하되는 문제가 있다. 또한, 복수 층의 분리막들의 가로 및 세로를 정렬하는 것은 가능하나, 분리막에 얹혀지는 전극들의 위치를 정확한 위치로 정렬하는 매거진 또는 지그는 존재하지 않기 때문에, 스택형 전극조립체에 구비된 복수 개의 전극은 정렬되지 않고 서로 어긋나게 되는 문제가 있다.
게다가, 분리막을 사이에 두고 서로 마주보는 양극 및 음극의 면이 서로 어긋나 있기 때문에 양극 및 음극의 표면에 도포된 활물질의 일부 영역에서는 전기화학반응이 일어나지 않게 되며 이로 인해 배터리 셀의 효율이 떨어진다는 문제가 있다.
본 발명은 상술한 문제점을 해결하기 위해 착상된 것으로서, 간소한 공정과 낮은 단가로 제조가 가능한 구조를 갖는 전극조립체의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 복수의 전극들의 위치가 정확하게 정렬되어 있어서 효율이 높은 전극조립체의 제조방법을 제공하는 것에 있다.
본 발명의 또 다른 목적은 전극조립체를 이루는 각 층간의 접촉 균일성을 높여 전극조립체의 구조적 안정성 및 성능을 향상시킬 수 있는 전극조립체의 제조방법을 제공하는 것에 있다.
상기와 같은 목적을 달성하기 위하여 본 발명의 바람직한 실시예에 따른 전극조립체의 제조방법은: 제1 전극/제1 분리막/제2 전극/제2 분리막의 순서로 적층된 구조를 포함하거나, 상기 구조가 복수 회 반복된 구조를 포함하는 단위구조체를 형성하는 단계(S10); 상기 단위구조체를 복수 층으로 적층하여 전극조립체를 형성하는 단계(S20); 및 상기 전극조립체를 가압하여 각층 사이에 개재된 가스를 배출하는 단계(S30);를 포함할 수 있다.
본 발명에 따르면, 간소한 공정과 낮은 단가로 제조가 가능한 구조를 갖는 전극조립체의 제조방법을 제공할 수 있다.
또한, 복수의 전극들의 위치가 정확하게 정렬되어 있어서 효율이 높은 전극조립체의 제조방법을 제공할 수 있다.
또한, 전극조립체를 이루는 각 층간의 접촉 균일성을 높여 전극조립체의 구조적 안정성 및 성능을 향상시킬 수 있는 전극조립체의 제조방법을 제공할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1은 종래기술에 따른 스택/폴딩형 구조의 전극조립체의 개략 구조도이다.
도 2는 본 발명에 따른 전극조립체의 제조방법에 의하여 제조되는 전극조립체에 구비되는 단위구조체의 제1 구조를 나타낸 측면도이다.
도 3은 본 발명에 따른 전극조립체의 제조방법에 의하여 제조되는 전극조립체에 구비되는 단위구조체의 제2 구조를 나타낸 측면도이다.
도 4는 본 발명에 따른 단위구조체의 제조방법의 S10단계를 나타낸 예시적 실시예이다.
도 5는 단위구조체와 제1 보조단위체를 포함한 전극조립체의 제1 구조를 도시하고 있는 측면도이다.
도 6은 단위구조체와 제1 보조단위체를 포함한 전극조립체의 제2 구조를 도시하고 있는 측면도이다.
도 7은 단위구조체와 제2 보조단위체를 포함한 전극조립체의 제3 구조를 도시하고 있는 측면도이다.
도 8은 단위구조체와 제2 보조단위체를 포함한 전극조립체의 제4 구조를 도시하고 있는 측면도이다.
도 9는 단위구조체, 제1 보조단위체와 제2 보조단위체를 포함한 전극조립체의 제5 구조를 도시하고 있는 측면도이다.
도 10은 단위구조체와 제1 보조단위체를 포함한 전극조립체의 제6 구조를 도시하고 있는 측면도이다.
도 11은 단위구조체와 제2 보조단위체를 포함한 전극조립체의 제7 구조를 도시하고 있는 측면도이다.
도 12는 롤형 프레스에 의하여 S30단계가 수행되고 있는 전극조립체의 측면도이다.
도 13은 도 12의 평면도이다.
도 14는 S30단계가 변형되어 수행되고 있는 전극조립체의 평면도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 그러나 본 발명이 이하의 실시예에 의해 제한되거나 한정되는 것은 아니다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도면에서 각 구성요소 또는 그 구성요소를 이루는 특정 부분의 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 따라서, 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그러한 설명은 생략하도록 한다.
본 발명의 바람직한 실시예에 따른 전극조립체의 제조방법은, 제1 전극(111)/제1 분리막(112)/제2 전극(113)/제2 분리막(114)의 순서로 적층된 구조를 갖거나, 이 구조가 복수 회 반복된 구조를 갖는 단위구조체(110)를 형성하는 단계(S10)를 수행하고, 다음으로 단위구조체(110)를 복수 층으로 적층하여 전극조립체(100)를 형성하는 단계(S20)를 수행하고, 전극조립체(100)를 가압하여 각층 사이에 개재된 가스를 배출하는 단계(S30)를 포함한다.
S10단계에서 단위구조체(110)는 가압에 의한 라미네이팅 공정을 통해 형성되거나, 가압 및 가열에 의한 라미네이팅 공정을 통해 형성된다. 여기서, 라미네이팅 공정에서의 압력은 800kgf/㎠ ~ 1000 kgf/㎠일 수 있고, 라미네이팅 공정에서의 온도는 60℃ ~ 80℃일 수 있으며, 상술한 것과 같이 라미네이팅 공정은 압력 및 온도를 모두 가하는 공정이거나, 압력만을 가하는 공정일 수 있다.
S20단계에서는 단위구조체(110)를 복수 층으로 적층하거나, 단위구조체(110) 이외에도 보조단위체(130, 140)를 적층할 수도 있다. 본 발명에 따른 전극조립체의 제조방법에서는, S20단계까지 완료되어 단위구조체들(110)만 적층된 상태, 또는 단위구조체(110)와 보조단위체(130, 140)가 적층된 상태에서 S30단계를 추가적으로 수행하는 것에 의하여 전극조립체(100)의 제조가 완료되는 것이지만, S20단계까지 완료된 적층체는 제조 완료된 전극조립체(100)와 외관상 동일하기 때문에 이와 같은 적층체도 편의상 전극조립체(100)로 칭한다.
이하에서는 S30단계에 대한 구체적인 설명에 앞서, S10단계에 의하여 형성되는 단위구조체(110)에 대한 세부사항과, S20단계에 의하여 적층된 전극조립체(100)의 예시적 구조에 대하여 설명하도록 한다.
본 발명에 따른 전극조립체의 제조방법에 의하여 제조된 전극조립체(100)는 적어도 1개의 단위구조체(110a, 110b, 도 2 및 도 3 참조)를 포함한다.
단위구조체(110)는 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 순차적으로 적층되어 형성된다. 이와 같이 단위구조체(110)는 기본적으로 4층 구조를 가진다. 보다 구체적으로 단위구조체(110)는 도 2에서 도시하고 있는 것과 같이 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로 순차적으로 적층되어 형성되거나, 또는 도 3에서 도시하고 있는 것과 같이 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 하측에서 상측으로 순차적으로 적층되어 형성될 수 있다. 이때 제1 전극(111)과 제2 전극(113)은 서로 반대되는 전극이다. 예를 들어, 제1 전극(111)이 양극이면 제2 전극(113)은 음극이다. 물론 이의 반대일 수도 있다.
단위구조체(110)에 구비된 제1 전극(111)은 집전체 및 활물질층(활물질)을 구비하며, 활물질 층은 집전체의 양면에 도포된다. 이와 마찬가지로 단위구조체(110)에 구비된 제2 전극(113)도 집전체 및 활물질층(활물질)을 구비하며, 활물질 층은 집전체의 양면에 도포된다.
한편, S10단계는 다음과 같은 연속공정으로 이루어질 수 있다(도 4 참조). 먼저 제1 전극 재료(121), 제1 분리막 재료(122), 제2 전극 재료(123) 및 제2 분리막 재료(124)를 준비한다. 여기서 전극 재료(121, 123)는 이하에서 살펴볼 바와 같이 소정 크기로 절단되어 전극(111, 113)을 형성한다. 이는 분리막 재료(122, 124)도 동일하다. 공정의 자동화를 위해 전극 재료(121, 123)와 분리막 재료(122, 124)는 롤에 권취되어 있는 형태를 가질 수 있다. 이와 같이 재료들을 준비한 다음에 제1 전극 재료(121)를 커터(C1)를 통해 소정 크기로 절단한다. 그리고 제2 전극 재료(123)도 커터(C2)를 통해 소정 크기로 절단한다. 그런 다음 소정 크기의 제1 전극 재료(121)를 제1 분리막 재료(122) 위로 공급한다. 그리고 소정 크기의 제2 전극 재료(123)도 제2 분리막 재료(124) 위로 공급한다. 그런 다음 재료들을 모두 함께 라미네이터(L1, L2)로 공급한다.
전극조립체(100)는 앞서 살펴본 바와 같이, 단위구조체(110)가 반복적으로 적층되어 형성된다. 그런데 단위구조체(110)를 구성하는 전극과 분리막이 서로 분리된다면, 단위구조체(110)를 반복적으로 적층하는 것이 매우 어려워질 것이다. 따라서 단위구조체(110)에 구비된 전극과 분리막은 서로 접착되는 것이 바람직하며, 라미네이터(L1, L2)는 이와 같이 전극과 분리막을 서로 접착하기 위해 사용된다. 즉, 라미네이터(L1, L2)는 재료들에 압력을 가하거나, 또는 열과 압력을 가하여 전극 재료와 분리막 재료를 서로 접착한다. 이와 같이 전극 재료와 분리막 재료는 라미네이터(L1, L2)에 의하여 라미네이팅 공정을 통해 서로 접착되고, 이와 같은 접착으로 단위구조체(110)는 보다 안정적으로 자신의 형상을 유지할 수 있다.
각 층의 라미네이팅 이후에는 제1 분리막 재료(122)와 제2 분리막 재료(124)를 커터(C3)를 통해 소정 크기로 절단한다. 이와 같은 절단으로 단위구조체(110)가 형성될 수 있다. 추가적으로 필요에 따라 단위구조체(110)에 대한 각종 검사를 수행할 수도 있다. 예를 들어, 두께 검사, 비전 검사, 쇼트 검사와 같은 검사를 추가적으로 수행할 수도 있다.
S10단계는 위와 같이 연속공정으로 수행될 수 있으나, 반드시 연속공정으로 수행되어야만 하는 것은 아니다. 즉, 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)을 적절한 사이즈로 먼저 커팅한 후에 이들을 적층하여 단위구조체(110)를 형성하는 것도 물론 가능하다.
한편, 분리막(112, 114) 또는 분리막 재료(122, 124)는 접착력을 가지는 코팅 물질로 표면이 코팅될 수 있다. 이때 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물일 수 있다. 여기서 무기물 입자는 분리막의 열적 안정성을 향상시킬 수 있다. 즉, 무기물 입자는 고온에서 분리막이 수축하는 것을 방지할 수 있다. 그리고 바인더 고분자는 무기물 입자를 고정시킬 수 있으며 이로 인해 바인더 고분자 사이에 고정된 무기물 입자들 사이에는 소정의 기공 구조가 형성될 수 있다. 이와 같은 기공 구조로 인해, 무기물 입자가 분리막에 코팅되어 있더라도 양극으로부터 음극으로 이온이 원활하게 이동할 수 있다. 또한 바인더 고분자는 무기물 입자를 분리막에 안정적으로 유지시켜 분리막의 기계적 안정성도 향상시킬 수 있다. 더욱이 바인더 고분자는 분리막을 전극에 보다 안정적으로 접착시킬 수 있다. 참고로, 분리막은 폴리올레핀 계열의 분리막 기재로 형성될 수 있다.
그런데 도 2와 도 3에서 도시하고 있는 것과 같이, 제1 분리막(112)은 양면에 전극(111, 113)이 위치하는데 반해, 제2 분리막(114)은 일면에만 전극(113)이 위치한다. 따라서 제1 분리막(112)은 양면에 코팅 물질이 코팅될 수 있고, 제2 분리막(114)은 일면에만 코팅 물질이 코팅될 수 있다. 즉, 제1 분리막(112)은 제1 전극(111)과 제2 전극(113)을 바라보는 양면에 코팅 물질이 코팅될 수 있고, 제2 분리막(114)은 제2 전극(113)을 바라보는 일면에만 코팅 물질이 코팅될 수 있다.
이와 같이 코팅 물질에 의한 접착은 단위구조체(110) 내에서 이루어지는 것으로 충분하다. 따라서 앞서 살펴본 바와 같이 제2 분리막(114)은 일면에만 코팅이 이루어져도 무방하다. 다만, 단위구조체(110)끼리도 히트 프레스(heat press) 등의 방법으로 서로 접착될 수 있으므로, 필요에 따라 제2 분리막(114)도 양면에 코팅이 이루어질 수 있다. 즉, 제2 분리막(114)도 제2 전극(113)을 바라보는 일면과 그 반대면에 코팅 물질이 코팅될 수 있다. 이와 같은 경우 상측에 위치하는 단위구조체(110)와 이의 바로 아래에 위치하는 단위구조체(110)는 제2 분리막(114) 외면의 코팅 물질을 통하여 서로 접착될 수 있다.
참고로, 접착력을 가지는 코팅 물질을 분리막에 도포한 경우, 소정의 물체로 분리막에 직접 압력을 가하는 것은 바람직하지 않다. 분리막은 통상적으로 전극보다 외측으로 길게 연장된다. 따라서 제1 분리막(112)의 말단과 제2 분리막(114)의 말단을 서로 결합시키려는 시도가 있을 수 있다. 예를 들어, 제1 분리막(112)의 말단과 제2 분리막(114)의 말단을 초음파 융착으로 서로 융착시키려는 시도가 있을 수 있고, 초음파 융착의 경우 혼(horn)으로 대상을 직접 가압할 필요가 있다. 그러나 이와 같이 혼으로 분리막의 말단을 직접 가압하면, 접착력을 갖는 코팅 물질로 인해 분리막에 혼이 들러붙을 수 있다. 이로 인해 장치의 고장이 초래될 수 있다. 따라서 접착력을 가지는 코팅 물질을 분리막에 도포한 경우, 소정의 물체로 분리막에 직접 압력을 가하는 공정을 적용하는 것은 바람직하지 않다.
추가적으로, 단위구조체(110)가 반드시 4층 구조를 가져야만 하는 것은 아니다. 예를 들어, 단위구조체(110)는 제1 전극(111), 제1 제1 분리막(112), 제2 전극(113), 제2 제2 분리막(114), 제1 전극(111), 제1 제1 분리막(112), 제2 전극(113) 및 제2 제2 분리막(114)이 순차적으로 적층되어 형성되는 8층 구조를 가질 수도 있다. 즉, 단위구조체(110)는 4층 구조가 반복적으로 적층되어 형성되는 구조를 가질 수도 있다. 앞서 살펴본 바와 같이, 전극조립체(100)는 단위구조체(110)가 반복적으로 적층되어 형성된다. 따라서 4층 구조를 반복적으로 적층하여 전극조립체(100)를 형성할 수도 있지만, 예를 들어 8층 구조를 반복적으로 적층하여 전극조립체(100)를 형성할 수도 있다.
한편, 전극조립체(100)는 제1 보조단위체(130)와 제2 보조단위체(140) 중의 적어도 어느 하나를 더 포함할 수 있다. 우선, 제1 보조단위체(130)에 대해 살펴본다. 단위구조체(110)는 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로, 또는 하측에서 상측으로 순차적으로 적층되어 형성된다. 따라서 이와 같은 단위구조체(110)가 반복적으로 적층되어 전극조립체(100)가 형성되면, 전극조립체(100)의 가장 위쪽(도 2 참조), 또는 가장 아래쪽(도 3 참조)에 제1 전극(111)(116, 이하 '제1 말단 전극'이라 한다)이 위치하게 된다. (제1 말단 전극은 양극일 수도 있고 음극일 수도 있다.) 제1 보조단위체(130)는 이와 같은 제1 말단 전극(116)에 추가적으로 적층된다.
보다 구체적으로 제1 보조단위체(130a)는 도 5에서 도시하고 있는 것과 같이 제1 전극(111)이 양극이고 제2 전극(113)이 음극이면, 제1 말단 전극(116)으로부터 순차적으로, 즉 제1 말단 전극(116)으로부터 외측(도 5를 기준으로 상측)으로 분리막(114), 음극(113), 분리막(112) 및 양극(111)이 차례로 적층되어 형성될 수 있다. 또한 제1 보조단위체(130b)는 도 6에서 도시하고 있는 것과 같이 제1 전극(111)이 음극이고 제2 전극(113)이 양극이면, 제1 말단 전극(116)으로부터 순차적으로, 즉 제1 말단 전극(116)으로부터 외측으로 분리막(114) 및 양극(113)이 차례로 적층되어 형성될 수 있다. 전극조립체(100)는 도 5 또는 도 6에서 도시하고 있는 것과 같이 제1 보조단위체(130)로 인하여 제1 말단 전극(116) 측의 가장 외측에 양극을 위치시킬 수 있다.
일반적으로 전극은 집전체와, 활물질층(활물질)을 구비하며, 활물질 층은 집전체의 양면에 도포된다. 이에 따라 도 5를 기준으로 양극의 활물질층 중 집전체의 아래쪽에 위치한 활물질층은 분리막을 매개로 음극의 활물질층 중 집전체의 위쪽에 위치한 활물질층과 서로 반응한다. 그런데 단위구조체(110)를 동일하게 형성한 다음에 이를 차례로 적층하여 전극조립체(100)를 형성하면, 전극조립체(100)의 가장 위쪽 또는 가장 아래쪽에 위치한 제1 말단 전극은 다른 제1 전극(111)과 동일하게 집전체의 양면에 활물질층을 구비할 수밖에 없다. 그러나 제1 말단 전극이 집전체의 양면에 활물질층을 도포한 구조를 가지면, 제1 말단 전극의 활물질층 중 외측에 위치한 활물질층은 다른 활물질층과 반응할 수 없다. 따라서 활물질층이 낭비되는 문제가 초래된다.
제1 보조단위체(130)는 이와 같은 문제를 해결하기 위한 것이다. 즉, 제1 보조단위체(130)는 단위구조체(110)와 별개로 형성된다. 따라서 제1 보조단위체(130)는 집전체의 일면에만 활물질층이 형성된 양극을 구비할 수 있다. 즉, 제1 보조단위체(130)는 집전체의 양면 중에 단위구조체(110)를 바라보는 일면(도 5를 기준으로 아래쪽을 바라보는 일면)에만 활물질층이 코팅된 양극을 구비할 수 있다. 결과적으로, 제1 말단 전극(116)에 추가적으로 제1 보조단위체(130)를 적층하여 전극조립체(100)를 형성하면, 제1 말단 전극(116) 측의 가장 외측에 단면만 코팅된 양극을 위치시킬 수 있다. 따라서 활물질층이 낭비되는 문제를 해결할 수 있다. 그리고 양극은 (예를 들어) 니켈 이온을 방출하는 구성이므로, 가장 외측에 양극을 위치시키는 것이 전지 용량에 유리하다.
다음으로 제2 보조단위체(140)에 대해 살펴본다. 제2 보조단위체(140)는 기본적으로 제1 보조단위체(130)와 동일한 역할을 수행한다. 보다 구체적으로 설명한다. 단위구조체(110)는 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로, 또는 하측에서 상측으로 순차적으로 적층되어 형성된다. 따라서 이와 같은 단위구조체(110)가 반복적으로 적층되어 전극조립체(100)가 형성되면, 전극조립체(100)의 가장 위쪽(도 3 참조), 또는 가장 아래쪽(도 2 참조)에 제2 분리막(114)(117, 이하 '제2 말단 분리막'이라 한다)이 위치하게 된다. 제2 보조단위체(140)는 이와 같은 제2 말단 분리막(117)에 추가적으로 적층된다.
보다 구체적으로 제2 보조단위체(140a)는 도 7에서 도시하고 있는 것과 같이 제1 전극(111)이 양극이고 제2 전극(113)이 음극이면, 양극(111)으로 형성될 수 있다. 또한 제2 보조단위체(140b)는 도 8에서 도시하고 있는 것과 같이 제1 전극(111)이 음극이고 제2 전극(113)이 양극이면, 제2 말단 분리막(117)으로부터 순차적으로, 즉 제2 말단 분리막(117)으로부터 외측(도 8을 기준으로 하측)으로 음극(111), 분리막(112) 및 양극(113)이 차례로 적층되어 형성될 수 있다. 제2 보조단위체(140)도 제1 보조단위체(130)와 동일하게 집전체의 양면 중에 단위구조체(110)를 바라보는 일면(도 8을 기준으로 위쪽을 바라보는 일면)에만 활물질층이 코팅된 양극을 구비할 수 있다. 결과적으로 제2 말단 분리막(117)에 제2 보조단위체(140)를 추가적으로 적층하여 전극조립체(100)를 형성하면, 제2 말단 분리막(117) 측의 가장 외측에 단면만 코팅된 양극을 위치시킬 수 있다.
참고로, 도 5와 도 6, 그리고 도 7과 도 8은 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로 순차적으로 적층된 경우를 예시하고 있다. 이와는 반대로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 하측에서 상측으로 순차적으로 적층된 경우도 앞서 설명된 바와 동일하게 설명될 수 있다. 그리고 제1 보조단위체(130)와 제2 보조단위체(140)는 필요에 따라 가장 외측에 분리막을 더 포함할 수도 있다. 일례로 가장 외측에 위치한 양극이 케이스와 전기적으로 절연될 필요가 있을 경우 제1 보조단위체(130)와 제2 보조단위체(140)는 양극의 외측에 분리막을 더 포함할 수 있다. 같은 이유에서, 도 7과 같이 제2 보조단위체(140)가 적층되어 있는 쪽의 반대쪽(즉, 도 7의 전극조립체(100)의 최상측)에 노출되어 있는 양극에도 분리막이 더 포함될 수 있다.
한편, 도 9 내지 도 11에서 도시하고 있는 것과 같이, 전극조립체(100)를 형성하는 것이 바람직하다. 우선, 도 9에서 도시하고 있는 것과 같이 전극조립체(100e)를 형성할 수 있다. 단위구조체(110b)는 하측에서 상측으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 차례로 적층되어 형성될 수 있다. 이때 제1 전극(111)은 양극일 수 있고 제2 전극(113)은 음극일 수 있다. 그리고 제1 보조단위체(130c)는 제1 말단 전극(116)으로부터 순차적으로, 즉 도 9을 기준으로 상측에서 하측으로 분리막(114), 음극(113), 분리막(112) 및 양극(111)이 적층되어 형성될 수 있다. 이때 제1 보조단위체(130c)의 양극(111)은 단위구조체(110b)를 바라보는 일면에만 활물질층이 형성될 수 있다.
또한 제2 보조단위체(140c)는 제2 말단 분리막(117)으로부터 순차적으로, 즉 도 9을 기준으로 하측에서 상측으로 양극(111, 제1 양극), 분리막(112), 음극(113), 분리막(114) 및 양극(118, 제2 양극)이 적층되어 형성될 수 있다. 이때 제2 보조단위체(140c)의 양극 중 가장 외측에 위치한 양극(118, 제2 양극)은 단위구조체(110b)를 바라보는 일면에만 활물질층이 형성될 수 있다. 참고로, 보조단위체가 분리막을 포함하면 단위체의 정렬에 유리하다.
다음으로, 도 10에서 도시하고 있는 것과 같이 전극조립체(100f)를 형성할 수 있다. 단위구조체(110b)는 하측에서 상측으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 차례로 적층되어 형성될 수 있다. 이때 제1 전극(111)은 양극일 수 있고 제2 전극(113)은 음극일 수 있다. 그리고 제1 보조단위체(130d)는 제1 말단 전극(116)으로부터 순차적으로 분리막(114), 음극(113) 및 분리막(112)이 적층되어 형성될 수 있다. 이때 제2 보조단위체는 구비되지 않아도 무방하다. 참고로, 음극은 전위차로 인해 전극 케이스(예를 들어, 파우치)의 알루미늄층과 반응을 일으킬 수 있다. 따라서 음극은 분리막을 통해 전극 케이스로부터 절연되는 것이 바람직하다.
마지막으로, 도 11에서 도시하고 있는 것과 같이 전극조립체(100g)를 형성할 수 있다. 단위구조체(110c)는 상측에서 하측으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 적층되어 형성될 수 있다. 이때 제1 전극(111)은 음극일 수 있고 제2 전극(113)은 양극일 수 있다. 그리고 제2 보조단위체(140d)는 제2 말단 분리막(117)으로부터 순차적으로 음극(111), 분리막(112), 양극(113), 분리막(114) 및 음극(119)이 차례로 적층되어 형성될 수 있다. 이때 제1 보조단위체는 구비되지 않아도 무방하다.
이하에서는, S20단계까지 완료된 전극조립체(100)를 가압하여 단위구조체들(110) 사이의 가스를 배출하거나, 단위구조체(110)와 보조단위체(130, 140) 사이의 가스를 배출하는 S30단계에 대하여 상세하게 설명한다.
도 12 및 도 13을 참조하면, S30단계는 롤형 프레스(R)에 의하여 수행될 수 있다. 앞서 S10단계에서 단위구조체(110)를 형성할 때 충분한 압력으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)을 가압하였기 때문에, S30단계에서 너무 고압으로 전극조립체(100)를 가압하면 전극조립체(100)에 구조적으로 무리가 가해질 수 있다.
따라서, S30단계에서는 S10단계에서보다 낮은 압력으로 전극조립체(100)를 가압하는 것이 바람직하며, 구체적으로는 전극조립체(100)를 500kgf/㎠ ~ 700 kgf/㎠의 압력으로 가압할 수 있다.
또한, S30단계는 전극조립체(100)를 가열하는 공정을 더 포함할 수 있는데, 이 경우 S10단계에서 각 단위구조체(110)에 가해진 온도보다 낮은 온도로 전극조립체(100)를 가열하는 것이 분리막의 성능을 그대로 유지하는 데에 유리하다. 구체적으로 S30단계에서는 전극조립체(100)에 45℃ ~ 55℃의 온도를 가할 수 있다.
한편, S30단계에서 전극조립체(100)를 가압하여 가스를 배출할 때, 단순히 판상(plate shape)의 프레스로 전극조립체(100)를 가압하면 전극조립체(100)를 이루고 있는 각층 사이의 가스가 외부로 원활하게 배출되지 못하고, 각층 사이에 그대로 남아있을 수 있다. 이 경우, 전극과 분리막 사이의 접촉 균일성이 나빠지고 외부 진동에 취약하며 이차전지의 수명까지 짧아질 수 있다.
이에, S30단계에서는 도 12 및 도 13에 도시된 것과 같이, 롤형 프레스(R)가 전극조립체(100)의 상면 일단부를 가압한 채로 상면 타단부를 향하여 이동하면서, 전극조립체(100)의 각층 사이에 개재된 가스를 배출할 수 있다.
이외에도, S30단계에서는 도 14에 도시된 것과 같이, 롤형 프레스(R)가 전극조립체(100)의 상면 일단부의 꼭지점을 가압한 채로 이 꼭지점의 대각선 방향에 위치한 상면 타단부의 꼭지점을 향하여 이동하면서, 전극조립체(100)의 각층 사이에 개재된 가스를 배출할 수 있다.
이와 같이, 롤형 프레스(R)를 사용하여 전극조립체(100)의 각층 사이에 개재된 가스를 특정 방향으로 밀어내면, 가스가 전극조립체(100)의 외부로 원활하게 배출될 수 있으며 전극조립체(100)를 이루는 각 층간의 접촉 균일성이 높아지고, 전극조립체(100)의 구조적 안정성 및 성능이 향상될 수 있다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (22)

  1. 전극 및 분리막을 포함하는 전극조립체의 제조방법에 있어서,
    제1 전극/제1 분리막/제2 전극/제2 분리막의 순서로 적층된 구조를 포함하거나, 상기 구조가 복수 회 반복된 구조를 포함하는 단위구조체를 형성하는 단계(S10);
    상기 단위구조체를 복수 층으로 적층하여 전극조립체를 형성하는 단계(S20); 및
    상기 전극조립체를 가압하여 각층 사이에 개재된 가스를 배출하는 단계(S30);를 포함하는 것을 특징으로 하는 전극조립체의 제조방법.
  2. 제1항에 있어서,
    상기 S30단계는 롤형 프레스에 의하여 수행되는 것을 특징으로 하는 전극조립체의 제조방법.
  3. 제2항에 있어서,
    상기 롤형 프레스는 상기 전극조립체의 상면 일단부를 가압한 채로 상면 타단부를 향하여 이동하면서 상기 전극조립체의 각층 사이에 개재된 가스를 배출하는 것을 특징으로 하는 전극조립체의 제조방법.
  4. 제2항에 있어서,
    상기 롤형 프레스는 상기 전극조립체의 상면 일단부의 꼭지점을 가압한 채로 상기 꼭지점의 대각선 방향에 위치한 상면 타단부의 꼭지점을 향하여 이동하면서 상기 전극조립체의 각층 사이에 개재된 가스를 배출하는 것을 특징으로 하는 전극조립체의 제조방법.
  5. 제1항에 있어서,
    상기 S10단계에서 상기 단위구조체는 가압에 의한 라미네이팅 공정을 통해 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  6. 제1항에 있어서,
    상기 S10단계에서 상기 단위구조체는 가압 및 가열에 의한 라미네이팅 공정을 통해 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  7. 제5항에 있어서,
    상기 라미네이팅 공정의 압력은 800kgf/㎠ ~ 1000 kgf/㎠인 것을 특징으로 하는 전극조립체의 제조방법.
  8. 제6항에 있어서,
    상기 라미네이팅 공정의 온도는 60℃ ~ 80℃인 것을 특징으로 하는 전극조립체의 제조방법.
  9. 제1항에 있어서,
    상기 S30단계는 상기 전극조립체를 가열하는 공정을 더 포함하는 것을 특징으로 하는 전극조립체의 제조방법.
  10. 제9항에 있어서,
    상기 S30단계에서 상기 전극조립체에 가해지는 압력은 500kgf/㎠ ~ 700 kgf/㎠인 것을 특징으로 하는 전극조립체의 제조방법.
  11. 제9항에 있어서,
    상기 S30단계에서 전극조립체에 가해지는 온도는 45℃ ~ 55℃인 것을 특징으로 하는 전극조립체의 제조방법.
  12. 제1항에 있어서,
    상기 단위구조체는 상기 전극과 상기 분리막이 서로 접착되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  13. 제12항에 있어서,
    상기 분리막은 접착력을 가지는 코팅 물질이 표면에 코팅되는 것을 특징으로 하는 전극조립체의 제조방법.
  14. 제13항에 있어서,
    상기 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물인 것을 특징으로 하는 전극조립체의 제조방법.
  15. 제13항에 있어서,
    상기 제1 분리막은 상기 제1 전극과 상기 제2 전극을 바라보는 양면에 상기 코팅 물질이 코팅되고, 상기 제2 분리막은 상기 제2 전극을 바라보는 일면에만 상기 코팅 물질이 코팅되는 것을 특징으로 하는 전극조립체의 제조방법.
  16. 제1항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제1 전극인 제1 말단 전극에 적층되는 제1 보조단위체를 더 포함하며,
    상기 제1 보조단위체는, 상기 제1 전극이 양극이고 상기 제2 전극이 음극일 때 상기 제1 말단 전극으로부터 순차적으로 분리막, 음극, 분리막 및 양극이 적층되어 형성되고, 상기 제1 전극이 음극이고 상기 제2 전극이 양극일 때 상기 제1 말단 전극으로부터 순차적으로 분리막 및 양극이 적층되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  17. 제16항에 있어서,
    상기 제1 보조단위체의 양극은:
    집전체; 및
    상기 집전체의 양면 중에 상기 단위구조체를 바라보는 일면에만 코팅되는 양극 활물질;을 구비하는 것을 특징으로 하는 전극조립체의 제조방법.
  18. 제1항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제1 전극인 제1 말단 전극에 적층되는 제1 보조단위체를 더 포함하며,
    상기 제1 보조단위체는, 상기 제1 전극이 양극이고 상기 제2 전극이 음극일 때 상기 제1 말단 전극으로부터 순차적으로 분리막, 음극 및 분리막이 적층되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  19. 제1항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제2 분리막인 제2 말단 분리막에 적층되는 제2 보조단위체를 더 포함하며,
    상기 제2 보조단위체는, 상기 제1 전극이 양극이고 상기 제2 전극이 음극일 때 양극으로 형성되고, 상기 제1 전극이 음극이고 상기 제2 전극이 양극일 때 상기 제2 말단 분리막으로부터 순차적으로 음극, 분리막 및 양극이 적층되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  20. 제19항에 있어서,
    상기 제2 보조단위체의 양극은:
    집전체; 및
    상기 집전체의 양면 중에 상기 단위구조체를 바라보는 일면에만 코팅되는 양극 활물질;을 구비하는 것을 특징으로 하는 전극조립체의 제조방법.
  21. 제1항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제2 분리막인 제2 말단 분리막에 적층되는 제2 보조단위체를 더 포함하며,
    상기 제2 보조단위체는, 상기 제1 전극이 양극이고 상기 제2 전극이 음극일 때 상기 제2 말단 분리막으로부터 순차적으로 제1 양극, 분리막, 음극, 분리막 및 제2 양극이 적층되어 형성되며,
    상기 제2 보조단위체의 제2 양극은 집전체와 양극 활물질을 구비하며, 상기 양극 활물질은 집전체의 양면 중에 상기 단위구조체를 바라보는 일면에만 코팅되는 것을 특징으로 하는 전극조립체의 제조방법.
  22. 제1항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제2 분리막인 제2 말단 분리막에 적층되는 제2 보조단위체를 더 포함하며,
    상기 제2 보조단위체는, 상기 제1 전극이 음극이고 상기 제2 전극이 양극일 때 상기 제2 말단 분리막으로부터 순차적으로 음극, 분리막, 양극, 분리막 및 음극이 적층되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
PCT/KR2014/008922 2013-09-26 2014-09-25 전극조립체의 제조방법 WO2015046894A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/417,910 US9768440B2 (en) 2013-09-26 2014-09-25 Method of manufacturing electrode assembly
JP2015539535A JP5987119B2 (ja) 2013-09-26 2014-09-25 電極組立体の製造方法
EP14837058.8A EP2892102B1 (en) 2013-09-26 2014-09-25 Method for manufacturing electrode assembly
CN201480002526.1A CN104718656B (zh) 2013-09-26 2014-09-25 电极组件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130114245A KR101609424B1 (ko) 2013-09-26 2013-09-26 전극조립체의 제조방법
KR10-2013-0114245 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015046894A1 true WO2015046894A1 (ko) 2015-04-02

Family

ID=52743928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008922 WO2015046894A1 (ko) 2013-09-26 2014-09-25 전극조립체의 제조방법

Country Status (7)

Country Link
US (1) US9768440B2 (ko)
EP (1) EP2892102B1 (ko)
JP (1) JP5987119B2 (ko)
KR (1) KR101609424B1 (ko)
CN (1) CN104718656B (ko)
TW (1) TWI521765B (ko)
WO (1) WO2015046894A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870511B (zh) * 2016-06-13 2019-06-21 合肥国轩高科动力能源有限公司 一种锂离子叠片电池电芯的制造方法
CN106099157B (zh) * 2016-06-24 2018-09-18 合肥国轩高科动力能源有限公司 一种高效的叠片电池制作方法
CN106340680A (zh) * 2016-08-31 2017-01-18 合肥国轩高科动力能源有限公司 一种叠片式电池单元的制作方法及装置
KR102080256B1 (ko) * 2016-11-23 2020-02-21 주식회사 엘지화학 전극조립체 제조 장치 및 그 전극조립체 제조 장치에 의한 전극조립체 제조 방법
WO2018116295A1 (en) * 2016-12-19 2018-06-28 StoreDot Ltd. Layer preparation, treatment, transfer and lamination in cell stack assembly processes for lithium ion batteries
US10033023B2 (en) 2016-12-19 2018-07-24 StoreDot Ltd. Surface activation in electrode stack production and electrode-preparation systems and methods
US9966591B1 (en) 2016-12-19 2018-05-08 StoreDot Ltd. Electrode stack production methods
KR102223722B1 (ko) * 2017-10-24 2021-03-05 주식회사 엘지화학 이차전지용 라미네이션 장치 및 방법
KR101837724B1 (ko) 2017-11-15 2018-03-12 이소라 적층식 이차전지 제조방법
DE102018215070A1 (de) 2018-09-05 2020-03-05 Gs Yuasa International Ltd. Verfahren zur Bildung eines Elektrodenstapels
DE102018219000A1 (de) * 2018-11-07 2020-05-07 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Kathodenvorrichtung, Verfahren zur Herstellung eines Elektrodenverbundes und Batterie
KR102311950B1 (ko) * 2018-11-19 2021-10-14 주식회사 엘지에너지솔루션 전극조립체
KR20210073451A (ko) * 2019-12-10 2021-06-18 주식회사 엘지에너지솔루션 단위셀 및 그의 제조방법과 제조장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
JP2009295553A (ja) * 2008-06-09 2009-12-17 Nissan Motor Co Ltd 双極型電池の製造方法、および双極型電池の製造装置
KR20110063899A (ko) * 2009-12-07 2011-06-15 삼성에스디아이 주식회사 전극조립체블록 및 그 제조 방법, 이차전지 및 그 제조 방법
KR20110112241A (ko) * 2010-04-06 2011-10-12 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
KR20120117221A (ko) * 2011-04-14 2012-10-24 주식회사 엘지화학 분리막의 제조방법 및 이를 이용하여 생산되는 분리막
KR20130074242A (ko) * 2011-12-26 2013-07-04 주식회사 엘지화학 롤 프레스 법을 이용한 전지셀의 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW499766B (en) 2000-03-29 2002-08-21 Elite Ionergy Co Ltd Battery manufacturing method
JP4929592B2 (ja) * 2004-12-27 2012-05-09 パナソニック株式会社 エネルギーデバイスの製造法
JP5315653B2 (ja) 2006-12-08 2013-10-16 日産自動車株式会社 バイポーラ電池の製造方法
KR101014817B1 (ko) 2007-12-14 2011-02-14 주식회사 엘지화학 안전 부재를 포함하고 있는 스택/폴딩형 전극조립체 및그것의 제조방법
KR100983047B1 (ko) * 2008-07-01 2010-09-17 킴스테크날리지 주식회사 보조전극을 갖는 쿼지 바이폴라 전기화학셀
WO2011115464A2 (ko) 2010-03-19 2011-09-22 주식회사 엘지화학 파우치형 케이스 및 이를 포함하는 전지팩
JP6063131B2 (ja) * 2012-02-13 2017-01-18 日産自動車株式会社 電池押圧装置および電池押圧方法
WO2013176500A1 (ko) * 2012-05-23 2013-11-28 주식회사 엘지화학 전극조립체 및 이를 포함하는 전기화학소자
CN104170151B (zh) 2012-05-23 2018-02-02 株式会社Lg 化学 电极组件的制造方法及包括由该方法制造的电极组件的电化学元件
KR101523427B1 (ko) * 2012-06-28 2015-05-27 주식회사 엘지화학 전극조립체의 제조공정
JP5969131B2 (ja) * 2013-02-15 2016-08-17 エルジー・ケム・リミテッド 電極組立体の製造方法
JP2015526857A (ja) 2013-02-15 2015-09-10 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
WO2014126430A1 (ko) * 2013-02-15 2014-08-21 주식회사 엘지화학 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
CN104854752B (zh) 2013-02-15 2018-07-06 株式会社Lg 化学 具有改善的稳定性的电极组件及其制造方法
KR101586881B1 (ko) * 2013-08-29 2016-01-19 주식회사 엘지화학 폴리머 2차전지 셀용 전극조립체

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
JP2009295553A (ja) * 2008-06-09 2009-12-17 Nissan Motor Co Ltd 双極型電池の製造方法、および双極型電池の製造装置
KR20110063899A (ko) * 2009-12-07 2011-06-15 삼성에스디아이 주식회사 전극조립체블록 및 그 제조 방법, 이차전지 및 그 제조 방법
KR20110112241A (ko) * 2010-04-06 2011-10-12 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
KR20120117221A (ko) * 2011-04-14 2012-10-24 주식회사 엘지화학 분리막의 제조방법 및 이를 이용하여 생산되는 분리막
KR20130074242A (ko) * 2011-12-26 2013-07-04 주식회사 엘지화학 롤 프레스 법을 이용한 전지셀의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2892102A4

Also Published As

Publication number Publication date
KR20150034328A (ko) 2015-04-03
JP2015531990A (ja) 2015-11-05
EP2892102B1 (en) 2018-10-31
JP5987119B2 (ja) 2016-09-07
KR101609424B1 (ko) 2016-04-05
US9768440B2 (en) 2017-09-19
EP2892102A1 (en) 2015-07-08
CN104718656B (zh) 2017-04-12
TWI521765B (zh) 2016-02-11
CN104718656A (zh) 2015-06-17
EP2892102A4 (en) 2016-08-24
US20160013468A1 (en) 2016-01-14
TW201535829A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2015046894A1 (ko) 전극조립체의 제조방법
WO2015046793A1 (ko) 전극조립체의 제조방법
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2015046703A1 (ko) 테이프를 이용한 전극조립체의 고정방법
WO2013176498A1 (ko) 전극조립체의 제조방법 및 이에 제조되는 전극조립체를 포함하는 전기화학소자
WO2014126432A1 (ko) 안전성이 향상된 전극 조립체 및 그 제조방법
WO2013176500A1 (ko) 전극조립체 및 이를 포함하는 전기화학소자
WO2015046893A1 (ko) 전극조립체 제조방법
WO2015046792A1 (ko) 파우치형 이차전지
WO2014126430A1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
WO2014168397A1 (ko) 라운드 코너를 포함하는 전지셀
WO2011043587A2 (ko) 전지용 전극조립체 및 그 제조방법
WO2014126431A1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
WO2014126434A1 (ko) 전극 조립체
WO2014126433A1 (ko) 전극조립체 및 전극조립체 제조방법
WO2014189316A1 (ko) 전극 조립체 및 이를 위한 기본 단위체
WO2018097606A1 (ko) 전극조립체 제조 장치 및 그 전극조립체 제조 장치에 의한 전극조립체 제조 방법
WO2014137120A1 (ko) 젤리롤 타입의 전극 조립체 제조방법 및 젤리롤 타입의 폴리머 이차전지 제조방법
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2014003485A1 (ko) 전극조립체, 전극조립체의 제조공정 및 전극조립체를 포함하는 전기화학소자
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2014189319A1 (ko) 전극 조립체의 제조 방법
KR20150036926A (ko) 테이프를 이용한 전극조립체의 고정방법
WO2015030333A1 (ko) 폴리머 2차전지 셀용 전극조립체
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14417910

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015539535

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE