WO2015046792A1 - 파우치형 이차전지 - Google Patents

파우치형 이차전지 Download PDF

Info

Publication number
WO2015046792A1
WO2015046792A1 PCT/KR2014/008570 KR2014008570W WO2015046792A1 WO 2015046792 A1 WO2015046792 A1 WO 2015046792A1 KR 2014008570 W KR2014008570 W KR 2014008570W WO 2015046792 A1 WO2015046792 A1 WO 2015046792A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrode
unit
secondary battery
type secondary
Prior art date
Application number
PCT/KR2014/008570
Other languages
English (en)
French (fr)
Inventor
민기홍
나승호
반진호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14849259.8A priority Critical patent/EP2922112B1/en
Priority to US14/901,900 priority patent/US10622664B2/en
Priority to JP2016504267A priority patent/JP6186071B2/ja
Priority to CN201480040341.XA priority patent/CN105378968B/zh
Publication of WO2015046792A1 publication Critical patent/WO2015046792A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a pouch type secondary battery, and more particularly, to a pouch type secondary battery having a structure suitable for improving the capacitance.
  • a structure of a general secondary battery is disclosed, and more particularly, a structure of a pouch type secondary battery having a right-left symmetry and a rectangular parallelepiped shape is disclosed.
  • a pouch-type secondary battery generally includes an electrode assembly 10 in which electrode tabs 11 and 12 are drawn out, and this electrode tab And a pouch case 1 for accommodating the electrode assembly 10 in the housing part 4 so that a part of the electrode leads 13 and 14 connected to each other may be exposed to the outside.
  • the pouch type secondary battery is manufactured by sealing the upper case 2 and the lower case 3 in a state of being accommodated in the accommodating portion 4.
  • FIG. 2 is a partially enlarged view of a space between an electrode assembly and a pouch packaging material provided in the pouch type secondary battery according to the prior art.
  • the process of forming the accommodating part 4 in the pouch case 1 is performed by a deep drawing method, and the accommodating part (c) may be formed to prevent the load from being concentrated due to the load being concentrated at the corner of the accommodating part 4 during the process.
  • the corner of 4) is rounded, and specifically, not only the boundary between the bottom surface 4B and the inner side 4A, but also the horizontal inner side 4A and the longitudinal inner side 4A are rounded.
  • the vertices of the electrode assembly 10 are perpendicular to each other as shown in FIG. 2.
  • the electrode assembly 10 and the pouch interior material should be spaced more than a predetermined interval, and the interval D 0 between the vertex of the electrode assembly 10 and the inner side surface 4A of the receiving portion 10 is the electrode assembly 10. ), and since the minimum distance between the housing (4), the distance (D 0) is to be spaced a minimum distance for the short circuit protection.
  • the electrode assembly 10 having a volume considerably smaller than the volume of the accommodating part 4 is inevitably accommodated in the accommodating part 4, and thus there is a limit in increasing the capacitance of the pouch type secondary battery.
  • the present invention has been conceived to solve the above problems, and an object of the present invention is to provide a pouch type secondary battery having a structure suitable for improving the capacitance of the secondary battery.
  • Pouch type secondary battery in order to achieve the above object in the pouch type secondary battery in which the electrode assembly is accommodated in the housing portion of the pouch packaging material, the vertex portion of the inner surface of the housing portion
  • the electrode assembly is rounded and has a structure in which (a) the same number of electrodes and separators are alternately arranged and one basic unit united integrally is arranged, or (b) the same number of electrodes
  • a separator stack includes a unit stack portion having a structure in which two or more basic units, which are integrally coupled to each other and arranged integrally, are arranged in a predetermined order, and the ends of the separator are not bonded to the ends of adjacent separators.
  • One basic unit has a four-layer structure in which the first electrode, the first separator, the second electrode, and the second separator are sequentially stacked or the four-layer structure is repeatedly
  • a four-layer structure or a structure in which the four-layer structure is repeatedly arranged is formed.
  • the vertex portion may be rounded to correspond to the vertex portion of the inner side of the receiving portion.
  • a pouch type secondary battery having a structure suitable for improving the capacitance of the secondary battery.
  • FIG. 10 is a side view illustrating a second structure of the basic unit according to the present invention.
  • FIG. 11 is a side view illustrating a unit stack part formed by stacking the basic units of FIG. 9.
  • FIG. 12 is a side view illustrating a third structure of the basic unit according to the present invention.
  • FIG. 13 is a side view illustrating a fourth structure of the basic unit according to the present invention.
  • FIG. 14 is a side view illustrating a unit stack part formed by stacking a base unit of FIG. 12 and a base unit of FIG. 5.
  • 15 is a process chart showing a process of manufacturing a basic unit according to the present invention.
  • 16 is a side view illustrating a first structure of a unit stack part including a basic unit and a first auxiliary unit according to the present invention.
  • FIG. 17 is a side view illustrating a second structure of a unit stack part including a basic unit and a first auxiliary unit according to the present invention.
  • FIG. 18 is a side view illustrating a third structure of a unit stack part including a basic unit and a second auxiliary unit according to the present invention.
  • FIG. 19 is a side view illustrating a fourth structure of a unit stack part including a basic unit and a second auxiliary unit according to the present invention.
  • 20 is a side view illustrating a fifth structure of a unit stack part including a basic unit and a first auxiliary unit according to the present invention.
  • 21 is a side view illustrating a sixth structure of a unit stack part including a basic unit and a first auxiliary unit according to the present invention.
  • FIG. 22 is a side view illustrating a seventh structure of a unit stack part including a basic unit and a second auxiliary unit according to the present invention.
  • FIG. 23 is a side view illustrating an eighth structure of a unit stack part including a basic unit and a second auxiliary unit according to the present invention.
  • FIG. 24 is a side view illustrating a ninth structure of a unit stack part including a basic unit and a first auxiliary unit according to the present invention.
  • 25 is a side view illustrating a tenth structure of a unit stack part including a basic unit, a first auxiliary unit, and a second auxiliary unit according to the present invention.
  • 26 is a side view illustrating an eleventh structure of a unit stack part including a basic unit and a second auxiliary unit according to the present invention.
  • Figure 3 is a schematic longitudinal cross-sectional view of the pouch type secondary battery according to the present invention
  • Figure 4 is a partial enlarged view of the space between the electrode assembly and the pouch packaging material provided in the pouch type secondary battery according to the present invention.
  • the vertex portion of the inner side surface 4A of the accommodating portion is rounded, and the electrode assembly 100 includes a unit stack unit and a unit stack unit 1. It has a structure in which the basic units of species are repeatedly arranged, or two or more kinds of basic units are arranged alternately, for example in a predetermined order. Detailed structure of the basic unit 110 will be described later, and Figure 3 is a schematic diagram, so the detailed structure of the basic unit 110 itself is omitted is shown is omitted.
  • vertex portions of the first and second separation membranes 112 and 114 provided in the base unit 110 are rounded to correspond to the vertex portions of the inner side surface 4A of the storage unit. have.
  • vertices of the electrodes 111 and 113 are perpendicular to each other, and only the separators 112 and 114 are rounded, but as shown in FIG. 6, not only the separators 112 and 114 but also the electrodes 111 and 113 are illustrated. 113 may also employ a rounded structure.
  • the separators 112 and 114 have higher strains due to heat than the electrodes 111 and 113. Therefore, when the separators 112 and 114 contract excessively, the first electrode 111 and the second electrode 113 may be shorted to each other.
  • the risk of short circuit between the first electrode 111 and the second electrode 113 due to shrinkage of the separators 112 and 114 can be further reduced compared to the structure shown in FIG. 5.
  • the description of the advantages of the structure shown in FIG. 6 clearly reveals that the structure shown in FIG. 5 does not mean that there is a significant risk of shorting of the first electrode 111 and the second electrode 113. Put it.
  • the process of making the vertex portions of the separators 112 and 114 into a round shape may be performed by cutting the vertices of the separators 112 and 114 through laser cutting, ultrasonic cutting, and mold cutting.
  • the separators 112 and 114 have larger horizontal (or vertical) direction sizes than the electrodes 111 and 113 (see FIGS. 9 and 10), and thus the horizontal (or vertical) sides of the electrode assembly 100 are larger. Is eventually the horizontal (or vertical) side of the separation membrane (112, 114).
  • the present invention unlike the prior art shown in Figure 2, the distance (D 3 ) between the horizontal (or vertical) direction side of the electrode assembly 100 and the inner surface 4A of the receiving portion is the electrode
  • the gap D 2 between the vertex of the assembly 100 and the inner side surface 4A of the accommodating portion is not significantly different, and as compared with the prior art, the gap between the electrode assembly 100 and the inner side surface 4A of the accommodating portion ( D 2 , D 3 ) can be narrowed. Therefore, the present invention can improve the capacitance of the secondary battery compared to the prior art.
  • the two intervals D 2 and D 3 are preferably the same.
  • the same between the two intervals (D 2 , D 3 ) does not mean the same in the exact mathematical sense or the same in the lexical sense, but also includes the degree of identity where the difference cannot be easily seen by the naked eye. Note that it is used to mean.
  • FIG. 7 is a longitudinal cross-sectional view of a pouch type secondary battery having a small basic unit in one configuration.
  • the plurality of basic units 110 provided in the electrode assembly 100 have the same horizontal and vertical size.
  • the plurality of basic units 110 may be used.
  • the base unit 110 disposed on the bottom surface 4B side of the housing may have a smaller horizontal and vertical size than other base units 110.
  • the base unit 110 may have a smaller horizontal and vertical direction than the other basic units 110.
  • the basic unit 110 having a small longitudinal size will be referred to as a small basic unit.
  • the secondary battery is provided when the electrode assembly 100 includes the small basic unit as described above. It is more advantageous to maximize the capacitance of. The reason for this is as follows.
  • the upper three basic units 110 of the four basic units 110 provided in the electrode assembly 100 are spaced apart from the inner side 4A of the housing by an optimal distance.
  • the lowermost basic unit 110 has the same size as the other three basic units 110 instead of the small basic unit 110, the lowermost basic unit 110 is the inner surface 4A of the receiving unit. It is highly likely to approach too much or to contact the inner surface 4A of the housing. In this case, there is a high risk of short circuit between the electrode assembly 100 and the pouch packaging material 1. Therefore, when the corners at which the inner surface 4A and the bottom surface 4B of the accommodating part are rounded, it is preferable that the electrode assembly 100 has a small basic unit, in particular, on the bottom surface 4B side of the accommodating part.
  • the basic unit 110 disposed is preferably a small basic unit.
  • FIG. 8 is a longitudinal cross-sectional view of a pouch-type secondary battery having a small auxiliary unit in one configuration, but will be described in detail later, the electrode assembly 100 may include auxiliary units 130 and 140, and FIG. 8 is an electrode assembly 100.
  • the detailed configuration of the subunits 130 and 140 will be described later, and the subunits 130 and 140 are rounded so that the vertex portions of the subunits 130 and 140 correspond to the vertex portions of the inner surface 4A of the housing. Lost
  • the auxiliary units 130 and 140 are formed. Is preferably formed of a small auxiliary unit which is an auxiliary unit 130, 140 having a smaller horizontal and vertical size than the three basic units 110 of FIG. Based.
  • the auxiliary units 130 and 140 are positioned on the top layer of the electrode assembly 100, and the remaining layers of the electrode assembly 100 are formed of the basic unit 110, the bottom surface of the receiving unit ( The basic unit 110 facing 4B) is formed of a small basic unit, but the auxiliary units 130 and 140 are preferably formed in a conventional size.
  • the auxiliary unit (130, 140) is located on the top layer and the bottom layer of the electrode assembly 100, the remaining layer of the electrode assembly 100 is composed of the basic unit 110, two Among the auxiliary units 130 and 140, only the auxiliary units 130 and 140 facing the bottom surface 4B of the housing part are formed as small auxiliary units, and the other auxiliary units 130 and 140 are formed in a conventional size.
  • the basic units 110 are preferably formed in a conventional size.
  • the structure of the basic unit 110 includes a structure in which each layer is simply stacked in the order of the first electrode 111 / the first separator 112 / the second electrode 113 / the second separator 114. It was simply described as.
  • the basic unit is formed by alternately disposing the electrode and the separator.
  • the electrode and the separator are arranged in the same number.
  • the basic unit 110a may be formed by stacking two electrodes 111 and 113 and two separators 112 and 114. At this time, the positive electrode and the negative electrode can be seen to face each other through the separator.
  • an electrode (refer to reference numeral 111 in FIGS. 9 and 10) is positioned at one end of the basic unit, and a separator (refer to reference numeral 114 in FIGS. 9 and 10) is provided at the other end of the basic unit. Separation membrane).
  • the electrode assembly according to the present invention has a basic feature in that it is possible to form a unit stack portion (ie, an electrode assembly) only by stacking of basic units. That is, the present invention has a basic feature in that a unit stack portion can be formed by repeatedly stacking one kind of basic units or stacking two or more kinds of basic units in a predetermined order. In order to implement such a feature, the basic unit may have a structure as follows.
  • the basic unit may be formed by sequentially stacking a first electrode, a first separator, a second electrode, and a second separator. More specifically, as shown in FIG. 9, the basic units 110a and 110b include the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side. Or the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 are sequentially stacked from the lower side to the upper side as shown in FIG. 10. Can be formed.
  • the basic unit having such a structure is hereinafter referred to as a first basic unit.
  • the first electrode 111 and the second electrode 113 are opposite electrodes. For example, when the first electrode 111 is an anode, the second electrode 113 is a cathode.
  • the unit stack part 100a may be formed.
  • the basic unit may have an eight-layer structure or a twelve-layer structure in addition to the four-layer structure. That is, the basic unit may have a structure in which the four-layer structure is repeatedly arranged.
  • the basic unit may be formed by sequentially stacking a first electrode, a first separator, a second electrode, a second separator, a first electrode, a first separator, a second electrode, and a second separator.
  • the basic unit may be formed by sequentially stacking a first electrode, a first separator, a second electrode, a second separator, a first electrode, and a first separator, or a second electrode, a second separator, a first electrode, and a first electrode.
  • the first separator, the second electrode, and the second separator may be sequentially stacked.
  • the basic unit having the former structure is hereinafter referred to as the second basic unit
  • the basic unit having the latter structure is hereinafter referred to as the third basic unit.
  • the second basic unit 110c includes the first electrode 111, the first separator 112, the second electrode 113, the second separator 114, and the first electrode.
  • the 111 and the first separator 112 may be stacked in this order from the upper side to the lower side.
  • the third basic unit 110d includes the second electrode 113, the second separator 114, the first electrode 111, the first separator 112, and the second electrode 113.
  • the second separator 114 may be formed by being sequentially stacked from the upper side to the lower side. On the contrary, it may be formed by sequentially stacking the lower side to the upper side.
  • one basic unit of the present invention has a four-layer structure in which the first electrode, the first separator, the second electrode, and the second separator are sequentially arranged or the four-layer structure is repeatedly arranged.
  • a four-layer structure or a structure in which the four-layer structure is repeatedly arranged is formed.
  • the above-described first basic unit has a four-layer structure, and when the second basic unit and the third basic unit are stacked in total, one each, a 12-layer structure in which the four-layer structure is repeatedly stacked is obtained. Is formed.
  • a unit stack part ie, an electrode assembly
  • a unit stack part may be formed by only stacking.
  • the unit stack part is formed by stacking the basic units in basic unit units. In other words, first, the basic unit is produced, and then the unit stack is manufactured by repeating or stacking the same in a predetermined order.
  • the present invention can form the unit stack part only by stacking the base unit. Therefore, the present invention can align the basic unit very precisely. If the basic unit is precisely aligned, the electrode and the separator may also be precisely aligned in the unit stack. In addition, the present invention can greatly improve the productivity of the unit stack portion (electrode assembly). This is because the process is very simple.
  • the first electrode material 121, the first separator material 122, the second electrode material 123, and the second separator material 124 are prepared.
  • the first separator material 122 and the second separator material 124 may be the same material.
  • the first electrode material 121 is cut into a predetermined size through the cutter C 1
  • the second electrode material 123 is also cut into a predetermined size through the cutter C 2 .
  • the first electrode material 121 is then laminated to the first separator material 122, and the second electrode material 123 is laminated to the second separator material 124.
  • the electrode material and the separator material may be adhered to each other in the laminators L 1 and L 2 .
  • a basic unit in which an electrode and a separator are integrally combined may be manufactured.
  • the method of binding may vary.
  • the laminators L 1 , L 2 apply pressure or heat and heat to the material for adhesion.
  • This adhesion makes it easier to stack the base units when manufacturing the unit stack portion.
  • Such adhesion is also advantageous for the alignment of the base units.
  • the basic unit 110a may be manufactured. During this process, the end of the separator is not bonded to the end of the adjacent separator.
  • the electrode may be attached to the adjacent separator in the basic unit.
  • the separator may be considered to be attached to the electrode.
  • the electrode is preferably bonded to the separator as a whole to the side facing the separator. This is because the electrode can be stably fixed to the separator.
  • the electrode is smaller than the separator.
  • An adhesive can be applied to the separator for this purpose.
  • the electrode may be adhered to the separator as a whole through a separator having a coating layer having adhesive strength.
  • the separator may include a porous separator substrate such as a polyolefin-based separator substrate, and a porous coating layer coated on one or both surfaces of the separator substrate.
  • the coating layer may be formed of a mixture of inorganic particles and a binder polymer for connecting and fixing the inorganic particles to each other.
  • the inorganic particles may improve thermal stability of the separator. That is, the inorganic particles can prevent the membrane from shrinking at a high temperature.
  • the binder polymer may improve the mechanical stability of the separator by fixing the inorganic particles.
  • the binder polymer may adhere the electrode to the separator. Since the binder polymer is distributed in the coating layer as a whole, unlike the above-described adhesive, adhesion may occur seamlessly in the entire adhesion surface. Therefore, the use of such a separator can be fixed to the separator more stably.
  • the laminator described above can be used to enhance such adhesion.
  • the inorganic particles may form a densely packed structure to form interstitial volumes between the inorganic particles as a whole in the coating layer.
  • the pore structure may be formed in the coating layer by the interstitial volume defined by the inorganic particles. Due to the pore structure, even if a coating layer is formed on the separator, lithium ions may pass through the separator well.
  • the interstitial volume defined by the inorganic particles may be blocked by the binder polymer depending on the position.
  • the filling structure may be described as a structure in which gravel is contained in a glass bottle. Therefore, when the inorganic particles form a filling structure, the interstitial volume between the inorganic particles is not formed locally in the coating layer, but rather the interstitial volume between the inorganic particles is formed as a whole in the coating layer. Accordingly, as the size of the inorganic particles increases, the size of the pores due to the interstitial volume also increases. Due to the filling structure, lithium ions may smoothly pass through the separator on the entire surface of the separator.
  • the base unit in the unit stack portion may also be bonded to each other base unit.
  • the base unit in the unit stack portion may also be bonded to each other base unit.
  • an adhesive is applied to the bottom surface of the second separator 114 or the above-described coating layer is coated, another basic unit may be attached to the bottom surface of the second separator 114.
  • the adhesion between the electrode and the separator in the base unit may be greater than the adhesion between the base unit in the unit stack.
  • the adhesive force may be expressed by the peel force.
  • the adhesive force between the electrode and the separator may be expressed as a force required to separate the electrode and the separator from each other.
  • the base unit may not be coupled to the adjacent base unit in the unit stack unit, or the base unit may be coupled to the adjacent base unit with a bonding force different from that of the electrode and the separator in the base unit.
  • the separator when the separator includes the above-described coating layer, ultrasonic fusion to the separator is not preferable.
  • the separator is typically larger than the electrode. Accordingly, an attempt may be made to couple the end of the first separator 112 and the end of the second separator 114 to each other by ultrasonic welding. By the way, ultrasonic welding needs to press the object directly with a horn. However, when the end of the separator is directly pressed by the horn, the horn may stick to the separator due to the coating layer having the adhesive force. This can lead to device failure.
  • the unit stack part may further include at least one of the first auxiliary unit and the second auxiliary unit.
  • the first auxiliary unit will be described.
  • the basic unit has an electrode at one end and a separator at the other end. Accordingly, when the basic units are sequentially stacked, the electrodes (see the reference numeral 116 in FIG. 16, hereinafter referred to as 'end electrodes') are positioned at the top or bottom of the unit stack.
  • the first auxiliary unit is additionally laminated to this end electrode.
  • the first auxiliary unit 130a is sequentially separated from the terminal electrode 116, that is, from the terminal electrode 116 to the outside as shown in FIG. 16.
  • the cathode 113, the separator 112, and the anode 111 may be sequentially stacked.
  • the terminal electrode 116 is a cathode
  • the first auxiliary unit 130b is sequentially separated from the terminal electrode 116, that is, from the terminal electrode 116 to the outside, as shown in FIG. 17.
  • 113 may be sequentially stacked.
  • the unit stack parts 100d and 100e may position the anode on the outermost side of the terminal electrode through the first auxiliary units 130a and 130b.
  • the active material layer is coated only on one surface of the positive electrode positioned at the outermost side, that is, the positive electrode of the first auxiliary unit facing one side of the current collector (one surface facing downward based on FIG. 16). In this way, when the active material layer is coated, the active material layer is not located on the outermost side of the terminal electrode side, thereby preventing waste of the active material layer.
  • the positive electrode is configured to emit lithium ions (for example), placing the positive electrode at the outermost side is advantageous in terms of battery capacity.
  • the second auxiliary unit basically plays the same role as the first auxiliary unit. It will be described in more detail.
  • the basic unit has an electrode at one end and a separator at the other end. Accordingly, when the basic units are sequentially stacked, a separator (see separator 117 in FIG. 18, hereinafter referred to as a terminal separator) is positioned at the top or bottom of the unit stack. The second auxiliary unit is further stacked on such a terminal separator.
  • the second auxiliary unit 140a when the electrode 113 in contact with the terminal separation membrane 117 in the basic unit is the positive electrode, the second auxiliary unit 140a is sequentially shown in FIG. 18, the cathode 111 in order from the terminal separation membrane 117.
  • the separator 112 and the anode 113 may be stacked.
  • the second auxiliary unit 140b when the electrode 113 in contact with the terminal separation membrane 117 in the basic unit is a cathode, the second auxiliary unit 140b may be formed as the anode 111 as shown in FIG. 19.
  • the unit stack parts 100f and 100g may place the anode on the outermost side of the terminal separator through the second auxiliary units 140a and 140b.
  • the anode located at the outermost side that is, the anode of the second auxiliary unit, is the same as the anode of the first auxiliary unit, only on one side of the current collector facing both sides of the current collector (one side facing upward based on FIG. 18). It is preferable that the active material layer is coated.
  • the first auxiliary unit and the second auxiliary unit may have a structure different from that described above.
  • the first auxiliary unit will be described.
  • the first auxiliary unit 130c may be formed by sequentially stacking the separator 114 and the cathode 113 from the terminal electrode 116.
  • the first auxiliary unit 130d may have the separator 114, the anode 113, the separator 112, and the cathode 111 having the terminal electrode 116. It can be formed by stacking in order from).
  • the unit stack units 100h and 100i may locate the cathode on the outermost side of the terminal electrode through the first auxiliary units 130c and 130d.
  • the second auxiliary unit 140c when the electrode 113 in contact with the terminal separation membrane 117 is a positive electrode in the basic unit, the second auxiliary unit 140c may be formed as the negative electrode 111.
  • the second auxiliary unit 140d when the electrode 113 in contact with the terminal separation membrane 117 is a cathode in the basic unit, the second auxiliary unit 140d includes the anode 111, the separator 112, and the cathode 13.
  • the terminal separators 117 may be stacked in this order.
  • the unit stack parts 100j and 100k may locate the negative electrode at the outermost side of the terminal separator through the second auxiliary units 140c and 140d.
  • the negative electrode may cause a reaction with the aluminum layer of the battery case (eg, a pouch type case) due to the potential difference. Therefore, the negative electrode is preferably insulated from the battery case through the separator.
  • the first and second auxiliary units may further include a separator outside the cathode.
  • the first auxiliary unit 130e of FIG. 24 may further include a separator 112 at the outermost side.
  • the auxiliary unit includes a separator, it is easier when the auxiliary unit is aligned with the basic unit.
  • the unit stack part 100m may be formed.
  • the basic unit 110b may be formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the lower side to the upper side.
  • the first electrode 111 may be an anode and the second electrode 113 may be a cathode.
  • the first auxiliary unit 130f may be formed by sequentially stacking the separator 114, the cathode 113, the separator 112, and the anode 111 from the terminal electrode 116.
  • the positive electrode 111 of the first auxiliary unit 130f may have an active material layer formed only on one surface of the collector 110b facing the basic unit 110b.
  • the second auxiliary unit 140e may be formed by sequentially separating the anode 111, the first anode, the separator 112, the cathode 113, the separator 114, and the anode 118 from the terminal separator 117. It can be stacked and formed.
  • the active material layer may be formed only on one surface of the positive electrode 118 (the second positive electrode) located at the outermost side of the positive electrode of the second auxiliary unit 140e facing the basic unit 110b on both sides of the current collector.
  • the unit stack part 100n may be formed.
  • the basic unit 110e may be formed by stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side.
  • the first electrode 111 may be a cathode and the second electrode 113 may be an anode.
  • the second auxiliary unit 140f may be formed by sequentially stacking the cathode 111, the separator 112, the anode 113, the separator 114, and the cathode 119 from the terminal separator 117.
  • the pouch type secondary battery of the present invention a structure suitable for improving the capacitance of the secondary battery can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 전기용량의 향상에 적합한 구조를 갖는 파우치형 이차전지에 관한 것으로서, 본 발명에 바람직한 실시예에 따른 파우치형 이차전지는 전극조립체가 파우치 외장재의 수납부에 수납되어 있는 파우치형 이차전지에 있어서, 상기 수납부의 내측면의 꼭지점 부위는 라운드져 있고, 상기 전극조립체는 (a) 서로 동일한 개수의 전극과 분리막이 교대로 배치되어 일체로 결합된 1종의 기본 단위체가 반복적으로 배치된 구조나, 또는 (b) 서로 동일한 개수의 전극과 분리막이 교대로 배치되어 일체로 결합된 2종 이상의 기본 단위체가 정해진 순서에 따라 배치된 구조를 가지는 단위체 스택부를 포함하고, 상기 분리막의 말단은 인접한 분리막의 말단과 접합되지 않고, 상기 (a)의 1종의 기본 단위체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층된 4층 구조나 상기 4층 구조가 반복적으로 적층된 구조를 가지며, 상기 (b)의 2종 이상의 기본 단위체를 각각 1개씩 정해진 순서에 따라 적층하면, 상기 4층 구조나 상기 4층 구조가 반복적으로 배치된 구조가 형성되되, 상기 분리막의 꼭지점 부위는 상기 수납부의 내측면의 꼭지점 부위에 대응되도록 라운드져 있다.

Description

파우치형 이차전지
본 발명은 파우치형 이차전지에 관한 것으로서, 더욱 상세하게는 전기용량의 향상에 적합한 구조를 갖는 파우치형 이차전지에 관한 것이다
한국공개특허 제2008-0052869호를 참조하면, 일반적인 이차전지의 구조가 개시되어 있으며, 더욱 상세하게는 좌우대칭이며 직육면체 형상인 파우치형 이차전지의 구조가 개시되어 있다.
도 1은 종래기술에 따른 파우치형 이차전지의 분해사시도이며, 도 1을 참조하면, 파우치형 이차전지는 일반적으로, 전극탭(11, 12)이 인출되어 있는 전극조립체(10), 이 전극탭에 각각 연결되어 있는 전극 리드(13, 14)의 일부가 외부로 노출될 수 있도록 전극조립체(10)를 수납부(4)에 수납하는 파우치 외장재(1)를 구비하고, 파우치 외장재(1)가 수납부(4)에 수납된 상태에서 상부 케이스(2)와 하부 케이스(3)를 맞닿게 하여 씰링하는 것에 의하여 파우치형 이차전지가 제조된다.
도 2는 종래기술에 따른 파우치형 이차전지에 구비된 전극조립체와 파우치 외장재 사이 공간의 부분 확대도이다.
통상적으로 파우치 외장재(1)에 수납부(4)를 형성하는 공정은 딥드로잉 공법에 의하여 이루어지며, 공정 중에 수납부(4)의 모서리 부분에 하중이 집중되어 찢어지는 것을 방지하기 위하여 수납부(4)의 모서리는 라운드지게 형성되며, 구체적으로 바닥면(4B)과 내측면(4A)의 경계뿐만 아니라, 가로 방향 내측면(4A)과 세로 방향 내측면(4A)도 라운드지게 형성된다. 이에 반해, 전극조립체(10)의 꼭지점은 도 2에 도시된 것과 같이 직각을 이루고 있다.
한편, 단락방지를 위하여 전극조립체(10)와 파우치 내장재는 특정 간격 이상 이격되어야 하며, 전극조립체(10)의 꼭지점과 수납부의 내측면(4A) 사이의 간격(D0)이 전극조립체(10)와 수납부(4) 사이의 최소간격이기 때문에, 상기 간격(D0)은 단락 방지를 위한 최소 간격 이상 이격되어야 한다.
그러나, 도 2에서 확인할 수 있듯이 전극조립체(10)의 한 변과 파우치 외장재(1)의 내측면(4A) 사이의 간격(D1)은 상기 간격(D0)보다 훨씬 크기 때문에, D1은 단락 방지를 위한 최소간격보다 훨씬 크게 이격될 수밖에 없다.
따라서, 수납부(4)의 체적보다 상당히 작은 체적의 전극조립체(10)가 수납부(4)에 수납될 수밖에 없고, 이로 인해 파우치형 이차전지의 전기용량을 늘리는 데에 한계가 있다.
본 발명은 상술한 문제점을 해결하기 위해 착상된 것으로서, 이차전지의 전기용량의 향상에 적합한 구조를 갖는 파우치형 이차전지를 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여 본 발명에 바람직한 실시예에 따른 파우치형 이차전지는 전극조립체가 파우치 외장재의 수납부에 수납되어 있는 파우치형 이차전지에 있어서, 상기 수납부의 내측면의 꼭지점 부위는 라운드져 있고, 상기 전극조립체는 (a) 서로 동일한 개수의 전극과 분리막이 교대로 배치되어 일체로 결합된 1종의 기본 단위체가 반복적으로 배치된 구조나, 또는 (b) 서로 동일한 개수의 전극과 분리막이 교대로 배치되어 일체로 결합된 2종 이상의 기본 단위체가 정해진 순서에 따라 배치된 구조를 가지는 단위체 스택부를 포함하고, 상기 분리막의 말단은 인접한 분리막의 말단과 접합되지 않고, 상기 (a)의 1종의 기본 단위체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층된 4층 구조나 상기 4층 구조가 반복적으로 적층된 구조를 가지며, 상기 (b)의 2종 이상의 기본 단위체를 각각 1개씩 정해진 순서에 따라 적층하면, 상기 4층 구조나 상기 4층 구조가 반복적으로 배치된 구조가 형성되되, 상기 분리막의 꼭지점 부위는 상기 수납부의 내측면의 꼭지점 부위에 대응되도록 라운드져 있을 수 있다.
본 발명에 따르면, 이차전지의 전기용량의 향상에 적합한 구조를 갖는 파우치형 이차전지를 제공할 수 있다.
본 발명에 따른 기본 단위체의 제1 구조를 도시하고 있는 측면도이다.
도 10는 본 발명에 따른 기본 단위체의 제2 구조를 도시하고 있는 측면도이다.
도 11은 도 9의 기본 단위체의 적층으로 형성되는 단위체 스택부를 도시하고 있는 측면도이다.
도 12는 본 발명에 따른 기본 단위체의 제3 구조를 도시하고 있는 측면도이다.
도 13는 본 발명에 따른 기본 단위체의 제4 구조를 도시하고 있는 측면도이다.
도 14은 도 12의 기본 단위체와 도 5의 기본 단위체의 적층으로 형성되는 단위체 스택부를 도시하고 있는 측면도이다.
도 15은 본 발명에 따른 기본 단위체를 제조하는 공정을 도시하고 있는 공정도이다.
도 16은 본 발명에 따른 기본 단위체와 제1 보조 단위체를 포함한 단위체 스택부의 제1 구조를 도시하고 있는 측면도이다.
도 17는 본 발명에 따른 기본 단위체와 제1 보조 단위체를 포함한 단위체 스택부의 제2 구조를 도시하고 있는 측면도이다.
도 18은 본 발명에 따른 기본 단위체와 제2 보조 단위체를 포함한 단위체 스택부의 제3 구조를 도시하고 있는 측면도이다.
도 19는 본 발명에 따른 기본 단위체와 제2 보조 단위체를 포함한 단위체 스택부의 제4 구조를 도시하고 있는 측면도이다.
도 20은 본 발명에 따른 기본 단위체와 제1 보조 단위체를 포함한 단위체 스택부의 제5 구조를 도시하고 있는 측면도이다.
도 21은 본 발명에 따른 기본 단위체와 제1 보조 단위체를 포함한 단위체 스택부의 제6 구조를 도시하고 있는 측면도이다.
도 22는 본 발명에 따른 기본 단위체와 제2 보조 단위체를 포함한 단위체 스택부의 제7 구조를 도시하고 있는 측면도이다.
도 23은 본 발명에 따른 기본 단위체와 제2 보조 단위체를 포함한 단위체 스택부의 제8 구조를 도시하고 있는 측면도이다.
도 24는 본 발명에 따른 기본 단위체와 제1 보조 단위체를 포함한 단위체 스택부의 제9 구조를 도시하고 있는 측면도이다.
도 25는 본 발명에 따른 기본 단위체, 제1 보조 단위체 및 제2 보조 단위체를 포함한 단위체 스택부의 제10 구조를 도시하고 있는 측면도이다.
도 26은 본 발명에 따른 기본 단위체와 제2 보조 단위체를 포함한 단위체 스택부의 제11 구조를 도시하고 있는 측면도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 그러나 본 발명이 이하의 실시예에 의해 제한되거나 한정되는 것은 아니다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도면에서 각 구성요소 또는 그 구성요소를 이루는 특정 부분의 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 따라서, 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그러한 설명은 생략하도록 한다.
도 3은 본 발명에 따른 파우치형 이차전지의 개략 종단면도이고, 도 4는 본 발명에 따른 파우치형 이차전지에 구비된 전극조립체와 파우치 외장재 사이 공간의 부분 확대도이다.
도 3 및 도 4를 참조하면, 본 발명에 따른 파우치형 이차전지는 수납부의 내측면(4A)의 꼭지점 부위가 라운드져 있고, 전극조립체(100)는 단위체 스택부를 포함하며, 단위체 스택부는 1종의 기본 단위체가 반복적으로 배치된 구조를 가지거나, 또는 2종 이상의 기본 단위체가 정해진 순서에 따라, 예를 들어 교호적으로 배치된 구조를 가진다. 기본단위체(110)의 자세한 구조는 차후에 설명하도록 하며, 도 3은 개략도이므로 기본단위체(110) 자체의 세부적인 구조는 생략되어 도시되어 있음을 밝혀둔다.
도 4 및 도 5를 참조하면, 기본단위체(110)에 구비된 제1 분리막(112)과 제2 분리막(114)의 꼭지점 부위는 수납부의 내측면(4A)의 꼭지점 부위에 대응되도록 라운드져 있다. 도 5에서는 전극(111, 113)의 꼭지점 부위는 직각으로 되어 있고, 분리막(112, 114)만 라운드져 있는 구조가 도시되어 있으나, 도 6과 같이 분리막(112, 114)뿐만 아니라 전극(111, 113)도 라운드져 있는 구조를 채용할 수도 있다.
분리막(112, 114)은 전극(111, 113)에 비하여 열에 의한 변형률이 높다. 따라서, 분리막(112, 114)이 지나치게 수축하는 경우 제1 전극(111)과 제2 전극(113)이 서로 단락될 수 있다. 도 6에 도시된 구조를 채용하는 경우 도 5에 도시된 구조에 비하여, 분리막(112, 114)의 수축에 의한 제1 전극(111)과 제2 전극(113)의 단락의 위험성을 더욱 낮출 수 있는 장점이 있다. 다만, 도 6에 도시된 구조의 장점에 대한 설명이, 도 5에 도시된 구조가 제1 전극(111)과 제2 전극(113)이 단락될 위험성이 상당히 있다는 것을 의미하지는 않는다는 것을 분명하게 밝혀둔다.
분리막(112, 114)의 꼭지점 부위를 라운드 형상으로 만드는 공정은 레이저 커팅, 초음파 커팅, 금형 커팅을 통하여 분리막(112, 114)의 꼭지점을 절취하는 것에 의하여 수행될 수 있다.
한편, 분리막(112, 114)는 전극(111, 113)에 비하여 가로(또는 세로) 방향 사이즈가 더 크며(도 9 및 도 10 참조), 따라서 전극조립체(100)의 가로(또는 세로) 방향 변은 결국 분리막(112, 114)의 가로(또는 세로) 방향 변에 해당한다.
이와 같이 보았을 때, 본 발명은 도 2에 도시된 종래기술과는 달리, 전극조립체(100)의 가로(또는 세로) 방향 변과 수납부의 내측면(4A) 사이의 간격(D3)이 전극조립체(100)의 꼭지점과 수납부의 내측면(4A) 사이의 간격(D2)과 크게 차이 나지 않으며, 종래기술에 비하여 전극조립체(100)와 수납부의 내측면(4A) 사이의 간격(D2, D3)을 좁게 하는 것이 가능하다. 따라서, 종래기술에 비하여 본 발명은 이차전지의 전기용량이 향상될 수 있다.
한편, 전기용량의 최대화 측면에서는 상기 두 간격(D2, D3)은 동일한 것이 바람직하다. 다만, 여기서 두 간격(D2, D3)동일하다는 것은 엄밀한 수학적 의미에서의 동일 또는 사전적 의미에서의 동일만을 의미하는 것은 아니며, 육안으로 일견했을 때 차이를 쉽게 느낄 수 없는 정도의 동일성도 포함하는 의미로 사용되는 것임을 밝혀둔다.
도 7은 소형 기본단위체를 일 구성으로 갖는 파우치형 이차전지의 종단면도이다.
도 3과 같이 전극조립체(100)에 구비된 복수 개의 기본단위체(110)가 모두 동일한 가로 세로 사이즈를 갖는 경우도 상정할 수 있으나, 이와 달리 도 7에 도시된 것과 같이 복수 개의 기본단위체(110) 중에서 수납부의 바닥면(4B) 쪽에 배치되는 기본단위체(110)는 다른 기본단위체(110)보다 가로 방향 및 세로 방향 사이즈가 작게 형성될 수 있으며, 이와 같이 나머지 기본단위체(110)보다 가로 방향 및 세로 방향 사이즈가 작은 기본단위체(110)를 소형 기본단위체라고 지칭하기로 한다.
특히 파우치 외장재(1)에 형성되어 있는 수납부의 내측면(4A)과 바닥면(4B)이 만나는 모서리가 라운드져 있는 경우, 전극조립체(100)가 상기와 같은 소형 기본단위체를 구비하면 이차전지의 전기용량을 최대화하는 데에 더욱 유리한데, 그 이유는 다음과 같다.
도 7에서, 전극조립체(100)에 구비된 4개의 기본단위체(110) 중 상측 3개의 기본단위체(110)가 수납부의 내측면(4A)과 최적의 거리만큼 이격되어 있다고 가정하도록 한다. 만약, 도 7과는 달리 최하층의 기본단위체(110)가 소형 기본단위체가 아닌 나머지 3개의 기본단위체(110)와 동일한 사이즈를 갖고 있다면 최하층의 기본단위체(110)는 수납부의 내측면(4A)과 지나치게 접근하거나 수납부의 내측면(4A)에 접촉할 가능성이 높다. 이 경우, 전극조립체(100)와 파우치 외장재(1)가 서로 단락될 위험성이 높아진다. 따라서, 수납부의 내측면(4A)과 바닥면(4B)이 만나는 모서리가 라운드져 있는 경우에는 전극조립체(100)가 소형 기본단위체를 갖는 것이 바람직하며, 특히 수납부의 바닥면(4B) 쪽에 배치되는 기본단위체(110)는 소형 기본단위체인 것이 좋다.
도 8은 소형 보조단위체를 일 구성으로 갖는 파우치형 이차전지의 종단면도인데, 차후에 자세히 설명하겠지만 전극조립체(100)는 보조단위체(130, 140)를 구비할 수도 있고, 도 8은 전극조립체(100)가 기본단위체(110)뿐만 아니라 보조단위체(130, 140)도 포함하고 있는 경우를 도시하고 있다. 보조단위체(130, 140)의 구체적인 구성에 대해서는 차후에 설명하도록 하며, 보조단위체(130, 140)도 기본단위체(110)와 마찬가지로 꼭지점 부위가 수납부의 내측면(4A)의 꼭지점 부위에 대응되도록 라운드져 있다.
만약 수납부의 내측면(4A)과 바닥면(4B)이 만나는 모서리가 라운드져 있고 보조단위체(130, 140)가 수납부의 바닥면(4B)과 마주한다면, 이 보조단위체(130, 140)는 도 8의 3개의 기본단위체(110)보다 가로 방향 및 세로 방향 사이즈가 더 작은 보조단위체(130, 140)인 소형 보조단위체로 형성하는 것이 바람직하며, 이는 도 7에 대한 설명에서와 동일한 이유에 근거한다.
도 8과는 달리, 만약 보조단위체(130, 140)가 전극조립체(100)의 최상층에 위치하고, 전극조립체(100)의 나머지 층은 기본단위체(110)로 이루어지는 경우라면, 수납부의 바닥면(4B)과 마주하는 기본단위체(110)가 소형 기본단위체로 형성되되 보조단위체(130, 140)는 통상적인 사이즈로 형성되는 것이 바람직하다.
또 다른 예시로서, 만약, 전극조립체(100)의 최상층과 최하층에 보조단위체(130, 140)가 위치하고, 전극조립체(100)의 나머지 층은 모두 기본단위체(110)로 이루어져 있는 경우라면, 두 개의 보조단위체(130, 140) 중 수납부의 바닥면(4B)과 마주하는 보조단위체(130, 140)만 소형 보조단위체로 형성되고, 다른 하나의 보조단위체(130, 140)는 통상적인 사이즈로 형성되며, 기본단위체(110)들은 통상적인 사이즈로 형성되는 것이 바람직하다.
지금까지는 기본단위체(110)의 구조에 대하여 단순히 제1 전극(111)/제1 분리막(112)/제2 전극(113)/제2 분리막(114)의 순서로 각 층을 적층한 구조를 포함하는 것으로만 간단하게 설명하였다. 또한, 기본단위체(110)를 이루고 있는 서로 별개의 층의 상대위치를 고정하여 하나의 기본단위체(110)로 만들거나 기본단위체(110)를 포함하는 전극조립체(100)를 만드는 구체적인 과정에 대해서도 자세하게 설명하지는 않았다.
이에, 실제로 기본단위체(110)를 어떠한 공정을 통하여 만들 수 있는지와, 본 발명에 채용될 수 있는 다양한 전극조립체(100)의 구조에 대하여 이하에서 설명하도록 한다.
[기본 단위체의 구조]
본 발명에 따른 전극 조립체에서 기본 단위체는 전극과 분리막이 교대로 배치되어 형성된다. 이때 전극과 분리막은 같은 수만큼 배치된다. 예를 들어, 도 9에서 도시하고 있는 것과 같이, 기본 단위체(110a)는 2개의 전극(111, 113)과 2개의 분리막(112, 114)이 적층되어 형성될 수 있다. 이때 양극과 음극은 당연히 분리막을 통해 서로 마주 볼 수 있다. 기본 단위체가 이와 같이 형성되면, 기본 단위체의 일측 말단에 전극(도 9과 10에서 도면부호 111의 전극 참조)이 위치하게 되고, 기본 단위체의 타측 말단에 분리막(도 9와 10에서 도면부호 114의 분리막 참조)이 위치하게 된다.
본 발명에 따른 전극 조립체는 기본 단위체의 적층만으로 단위체 스택부(즉, 전극 조립체)를 형성할 수 있다는 점에 기본적인 특징이 있다. 즉, 본 발명은 1종의 기본 단위체를 반복적으로 적층하여, 또는 2종 이상의 기본 단위체를 정해진 순서에 따라 적층하여 단위체 스택부를 형성할 수 있다는 점에 기본적인 특징이 있다. 이와 같은 특징을 구현하기 위해 기본 단위체는 이하와 같은 구조를 가질 수 있다.
첫째로, 기본 단위체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 차례로 적층되어 형성될 수 있다. 보다 구체적으로 기본 단위체(110a, 110b)는 도 9에서 도시하고 있는 것과 같이 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로 차례로 적층되어 형성되거나, 또는 도 10에서 도시하고 있는 것과 같이 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 하측에서 상측으로 차례로 적층되어 형성될 수 있다. 이와 같은 구조를 가지는 기본 단위체를 이하에서 제1 기본 단위체라 한다. 이때 제1 전극(111)과 제2 전극(113)은 서로 반대되는 전극이다. 예를 들어, 제1 전극(111)이 양극이면 제2 전극(113)은 음극이다.
이와 같이 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 차례로 적층되어 기본 단위체가 형성되면, 도 11에서 도시하고 있는 것과 같이 1종의 기본 단위체(110a)를 반복적으로 적층하는 것만으로도 단위체 스택부(100a)를 형성할 수 있다. 여기서 기본 단위체는 이와 같은 4층 구조 이외에도 8층 구조나 12층 구조를 가질 수 있다. 즉, 기본 단위체는 4층 구조가 반복적으로 배치된 구조를 가질 수 있다. 예를 들어, 기본 단위체는 제1 전극, 제1 분리막, 제2 전극, 제2 분리막, 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 차례로 적층되어 형성될 수도 있다.
둘째로, 기본 단위체는, 제1 전극, 제1 분리막, 제2 전극, 제2 분리막, 제1 전극 및 제1 분리막이 차례로 적층되어 형성되거나, 제2 전극, 제2 분리막, 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 차례로 적층되어 형성될 수 있다. 전자의 구조를 가지는 기본 단위체를 이하에서 제2 기본 단위체라 하고, 후자의 구조를 가지는 기본 단위체를 이하에서 제3 기본 단위체라 한다.
보다 구체적으로 제2 기본 단위체(110c)는 도 12에 도시되어 있는 것과 같이 제1 전극(111), 제1 분리막(112), 제2 전극(113), 제2 분리막(114), 제1 전극(111) 및 제1 분리막(112)이 상측에서 하측으로 차례로 적층되어 형성될 수 있다. 또한 제3 기본 단위체(110d)는 도 13에 도시되어 있는 것과 같이 제2 전극(113), 제2 분리막(114), 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로 차례로 적층되어 형성될 수 있다. 이와 반대로 하측에서 상측으로 차례로 적층되어 형성될 수도 있다.
제2 기본 단위체(110c)와 제3 기본 단위체(110d)를 하나씩만 적층하면 4층 구조가 반복적으로 적층된 구조가 형성된다. 따라서 제2 기본 단위체(110c)와 제3 기본 단위체(110d)를 하나씩 교대로 계속 적층하면, 도 14에서 도시하고 있는 것과 같이 제2 및 제3 기본 단위체의 적층만으로도 단위체 스택부(100b)를 형성할 수 있다.
이와 같이 본 발명에서 1종의 기본 단위체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 배치된 4층 구조나 4층 구조가 반복적으로 배치된 구조를 가진다. 또한 본 발명에서 2종 이상의 기본 단위체를 각각 1개씩 정해진 순서에 따라 배치하면, 4층 구조나 4층 구조가 반복적으로 배치된 구조가 형성된다. 예를 들어, 전술한 제1 기본 단위체는 4층 구조를 가지고, 전술한 제2 기본 단위체와 제3 기본 단위체를 각각 1개씩 총 2개를 적층하면 4층 구조가 반복적으로 적층된 12층 구조가 형성된다.
따라서 본 발명에서 1종의 기본 단위체를 반복적으로 적층하거나, 또는 2종 이상의 기본 단위체를 정해진 순서에 따라 적층하면, 단지 적층만으로도 단위체 스택부(즉, 전극 조립체)를 형성할 수 있다.
본 발명에서 단위체 스택부는 기본 단위체가 기본 단위체 단위로 적층되어 형성된다. 즉, 먼저 기본 단위체를 제작한 다음에 이를 반복적으로 또는 정해진 순서에 따라 적층하여 단위체 스택부를 제작한다. 이와 같이 본 발명은 기본 단위체의 적층만으로 단위체 스택부를 형성할 수 있다. 따라서 본 발명은 기본 단위체를 매우 정밀하게 정렬시킬 수 있다. 기본 단위체가 정밀하게 정렬되면 전극과 분리막도 단위체 스택부에서 정밀하게 정렬될 수 있다. 또한 본 발명은 단위체 스택부(전극 조립체)의 생산성을 매우 향상시킬 수 있다. 공정이 매우 단순해지기 때문이다.
[기본 단위체의 제조]
도 15를 참조하여 대표적으로 제1 기본 단위체를 제조하는 공정에 대해 살펴본다. 먼저 제1 전극 재료(121), 제1 분리막 재료(122), 제2 전극 재료(123) 및 제2 분리막 재료(124)를 준비한다. 여기서 제1 분리막 재료(122)와 제2 분리막 재료(124)는 서로 동일한 재료일 수 있다. 그런 다음 제1 전극 재료(121)를 커터(C1)를 통해 소정 크기로 절단하고, 제2 전극 재료(123)도 커터(C2)를 통해 소정 크기로 절단한다. 그런 다음 제1 전극 재료(121)를 제1 분리막 재료(122)에 적층하고, 제2 전극 재료(123)를 제2 분리막 재료(124)에 적층한다.
그런 다음 라미네이터(L1, L2)에서 전극 재료와 분리막 재료를 서로 접착시키는 것이 바람직하다. 이와 같은 접착으로 전극과 분리막이 일체로 결합된 기본 단위체가 제조될 수 있다. 결합의 방법은 다양할 수 있다. 라미네이터(L1, L2)는 접착을 위해 재료에 압력을 가하거나 압력과 열을 가한다. 이와 같은 접착은 단위체 스택부를 제조할 때 기본 단위체의 적층을 보다 용이하게 한다. 또한 이와 같은 접착은 기본 단위체의 정렬에도 유리하다. 이와 같은 접착 후에 제1 분리막 재료(122)와 제2 분리막 재료(124)를 커터(C3)를 통해 소정 크기로 절단하면, 기본 단위체(110a)가 제조될 수 있다. 이와 같은 과정 중에 분리막의 말단은 인접한 분리막의 말단과 접합되지 않는다.
이와 같이 기본 단위체에서 전극은 인접한 분리막에 접착될 수 있다. 또는 분리막이 전극에 접착된다고 볼 수도 있다. 이때 전극은 분리막을 바라보는 면에서 전체적으로 분리막에 접착되는 것이 바람직하다. 이와 같으면 전극이 안정적으로 분리막에 고정될 수 있기 때문이다. 통상적으로 전극은 분리막보다 작다.
이를 위해 접착제를 분리막에 도포할 수 있다. 그러나 이와 같이 접착제를 이용하려면 접착제를 접착면에 걸쳐 매시(mesh) 형태나 도트(dot) 형태로 도포할 필요가 있다. 접착제를 접착면의 전체에 빈틈없이 도포한다면, 리튬 이온과 같은 반응 이온이 분리막을 통과할 수 없기 때문이다. 따라서 접착제를 이용하면, 전극을 전체적으로 (즉, 접착면의 전체에 걸쳐서) 분리막에 접착시킬 수는 있다 하더라도 전체적으로 빈틈없이 접착시키기는 어렵다.
또는 접착력을 가지는 코팅층을 구비하는 분리막을 통해 전체적으로 전극을 분리막에 접착시킬 수 있다. 보다 상술한다. 분리막은 폴리올레핀 계열의 분리막 기재와 같은 다공성의 분리막 기재, 및 분리막 기재의 일면 또는 양면에 전체적으로 코팅되는 다공성의 코팅층을 포함할 수 있다. 이때 코팅층은 무기물 입자들과 무기물 입자들을 서로 연결 및 고정하는 바인더 고분자의 혼합물로 형성될 수 있다.
여기서 무기물 입자는 분리막의 열적 안정성을 향상시킬 수 있다. 즉, 무기물 입자는 고온에서 분리막이 수축되는 것을 방지할 수 있다. 그리고 바인더 고분자는 무기물 입자를 고정시켜 분리막의 기계적 안정성도 향상시킬 수 있다. 또한 바인더 고분자는 전극을 분리막에 접착시킬 수 있다. 바인더 고분자는 코팅층에 전체적으로 분포하므로, 전술한 접착제와 다르게 접착면의 전체에서 빈틈없이 접착이 일어날 수 있다. 따라서 이와 같은 분리막을 이용하면 전극을 보다 안정적으로 분리막에 고정 시킬 수 있다. 이와 같은 접착을 강화하기 위해 전술한 라미네이터를 이용할 수 있다.
그런데 무기물 입자들은 충전 구조(densely packed structure)를 이루어 코팅층에서 전체적으로 무기물 입자들간의 인터스티셜 볼륨(interstitial volumes)을 형성할 수 있다. 이때 무기물 입자들이 한정하는 인터스티셜 볼륨에 의해 코팅층에는 기공 구조가 형성될 수 있다. 이러한 기공 구조로 인해 분리막에 코팅층이 형성되어 있더라도 리튬 이온이 분리막을 양호하게 통과할 수 있다. 참고로 무기물 입자들이 한정하는 인터스티셜 볼륨은 위치에 따라 바인더 고분자에 의해 막혀 있을 수도 있다.
여기서 충전 구조는 유리병에 자갈이 담겨 있는 것과 같은 구조로 설명될 수 있다. 따라서 무기물 입자들이 충전 구조를 이루면, 코팅층에서 국부적으로 무기물 입자들간의 인터스티셜 볼륨이 형성되는 것이 아니라, 코팅층에서 전체적으로 무기물 입자들간의 인터스티셜 볼륨이 형성된다. 이에 따라 무기물 입자의 크기가 증가하면 인터스티셜 볼륨에 의한 기공의 크기도 함께 증가한다. 이와 같은 충전 구조로 인해 분리막의 전체면에서 리튬 이온이 원활하게 분리막을 통과할 수 있다.
한편, 단위체 스택부에서 기본 단위체도 기본 단위체끼리 서로 접착될 수 있다. 예를 들어, 도 9에서 제2 분리막(114)의 하면에 접착제가 도포된다거나 전술한 코팅층이 코팅된다면, 제2 분리막(114)의 하면에 다른 기본 단위체가 접착될 수 있다.
이때 기본 단위체에서 전극과 분리막간의 접착력은 단위체 스택부에서 기본 단위체간의 접착력보다 클 수 있다. 물론 기본 단위체간의 접착력은 없을 수도 있다. 이와 같으면 전극 조립체(단위체 스택부)를 분리할 때 접착력의 차이로 인해 기본 단위체 단위로 분리될 가능성이 높다. 참고로, 접착력은 박리력으로 표현할 수도 있다. 예를 들어, 전극과 분리막간의 접착력은 전극과 분리막을 서로 떼어낼 때 필요한 힘으로 표현할 수도 있다. 이와 같이 단위체 스택부 내에서 기본 단위체는 인접한 기본 단위체와 결합되지 않거나, 또는 기본 단위체 내에서 전극과 분리막이 서로 결합된 결합력과 다른 결합력으로 인접한 기본 단위체와 결합될 수 있다.
참고로, 분리막이 전술한 코팅층을 포함할 경우 분리막에 대한 초음파 융착은 바람직하지 않다. 분리막은 통상적으로 전극보다 크다. 이에 따라 제1 분리막(112)의 말단과 제2 분리막(114)의 말단을 초음파 융착으로 서로 결합시키려는 시도가 있을 수 있다. 그런데 초음파 융착은 혼으로 대상을 직접 가압할 필요가 있다. 그러나 혼으로 분리막의 말단을 직접 가압하면, 접착력을 가지는 코팅층으로 인해 분리막에 혼이 들러붙을 수 있다. 이로 인해 장치의 고장이 초래될 수 있다.
[보조 단위체]
단위체 스택부는 제1 보조 단위체와 제2 보조 단위체 중의 적어도 어느 하나를 더 포함할 수 있다. 먼저 제1 보조 단위체에 대해 살펴본다. 본 발명에서 기본 단위체는 일측 말단에 전극이 위치하고 타측 말단에 분리막이 위치한다. 따라서 기본 단위체를 순차적으로 적층하면, 단위체 스택부의 가장 위쪽이나 가장 아래쪽에 전극(도 16에서 도면부호 116의 전극 참조, 이하 '말단 전극'이라 한다)이 위치하게 된다. 제1 보조 단위체는 이와 같은 말단 전극에 추가적으로 적층된다.
보다 구체적으로 말단 전극(116)이 양극이면, 제1 보조 단위체(130a)는 도 16에서 도시하고 있는 것과 같이, 말단 전극(116)으로부터 차례로, 즉 말단 전극(116)으로부터 외측으로 분리막(114), 음극(113), 분리막(112) 및 양극(111)이 순차적으로 적층되어 형성될 수 있다. 또한 말단 전극(116)이 음극이면, 제1 보조 단위체(130b)는 도 17에서 도시하고 있는 것과 같이, 말단 전극(116)으로부터 차례로, 즉 말단 전극(116)으로부터 외측으로 분리막(114) 및 양극(113)이 순차적으로 적층 되어 형성될 수 있다.
단위체 스택부(100d, 100e)는 도 16과 도 17에 도시되어 있는 것과 같이, 제1 보조 단위체(130a, 130b)를 통해 말단 전극 측의 가장 외측에 양극을 위치시킬 수 있다. 이때 가장 외측에 위치하는 양극, 즉 제1 보조 단위체의 양극은 집전체의 양면 중에 기본 단위체를 바라보는 일면(도 16을 기준으로 아래쪽을 바라보는 일면)에만 활물질층이 코팅되는 것이 바람직하다. 이와 같이 활물질층이 코팅되면, 말단 전극 측의 가장 외측에 활물질층이 위치하지 않게 되므로, 활물질층이 낭비되는 것을 방지할 수 있다. 참고로, 양극은 (예를 들어) 리튬 이온을 방출하는 구성이므로 가장 외측에 양극을 위치시키면 전지 용량에 있어 유리하다.
다음으로 제2 보조 단위체에 대해 살펴본다. 제2 보조 단위체는 기본적으로 제1 보조 단위체와 동일한 역할을 수행한다. 보다 상술한다. 본 발명에서 기본 단위체는 일측 말단에 전극이 위치하고 타측 말단에 분리막이 위치한다. 따라서 기본 단위체를 순차적으로 적층하면, 단위체 스택부의 가장 위쪽이나 가장 아래쪽에 분리막(도 18에서 도면부호 117의 분리막 참조, 이하 '말단 분리막'이라 한다)이 위치하게 된다. 제2 보조 단위체는 이와 같은 말단 분리막에 추가적으로 적층된다.
보다 구체적으로 기본 단위체에서 말단 분리막(117)에 접한 전극(113)이 양극이면, 제2 보조 단위체(140a)는 도 18에서 도시하고 있는 것과 같이, 말단 분리막(117)으로부터 차례로 음극(111), 분리막(112) 및 양극(113)이 적층되어 형성될 수 있다. 또한 기본 단위체에서 말단 분리막(117)에 접한 전극(113)이 음극이면, 제2 보조 단위체(140b)는 도 19에서 도시하고 있는 것과 같이 양극(111)으로 형성될 수 있다.
단위체 스택부(100f, 100g)는 도 18과 도 19에 도시되어 있는 것과 같이, 제2 보조 단위체(140a, 140b)를 통해 말단 분리막 측의 가장 외측에 양극을 위치시킬 수 있다. 이때 가장 외측에 위치하는 양극, 즉 제2 보조 단위체의 양극도 제1 보조 단위체의 양극과 동일하게, 집전체의 양면 중에 기본 단위체를 바라보는 일면(도 18을 기준으로 위쪽을 바라보는 일면)에만 활물질층이 코팅되는 것이 바람직하다.
그런데 제1 보조 단위체와 제2 보조 단위체는 전술한 구조와 다른 구조를 가질 수도 있다. 먼저 제1 보조 단위체에 대해 살펴본다. 도 20에서 도시하고 있는 것과 같이 말단 전극(116)이 양극이면, 제1 보조 단위체(130c)는 분리막(114) 및 음극(113)이 말단 전극(116)으로부터 차례로 적층되어 형성될 수 있다. 또한 도 21에 도시되어 있는 것과 같이 말단 전극(116)이 음극이면, 제1 보조 단위체(130d)는 분리막(114), 양극(113), 분리막(112) 및 음극(111)이 말단 전극(116)으로부터 차례로 적층되어 형성될 수 있다.
단위체 스택부(100h, 100i)는 도 20과 도 21에 도시되어 있는 것과 같이, 제1 보조 단위체(130c, 130d)를 통해 말단 전극 측의 가장 외측에 음극을 위치시킬 수 있다.
다음으로 제2 보조 단위체에 대해 살펴본다. 도 22에서 도시하고 있는 것과 같이, 기본 단위체에서 말단 분리막(117)에 접한 전극(113)이 양극이면, 제2 보조 단위체(140c)는 음극(111)으로 형성될 수 있다. 또한 도 23에서 도시하고 있는 것과 같이, 기본 단위체에서 말단 분리막(117)에 접한 전극(113)이 음극이면, 제2 보조 단위체(140d)는 양극(111), 분리막(112) 및 음극(13)이 말단 분리막(117)으로부터 차례로 적층되어 형성될 수 있다. 단위체 스택부(100j, 100k)는 도 22와 도 23에 도시되어 있는 것과 같이, 제2 보조 단위체(140c, 140d)를 통해 말단 분리막 측의 가장 외측에 음극을 위치시킬 수 있다.
참고로, 음극은 전위차로 인해 전지 케이스(예를 들어, 파우치형 케이스)의 알루미늄층과 반응을 일으킬 수 있다. 따라서 음극은 분리막을 통해 전지 케이스로부터 절연되는 것이 바람직하다. 이를 위해 도 20 내지 도 23에서 제1 및 제2 보조 단위체는 음극의 외측에 분리막을 더 포함할 수도 있다. 예를 들어, 도 20의 제1 보조 단위체(130c)와 대비하여 도 24의 제1 보조 단위체(130e)는 가장 외측에 분리막(112)을 더 포함할 수도 있다. 참고로, 보조 단위체가 분리막을 포함하면 보조 단위체를 기본 단위체에 정렬할 때 보다 용이하다.
한편, 도 25에서 도시하고 있는 것과 같이 단위체 스택부(100m)를 형성할 수도 있다. 기본 단위체(110b)는 하측에서 상측으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 차례로 적층되어 형성될 수 있다. 이때 제1 전극(111)은 양극일 수 있고 제2 전극(113)은 음극일 수 있다.
그리고 제1 보조 단위체(130f)는 분리막(114), 음극(113), 분리막(112) 및 양극(111)이 말단 전극(116)으로부터 순차적으로 적층되어 형성될 수 있다. 이때 제1 보조 단위체(130f)의 양극(111)은 집전체의 양면 중에 기본 단위체(110b)를 바라보는 일면에만 활물질층이 형성될 수 있다.
또한 제2 보조 단위체(140e)는 말단 분리막(117)으로부터 순차적으로 양극(111, 제1 양극), 분리막(112), 음극(113), 분리막(114) 및 양극(118, 제2 양극)이 적층되어 형성될 수 있다. 이때 제2 보조 단위체(140e)의 양극 중 가장 외측에 위치한 양극(118, 제2 양극)은 집전체의 양면 중에 기본 단위체(110b)를 바라보는 일면에만 활물질층이 형성될 수 있다.
마지막으로 도 26에서 도시하고 있는 것과 같이 단위체 스택부(100n)를 형성할 수도 있다. 기본 단위체(110e)는 상측에서 하측으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 적층되어 형성될 수 있다. 이때 제1 전극(111)은 음극일 수 있고 제2 전극(113)은 양극일 수 있다. 그리고 제2 보조 단위체(140f)는 음극(111), 분리막(112), 양극(113), 분리막(114) 및 음극(119)이 말단 분리막(117)으로부터 순차적으로 적층되어 형성될 수 있다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
본 발명의 파우치형 이차전지에 의하면, 이차전지의 전기용량의 향상에 적합한 구조가 제공될 수 있다.

Claims (29)

  1. 전극조립체가 파우치 외장재의 수납부에 수납되어 있는 파우치형 이차전지에 있어서,
    상기 수납부의 내측면의 꼭지점 부위는 라운드져 있고,
    상기 전극조립체는 (a) 서로 동일한 개수의 전극과 분리막이 교대로 배치되어 일체로 결합된 1종의 기본 단위체가 반복적으로 배치된 구조나, 또는 (b) 서로 동일한 개수의 전극과 분리막이 교대로 배치되어 일체로 결합된 2종 이상의 기본 단위체가 정해진 순서에 따라 배치된 구조를 가지는 단위체 스택부를 포함하고,
    상기 분리막의 말단은 인접한 분리막의 말단과 접합되지 않고,
    상기 (a)의 1종의 기본 단위체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층된 4층 구조나 상기 4층 구조가 반복적으로 적층된 구조를 가지며,
    상기 (b)의 2종 이상의 기본 단위체를 각각 1개씩 정해진 순서에 따라 적층하면, 상기 4층 구조나 상기 4층 구조가 반복적으로 배치된 구조가 형성되되,
    상기 분리막의 꼭지점 부위는 상기 수납부의 내측면의 꼭지점 부위에 대응되도록 라운드져 있는 것을 특징으로 하는 파우치형 이차전지.
  2. 청구항 1에 있어서,
    상기 전극조립체는 복수 개의 기본단위체를 포함하고,
    상기 복수 개의 기본단위체 중 적어도 하나의 기본단위체는 다른 기본단위체보다 가로 방향 및 세로 방향 사이즈가 작은 것을 특징으로 하는 파우치형 이차전지.
  3. 청구항 2에 있어서,
    상기 수납부의 내측면과 바닥면이 만나는 모서리는 라운드져 있는 것을 특징으로 하는 파우치형 이차전지.
  4. 청구항 3에 있어서,
    다른 기본단위체보다 가로 방향 및 세로 방향 사이즈가 작은 상기 기본단위체는 상기 수납부의 바닥면 쪽에 배치된 것을 특징으로 하는 파우치형 이차전지.
  5. 청구항 1에 있어서,
    상기 전극의 꼭지점 부위는 라운드져 있는 것을 특징으로 하는 파우치형 이차전지.
  6. 청구항 1에 있어서,
    상기 전극조립체의 일 변과 상기 수납부의 내측면 사이의 간격(D3)은, 상기 전극조립체의 꼭지점과 상기 수납부의 내측면 사이의 간격(D2)과 동일한 것을 특징으로 하는 파우치형 이차전지.
  7. 청구항 1에 있어서,
    상기 분리막의 꼭지점 부위는 레이저 커팅, 초음파 커팅, 금형 커팅을 통하여 라운드진 형상으로 절취되는 것을 특징으로 하는 파우치형 이차전지.
  8. 청구항 1에 있어서,
    상기 단위체 스택부 내에서 상기 기본 단위체는 인접한 기본 단위체와 결합되지 않거나, 또는 상기 기본 단위체 내에서 상기 전극과 상기 분리막이 서로 결합된 결합력과 다른 결합력으로 인접한 기본 단위체와 결합되는 것을 특징으로 하는 파우치형 이차전지.
  9. 청구항 1에 있어서,
    상기 (a)의 1종의 기본 단위체는 상기 4층 구조나 상기 4층 구조가 반복적으로 배치된 구조를 가지는 제1 기본 단위체를 포함하며,
    상기 단위체 스택부는 상기 제1 기본 단위체가 반복적으로 배치된 구조를 가지는 것을 특징으로 하는 파우치형 이차전지.
  10. 청구항 1에 있어서,
    상기 (b)의 2종 이상의 기본 단위체는,
    제1 전극, 제1 분리막, 제2 전극, 제2 분리막, 제1 전극 및 제1 분리막이 차례로 배치되어 일체로 결합된 제2 기본 단위체와,
    제2 전극, 제2 분리막, 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 차례로 배치되어 일체로 결합된 제3 기본 단위체를 포함하며,
    상기 단위체 스택부는 상기 제2 기본 단위체와 상기 제3 기본 단위체가 교호적으로 배치된 구조를 가지는 것을 특징으로 하는 파우치형 이차전지.
  11. 청구항 1에 있어서,
    상기 전극은 각각의 기본 단위체 내에서 인접한 분리막에 접착되는 것을 특징으로 하는 파우치형 이차전지.
  12. 청구항 13에 있어서,
    상기 전극은 상기 인접한 분리막을 바라보는 면에서 전체적으로 상기 인접한 분리막에 접착되는 것을 특징으로 하는 파우치형 이차전지.
  13. 청구항 11에 있어서,
    상기 전극과 상기 분리막간의 접착은, 상기 전극과 상기 인접한 분리막에 압력을 가하는 것에 의한 접착, 또는 상기 전극과 상기 인접한 분리막에 압력과 열을 가하는 것에 의한 접착인 것을 특징으로 하는 파우치형 이차전지.
  14. 청구항 11에 있어서,
    상기 기본 단위체 내에서 상기 전극과 상기 인접한 분리막간의 접착력은 상기 단위체 스택부 내에서 상기 기본 단위체간의 접착력보다 큰 것을 특징으로 하는 파우치형 이차전지.
  15. 청구항 11에 있어서,
    상기 분리막은 다공성의 분리막 기재, 및 상기 분리막 기재의 일면 또는 양면에 전체적으로 코팅되는 다공성의 코팅층을 포함하고,
    상기 코팅층은 무기물 입자들과 상기 무기물 입자들을 서로 연결 및 고정하는 바인더 고분자의 혼합물로 형성되며.
    상기 전극은 상기 코팅층에 의해 상기 인접한 분리막에 접착되는 것을 특징으로 하는 파우치형 이차전지.
  16. 청구항 15에 있어서,
    상기 무기물 입자들은 충전 구조(densely packed structure)를 이루어 상기 코팅층에서 전체적으로 무기물 입자들간의 인터스티셜 볼륨(interstitial volumes)을 형성하고, 상기 무기물 입자들이 한정하는 인터스티셜 볼륨에 의해 상기 코팅층에 기공 구조가 형성되는 것을 특징으로 하는 파우치형 이차전지.
  17. 청구항 1에 있어서,
    상기 단위체 스택부는 가장 위쪽 또는 가장 아래쪽에 위치하는 전극인 말단 전극에 적층되는 제1 보조 단위체를 더 포함하며,
    상기 말단 전극이 양극일 때 상기 제1 보조 단위체는 상기 말단 전극으로부터 차례로 분리막, 음극, 분리막 및 양극이 적층되어 형성되고,
    상기 말단 전극이 음극일 때 상기 제1 보조 단위체는 상기 말단 전극으로부터 차례로 분리막 및 양극이 적층되어 형성되는 것을 특징으로 하는 파우치형 이차전지.
  18. 청구항 17에 있어서,
    상기 제1 보조 단위체의 양극은,
    집전체; 및
    상기 집전체의 양면 중에 상기 기본 단위체를 바라보는 일면에만 코팅되는 활물질을 구비하는 것을 특징으로 하는 파우치형 이차전지.
  19. 청구항 1에 있어서,
    상기 단위체 스택부는 가장 위쪽 또는 가장 아래쪽에 위치하는 분리막인 말단 분리막에 적층되는 제2 보조 단위체를 더 포함하며,
    상기 기본 단위체에서 상기 말단 분리막에 접한 전극이 양극일 때 상기 제2 보조 단위체는 상기 말단 분리막으로부터 차례로 음극, 분리막 및 양극이 적층되어 형성되고,
    상기 기본 단위체에서 상기 말단 분리막에 접한 전극이 음극일 때 상기 제2 보조 단위체는 양극으로 형성되는 것을 특징으로 하는 파우치형 이차전지.
  20. 청구항 19에 있어서,
    상기 제2 보조 단위체의 양극은,
    집전체; 및
    상기 집전체의 양면 중에 상기 기본 단위체를 바라보는 일면에만 코팅되는 활물질을 구비하는 것을 특징으로 하는 파우치형 이차전지.
  21. 청구항 1에 있어서,
    상기 단위체 스택부는 가장 위쪽 또는 가장 아래쪽에 위치하는 전극인 말단 전극에 적층되는 제1 보조 단위체를 더 포함하며,
    상기 말단 전극이 양극일 때 상기 제1 보조 단위체는 상기 말단 전극으로부터 차례로 분리막 및 음극이 적층되어 형성되고,
    상기 말단 전극이 음극일 때 상기 제1 보조 단위체는 상기 말단 전극으로부터 차례로 분리막, 양극, 분리막 및 음극이 적층되어 형성되는 것을 특징으로 하는 파우치형 이차전지.
  22. 청구항 21에 있어서,
    상기 제1 보조 단위체는 상기 음극의 외측에 분리막을 더 포함하는 것을 특징으로 하는 파우치형 이차전지.
  23. 청구항 1에 있어서,
    상기 단위체 스택부는 가장 위쪽 또는 가장 아래쪽에 위치하는 분리막인 말단 분리막에 적층되는 제2 보조 단위체를 더 포함하며,
    상기 기본 단위체에서 상기 말단 분리막에 접한 전극이 양극일 때 상기 제2 보조 단위체는 음극으로 형성되고,
    상기 기본 단위체에서 상기 말단 분리막에 접한 전극이 음극일 때 상기 제2 보조 단위체는 상기 말단 분리막으로부터 차례로 양극, 분리막 및 음극이 적층되어 형성되는 것을 특징으로 하는 파우치형 이차전지.
  24. 청구항 23에 있어서,
    상기 제2 보조 단위체는 상기 음극의 외측에 분리막을 더 포함하는 것을 특징으로 하는 파우치형 이차전지.
  25. 청구항 1에 있어서,
    상기 단위체 스택부는 가장 위쪽 또는 가장 아래쪽에 위치하는 분리막인 말단 분리막에 적층되는 제2 보조 단위체를 더 포함하며,
    상기 기본 단위체에서 상기 말단 분리막에 접한 전극이 음극일 때 상기 제2 보조 단위체는 상기 말단 분리막으로부터 차례로 제1 양극, 분리막, 음극, 분리막 및 제2 양극이 적층되어 형성되는 것을 특징으로 파우치형 이차전지.
  26. 청구항 25에 있어서,
    상기 제2 보조 단위체의 제2 양극은,
    집전체; 및
    상기 집전체의 양면 중에 상기 기본 단위체를 바라보는 일면에만 코팅되는 활물질을 구비하는 것을 특징으로 파우치형 이차전지.
  27. 청구항 1에 있어서,
    상기 단위체 스택부는 가장 위쪽 또는 가장 아래쪽에 위치하는 분리막인 말단 분리막에 적층되는 제2 보조 단위체를 더 포함하며,
    상기 기본 단위체에서 상기 말단 분리막에 접한 전극이 양극일 때 상기 제2 보조 단위체는 상기 말단 분리막으로부터 차례로 제1 음극, 분리막, 양극, 분리막 및 제2 음극이 적층되어 형성되는 것을 특징으로 파우치형 이차전지.
  28. 청구항 17 내지 27 중 어느 한 항에 있어서,
    상기 수납부의 내측면과 바닥면이 만나는 모서리는 라운드져 있고,
    상기 기본단위체와 상기 보조단위체 중 상기 수납부의 바닥면과 가장 가까이 배치된 단위체는 나머지 단위체보다 가로 방향 및 세로 방향 사이즈가 작은 것을 특징으로 하는 파우치형 이차전지.
  29. 청구항 28에 있어서,
    상기 보조단위체에 구비된 꼭지점 부위는 상기 수납부의 내측면의 꼭지점 부위에 대응되도록 라운드져 있는 것을 특징으로 하는 파우치형 이차전지.
PCT/KR2014/008570 2013-09-26 2014-09-15 파우치형 이차전지 WO2015046792A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14849259.8A EP2922112B1 (en) 2013-09-26 2014-09-15 Pouch-type secondary battery
US14/901,900 US10622664B2 (en) 2013-09-26 2014-09-15 Pouch type secondary battery
JP2016504267A JP6186071B2 (ja) 2013-09-26 2014-09-15 パウチ型二次電池
CN201480040341.XA CN105378968B (zh) 2013-09-26 2014-09-15 袋型二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0114248 2013-09-26
KR20130114248 2013-09-26
KR1020140120115A KR101738734B1 (ko) 2013-09-26 2014-09-11 파우치형 이차전지
KR10-2014-0120115 2014-09-11

Publications (1)

Publication Number Publication Date
WO2015046792A1 true WO2015046792A1 (ko) 2015-04-02

Family

ID=53031381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008570 WO2015046792A1 (ko) 2013-09-26 2014-09-15 파우치형 이차전지

Country Status (7)

Country Link
US (1) US10622664B2 (ko)
EP (1) EP2922112B1 (ko)
JP (1) JP6186071B2 (ko)
KR (1) KR101738734B1 (ko)
CN (1) CN105378968B (ko)
TW (1) TWI521764B (ko)
WO (1) WO2015046792A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2548361B (en) 2016-03-15 2020-12-02 Dyson Technology Ltd Method of fabricating an energy storage device
US10686213B2 (en) * 2017-05-18 2020-06-16 Panasonic Intellectual Property Management Co., Ltd. Battery
GB2566473B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2566472B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
JP6563469B2 (ja) * 2017-12-15 2019-08-21 本田技研工業株式会社 電極接合方法及び電極接合装置
GB2569388B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Compound
GB2569390A (en) 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
GB2569392B (en) 2017-12-18 2022-01-26 Dyson Technology Ltd Use of aluminium in a cathode material
GB2569387B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Electrode
CN110120557B (zh) * 2018-02-05 2021-01-15 宁德新能源科技有限公司 保护装置及电池
KR102500240B1 (ko) * 2018-06-29 2023-02-16 주식회사 엘지에너지솔루션 전극 조립체 제조방법
CN109873092B (zh) * 2019-02-26 2020-10-23 宁德新能源科技有限公司 电池单元及电子设备
KR102287911B1 (ko) 2019-12-12 2021-08-09 주식회사 엠플러스 이차전지용 파우치 커터 및 그 조립방법
KR20230174035A (ko) * 2022-06-20 2023-12-27 주식회사 엘지에너지솔루션 전지셀 고정장치
KR102614648B1 (ko) 2022-07-08 2023-12-15 주식회사 엠플러스 오토 클리어런스 타입 파우치 컷팅 유닛 및 파우치 컷팅 방법
KR20240007379A (ko) 2022-07-08 2024-01-16 주식회사 엠플러스 포밍 구동부 플로팅 타입 이차전지 파우치 포밍 금형 장치 및 파우치 포밍 금형 자동 셋팅 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260600A (ja) * 2001-02-28 2002-09-13 Tdk Corp 電気化学デバイス
KR20080052869A (ko) 2006-12-08 2008-06-12 주식회사 엘지화학 이차 전지용 전극탭과 전극단자의 접합 구조 및 이를이용한 이차 전지
KR20090064021A (ko) * 2007-12-14 2009-06-18 주식회사 엘지화학 안전 부재를 포함하고 있는 스택/폴딩형 전극조립체 및그것의 제조방법
KR20110105737A (ko) * 2010-03-19 2011-09-27 주식회사 엘지화학 파우치형 케이스 및 이를 포함하는 전지팩
KR20120051424A (ko) * 2010-11-12 2012-05-22 주식회사 이아이지 리튬 이차전지 및 그 제조방법
KR20130051890A (ko) * 2011-11-10 2013-05-21 주식회사 엘지화학 신규한 구조의 전지셀

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149994A (ja) * 1998-11-17 2000-05-30 Toshiba Battery Co Ltd 高分子電解質リチウム二次電池
JP3611765B2 (ja) * 1999-12-09 2005-01-19 シャープ株式会社 二次電池及びそれを用いた電子機器
KR100515572B1 (ko) * 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기화학 셀 및 그의 제조 방법
KR100515571B1 (ko) 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기 화학 셀
JP2004111219A (ja) 2002-09-18 2004-04-08 Nissan Motor Co Ltd ラミネート二次電池、複数のラミネート二次電池からなる組電池モジュール、複数の組電池モジュールからなる組電池ならびにこれらいずれかの電池を搭載した電気自動車
EP1716606B1 (en) * 2004-01-30 2011-04-20 LG Chem, Ltd. Battery having specific package structure
KR100874387B1 (ko) * 2006-06-13 2008-12-18 주식회사 엘지화학 둘 이상의 작동 전압을 제공하는 중첩식 이차전지
US20090250653A1 (en) 2006-08-07 2009-10-08 Kiely Donald E Hydroxycarboxylic Acids and Salts
JP5795475B2 (ja) * 2007-07-25 2015-10-14 エルジー・ケム・リミテッド 電気化学素子及びその製造方法
CN102334215B (zh) * 2008-12-26 2015-07-01 日本瑞翁株式会社 锂离子二次电池用隔板和锂离子二次电池
JP2011210524A (ja) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 積層式電池
KR101163053B1 (ko) 2010-04-06 2012-07-05 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
US8940429B2 (en) 2010-07-16 2015-01-27 Apple Inc. Construction of non-rectangular batteries
DE102010062143B4 (de) * 2010-11-29 2016-08-04 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Batterieelektrode und Verfahren zum Herstellen derselben
KR101453037B1 (ko) 2011-03-23 2014-10-21 주식회사 엘지화학 전극조립체 및 이의 제조방법
CN103460443B (zh) 2011-03-28 2017-02-15 丰田自动车株式会社 锂离子二次电池
US9276287B2 (en) * 2011-10-28 2016-03-01 Apple Inc. Non-rectangular batteries for portable electronic devices
JP2013134881A (ja) 2011-12-26 2013-07-08 Toyota Industries Corp 蓄電装置および蓄電装置を搭載した車両
EP2806681A4 (en) 2012-01-19 2016-01-27 Kyocera Corp MOBILE COMMUNICATION SYSTEM, BASE STATION, COMP CONTROL DEVICE, AND COMMUNICATION CONTROL METHOD
JP6100035B2 (ja) 2013-03-12 2017-03-22 三洋電機株式会社 電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260600A (ja) * 2001-02-28 2002-09-13 Tdk Corp 電気化学デバイス
KR20080052869A (ko) 2006-12-08 2008-06-12 주식회사 엘지화학 이차 전지용 전극탭과 전극단자의 접합 구조 및 이를이용한 이차 전지
KR20090064021A (ko) * 2007-12-14 2009-06-18 주식회사 엘지화학 안전 부재를 포함하고 있는 스택/폴딩형 전극조립체 및그것의 제조방법
KR20110105737A (ko) * 2010-03-19 2011-09-27 주식회사 엘지화학 파우치형 케이스 및 이를 포함하는 전지팩
KR20120051424A (ko) * 2010-11-12 2012-05-22 주식회사 이아이지 리튬 이차전지 및 그 제조방법
KR20130051890A (ko) * 2011-11-10 2013-05-21 주식회사 엘지화학 신규한 구조의 전지셀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2922112A4

Also Published As

Publication number Publication date
CN105378968B (zh) 2018-01-02
JP2016517144A (ja) 2016-06-09
US10622664B2 (en) 2020-04-14
EP2922112A1 (en) 2015-09-23
US20160372783A1 (en) 2016-12-22
JP6186071B2 (ja) 2017-08-23
KR20150034611A (ko) 2015-04-03
TWI521764B (zh) 2016-02-11
KR101738734B1 (ko) 2017-06-08
TW201535828A (zh) 2015-09-16
EP2922112A4 (en) 2015-11-11
CN105378968A (zh) 2016-03-02
EP2922112B1 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
WO2015046792A1 (ko) 파우치형 이차전지
WO2014126430A1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
WO2014126431A1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
WO2014189316A1 (ko) 전극 조립체 및 이를 위한 기본 단위체
WO2014126434A1 (ko) 전극 조립체
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2014126433A1 (ko) 전극조립체 및 전극조립체 제조방법
WO2012086855A1 (ko) 다방향성 리드-탭 구조를 가진 리튬 이차전지
WO2014126432A1 (ko) 안전성이 향상된 전극 조립체 및 그 제조방법
WO2014189319A1 (ko) 전극 조립체의 제조 방법
WO2015046893A1 (ko) 전극조립체 제조방법
WO2015046894A1 (ko) 전극조립체의 제조방법
WO2014168397A1 (ko) 라운드 코너를 포함하는 전지셀
WO2011043587A2 (ko) 전지용 전극조립체 및 그 제조방법
WO2016064099A1 (ko) 파우치형 이차 전지 및 이의 제조방법
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2013005898A1 (ko) 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자
WO2014137120A1 (ko) 젤리롤 타입의 전극 조립체 제조방법 및 젤리롤 타입의 폴리머 이차전지 제조방법
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2018066820A1 (ko) 전극 조립체 및 이의 제조 방법
WO2014126358A1 (ko) 엇갈린 배열 구조의 전극조립체를 포함하는 전지셀
WO2018174370A1 (ko) 전극 조립체 및 그 제조방법
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2015115731A1 (ko) 전극조립체 및 그를 포함하는 전지셀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014849259

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016504267

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14901900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE