WO2015046793A1 - 전극조립체의 제조방법 - Google Patents

전극조립체의 제조방법 Download PDF

Info

Publication number
WO2015046793A1
WO2015046793A1 PCT/KR2014/008572 KR2014008572W WO2015046793A1 WO 2015046793 A1 WO2015046793 A1 WO 2015046793A1 KR 2014008572 W KR2014008572 W KR 2014008572W WO 2015046793 A1 WO2015046793 A1 WO 2015046793A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
electrode assembly
unit
manufacturing
Prior art date
Application number
PCT/KR2014/008572
Other languages
English (en)
French (fr)
Inventor
반진호
박지원
고명훈
나승호
양영주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14849320.8A priority Critical patent/EP3001493B1/en
Priority to JP2016505421A priority patent/JP6096372B2/ja
Priority to CN201480039482.XA priority patent/CN105378999B/zh
Priority to US14/901,662 priority patent/US10033063B2/en
Publication of WO2015046793A1 publication Critical patent/WO2015046793A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrode assembly using a stack folding method or a third method other than the stack method, and more particularly, to a method of manufacturing an electrode assembly using a magazine.
  • Secondary batteries are proposed to solve air pollution in conventional gasoline and diesel vehicles that use fossil fuels, such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and parallel hybrid electric vehicles (PHEVs). Although it is also attracting attention as a power source, such as automobiles, due to the necessity of high output and large capacity, a medium-large battery module electrically connecting a plurality of battery cells is used.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs parallel hybrid electric vehicles
  • the medium-large battery module is preferably made as small and light as possible, it can be filled with a high degree of integration, and a light-weight square battery, a pouch-type battery, etc. are mainly used as a battery cell of a medium-large battery module.
  • the electrode assembly is accommodated in the case of the battery cell, and is generally classified according to the structure of the electrode assembly having the anode / separation membrane / cathode structure.
  • a jelly-roll (wound) electrode assembly having a structure in which long sheets of anodes and cathodes are wound with a separator interposed therebetween, and a plurality of anodes and cathodes cut in predetermined size units through the separator It can be classified into a stack type (laminated) electrode assembly and a stack / fold type electrode assembly sequentially stacked in a state.
  • an electrode assembly 1 having a stack / folding structure is a full cell in which anode / separation membrane / cathode is sequentially positioned as a unit cell (hereinafter, referred to as a “full cell”) (2, 3, 4) are superimposed, and the separator sheet 5 is interposed in each overlapping portion.
  • the separator sheet 5 has a unit length that can wrap the full cell, and each unit length is folded inward to wrap each full cell continuously from the center full cell 1b to the outermost full cell 4 so as to overlap the full cell. Intervened in The end of the separator sheet 5 is finished by heat fusion or by attaching an adhesive tape 6 or the like.
  • Such a stack / foldable electrode assembly is arranged in sequence, starting at one end of the separator sheet 5, for example, by arranging the full cells 2, 3, 4... On the long separator sheet 5. It is manufactured by winding up. However, in such a structure, a temperature gradient is generated between the full cells 1a, 1b and 2 at the center and the full cells 3 and 4 at the outer part, and thus the heat dissipation efficiency is different.
  • the process of forming such an electrode assembly has two limitations in reducing the tact time of the process, as the folding process is added as two separate equipments from the lamination facility forming each electrode assembly.
  • the alignment between the electrode assemblies disposed in the upper and lower parts is difficult to be precisely implemented in the structure of folding and implementing the stacked structure, there are many difficulties in implementing an assembly of reliable quality.
  • the bicell in the structure of the electrode assembly to which such a folding process is applied, a folding facility is required separately.
  • the bicell is also manufactured in two types (ie, A type and C type) to stack the stack.
  • a type and C type there is a great difficulty in accurately maintaining the gap between the bicell and the bicell disposed on the long separator sheet before folding. That is, when folding, it becomes difficult to implement accurate alignment between the upper and lower unit cells (meaning a full cell or a bicell), and when a high capacity cell is manufactured, a problem that requires a long time of type exchange occurs.
  • stack type electrode assembly will be described, and since the stack type structure is well known in the art, only a problem of the stack type electrode assembly will be described below.
  • the separator is generally made wider in width and length than the electrode, and the separator is laminated on a magazine or jig having a width corresponding to the width or length of the separator and the electrode is stacked thereon. Iteratively performed to prepare a stacked electrode assembly.
  • the electrodes and the separators must be stacked one by one, thus increasing the time required for the work, thereby significantly reducing productivity.
  • the horizontal and vertical alignment of the plurality of separators is possible, but since there is no magazine or jig for aligning the positions of the electrodes placed on the separator to the correct position, the plurality of electrodes of the stacked electrode assembly may be There is a problem of misalignment and misalignment.
  • the present invention has been conceived to solve the above problems, and an object of the present invention is to provide a method for producing an electrode assembly having a structure that can be manufactured with a simple process and low cost.
  • Another object of the present invention is to provide a method of manufacturing an electrode assembly having high efficiency since the positions of a plurality of electrodes are precisely aligned.
  • Still another object of the present invention is to provide an electrode assembly capable of manufacturing a precise electrode assembly without performing separate alignment and dimensional inspection of the entire electrode assembly having a plurality of layers of basic units only by performing alignment and dimensional inspection on one basic unit. It is to provide a manufacturing method of.
  • a method of manufacturing an electrode assembly includes: manufacturing a basic unit in which electrodes and a separator are alternately stacked (S10); Placing and sorting the basic unit in an alignment magazine that can accommodate the basic unit (S20); Checking the dimensions of the basic unit aligned in step S20 (S30); And forming an electrode assembly by transferring the basic units determined to have normal dimensions in the step S30 to the stacking magazine and stacking the plurality of basic units neatly (S40).
  • an electrode assembly manufacturing method capable of manufacturing a precise electrode assembly without performing separate alignment and dimensional inspection of the entire electrode assembly having a plurality of layers of basic units only by performing alignment and dimension inspection on one basic unit. can do.
  • FIG. 1 is a schematic structural diagram of an electrode assembly having a stack / foldable structure according to the prior art.
  • FIG. 2 is an embodiment of the electrode assembly manufacturing apparatus that can be implemented the method of manufacturing an electrode assembly according to the present invention.
  • Figure 3 is a schematic diagram showing a process of loading the basic unit in the sorting magazine.
  • Figure 4 is a schematic diagram illustrating a process of aligning the basic unit loaded in the alignment magazine and checking the dimensions.
  • FIG. 5 is a schematic perspective view corresponding to FIG. 4.
  • FIG. 6 is a plan view illustrating the vicinity of an electrode tab of a basic unit loaded and aligned in an alignment magazine.
  • Figure 7 is a schematic diagram showing the moment the robot arm gripping the basic unit loaded and aligned in the alignment magazine.
  • FIG. 8 is a schematic diagram showing a process in which the robot arm transfers the basic unit to the stacking magazine.
  • FIG. 9 is a side view showing a first structure of a basic unit provided in an electrode assembly manufactured by the method of manufacturing an electrode assembly according to the present invention.
  • FIG. 10 is a side view illustrating a second structure of a basic unit provided in an electrode assembly manufactured by the method of manufacturing an electrode assembly according to the present invention.
  • FIG. 11 is a process chart showing a process of manufacturing a basic unit according to the present invention.
  • FIG. 12 is a side view illustrating a first structure of an electrode assembly including a basic unit and a first auxiliary unit.
  • FIG. 13 is a side view illustrating a second structure of an electrode assembly including a basic unit and a first auxiliary unit.
  • FIG. 14 is a side view illustrating a third structure of an electrode assembly including a basic unit and a second auxiliary unit.
  • FIG. 15 is a side view illustrating a fourth structure of an electrode assembly including a basic unit and a second auxiliary unit.
  • 16 is a side view illustrating a fifth structure of an electrode assembly including a basic unit, a first auxiliary unit, and a second auxiliary unit.
  • FIG. 17 is a side view illustrating a sixth structure of an electrode assembly including a basic unit and a first auxiliary unit.
  • FIG. 18 is a side view illustrating a seventh structure of an electrode assembly including a basic unit and a second auxiliary unit.
  • FIG 2 is an embodiment of the electrode assembly manufacturing apparatus that can be implemented the manufacturing method of the electrode assembly according to the present invention, referring to Figure 2, the electrode assembly manufacturing apparatus, the base unit 110 is loaded and aligned for alignment Holding the basic unit 110 from the magazine 10, the stacking magazine 20 in which the basic unit 110 conveyed from the sorting magazine 10 is stacked, and the stacking magazine 20 from the sorting magazine 10.
  • the robot arm 40 which is transferred to the robot arm 40, and the camera 30 for performing a vision inspection of the basic unit 110 aligned and stacked on the alignment magazine 10 may be provided.
  • the alignment magazine 10 includes a clamp 16 capable of pressing the base unit 110 mounted on the base toward the base 12, and a sidewall 14 surrounding the side surface of the base unit 110. .
  • the robot arm 40 has a gripping portion 42 that grips the basic unit 110 and may reciprocate between the alignment magazine 10 and the stacking magazine 20.
  • the electrode assembly manufacturing apparatus having such a structure is merely an embodiment, and any configuration may be employed as long as it performs the same or similar function.
  • the electrode assembly will be described below. It turns out that the electrode assembly 100 can be manufactured by applying the manufacturing method thereof.
  • the step of manufacturing the basic unit (110) (S10); Stacking and arranging the basic unit 110 in an alignment magazine 10 capable of accommodating the basic unit 110 (S20); Inspecting the dimensions of the basic unit 110 aligned in step S20 (S30); And forming the electrode assembly 100 by transferring the basic units 110 determined to have normal dimensions in the step S30 to the stacking magazine 20 and stacking the plurality of basic units 110 neatly (S40). It includes.
  • the basic unit 110 has a structure in which electrodes and separators are alternately stacked, and in step S10, which is a step of manufacturing the basic unit 110, the specific structure of the electrode assembly 100 including the basic unit 110. This will be explained in detail later.
  • step S20 will be described with reference to FIGS. 3 to 5, and the step S20 starts from the process of loading the base unit 110 on the base 12 of the magazine for alignment 10. It is preferable that the basic unit 110 is flat, and the manufactured basic unit 110 may have a curved shape as shown in FIG. 3 without being flat.
  • the basic unit 110 having a curved shape, since the horizontal width or the vertical width cannot be accurately measured, it is not known whether the basic unit 110 is manufactured with the correct dimensions.
  • one side wall of the sorting magazine 10 may be loaded in a state in which the basic unit 110 is slightly biased, this state can not be said that the basic unit 110 is aligned.
  • the step S20 may be performed intact by pressing and fixing the base unit 110 with the clamp 16 so that the base unit 110 may be fixed in a flat state such as the flat base 12. That is, if the clamp unit 16 is fixed to the base unit 110 flat, it is possible to more accurately measure the dimensions, such as the horizontal width or vertical width of the basic unit 110 in the step S30, the basic unit 110 Even if it is loaded in a state inclined to one side wall of the sorting magazine 10 slightly, the base unit 110 is flattened and one corner of the base unit 110 is no longer moved by being caught by one wall of the sorting magazine 10. On the contrary, the other edge of the base unit 110 may move toward the other wall of the alignment magazine 10 so that the base unit 110 may be properly aligned in the alignment magazine 10.
  • an alignment actuator 18 is provided in the alignment magazine 10, which pushes the horizontal edge of the basic unit 110 seated on the base 12 in the direction of the horizontal sidewall 14B.
  • the vertical edges of the base unit 110 are aligned between the vertical sidewalls 14A as well as the base unit 110.
  • the transverse edges can be aligned in position with respect to the transverse sidewall 14B.
  • Step S30 which is a step of checking the dimensions of the base unit 110, is preferably performed when the base unit 110 is clamped by the clamp 16 as shown in FIGS. 4 and 5, and in step S30, the base unit Measurements may be made of the horizontal and vertical widths of the 110 and the angle ⁇ between neighboring sides (see FIG. 6).
  • the basic unit 110 determined to have a normal dimension is transferred from the alignment magazine 10 to the stacking magazine 20 by the robot arm 40.
  • the robot arm 40 grips the basic unit 110 when the basic unit 110 is fixed by the clamp 16 (see FIG. 7), and the robot arm 40 is the basic unit 110. After gripping, the clamp 16 releases the clamping of the base unit 110.
  • the robot arm 40 may use a negative pressure adsorption method as a method of gripping the basic unit 110, and in this case, a sucker structure to which negative pressure is applied may be employed as the gripping part 42.
  • the base unit 110 may return to the curved shape as shown in FIG. 3, but the robot arm 40 may be in a flat state. ), And because the clamp 16 in the step S20 to flatten the base unit 110 to fine alignment of the base unit 110, even if the base unit 110 is returned to the curved shape again. The fact that the robot arm 40 holds the basic unit 110 completed to fine alignment is not changed.
  • the robot arm 40 merely stacks the basic unit 110 finely aligned in step S20 to the stacking magazine 20 by a predetermined displacement. 20 may be disposed at a desired position.
  • step S40 when attempting to manufacture the electrode assembly 100 by stacking the base unit 110 by a plurality of layers, there is no need to perform a dimension check for the base unit 110 separately in step S40, and in step S20 Only the alignment of the unit 110 and the completion of the dimensional inspection made by the camera 30 in step S30, the fine alignment and dimension inspection of the base unit 110 is all completed, the base unit 110 in step S40 Is moved by a predetermined distance and stacked in the stacking magazine 20, the micro-alignment of the base unit 110 is not disturbed during this process, so only a plurality of layers of the base unit 110 are stacked in the stacking magazine 20.
  • an electrode assembly including a structure in which the plurality of basic units 110 are naturally stacked may be formed.
  • the base unit 110 is clamped and unclamped by the clamp 16 one by one and transferred to the stacking magazine 20 by the robot arm 40 (see FIG. 8).
  • the number of basic units 110 accommodated in 10) is always zero or one, but the number of basic units 110 accommodated in the stacking magazine 20 increases gradually.
  • the basic units 110 are aligned and dimensionally measured one by one, alignment and dimension measurement are easy, and the alignment and dimension measurement data for one basic unit 110 are stacked in multiple layers. Since the electrode assembly 100 having the basic unit 110 can be manufactured, it is not necessary to finely align and position the electrode assembly 100 having a plurality of layers of the basic unit 110 and to measure complex dimensions. There is no advantage.
  • the structure of the basic unit 110 is described as having a structure in which electrodes and separators are alternately stacked, but the step S10 of manufacturing the basic unit 110 has not been described in detail.
  • An exemplary process of manufacturing 110 and the structure of various types of electrode assemblies 100 including the basic unit 110 will be described.
  • the basic unit 110 may be manufactured in a structure including a structure in which each layer is laminated in the order of the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114. have.
  • the electrode assembly 100 manufactured by the method of manufacturing an electrode assembly according to the present invention includes at least one basic unit (110a, 110b, 9 and 10).
  • the basic unit 110 is formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114.
  • the basic unit 110 has a four-layer structure. More specifically, as shown in FIG. 9, the basic unit 110 sequentially orders the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side.
  • the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 are sequentially stacked from the lower side to the upper side as shown in FIG. 10.
  • the first electrode 111 and the second electrode 113 are opposite electrodes. For example, when the first electrode 111 is an anode, the second electrode 113 is a cathode. Of course, this may be the opposite.
  • the first electrode 111 provided in the basic unit 110 includes a current collector and an active material layer (active material), and the active material layer is coated on both surfaces of the current collector.
  • the second electrode 113 included in the base unit 110 also includes a current collector and an active material layer (active material), and the active material layer is applied to both surfaces of the current collector.
  • the process of manufacturing the basic unit 110 may be made of the following continuous process (see Fig. 11).
  • the first electrode material 121, the first separator material 122, the second electrode material 123, and the second separator material 124 are prepared.
  • the electrode materials 121 and 123 are cut to a predetermined size to form the electrodes 111 and 113 as will be described below.
  • separator materials 122 and 124 In order to automate the process, the electrode materials 121 and 123 and the separator materials 122 and 124 may have a form wound on a roll.
  • the first electrode material 121 is cut to a predetermined size through the cutter C 1 .
  • the second electrode material 123 is also cut into a predetermined size through the cutter C 2 . Then, a first electrode material 121 of a predetermined size is supplied onto the first separator material 122. A second electrode material 123 of a predetermined size is also supplied onto the second separator material 124. Then all materials are fed together into the laminators (L 1 , L 2 ).
  • the electrode assembly 100 is formed by repeatedly stacking the basic units 110.
  • the electrode and the separator provided in the basic unit 110 is preferably bonded to each other, the laminator (L 1 , L 2 ) is used to bond the electrode and the separator in this way. That is, the laminators L 1 and L 2 apply pressure to the materials or heat and pressure to bond the electrode material and the separator material to each other.
  • the electrode material and the separator material are adhered to each other by the laminating process by laminators L 1 and L 2 , and the basic unit 110 may maintain its shape more stably by such adhesion.
  • the first separator material 122 and the second separator material 124 are cut to a predetermined size through the cutter C 3 .
  • the basic unit 110 may be formed.
  • various inspections may be performed on the basic unit 110 as necessary. For example, inspections such as thickness inspection, vision inspection, and short inspection may be additionally performed.
  • the manufacturing process of the basic unit 110 may be performed in a continuous process as described above, but is not necessarily to be performed in a continuous process.
  • the first electrode 111, the first separator 112, the second electrode 113 and the second separator 114 are first cut to an appropriate size, and then stacked to form the basic unit 110 of course. It is possible.
  • the separators 112 and 114 or the separator materials 122 and 124 may be coated with a coating material having an adhesive force.
  • the coating material may be a mixture of inorganic particles and a binder polymer.
  • the inorganic particles may improve thermal stability of the separator. That is, the inorganic particles can prevent the membrane from shrinking at a high temperature.
  • the binder polymer may fix the inorganic particles, and thus a predetermined pore structure may be formed between the inorganic particles fixed between the binder polymers. Due to the pore structure, ions can smoothly move from the positive electrode to the negative electrode even though the inorganic particles are coated on the separator.
  • the binder polymer may stably maintain the inorganic particles in the separator to improve the mechanical stability of the separator. Moreover, the binder polymer can more stably bond the separator to the electrode.
  • the separator may be formed of a polyolefin-based separator substrate.
  • electrodes 111 and 113 are positioned on both surfaces of the first separator 112, whereas electrodes 113 are positioned only on one surface of the second separator 114. Therefore, a coating material may be coated on both surfaces of the first separator 112, and a coating material may be coated on only one surface of the second separator 114. That is, the first separator 112 may be coated with a coating material on both sides facing the first electrode 111 and the second electrode 113, and the second separator 114 may face the second electrode 113. The coating material can be coated only on one side.
  • the second separator 114 may be coated on only one surface thereof.
  • the base units 110 may also be bonded to each other by a method such as a heat press, the second separator 114 may also be coated on both surfaces as necessary. That is, the second separator 114 may also be coated with a coating material on one surface facing the second electrode 113 and the opposite surface thereof. In this case, the basic unit 110 located above and the basic unit 110 positioned directly below may be adhered to each other through a coating material on the outer surface of the second separator 114.
  • a coating material having an adhesive force is applied to the separator, it is not preferable to directly press the separator with a predetermined object.
  • the separator typically extends longer than the electrode. Therefore, an attempt may be made to couple the ends of the first separator 112 and the ends of the second separator 114 with each other. For example, an attempt may be made to fuse the end of the first separator 112 and the end of the second separator 114 by ultrasonic welding, and in the case of ultrasonic welding, it is necessary to press the object directly with a horn. have. However, when the end of the separator is directly pressed by the horn in this manner, the horn may stick to the separator due to the coating material having the adhesive force. This can lead to device failure. Therefore, when a coating material having an adhesive force is applied to the separator, it is not preferable to apply a process of directly applying pressure to the separator with a predetermined object.
  • the basic unit 110 does not necessarily have a four-layer structure.
  • the basic unit 110 may include the first electrode 111, the first first separator 112, the second electrode 113, the second second separator 114, the first electrode 111, and the first electrode 111. 1 may have an eight-layer structure in which the first separator 112, the second electrode 113, and the second second separator 114 are sequentially stacked. That is, the basic unit 110 may have a structure in which a four-layer structure is repeatedly stacked.
  • the electrode assembly 100 is formed by repeatedly stacking the basic units 110. Therefore, although the electrode assembly 100 may be formed by repeatedly stacking a four-layer structure, for example, the electrode assembly 100 may be formed by repeatedly stacking an eight-layer structure.
  • the electrode assembly 100 may further include at least one of the first auxiliary unit 130 and the second auxiliary unit 140.
  • the first auxiliary unit 130 will be described.
  • the basic unit 110 is formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side or from the lower side to the upper side. . Accordingly, when the basic unit 110 is repeatedly stacked to form the electrode assembly 100, the first electrode 111 may be disposed at the top (see FIG. 9) or the bottom (see FIG. 10) of the electrode assembly 100. ) 116 (hereinafter referred to as 'first terminal electrode'). (The first end electrode may be an anode or a cathode.)
  • the first auxiliary unit 130 is additionally stacked on the first end electrode 116.
  • the first auxiliary unit 130a is sequentially formed from the first terminal electrode 116 when the first electrode 111 is an anode and the second electrode 113 is a cathode.
  • the separator 114, the cathode 113, the separator 112, and the anode 111 may be sequentially stacked from the first terminal electrode 116 to the outside (the upper side based on FIG. 12).
  • the first auxiliary unit 130b is sequentially formed from the first terminal electrode 116, that is, the first auxiliary unit 130b.
  • the separator 114 and the anode 113 may be sequentially stacked outward from the terminal electrode 116. As shown in FIG. 12 or 13, the electrode assembly 100 may position an anode on the outermost side of the first terminal electrode 116 side due to the first auxiliary unit 130.
  • an electrode includes a current collector and an active material layer (active material), and the active material layer is applied to both surfaces of the current collector. Accordingly, based on FIG. 12, the active material layer positioned below the current collector among the active material layers of the positive electrode reacts with the active material layer positioned above the current collector among the active material layers of the negative electrode through a separator.
  • the basic unit 110 is formed in the same manner and the electrode assemblies 100 are formed by sequentially stacking the same, the first terminal electrode located at the top or the bottom of the electrode assembly 100 is the other first electrode 111.
  • the active material layer can be provided on both surfaces of the current collector.
  • the active material layer located on the outside of the active material layers of the first terminal electrode may not react with other active material layers. Therefore, the problem that the active material layer is wasted is caused.
  • the first auxiliary unit 130 is to solve this problem. That is, the first auxiliary unit 130 is formed separately from the basic unit 110. Therefore, the first auxiliary unit 130 may include a positive electrode having an active material layer formed on only one surface of the current collector. That is, the first auxiliary unit 130 may include a positive electrode coated with an active material layer on only one surface (one surface facing downward based on FIG. 12) facing the basic unit 110 on both surfaces of the current collector.
  • the electrode assembly 100 is formed by further stacking the first auxiliary unit 130 on the first terminal electrode 116, the anode having only one end surface coated on the outermost side of the first terminal electrode 116 is positioned. You can. Therefore, the problem of waste of the active material layer can be solved.
  • the positive electrode is configured to emit (for example) nickel ions, it is advantageous for battery capacity to place the positive electrode on the outermost side.
  • the second auxiliary unit 140 basically plays the same role as the first subunit 130. It demonstrates more concretely.
  • the basic unit 110 is formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side or from the lower side to the upper side. . Therefore, when the basic unit 110 is repeatedly stacked to form the electrode assembly 100, the second separator 114 is disposed at the top (see FIG. 10) or the bottom (see FIG. 9) of the electrode assembly 100. (117, hereinafter referred to as 'second terminal separator'). The second auxiliary unit 140 is further stacked on the second terminal separation membrane 117.
  • the second auxiliary unit 140a may be formed of an anode 111 when the first electrode 111 is an anode and the second electrode 113 is a cathode.
  • the second auxiliary unit 140b is sequentially formed from the second terminal separator 117, that is, the second auxiliary unit 140b.
  • the cathode 111, the separator 112, and the anode 113 may be sequentially stacked from the terminal separator 117 to the outside (the lower side based on FIG. 15).
  • the second auxiliary unit 140 Similar to the first auxiliary unit 130, the second auxiliary unit 140 also has an active material layer coated on only one surface (one surface facing upward based on FIG. 15) facing the basic unit 110 on both surfaces of the current collector. An anode may be provided. As a result, when the electrode assembly 100 is formed by additionally stacking the second auxiliary unit 140 on the second terminal separation membrane 117, the anode coated with only the cross-section is positioned on the outermost side of the second terminal separation membrane 117. Can be.
  • FIGS. 12 and 13, and FIGS. 14 and 15 sequentially illustrate the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 sequentially from top to bottom.
  • the case of lamination is illustrated.
  • the case in which the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 are sequentially stacked from the lower side to the upper side may be described in the same manner as described above.
  • the first auxiliary unit 130 and the second auxiliary unit 140 may further include a separator at the outermost side as necessary.
  • the first auxiliary unit 130 and the second auxiliary unit 140 may further include a separator outside the anode.
  • a separator may be further included in the anode exposed to the opposite side (ie, the uppermost side of the electrode assembly 100 of FIG. 14) on which the second auxiliary unit 140 is stacked as shown in FIG. 14.
  • the electrode assembly 100e may be formed.
  • the basic unit 110b may be formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the lower side to the upper side.
  • the first electrode 111 may be an anode and the second electrode 113 may be a cathode.
  • the first auxiliary unit 130c may be sequentially formed from the first terminal electrode 116, that is, the separator 114, the cathode 113, the separator 112, and the anode 111 may be disposed from the upper side to the lower side based on FIG. 16. It can be stacked and formed.
  • the active material layer may be formed only on one surface of the positive electrode 111 of the first auxiliary unit 130c facing the basic unit 110b.
  • the second auxiliary unit 140c is sequentially formed from the second terminal separation membrane 117, that is, from the lower side to the upper side based on FIG. 16, the anode 111, the separator 112, the cathode 113, and the separator.
  • the 114 and the anode 118 may be formed by being stacked.
  • the active material layer may be formed on only one surface of the positive electrode 118 (the second positive electrode) located at the outermost side of the positive electrode of the second auxiliary unit 140c facing the basic unit 110b.
  • the auxiliary unit comprises a separator, it is advantageous for the alignment of the unit.
  • the electrode assembly 100f may be formed.
  • the basic unit 110b may be formed by sequentially stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the lower side to the upper side.
  • the first electrode 111 may be an anode and the second electrode 113 may be a cathode.
  • the first auxiliary unit 130d may be formed by sequentially stacking the separator 114, the cathode 113, and the separator 112 from the first terminal electrode 116.
  • the second auxiliary unit may not be provided.
  • the negative electrode may cause a reaction with the aluminum layer of the pouch case 200 due to the potential difference. Therefore, the cathode is preferably insulated from the pouch sheath 200 through the separator.
  • the electrode assembly 100g may be formed.
  • the basic unit 110c may be formed by stacking the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 from the upper side to the lower side.
  • the first electrode 111 may be a cathode and the second electrode 113 may be an anode.
  • the second auxiliary unit 140d may be formed by sequentially stacking the cathode 111, the separator 112, the anode 113, the separator 114, and the cathode 119 from the second terminal separator 117. have.
  • the first auxiliary unit may not be provided.
  • step S40 of the manufacturing method of the electrode assembly according to a preferred embodiment of the present invention has been described in the case of stacking the basic unit 110 by a plurality of layers, this is only for convenience of description and the electrode assembly 100 It does not mean that it consists of only the basic units (110). That is, it is clear that the lamination and alignment of the auxiliary units 130 and 140 together with the basic unit 100 on the upper surface, the lower surface, or the upper and lower surfaces of the basic unit 100 of one or more layers are included in the step S40. .
  • the manufacturing method of the electrode assembly of the present invention it is possible to manufacture the electrode assembly in a simple process and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 매거진을 이용하여 전극조립체를 제조하는 방법에 관한 것으로서, 본 발명의 바람직한 실시예에 따른 전극조립체의 제조방법은: 전극과 분리막이 교대로 적층된 기본단위체를 제조하는 단계(S10); 상기 기본단위체를 수용할 수 있는 정렬용 매거진에 상기 기본단위체를 적재하여 정렬하는 단계(S20); 상기 S20단계에서 정렬된 상기 기본단위체의 치수를 검사하는 단계(S30); 및 상기 S30단계에서 정상 치수를 갖는 것으로 판정된 기본단위체를 적층용 매거진으로 이송하여 복수 개의 기본단위체를 가지런하게 적층함으로써 전극조립체를 형성하는 단계(S40);를 포함할 수 있다.

Description

전극조립체의 제조방법
본 발명은 스택 폴딩 공법 또는 스택 공법이 아닌 제3의 공법으로 전극조립체를 제조하는 방법에 관한 것으로서, 더욱 상세하게는 매거진을 이용하여 전극조립체를 제조하는 방법에 관한 것이다.
이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV), 병렬형 하이브리드 전기자동차(PHEV) 등의 동력원으로서도 주목 받고 있는데, 자동차 등과 같은 중대형 디바이스에는 고출력, 대용량의 필요성으로 인해, 다수의 배터리 셀들을 전기적으로 연결한 중대형 전지모듈이 사용된다.
그런데, 중대형 전지모듈은 가능한 한 작고 가볍게 제조되는 것이 바람직하므로, 높은 집적도로 충적될 수 있고 용량 대비 가벼운 각형 전지, 파우치형 전지 등이 중대형 전지모듈의 전지셀로서 주로 사용되고 있다.
전지셀의 케이스 내에는 전극조립체가 수용되어 있으며, 일반적으로는 양극/분리막/음극 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류된다.
대표적으로, 긴 시트 형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조로 이루어진 젤리-롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체, 그리고, 스택/폴딩형 전극조립체로 분류할 수 있다.
먼저, 본 출원인의 한국 특허출원공개 제2001-0082058호, 제2001-0082059호 및 제2001-0082060호에 개시되어 있는 스택/폴딩형 전극조립체에 대하여 먼저 설명하도록 한다.
도 1을 참조하면, 스택/폴딩형 구조의 전극조립체(1)는 단위 셀로서 순차적으로 양극/분리막/음극이 위치되는 풀셀(full cell, 이하, '풀셀'이라 한다.)(2, 3, 4...)이 복수 개 중첩되어 있고, 각각의 중첩부에는 분리막 시트(5)가 개재되어 있다. 분리막 시트(5)는 풀셀을 감쌀 수 있는 단위 길이를 갖고, 단위 길이마다 내측으로 꺾여서 중앙의 풀셀(1b)로부터 시작되어 최외각의 풀셀(4)까지 연속하여 각각의 풀셀을 감싸서 풀셀의 중첩부에 개재되어 있다. 분리막 시트(5)의 말단부는 열융착하거나 접착 테이프(6) 등을 붙여서 마무리한다. 이러한 스택/폴딩형 전극조립체는 예를 들어, 긴 길이의 분리막 시트(5) 상에 풀셀들(2, 3, 4...)을 배열하고 분리막 시트(5)의 일단부에서 시작하여 순차적으로 권취함으로써 제조된다. 그러나 이러한 구조에서 중심부의 풀셀(1a, 1b, 2)과 외각부의 풀셀(3, 4) 사이에는 온도 구배가 일어나 방열효율이 상이하게 되는바, 장시간 사용하는 경우 수명이 짧아지게 되는 문제가 있다.
이러한 전극조립체를 형성하는 공정은 각 전극조립체를 형성하는 라미네이션 설비 2대와 별개의 장비로 폴딩 장비 1대가 추가되어, 공정이 진행되는바, 공정의 택타임(tact time)을 줄이는 데에는 한계가 있었으며, 특히 폴딩되어 적층구조를 구현하는 구조에서 상하부에 배치되는 전극조립체간에 정렬(aligning)이 정밀하게 구현하기 어려워 신뢰성 있는 품질의 조립체를 구현하는 데에는 많은 어려움이 있다.
즉, 이러한 폴딩 공정이 적용되는 전극조립체의 구조에서는 폴딩 설비가 별도로 필요하게 되며, 바이셀 구조를 적용하는 경우에는 바이셀도 2가지의 타입(즉, A타입, C타입)으로 제작하여 적층을 수행하게 되며, 폴딩 전 긴 분리막 시트 상에 배치하는 바이셀과 바이셀 간의 간격을 정확하게 유지하는 것에 큰 어려움이 존재하게 된다. 즉 폴딩하게 되는 경우, 상하 유닛셀(풀셀 또는 바이셀을 의미함) 간의 정확한 정렬을 구현하기 어려워지며, 고용량의 셀을 제작하는 경우 형교환의 시간이 많이 소요되는 문제도 아울러 발생하게 된다.
다음으로, 스택형 전극조립체에 대하여 설명하도록 하며, 스택형 구조는 당업계에 널리 공지되어 있으므로, 이하에서는 스택형 전극조립체의 문제점에 대해서만 간단하게 설명하도록 한다.
스택형 전극조립체는 통상적으로 분리막이 전극보다 가로 및 세로의 폭이 더 넓게 제조되며, 분리막의 가로 또는 세로의 폭에 대응되는 폭을 갖는 매거진 또는 지그에 분리막을 적층하고 그 위에 전극을 적층하는 단계를 반복적으로 수행하여 스택형 전극조립체를 제조하게 된다.
그러나, 이러한 방식으로 스택형 전극조립체를 제조하게 되면 전극 및 분리막을 하나씩 적층하여야 하므로 작업에 소요되는 시간이 길어져 생산성이 현저히 저하되는 문제가 있다. 또한, 복수 층의 분리막들의 가로 및 세로를 정렬하는 것은 가능하나, 분리막에 얹혀지는 전극들의 위치를 정확한 위치로 정렬하는 매거진 또는 지그는 존재하지 않기 때문에, 스택형 전극조립체에 구비된 복수 개의 전극은 정렬되지 않고 서로 어긋나게 되는 문제가 있다.
게다가, 분리막을 사이에 두고 서로 마주보는 양극 및 음극의 면이 서로 어긋나 있기 때문에 양극 및 음극의 표면에 도포된 활물질의 일부 영역에서는 전기화학반응이 일어나지 않게 되며 이로 인해 배터리 셀의 효율이 떨어진다는 문제가 있다.
본 발명은 상술한 문제점을 해결하기 위해 착상된 것으로서, 간소한 공정과 낮은 단가로 제조가 가능한 구조를 갖는 전극조립체의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 복수의 전극들의 위치가 정확하게 정렬되어 있어서 효율이 높은 전극조립체의 제조방법을 제공하는 것에 있다.
본 발명의 또 다른 목적은 하나의 기본단위체에 대한 정렬 및 치수 검사만 수행하면 복수 층의 기본단위체를 갖는 전극조립체 전체에 대한 별도의 정렬 및 치수 검사가 없이도 정밀한 전극조립체를 제조하는 것이 가능한 전극조립체의 제조방법을 제공하는 것에 있다.
상기와 같은 목적을 달성하기 위하여 본 발명의 바람직한 실시예에 따른 전극조립체의 제조방법은: 전극과 분리막이 교대로 적층된 기본단위체를 제조하는 단계(S10); 상기 기본단위체를 수용할 수 있는 정렬용 매거진에 상기 기본단위체를 적재하여 정렬하는 단계(S20); 상기 S20단계에서 정렬된 상기 기본단위체의 치수를 검사하는 단계(S30); 및 상기 S30단계에서 정상 치수를 갖는 것으로 판정된 기본단위체를 적층용 매거진으로 이송하여 복수 개의 기본단위체를 가지런하게 적층함으로써 전극조립체를 형성하는 단계(S40);를 포함할 수 있다.
본 발명에 따르면, 간소한 공정과 낮은 단가로 제조가 가능한 구조를 갖는 전극조립체의 제조방법을 제공할 수 있다.
또한, 복수의 전극들의 위치가 정확하게 정렬되어 있어서 효율이 높은 전극조립체의 제조방법을 제공할 수 있다.
더욱이, 하나의 기본단위체에 대한 정렬 및 치수 검사만 수행하면 복수 층의 기본단위체를 갖는 전극조립체 전체에 대한 별도의 정렬 및 치수 검사가 없이도 정밀한 전극조립체를 제조하는 것이 가능한 전극조립체의 제조방법을 제공할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1은 종래기술에 따른 스택/폴딩형 구조의 전극조립체의 개략 구조도이다.
도 2는 본 발명에 따른 전극조립체의 제조방법이 구현될 수 있는 전극조립체 제조장치의 일실시예이다.
도 3은 정렬용 매거진에 기본단위체를 적재하는 과정을 도시한 개략도이다.
도 4는 정렬용 매거진에 적재된 기본단위체를 정렬하고 치수를 검사하는 과정을 도시한 개략도이다.
도 5는 도 4에 대응되는 개략 사시도이다.
도 6은 정렬용 매거진에 적재되고 정렬된 기본단위체의 전극탭 근방을 도시한 평면도이다.
도 7은 정렬용 매거진에 적재되고 정렬된 기본단위체를 로봇암이 파지하는 순간을 도시한 개략도이다.
도 8은 로봇암이 기본단위체를 적층용 매거진으로 이송하는 과정을 나타낸 개략도이다.
도 9는 본 발명에 따른 전극조립체의 제조방법에 의하여 제조되는 전극조립체에 구비되는 기본단위체의 제1 구조를 나타낸 측면도이다.
도 10은 본 발명에 따른 전극조립체의 제조방법에 의하여 제조되는 전극조립체에 구비되는 기본단위체의 제2 구조를 나타낸 측면도이다.
도 11은 본 발명에 따른 기본단위체를 제조하는 공정을 나타내는 공정도이다.
도 12는 기본단위체와 제1 보조단위체를 포함한 전극조립체의 제1 구조를 도시하고 있는 측면도이다.
도 13은 기본단위체와 제1 보조단위체를 포함한 전극조립체의 제2 구조를 도시하고 있는 측면도이다.
도 14는 기본단위체와 제2 보조단위체를 포함한 전극조립체의 제3 구조를 도시하고 있는 측면도이다.
도 15는 기본단위체와 제2 보조단위체를 포함한 전극조립체의 제4 구조를 도시하고 있는 측면도이다.
도 16은 기본단위체, 제1 보조단위체와 제2 보조단위체를 포함한 전극조립체의 제5 구조를 도시하고 있는 측면도이다.
도 17은 기본단위체와 제1 보조단위체를 포함한 전극조립체의 제6 구조를 도시하고 있는 측면도이다.
도 18은 기본단위체와 제2 보조단위체를 포함한 전극조립체의 제7 구조를 도시하고 있는 측면도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 그러나 본 발명이 이하의 실시예에 의해 제한되거나 한정되는 것은 아니다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도면에서 각 구성요소 또는 그 구성요소를 이루는 특정 부분의 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 따라서, 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그러한 설명은 생략하도록 한다.
도 2는 본 발명에 따른 전극조립체의 제조방법이 구현될 수 있는 전극조립체 제조장치의 일실시예이며, 도 2를 참조하면 전극조립체 제조장치는, 기본단위체(110)가 적재되며 정렬되는 정렬용 매거진(10), 정렬용 매거진(10)으로부터 이송되는 기본단위체(110)가 적층되는 적층용 매거진(20), 정렬용 매거진(10)으로부터 적층용 매거진(20)으로 기본단위체(110)를 파지하여 이송하는 로봇암(40), 정렬용 매거진(10)에 적재되어 정렬된 기본단위체(110)의 비젼(Vision) 검사를 수행하기 위한 카메라(30)를 구비할 수 있다.
정렬용 매거진(10)은 베이스에 안착된 기본단위체(110)를 베이스(12)를 향하여 가압할 수 있는 클램프(16)와, 기본단위체(110)의 측면을 둘러싸는 측벽(14)을 구비한다.
로봇암(40)은 기본단위체(110)를 파지하는 파지부(42)를 가지며, 정렬용 매거진(10)과 적층용 매거진(20) 사이를 왕복 이동할 수 있다.
이와 같은 구조를 갖는 전극조립체 제조장치는 단지 실시예일뿐이며, 동일 또는 유사한 기능을 수행하는 한 어떠한 구성이 채용되더라도 무방하다.
이하에서는 도 2를 통해 간략하게 설명한 전극조립체 제조장치를 기준으로 전극조립체의 제조방법에 대하여 설명하기로 하여, 상술한 전극조립체 제조장치와는 구조가 상이한 전극조립체 제조장치에서도 이하에서 설명할 전극조립체의 제조방법을 적용하여 전극조립체(100)를 제조할 수 있음을 밝혀둔다.
본 발명의 바람직한 실시예에 따른 전극조립체의 제조방법은, 기본단위체(110)를 제조하는 단계(S10); 기본단위체(110)를 수용할 수 있는 정렬용 매거진(10)에 기본단위체(110)를 적재하여 정렬하는 단계(S20); S20단계에서 정렬된 기본단위체(110)의 치수를 검사하는 단계(S30); 및 S30단계에서 정상 치수를 갖는 것으로 판정된 기본단위체(110)를 적층용 매거진(20)으로 이송하여 복수 개의 기본단위체(110)를 가지런하게 적층함으로써 전극조립체(100)를 형성하는 단계(S40)를 포함한다.
기본단위체(110)는 전극과 분리막이 교대로 적층된 구조를 가지며 기본단위체(110)를 제조하는 단계인 S10단계와, 이와 같은 기본단위체(110)를 포함하는 전극조립체(100)의 구체적인 구조에 대해서는 차후에 자세하게 설명하도록 한다.
먼저, 도 3 내지 도 5를 참조하여 S20단계부터 설명하도록 하며, S20단계는 기본단위체(110)를 정렬용 매거진(10)의 베이스(12)에 적재하는 과정으로부터 시작된다. 기본단위체(110)는 평평한 것이 바람직한데, 제조된 기본단위체(110)는 평평하지 않고 도 3에 도시된 것과 같이 휘어진 형상을 가질 수 있다.
그러나, 휘어진 형상을 갖는 기본단위체(110)의 경우 가로 폭이나 세로 폭을 정확하게 측정할 수 없기 때문에 기본단위체(110)가 정확한 치수로 제조되었는지를 알 수 없다. 또한, 정렬용 매거진(10)의 일측벽에 기본단위체(110)가 다소 치우친 상태로 적재될 수 있는데 이 상태를 기본단위체(110)가 정렬된 상태라고 말할 수는 없다.
이에, 기본단위체(110)가 평평한 베이스(12)와 같이 평평한 상태로 고정시킬 수 있도록 클램프(16)로 기본단위체(110)를 눌러 고정시키는 것에 의하여 S20단계를 온전하게 수행할 수 있다. 즉, 클램프(16)로 기본단위체(110)를 평평하게 고정하면 이후 S30단계에서 기본단위체(110)의 가로 폭이나 세로 폭 등의 치수를 더욱 정밀하게 측정하는 것이 가능하며, 기본단위체(110)가 정렬용 매거진(10)의 일측벽에 다소 치우친 상태로 적재되더라도 기본단위체(110)가 평평해지면서 기본단위체(110)의 일측 모서리는 정렬용 매거진(10)의 일측벽에 걸려 더 이상 움직이지 않는 것에 반해, 기본단위체(110)의 타측 모서리는 정렬용 매거진(10)의 타측벽을 향하여 움직일 수 있기 때문에 기본단위체(110)가 정렬용 매거진(10)에서 적절하게 정렬될 수 있다.
또한, 도 5를 참조하면 정렬용 매거진(10)에 정렬 액츄에이터(18)가 구비되어 있는데, 이는 베이스(12)에 안착된 기본단위체(110)의 가로 방향 모서리를 가로 측벽(14B) 방향으로 밀어주는 역할을 수행하며, 이를 통해 클램프(16)가 기본단위체(110)를 클램핑 하였을 때, 기본단위체(110)의 세로방향 모서리가 세로 측벽(14A) 사이에서 정렬될 뿐만 아니라 기본단위체(110)의 가로방향 모서리가 가로 측벽(14B)에 대하여 정위치에 정렬될 수 있도록 한다.
기본단위체(110)의 치수를 검사하는 단계인 S30단계는 도 4 및 도 5와 같이 기본단위체(110)가 클램프(16)에 의하여 클램핑 된 상태일 때 수행되는 것이 바람직하며, S30단계에서는 기본단위체(110)의 가로 및 세로 방향 폭과, 서로 이웃한 변이 이루는 사이각(θ)에 대한 측정이 이루어질 수 있다(도 6 참조).
S30단계에서 정상 치수를 갖는 것으로 판정된 기본단위체(110)는 로봇암(40)에 의하여 정렬용 매거진(10)으로부터 적층용 매거진(20)까지 이송된다. 여기서, 로봇암(40)은 기본단위체(110)가 클램프(16)에 의하여 고정된 상태일 때 기본단위체(110)를 파지하고(도 7참조), 로봇암(40)이 기본단위체(110)를 파지한 후에는 클램프(16)가 기본단위체(110)의 클램핑을 해제한다. 여기서 로봇암(40)은 기본단위체(110)를 파지하는 방식으로는 부압 흡착 방식을 이용할 수 있으며, 이 경우 파지부(42)로는 부압이 인가되는 빨판구조가 채용될 수 있다.
기본단위체(110)의 클램핑 해제로 인하여 기본단위체(110)가 도 3에 도시된 것과 같이 다시 휘어진 형상으로 되돌아가는 경우가 발생할 수 있으나, 로봇암(40)은 평평한 상태일 때의 기본단위체(110)를 파지하였고, S20단계에서 클램프(16)가 기본단위체(110)를 평평하게 만드는 것에 의하여 기본단위체(110)의 미세한 정렬까지 수행된 것이므로, 기본단위체(110)가 다시 휘어진 형상으로 되돌아간다고 하더라도 로봇암(40)이 미세한 정렬까지 완료된 기본단위체(110)를 파지하고 있다는 사실은 변함이 없는 것이다.
따라서, 로봇암(40)이 S20단계에서 미세 정렬된 기본단위체(110)를 적층용 매거진(20)으로 소정 변위만큼 이송하는 역할을 충실하게 수행하는 것만으로도 기본단위체(110)는 적층용 매거진(20)의 원하는 위치에 배치될 수 있다.
다시 말해, 기본단위체(110)를 복수 층만큼 적층하여 전극조립체(100)를 제조하려고 할 때, 굳이 S40단계에서 별도로 기본단위체(110)에 대한 치수 검사를 수행할 필요가 없고, S20단계에서 기본단위체(110)에 대한 정렬 완료 및 S30단계에서 카메라(30)에 의하여 이루어진 치수검사 완료만으로, 기본단위체(110)에 대한 미세 정렬 및 치수 검사는 모두 완료가 되며, S40단계에서 기본단위체(110)가 미리 정해진 소정 거리만큼 이동하여 적층용 매거진(20)에 적층되더라도 이 과정 중에 기본단위체(110)의 미세 정렬이 흐트러지지 않기 때문에 단지 복수 층의 기본단위체(110)가 적층용 매거진(20)에 적층되는 것만으로도 복수 층의 기본단위체(110)가 자연히 가지런하게 적층된 구조를 포함하는 전극조립체를 형성할 수 있다.
정렬용 매거진(10)에서 기본단위체(110)는 하나씩 클램프(16)에 의하여 클램핑 및 클램핑 해제되고 로봇암(40)에 의하여 적층용 매거진(20)으로 이송되므로(도 8 참조) 정렬용 매거진(10)에 수용되는 기본단위체(110)의 개수는 항상 0개 또는 1개이지만, 적층용 매거진(20)에 수용되는 기본단위체(110)의 개수는 누적적으로 점점 증가하게 된다.
상술한 전극조립체의 제조방법에 따르면, 기본단위체(110)를 한 개씩 정렬 및 치수 측정하기 때문에 정렬 및 치수 측정이 용이하고, 기본단위체(110) 하나에 대한 정렬 및 치수 측정 데이터 만으로 복수 층으로 적층된 기본단위체(110)를 갖는 전극조립체(100)를 제조할 수 있기 때문에, 복수 층의 기본단위체(110)를 갖는 전극조립체(100)에 대한 미세 정렬 및 위치 조정과, 복잡한 치수 측정이 필요하지 않은 장점이 있다.
지금까지는 기본단위체(110)의 구조에 대하여 단순히 전극과 분리막이 교대로 적층된 구조를 갖는 것으로 설명하는데, 기본단위체(110)를 제조하는 S10단계에 대해서는 자세하게 설명하지 않았으므로, 이하에서는 기본단위체(110)를 제조하는 예시적인 공정과, 기본단위체(110)를 포함하는 다양한 종류의 전극조립체(100)의 구조에 대하여 설명하도록 한다.
기본단위체(110)는 제1 전극(111)/제1 분리막(112)/제2 전극(113)/제2 분리막(114)의 순서로 각 층을 적층한 구조를 포함하는 구조로 제조될 수 있다.
본 발명에 따른 전극조립체의 제조방법에 의하여 제조된 전극조립체(100)는 적어도 1개의 기본단위체(110a, 110b, 도 9 및 도 10 참조)를 포함한다.
기본단위체(110)는 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 순차적으로 적층되어 형성된다. 이와 같이 기본단위체(110)는 기본적으로 4층 구조를 가진다. 보다 구체적으로 기본단위체(110)는 도 9에서 도시하고 있는 것과 같이 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로 순차적으로 적층되어 형성되거나, 또는 도 10에서 도시하고 있는 것과 같이 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 하측에서 상측으로 순차적으로 적층되어 형성될 수 있다. 이때 제1 전극(111)과 제2 전극(113)은 서로 반대되는 전극이다. 예를 들어, 제1 전극(111)이 양극이면 제2 전극(113)은 음극이다. 물론 이의 반대일 수도 있다.
기본단위체(110)에 구비된 제1 전극(111)은 집전체 및 활물질층(활물질)을 구비하며, 활물질 층은 집전체의 양면에 도포된다. 이와 마찬가지로 기본단위체(110)에 구비된 제2 전극(113)도 집전체 및 활물질층(활물질)을 구비하며, 활물질 층은 집전체의 양면에 도포된다.
한편, 기본단위체(110)를 제조하는 공정은 다음과 같은 연속공정으로 이루어질 수 있다(도 11참조). 먼저 제1 전극 재료(121), 제1 분리막 재료(122), 제2 전극 재료(123) 및 제2 분리막 재료(124)를 준비한다. 여기서 전극 재료(121, 123)는 이하에서 살펴볼 바와 같이 소정 크기로 절단되어 전극(111, 113)을 형성한다. 이는 분리막 재료(122, 124)도 동일하다. 공정의 자동화를 위해 전극 재료(121, 123)와 분리막 재료(122, 124)는 롤에 권취되어 있는 형태를 가질 수 있다. 이와 같이 재료들을 준비한 다음에 제1 전극 재료(121)를 커터(C1)를 통해 소정 크기로 절단한다. 그리고 제2 전극 재료(123)도 커터(C2)를 통해 소정 크기로 절단한다. 그런 다음 소정 크기의 제1 전극 재료(121)를 제1 분리막 재료(122) 위로 공급한다. 그리고 소정 크기의 제2 전극 재료(123)도 제2 분리막 재료(124) 위로 공급한다. 그런 다음 재료들을 모두 함께 라미네이터(L1, L2)로 공급한다.
전극조립체(100)는 앞서 살펴본 바와 같이, 기본단위체(110)가 반복적으로 적층되어 형성된다. 그런데 기본단위체(110)를 구성하는 전극과 분리막이 서로 분리된다면, 기본단위체(110)를 반복적으로 적층하는 것이 매우 어려워질 것이다. 따라서 기본단위체(110)에 구비된 전극과 분리막은 서로 접착되는 것이 바람직하며, 라미네이터(L1, L2)는 이와 같이 전극과 분리막을 서로 접착하기 위해 사용된다. 즉, 라미네이터(L1, L2)는 재료들에 압력을 가하거나, 또는 열과 압력을 가하여 전극 재료와 분리막 재료를 서로 접착한다. 이와 같이 전극 재료와 분리막 재료는 라미네이터(L1, L2)에 의하여 라미네이팅 공정을 통해 서로 접착되고, 이와 같은 접착으로 기본단위체(110)는 보다 안정적으로 자신의 형상을 유지할 수 있다.
각 층의 라미네이팅 이후에는 제1 분리막 재료(122)와 제2 분리막 재료(124)를 커터(C3)를 통해 소정 크기로 절단한다. 이와 같은 절단으로 기본단위체(110)가 형성될 수 있다. 추가적으로 필요에 따라 기본단위체(110)에 대한 각종 검사를 수행할 수도 있다. 예를 들어, 두께 검사, 비전 검사, 쇼트 검사와 같은 검사를 추가적으로 수행할 수도 있다.
기본단위체(110)를 제조하는 공정은 위와 같이 연속공정으로 수행될 수 있으나, 반드시 연속공정으로 수행되어야만 하는 것은 아니다. 즉, 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)을 적절한 사이즈로 먼저 커팅한 후에 이들을 적층하여 기본단위체(110)를 형성하는 것도 물론 가능하다.
한편, 분리막(112, 114) 또는 분리막 재료(122, 124)는 접착력을 가지는 코팅 물질로 표면이 코팅될 수 있다. 이때 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물일 수 있다. 여기서 무기물 입자는 분리막의 열적 안정성을 향상시킬 수 있다. 즉, 무기물 입자는 고온에서 분리막이 수축하는 것을 방지할 수 있다. 그리고 바인더 고분자는 무기물 입자를 고정시킬 수 있으며 이로 인해 바인더 고분자 사이에 고정된 무기물 입자들 사이에는 소정의 기공 구조가 형성될 수 있다. 이와 같은 기공 구조로 인해, 무기물 입자가 분리막에 코팅되어 있더라도 양극으로부터 음극으로 이온이 원활하게 이동할 수 있다. 또한 바인더 고분자는 무기물 입자를 분리막에 안정적으로 유지시켜 분리막의 기계적 안정성도 향상시킬 수 있다. 더욱이 바인더 고분자는 분리막을 전극에 보다 안정적으로 접착시킬 수 있다. 참고로, 분리막은 폴리올레핀 계열의 분리막 기재로 형성될 수 있다.
그런데 도 9과 도 10에서 도시하고 있는 것과 같이, 제1 분리막(112)은 양면에 전극(111, 113)이 위치하는데 반해, 제2 분리막(114)은 일면에만 전극(113)이 위치한다. 따라서 제1 분리막(112)은 양면에 코팅 물질이 코팅될 수 있고, 제2 분리막(114)은 일면에만 코팅 물질이 코팅될 수 있다. 즉, 제1 분리막(112)은 제1 전극(111)과 제2 전극(113)을 바라보는 양면에 코팅 물질이 코팅될 수 있고, 제2 분리막(114)은 제2 전극(113)을 바라보는 일면에만 코팅 물질이 코팅될 수 있다.
이와 같이 코팅 물질에 의한 접착은 기본단위체(110) 내에서 이루어지는 것으로 충분하다. 따라서 앞서 살펴본 바와 같이 제2 분리막(114)은 일면에만 코팅이 이루어져도 무방하다. 다만, 기본단위체(110)끼리도 히트 프레스(heat press) 등의 방법으로 서로 접착될 수 있으므로, 필요에 따라 제2 분리막(114)도 양면에 코팅이 이루어질 수 있다. 즉, 제2 분리막(114)도 제2 전극(113)을 바라보는 일면과 그 반대면에 코팅 물질이 코팅될 수 있다. 이와 같은 경우 상측에 위치하는 기본단위체(110)와 이의 바로 아래에 위치하는 기본단위체(110)는 제2 분리막(114) 외면의 코팅 물질을 통하여 서로 접착될 수 있다.
참고로, 접착력을 가지는 코팅 물질을 분리막에 도포한 경우, 소정의 물체로 분리막에 직접 압력을 가하는 것은 바람직하지 않다. 분리막은 통상적으로 전극보다 외측으로 길게 연장된다. 따라서 제1 분리막(112)의 말단과 제2 분리막(114)의 말단을 서로 결합시키려는 시도가 있을 수 있다. 예를 들어, 제1 분리막(112)의 말단과 제2 분리막(114)의 말단을 초음파 융착으로 서로 융착시키려는 시도가 있을 수 있고, 초음파 융착의 경우 혼(horn)으로 대상을 직접 가압할 필요가 있다. 그러나 이와 같이 혼으로 분리막의 말단을 직접 가압하면, 접착력을 갖는 코팅 물질로 인해 분리막에 혼이 들러붙을 수 있다. 이로 인해 장치의 고장이 초래될 수 있다. 따라서 접착력을 가지는 코팅 물질을 분리막에 도포한 경우, 소정의 물체로 분리막에 직접 압력을 가하는 공정을 적용하는 것은 바람직하지 않다.
추가적으로, 기본단위체(110)가 반드시 4층 구조를 가져야만 하는 것은 아니다. 예를 들어, 기본단위체(110)는 제1 전극(111), 제1 제1 분리막(112), 제2 전극(113), 제2 제2 분리막(114), 제1 전극(111), 제1 제1 분리막(112), 제2 전극(113) 및 제2 제2 분리막(114)이 순차적으로 적층되어 형성되는 8층 구조를 가질 수도 있다. 즉, 기본단위체(110)는 4층 구조가 반복적으로 적층되어 형성되는 구조를 가질 수도 있다. 앞서 살펴본 바와 같이, 전극조립체(100)는 기본단위체(110)가 반복적으로 적층되어 형성된다. 따라서 4층 구조를 반복적으로 적층하여 전극조립체(100)를 형성할 수도 있지만, 예를 들어 8층 구조를 반복적으로 적층하여 전극조립체(100)를 형성할 수도 있다.
한편, 전극조립체(100)는 제1 보조단위체(130)와 제2 보조단위체(140) 중의 적어도 어느 하나를 더 포함할 수 있다. 우선, 제1 보조단위체(130)에 대해 살펴본다. 기본단위체(110)는 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로, 또는 하측에서 상측으로 순차적으로 적층되어 형성된다. 따라서 이와 같은 기본단위체(110)가 반복적으로 적층되어 전극조립체(100)가 형성되면, 전극조립체(100)의 가장 위쪽(도 9 참조), 또는 가장 아래쪽(도 10 참조)에 제1 전극(111)(116, 이하 '제1 말단 전극'이라 한다)이 위치하게 된다. (제1 말단 전극은 양극일 수도 있고 음극일 수도 있다.) 제1 보조단위체(130)는 이와 같은 제1 말단 전극(116)에 추가적으로 적층된다.
보다 구체적으로 제1 보조단위체(130a)는 도 12에서 도시하고 있는 것과 같이 제1 전극(111)이 양극이고 제2 전극(113)이 음극이면, 제1 말단 전극(116)으로부터 순차적으로, 즉 제1 말단 전극(116)으로부터 외측(도 12을 기준으로 상측)으로 분리막(114), 음극(113), 분리막(112) 및 양극(111)이 차례로 적층되어 형성될 수 있다. 또한 제1 보조단위체(130b)는 도 13에서 도시하고 있는 것과 같이 제1 전극(111)이 음극이고 제2 전극(113)이 양극이면, 제1 말단 전극(116)으로부터 순차적으로, 즉 제1 말단 전극(116)으로부터 외측으로 분리막(114) 및 양극(113)이 차례로 적층되어 형성될 수 있다. 전극조립체(100)는 도 12 또는 도 13에서 도시하고 있는 것과 같이 제1 보조단위체(130)로 인하여 제1 말단 전극(116) 측의 가장 외측에 양극을 위치시킬 수 있다.
일반적으로 전극은 집전체와, 활물질층(활물질)을 구비하며, 활물질 층은 집전체의 양면에 도포된다. 이에 따라 도 12을 기준으로 양극의 활물질층 중 집전체의 아래쪽에 위치한 활물질층은 분리막을 매개로 음극의 활물질층 중 집전체의 위쪽에 위치한 활물질층과 서로 반응한다. 그런데 기본단위체(110)를 동일하게 형성한 다음에 이를 차례로 적층하여 전극조립체(100)를 형성하면, 전극조립체(100)의 가장 위쪽 또는 가장 아래쪽에 위치한 제1 말단 전극은 다른 제1 전극(111)과 동일하게 집전체의 양면에 활물질층을 구비할 수밖에 없다. 그러나 제1 말단 전극이 집전체의 양면에 활물질층을 도포한 구조를 가지면, 제1 말단 전극의 활물질층 중 외측에 위치한 활물질층은 다른 활물질층과 반응할 수 없다. 따라서 활물질층이 낭비되는 문제가 초래된다.
제1 보조단위체(130)는 이와 같은 문제를 해결하기 위한 것이다. 즉, 제1 보조단위체(130)는 기본단위체(110)와 별개로 형성된다. 따라서 제1 보조단위체(130)는 집전체의 일면에만 활물질층이 형성된 양극을 구비할 수 있다. 즉, 제1 보조단위체(130)는 집전체의 양면 중에 기본단위체(110)를 바라보는 일면(도 12을 기준으로 아래쪽을 바라보는 일면)에만 활물질층이 코팅된 양극을 구비할 수 있다. 결과적으로, 제1 말단 전극(116)에 추가적으로 제1 보조단위체(130)를 적층하여 전극조립체(100)를 형성하면, 제1 말단 전극(116) 측의 가장 외측에 단면만 코팅된 양극을 위치시킬 수 있다. 따라서 활물질층이 낭비되는 문제를 해결할 수 있다. 그리고 양극은 (예를 들어) 니켈 이온을 방출하는 구성이므로, 가장 외측에 양극을 위치시키는 것이 전지 용량에 유리하다.
다음으로 제2 보조단위체(140)에 대해 살펴본다. 제2 보조단위체(140)는 기본적으로 제1 보조단위체(130)와 동일한 역할을 수행한다. 보다 구체적으로 설명한다. 기본단위체(110)는 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로, 또는 하측에서 상측으로 순차적으로 적층되어 형성된다. 따라서 이와 같은 기본단위체(110)가 반복적으로 적층되어 전극조립체(100)가 형성되면, 전극조립체(100)의 가장 위쪽(도 10 참조), 또는 가장 아래쪽(도 9 참조)에 제2 분리막(114)(117, 이하 '제2 말단 분리막'이라 한다)이 위치하게 된다. 제2 보조단위체(140)는 이와 같은 제2 말단 분리막(117)에 추가적으로 적층된다.
보다 구체적으로 제2 보조단위체(140a)는 도 14에서 도시하고 있는 것과 같이 제1 전극(111)이 양극이고 제2 전극(113)이 음극이면, 양극(111)으로 형성될 수 있다. 또한 제2 보조단위체(140b)는 도 15에서 도시하고 있는 것과 같이 제1 전극(111)이 음극이고 제2 전극(113)이 양극이면, 제2 말단 분리막(117)으로부터 순차적으로, 즉 제2 말단 분리막(117)으로부터 외측(도 15을 기준으로 하측)으로 음극(111), 분리막(112) 및 양극(113)이 차례로 적층되어 형성될 수 있다. 제2 보조단위체(140)도 제1 보조단위체(130)와 동일하게 집전체의 양면 중에 기본단위체(110)를 바라보는 일면(도 15을 기준으로 위쪽을 바라보는 일면)에만 활물질층이 코팅된 양극을 구비할 수 있다. 결과적으로 제2 말단 분리막(117)에 제2 보조단위체(140)를 추가적으로 적층하여 전극조립체(100)를 형성하면, 제2 말단 분리막(117) 측의 가장 외측에 단면만 코팅된 양극을 위치시킬 수 있다.
참고로, 도 12와 도 13, 그리고 도 14과 도 15은 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로 순차적으로 적층된 경우를 예시하고 있다. 이와는 반대로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 하측에서 상측으로 순차적으로 적층된 경우도 앞서 설명된 바와 동일하게 설명될 수 있다. 그리고 제1 보조단위체(130)와 제2 보조단위체(140)는 필요에 따라 가장 외측에 분리막을 더 포함할 수도 있다. 일례로 가장 외측에 위치한 양극이 케이스와 전기적으로 절연될 필요가 있을 경우 제1 보조단위체(130)와 제2 보조단위체(140)는 양극의 외측에 분리막을 더 포함할 수 있다. 같은 이유에서, 도 14과 같이 제2 보조단위체(140)가 적층되어 있는 쪽의 반대쪽(즉, 도 14의 전극조립체(100)의 최상측)에 노출되어 있는 양극에도 분리막이 더 포함될 수 있다.
한편, 도 16 내지 도 18에서 도시하고 있는 것과 같이, 전극조립체(100)를 형성하는 것이 바람직하다. 우선, 도 16에서 도시하고 있는 것과 같이 전극조립체(100e)를 형성할 수 있다. 기본단위체(110b)는 하측에서 상측으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 차례로 적층되어 형성될 수 있다. 이때 제1 전극(111)은 양극일 수 있고 제2 전극(113)은 음극일 수 있다. 그리고 제1 보조단위체(130c)는 제1 말단 전극(116)으로부터 순차적으로, 즉 도 16를 기준으로 상측에서 하측으로 분리막(114), 음극(113), 분리막(112) 및 양극(111)이 적층되어 형성될 수 있다. 이때 제1 보조단위체(130c)의 양극(111)은 기본단위체(110b)를 바라보는 일면에만 활물질층이 형성될 수 있다.
또한 제2 보조단위체(140c)는 제2 말단 분리막(117)으로부터 순차적으로, 즉 도 16를 기준으로 하측에서 상측으로 양극(111, 제1 양극), 분리막(112), 음극(113), 분리막(114) 및 양극(118, 제2 양극)이 적층되어 형성될 수 있다. 이때 제2 보조단위체(140c)의 양극 중 가장 외측에 위치한 양극(118, 제2 양극)은 기본단위체(110b)를 바라보는 일면에만 활물질층이 형성될 수 있다. 참고로, 보조단위체가 분리막을 포함하면 단위체의 정렬에 유리하다.
다음으로, 도 17에서 도시하고 있는 것과 같이 전극조립체(100f)를 형성할 수 있다. 기본단위체(110b)는 하측에서 상측으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 차례로 적층되어 형성될 수 있다. 이때 제1 전극(111)은 양극일 수 있고 제2 전극(113)은 음극일 수 있다. 그리고 제1 보조단위체(130d)는 제1 말단 전극(116)으로부터 순차적으로 분리막(114), 음극(113) 및 분리막(112)이 적층되어 형성될 수 있다. 이때 제2 보조단위체는 구비되지 않아도 무방하다. 참고로, 음극은 전위차로 인해 파우치 외장재(200)의 알루미늄층과 반응을 일으킬 수 있다. 따라서 음극은 분리막을 통해 파우치 외장재(200)로부터 절연되는 것이 바람직하다.
마지막으로, 도 18에서 도시하고 있는 것과 같이 전극조립체(100g)를 형성할 수 있다. 기본단위체(110c)는 상측에서 하측으로 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 적층되어 형성될 수 있다. 이때 제1 전극(111)은 음극일 수 있고 제2 전극(113)은 양극일 수 있다. 그리고 제2 보조단위체(140d)는 제2 말단 분리막(117)으로부터 순차적으로 음극(111), 분리막(112), 양극(113), 분리막(114) 및 음극(119)이 차례로 적층되어 형성될 수 있다. 이때 제1 보조단위체는 구비되지 않아도 무방하다.
한편, 본 발명의 바람직한 실시예에 따른 전극조립체의 제조방법의 S40단계는 기본단위체(110)를 복수 층만큼 적층하는 경우를 설명하고 있으나, 이는 설명의 편의를 위한 것일 뿐이며 전극조립체(100)가 기본단위체들(110)만으로 이루어진다는 것을 의미하는 것은 아니다. 즉, 한 층 또는 복수 층의 기본단위체(100)의 상면이나 하면 또는 상하면에 보조단위체(130, 140)를 기본단위체(100)와 함께 적층 및 정렬하는 것도 S40단계에 포함되는 것임을 분명하게 밝혀둔다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
본 발명의 전극조립체의 제조방법에 의하면, 전극조립체를 간소한 공정과 낮은 단가로 제조가 가능하다.

Claims (26)

  1. 전극과 분리막이 교대로 적층된 기본단위체를 제조하는 단계(S10);
    상기 기본단위체를 수용할 수 있는 정렬용 매거진에 상기 기본단위체를 적재하여 정렬하는 단계(S20);
    상기 S20단계에서 정렬된 상기 기본단위체의 치수를 검사하는 단계(S30); 및
    상기 S30단계에서 정상 치수를 갖는 것으로 판정된 기본단위체를 적층용 매거진으로 이송하여 복수 개의 기본단위체를 가지런하게 적층함으로써 전극조립체를 형성하는 단계(S40);를 포함하는 전극조립체의 제조방법.
  2. 제1항에 있어서,
    상기 S40단계에서는 상기 기본단위체에 대한 별도의 치수 검사를 수행하지 않는 것을 특징으로 하는 전극조립체의 제조방법.
  3. 제1항에 있어서,
    상기 S30단계 이후에 로봇암에 의하여 상기 기본단위체가 상기 정렬용 매거진으로부터 상기 적층용 매거진으로 이송되는 것을 특징으로 하는 전극조립체의 제조방법.
  4. 제3항에 있어서,
    상기 기본단위체의 미세 정렬은 상기 S20단계에서 수행되고, 상기 로봇암은 상기 S20단계에서 미세 정렬된 기본단위체를 상기 적층용 매거진으로 소정 변위만큼 이송하는 역할을 수행하는 것을 특징으로 하는 전극조립체의 제조방법.
  5. 제3항에 있어서,
    상기 S20단계는 상기 정렬용 매거진에 상기 기본단위체를 평평한 상태로 고정시키는 클램프에 의하여 수행되는 것을 특징으로 하는 전극조립체의 제조방법.
  6. 제5항에 있어서,
    상기 로봇암은 상기 기본단위체가 상기 클램프에 의하여 고정된 상태일 때 상기 기본단위체를 파지하는 것을 특징으로 하는 전극조립체의 제조방법.
  7. 제6항에 있어서,
    상기 로봇암이 상기 기본단위체를 파지한 후에 상기 클램프가 상기 기본단위체의 클램핑을 해제하는 것을 특징으로 하는 전극조립체의 제조방법.
  8. 제6항에 있어서,
    상기 로봇암은 상기 기본단위체를 부압 흡착 방식을 이용하여 파지하는 것을 특징으로 하는 전극조립체의 제조방법.
  9. 제5항에 있어서,
    상기 정렬용 매거진에서 상기 기본단위체는 하나씩 상기 클램프에 의해 클램핑 및 클램핑 해제되고 상기 로봇암에 의하여 상기 적층용 매거진으로 이송되는 것을 특징으로 하는 전극조립체의 제조방법.
  10. 제1항에 있어서,
    상기 S30단계는 상기 기본단위체의 폭, 서로 이웃한 변이 이루는 사이각에 대한 측정을 포함하는 것을 특징으로 하는 전극조립체의 제조방법.
  11. 제1항에 있어서,
    상기 기본단위체는 제1 전극/제1 분리막/제2 전극/제2 분리막의 순서의 적층 구조를 포함하는 것을 특징으로 하는 전극조립체의 제조방법.
  12. 제11항에 있어서,
    상기 기본단위체는 상기 적층 구조가 복수 회 반복된 구조를 갖는 것을 특징으로 하는 전극조립체의 제조방법.
  13. 제11항에 있어서,
    상기 기본단위체는 상기 전극과 상기 분리막이 서로 접착되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  14. 제13항에 있어서,
    상기 전극과 상기 분리막의 접착은, 상기 전극과 상기 분리막에 압력을 가하는 것에 의한 접착, 또는 상기 전극과 상기 분리막에 압력과 열을 가하는 것에 의한 접착인 것을 특징으로 하는 전극조립체의 제조방법.
  15. 제13항에 있어서,
    상기 기본단위체는 상기 전극과 상기 분리막을 라미네이팅하는 것에 의하여 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  16. 제13항에 있어서,
    상기 분리막은 접착력을 가지는 코팅 물질이 표면에 코팅되는 것을 특징으로 하는 전극조립체의 제조방법.
  17. 제16항에 있어서,
    상기 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물인 것을 특징으로 하는 전극조립체의 제조방법.
  18. 제16항에 있어서,
    상기 제1 분리막은 상기 제1 전극과 상기 제2 전극을 바라보는 양면에 상기 코팅 물질이 코팅되고, 상기 제2 분리막은 상기 제2 전극을 바라보는 일면에만 상기 코팅 물질이 코팅되는 것을 특징으로 하는 전극조립체의 제조방법.
  19. 제16항에 있어서,
    상기 제1 분리막은 상기 제1 전극과 상기 제2 전극을 바라보는 양면에 상기 코팅 물질이 코팅되고, 상기 제2 분리막은 상기 제2 전극을 바라보는 일면과 그 반대면에 상기 코팅 물질이 코팅되며,
    상기 전극조립체에 구비된 복수 개의 기본단위체들은 상기 제2 분리막의 코팅 물질에 의하여 서로 접착되어 있는 것을 특징으로 하는 전극조립체의 제조방법.
  20. 제11항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제1 전극인 제1 말단 전극에 적층되는 제1 보조단위체를 더 포함하며,
    상기 제1 보조단위체는, 상기 제1 전극이 양극이고 상기 제2 전극이 음극일 때 상기 제1 말단 전극으로부터 순차적으로 분리막, 음극, 분리막 및 양극이 적층되어 형성되고, 상기 제1 전극이 음극이고 상기 제2 전극이 양극일 때 상기 제1 말단 전극으로부터 순차적으로 분리막 및 양극이 적층되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  21. 제20항에 있어서,
    상기 제1 보조단위체의 양극은:
    집전체; 및
    상기 집전체의 양면 중에 상기 기본단위체를 바라보는 일면에만 코팅되는 양극 활물질;을 구비하는 것을 특징으로 하는 전극조립체의 제조방법.
  22. 제11항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제1 전극인 제1 말단 전극에 적층되는 제1 보조단위체를 더 포함하며,
    상기 제1 보조단위체는, 상기 제1 전극이 양극이고 상기 제2 전극이 음극일 때 상기 제1 말단 전극으로부터 순차적으로 분리막, 음극 및 분리막이 적층되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  23. 제11항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제2 분리막인 제2 말단 분리막에 적층되는 제2 보조단위체를 더 포함하며,
    상기 제2 보조단위체는, 상기 제1 전극이 양극이고 상기 제2 전극이 음극일 때 양극으로 형성되고, 상기 제1 전극이 음극이고 상기 제2 전극이 양극일 때 상기 제2 말단 분리막으로부터 순차적으로 음극, 분리막 및 양극이 적층되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
  24. 제23항에 있어서,
    상기 제2 보조단위체의 양극은:
    집전체; 및
    상기 집전체의 양면 중에 상기 기본단위체를 바라보는 일면에만 코팅되는 양극 활물질;을 구비하는 것을 특징으로 하는 전극조립체의 제조방법.
  25. 제11항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제2 분리막인 제2 말단 분리막에 적층되는 제2 보조단위체를 더 포함하며,
    상기 제2 보조단위체는, 상기 제1 전극이 양극이고 상기 제2 전극이 음극일 때 상기 제2 말단 분리막으로부터 순차적으로 제1 양극, 분리막, 음극, 분리막 및 제2 양극이 적층되어 형성되며,
    상기 제2 보조단위체의 제2 양극은 집전체와 양극 활물질을 구비하며, 상기 양극 활물질은 집전체의 양면 중에 상기 기본단위체를 바라보는 일면에만 코팅되는 것을 특징으로 하는 전극조립체의 제조방법.
  26. 제11항에 있어서,
    상기 전극조립체는 가장 위쪽 또는 가장 아래쪽에 위치하는 제2 분리막인 제2 말단 분리막에 적층되는 제2 보조단위체를 더 포함하며,
    상기 제2 보조단위체는, 상기 제1 전극이 음극이고 상기 제2 전극이 양극일 때 상기 제2 말단 분리막으로부터 순차적으로 음극, 분리막, 양극, 분리막 및 음극이 적층되어 형성되는 것을 특징으로 하는 전극조립체의 제조방법.
PCT/KR2014/008572 2013-09-26 2014-09-15 전극조립체의 제조방법 WO2015046793A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14849320.8A EP3001493B1 (en) 2013-09-26 2014-09-15 Electrode assembly production method
JP2016505421A JP6096372B2 (ja) 2013-09-26 2014-09-15 電極組立体の製造方法
CN201480039482.XA CN105378999B (zh) 2013-09-26 2014-09-15 电极组件制造方法
US14/901,662 US10033063B2 (en) 2013-09-26 2014-09-15 Method of manufacturing electrode assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0114246 2013-09-26
KR1020130114246A KR101609425B1 (ko) 2013-09-26 2013-09-26 매거진을 이용한 전극조립체의 제조방법

Publications (1)

Publication Number Publication Date
WO2015046793A1 true WO2015046793A1 (ko) 2015-04-02

Family

ID=52743854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008572 WO2015046793A1 (ko) 2013-09-26 2014-09-15 전극조립체의 제조방법

Country Status (7)

Country Link
US (1) US10033063B2 (ko)
EP (1) EP3001493B1 (ko)
JP (1) JP6096372B2 (ko)
KR (1) KR101609425B1 (ko)
CN (1) CN105378999B (ko)
TW (1) TWI501443B (ko)
WO (1) WO2015046793A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600119013A1 (it) * 2016-11-24 2018-05-24 Manz Italy Srl Produzione di Dispositivi di Accumulo di Energia Elettrica
KR102217201B1 (ko) * 2018-03-29 2021-02-18 주식회사 엘지화학 전극조립체의 얼라인 검사 장치 및 그를 이용한 전극조립체의 얼라인 검사 방법
JP6947136B2 (ja) * 2018-08-06 2021-10-13 トヨタ自動車株式会社 電極積層体製造装置
KR102177841B1 (ko) 2018-11-22 2020-11-11 주식회사 강한이노시스 조명을 이용한 2차전지 전극 적층 감시 장치
KR102107226B1 (ko) 2018-12-20 2020-05-07 김태완 적층 전지 정렬 검사 장치
KR102043113B1 (ko) * 2019-04-25 2019-12-02 백영진 2차전지셀 정렬지그 및 이를 포함하는 2차전지셀 적층 시스템
KR102219017B1 (ko) * 2019-06-25 2021-02-23 주식회사 엠플러스 이차전지 젤리롤 얼라인 장치
KR102204771B1 (ko) * 2019-06-25 2021-01-19 주식회사 엠플러스 이차전지 젤리롤 투입정도 개선 시스템
KR20200077382A (ko) 2019-07-15 2020-06-30 김태완 적층 전지 정렬 검사 장치
KR102101831B1 (ko) * 2019-09-30 2020-04-17 이소라 라미네이팅으로 단위셀을 제작하는 제작 공정과 그 단위셀로 전극조립체를 형성하는 제작 공정이 간소화 되는 이차 전지 제조 시스템
WO2021112481A1 (ko) * 2019-12-06 2021-06-10 주식회사 엘지에너지솔루션 전극조립체 제조방법 및 제조장치, 그를 포함한 이차전지 제조방법
JP6888704B1 (ja) * 2020-02-14 2021-06-16 トヨタ自動車株式会社 積層装置および積層方法
KR102262418B1 (ko) * 2020-03-05 2021-06-08 주식회사 클레버 이차전지 셀의 폴딩 공정용 이차전지 셀 이송 장치
KR20210150896A (ko) 2020-06-04 2021-12-13 주식회사 엘지에너지솔루션 전극 조립체 제조 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
KR20100075533A (ko) * 2007-10-25 2010-07-02 닛산 지도우샤 가부시키가이샤 쌍극형 전지의 제조 방법 및 쌍극형 전지
KR20100121366A (ko) * 2009-05-08 2010-11-17 주식회사 나래나노텍 2차 전지용 전극 조립체의 제조장치 및 그 제조방법
KR20110112241A (ko) * 2010-04-06 2011-10-12 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
KR20130071935A (ko) * 2011-12-21 2013-07-01 주식회사 아모그린텍 전극 조립체 및 이를 이용한 이차 전지와 그의 제조방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123768A (ja) 1990-09-13 1992-04-23 Yuasa Corp 蓄電池用極板群の製造法
KR100207254B1 (ko) 1995-07-28 1999-07-15 전주범 리튬건전지용 와인딩 어셈블리의 전극판
EP1357619B1 (en) 2001-01-31 2009-12-16 Panasonic Corporation Method and device for manufacturing coiled electrode group
TWI229957B (en) 2002-12-31 2005-03-21 Ind Tech Res Inst Structure of progressive-type membrane electrode assembly for direct methanol fuel cell and method for producing the same
JP4201619B2 (ja) 2003-02-26 2008-12-24 三洋電機株式会社 非水電解質二次電池、及びそれに使用する電極の製造方法
US7049024B2 (en) 2003-04-30 2006-05-23 Hewlett-Packard Development Company, L.P. Membrane electrode assemblies and method for manufacture
JP4571384B2 (ja) * 2003-07-30 2010-10-27 芝浦メカトロニクス株式会社 電極積層装置及びゲージング装置
US7384433B2 (en) 2004-02-19 2008-06-10 Maxwell Technologies, Inc. Densification of compressible layers during electrode lamination
JP5102056B2 (ja) 2008-01-31 2012-12-19 株式会社オハラ 固体電池およびその電極の製造方法
TWI460907B (zh) 2009-01-14 2014-11-11 Chunghwa Telecom Co Ltd A gas diffusion electrode containing a catalyst collector layer and a method for manufacturing the same
JP5055394B2 (ja) 2010-02-15 2012-10-24 三菱重工業株式会社 二次電池および二次電池製造装置
JP4823393B1 (ja) * 2010-08-11 2011-11-24 日本自働精機株式会社 正負極板の積層方法及びその装置
JP5701639B2 (ja) 2011-02-18 2015-04-15 株式会社京都製作所 極板積載装置
JP5706743B2 (ja) 2011-04-07 2015-04-22 株式会社京都製作所 積層装置および積層方法
EP2696431B1 (en) 2011-04-07 2019-01-16 Nissan Motor Co., Ltd Electrode stacking device and electrode stacking method
WO2015019751A1 (ja) 2013-08-09 2015-02-12 日産自動車株式会社 電極積層体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
KR20100075533A (ko) * 2007-10-25 2010-07-02 닛산 지도우샤 가부시키가이샤 쌍극형 전지의 제조 방법 및 쌍극형 전지
KR20100121366A (ko) * 2009-05-08 2010-11-17 주식회사 나래나노텍 2차 전지용 전극 조립체의 제조장치 및 그 제조방법
KR20110112241A (ko) * 2010-04-06 2011-10-12 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
KR20130071935A (ko) * 2011-12-21 2013-07-01 주식회사 아모그린텍 전극 조립체 및 이를 이용한 이차 전지와 그의 제조방법

Also Published As

Publication number Publication date
EP3001493A4 (en) 2016-08-03
KR20150034329A (ko) 2015-04-03
US10033063B2 (en) 2018-07-24
CN105378999B (zh) 2017-11-03
EP3001493B1 (en) 2018-08-15
EP3001493A1 (en) 2016-03-30
CN105378999A (zh) 2016-03-02
KR101609425B1 (ko) 2016-04-05
TW201526339A (zh) 2015-07-01
JP2016515753A (ja) 2016-05-30
TWI501443B (zh) 2015-09-21
US20160149254A1 (en) 2016-05-26
JP6096372B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2015046793A1 (ko) 전극조립체의 제조방법
WO2015046894A1 (ko) 전극조립체의 제조방법
WO2015046703A1 (ko) 테이프를 이용한 전극조립체의 고정방법
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2013176498A1 (ko) 전극조립체의 제조방법 및 이에 제조되는 전극조립체를 포함하는 전기화학소자
WO2013176500A1 (ko) 전극조립체 및 이를 포함하는 전기화학소자
WO2014126432A1 (ko) 안전성이 향상된 전극 조립체 및 그 제조방법
WO2014168397A1 (ko) 라운드 코너를 포함하는 전지셀
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2015046792A1 (ko) 파우치형 이차전지
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법
WO2014126434A1 (ko) 전극 조립체
WO2014126430A1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
KR101624386B1 (ko) 테이프를 이용한 전극조립체의 고정방법
WO2014126431A1 (ko) 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
WO2014003485A1 (ko) 전극조립체, 전극조립체의 제조공정 및 전극조립체를 포함하는 전기화학소자
WO2014126433A1 (ko) 전극조립체 및 전극조립체 제조방법
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2015030333A1 (ko) 폴리머 2차전지 셀용 전극조립체
WO2020231054A1 (ko) 전극 조립체 및 이의 검사 방법
WO2018004185A1 (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2018012789A1 (ko) 이차전지
WO2021096248A1 (ko) 배터리 모듈, 이러한 배터리 모듈의 제조 방법 및 이러한 배터리 모듈을 포함하는 배터리 팩 및 자동차
WO2024085542A1 (ko) 공정성이 개선된 전극 조립체 제조 방법 및 이를 사용하여 제조된 전극 조립체
WO2022092549A1 (ko) 전지셀 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505421

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014849320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14901662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE