TWI229957B - Structure of progressive-type membrane electrode assembly for direct methanol fuel cell and method for producing the same - Google Patents
Structure of progressive-type membrane electrode assembly for direct methanol fuel cell and method for producing the same Download PDFInfo
- Publication number
- TWI229957B TWI229957B TW091138126A TW91138126A TWI229957B TW I229957 B TWI229957 B TW I229957B TW 091138126 A TW091138126 A TW 091138126A TW 91138126 A TW91138126 A TW 91138126A TW I229957 B TWI229957 B TW I229957B
- Authority
- TW
- Taiwan
- Prior art keywords
- anode catalyst
- fuel cell
- membrane electrode
- layer
- direct methanol
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
12299571229957
發明所屬之技術領域 本發明有關於一種燃料電池之膜電極組結構及豆制造 方法’特別有關於一種適用於直接曱醇燃料電池,ϋ浙 進分佈之陽極觸媒層結構之膜電極組及其製造方法:^ 7 先前技術 / ° 燃料電池(Fuel Cell,FC)是一種利用化學能直接轉 換為電能的發電裝置,與傳統發電方式比較之下,燃料電 池具有低污染、低噪音、高能量密度以及較高的能量轉換 效率等優點,是極具未來前瞻性的乾淨能源,可應用的範 圍包括攜帶式電子產品、家用發電系統、運輸工^、軍用丨 設備、太空工業以及大型發電系統等各種領域。 燃料電池的運作原理依其種類之不同會有些許差異, 以質子交換膜燃料電池(protorl Exchange Membrane fuel ·FIELD OF THE INVENTION The present invention relates to a membrane electrode group structure of a fuel cell and a method for manufacturing beans, and more particularly, to a membrane electrode group suitable for a direct methanol fuel cell and an anode catalyst layer structure distributed in Zhejiang and the like. Manufacturing method: ^ 7 Prior art / ° Fuel cell (FC) is a power generation device that directly converts chemical energy into electrical energy. Compared with traditional power generation methods, fuel cells have low pollution, low noise, and high energy density. And high energy conversion efficiency and other advantages, it is a very forward-looking clean energy, the applicable range includes portable electronics, home power generation systems, transportation industry, military equipment, space industry, and large-scale power generation systems. field. The operating principle of fuel cells varies slightly according to their type. Proton exchange membrane fuel cells (protorl Exchange Membrane fuel ·
Cell, PEMFC)為例,氫氣在陽極觸媒層進行氧化反應,產 生氮離子(H+)以及電子(e-),其中氫離子可以經由質子傳 , 導膜傳遞至陰極,而電子則經由外部電路傳輸至負載作功 之後再傳遞至陰極,此時供給陰極端的氧氣會與氫離子及 電子於陰極觸媒層進行還原反應並產生水。 第1 A圖為傳統堆疊型離子交換膜燃料電池的立體分解 圖’第1B圖為第1A圖中膜電極組之剖面圖。如第以圖及1β h 圖所示’傳統堆疊型燃料電池組丨〇其組成包括一個由陽極 觸媒電極121、質子傳導膜122(Pr〇t〇n ExchangeCell (PEMFC) as an example. Hydrogen is oxidized in the anode catalyst layer to generate nitrogen ions (H +) and electrons (e-). Among them, hydrogen ions can be transferred via protons, the conductive membrane is transferred to the cathode, and electrons are passed through external circuits. After being transferred to the load for work, it is transferred to the cathode. At this time, the oxygen supplied to the cathode end will undergo a reduction reaction with hydrogen ions and electrons in the cathode catalyst layer and generate water. Fig. 1A is a perspective exploded view of a conventional stacked ion exchange membrane fuel cell. Fig. 1B is a cross-sectional view of the membrane electrode group in Fig. 1A. As shown in Figure 1 and Figure 1β h, the traditional stacked fuel cell stack is composed of an anode catalyst electrode 121 and a proton conductive membrane 122 (Prouton Exchange).
Membrane,PEM)加上陰極觸媒電極丨23所組合而成的膜電 極組 12(Membrane Electrode Assembly,MEA),以及作為 個別膜電極組1 2串聯的雙極板丨3 ( β丨p〇丨ar p丨a t e )和兩端Membrane (PEM) plus cathode catalyst electrode 丨 23 is a membrane electrode group 12 (Membrane Electrode Assembly, MEA), and a bipolar plate 12 is connected in series as an individual membrane electrode group 12 (β 丨 p〇 丨ar p 丨 ate) and both ends
0178-9190TWFl(Nl);05-910044Jimy.ptc 第6頁 1229957 修正 ------塞號 五、發明說明(2) 極: = 組。此外’端電極板11及雙 流道ill及131作為:連接之外,内部還設計有 ^ μ馮虱軋及虱*1的供應通道。 DMFC)為接另曱料電池Methan〇1 Fuel以11, 取代較i用液態燃料之燃料電池,其以液態甲醇 接甲“ίΓΐ之氮氣作為陽極反應時之反應物。由於直 子產::2ί可直接加入甲醇作為燃料,故在攜帶式電 于^ 上具有非常大之發產潛力。 製作Πίί接甲醇燃料電池的研究,’其陽極的構造及 式夕沿用離子交換膜燃料電池之設計,但由於直 -1 ; : ί : :(;1 媒應中斷,造成燃料電池之反應效率不佳,故傳 料電池膜電極組之設計不全然適用於以甲 予馮燃枓之直接甲醇燃料電池系統。 所早其:人田t於離子傳導膜表面具有非常多微&,以傳遞 :常因:甲i=:t透力非常強’❿傳統的直接甲醇燃料電 ϊ 1 ㈣ss_)現象’嚴重影響燃料電 的改良,才能使直接甲醇燃料電池具有較佳的電池 發明内容 2於此,本發明的目的就在於提供一種直接甲醇辦 專用之膜電極組’透過特殊設計之陽極結構提昇直0178-9190TWFl (Nl); 05-910044Jimy.ptc Page 6 1229957 Amendment ------ plug No. 5. Description of the invention (2) Pole: = group. In addition, the 'end electrode plate 11' and the dual flow channels ill and 131 serve as: in addition to the connection, a supply channel of ^ μ 冯 lice and lice * 1 is also designed inside. DMFC) is an alternative fuel cell Methan〇1 Fuel with 11 instead of liquid fuel fuel cells. It uses liquid methanol as the reactant in the anode reaction. Methanol is directly added as fuel, so it has great potential for generating electricity in portable batteries. Research on the production of methanol fuel cells, 'the structure of the anode and the design of the ion-exchange membrane fuel cell continue, but because Straight -1 : : : 1 The media should be interrupted, resulting in poor reaction efficiency of the fuel cell. Therefore, the design of the transfer cell membrane electrode group is not entirely applicable to the direct methanol fuel cell system with Jia Yu Feng Ranyu. Earlier: Rentian t has a very small & on the surface of the ion-conducting membrane to pass: often cause: A i =: t has a very strong permeability '❿ the traditional direct methanol fuel electricity ϊ 1 ㈣ ss_) phenomenon' seriously affects The improvement of fuel power can make direct methanol fuel cells have better batteries. Content 2 Here, the purpose of the present invention is to provide a membrane electrode group for direct methanol office. Lifting the anode structure linear
0178-9l9(mVFl(Nl);05-910044-jimy.ptc 第7頁 1229957 修正 曰 ----塞9ll3812fi 年 月 五、發明說明(3) 接甲醇燃料電池之反應效率。 /、人,本發明之另一個目的就在於一 之陽極結構’降低直接曱醇燃 "寺殊設計 燃料電池之反應特性。 < 枯渡效應,以維持 由於燃料電池所使用之陽極觸 金屬,其材料成本非“,因此,本發=觸=多為貴 以降低膜電極組之生產成本。心觸媒之使用量, 料電本發明提供-種適用於直接曱醇辦 漸進式膜電極組結構,其包括一拼 .、、、 陰極觸媒電極及複數層陽極觸 二 ==、- 有陽極觸媒,並相互重疊設置於質子:=:媒=均含 $觸:層均具有複數個傳送通道,、且傳送通:各陽 寻=之%極觸媒層起由内向破 傳導膜之陽極觸媒層起由内向外最靠近 專达通截面寬度介於l〇〇nm至lmm之間。 上述 在一較佳實施例中,陽極觸媒 佈該陽極觸媒所構成,巾各陽極觸導電薄膜上塗 最靠近質子傳導膜之陽極由场極觸媒含量自 又,該導電薄膜可為由内向外逐層遞増。 (Pt/Ru)或為外鍍翻/釕合W為鈾/釕合金 ,▲ 孟αΈ / K U )之碳材料私。 一李父佳實施例中,在質子傳 ’、 阻擔層,該曱醇阻擋層係锈堝齙工* J、.表面具有—甲醇0178-9l9 (mVFl (Nl); 05-910044-jimy.ptc Page 7 1229957 Amendment said-plug 9ll3812fi 5th, the description of the invention (3) the reaction efficiency of the methanol fuel cell. /, Person, the Another object of the invention is to reduce the reaction characteristics of the fuel cell designed by the anode structure of "a direct alcohol burner". The "blight effect" is used to maintain the material cost of the anode due to the metal contact in the fuel cell. "So, this hair = touch = more expensive in order to reduce the production cost of the membrane electrode group. The amount of heart catalyst used, material and electricity The present invention provides a kind of structure for a progressive membrane electrode group that is suitable for direct methanol operation, which includes A spelling, ... ,, cathode catalyst electrode and multiple layers of anode contacts ==,-have anode catalysts, and overlap each other and are set on protons: =: media = both include $ touch: each layer has multiple transmission channels ,, And the transmission pass: the positive electrode layer of each anode seeking = from the anode catalyst layer inwardly breaking the conductive film from the inside to the nearest from the anode to the cross-section width of 100nm to 1mm. In a preferred embodiment, the anode catalyst cloth is composed of the anode catalyst The anode that is closest to the proton conductive film on the anode conductive film is coated with the field catalyst content, and the conductive film can be layer-by-layer layered from the inside to the outside. (Pt / Ru) or external plating / ruthenium alloy W It is a uranium / ruthenium alloy, ▲ Meng αΈ / KU) carbon material. In the example of Li Fujia, in the proton transfer, the barrier layer, the alcohol barrier layer is a rust pot masonry * J ,. The surface has —Methanol
案號 9113812fiCase number 9113812fi
1229957 五、發明說明(4) 膜表面之緻密陽極觸媒微粒,用r 在一較佳實施例中,上述2 陰極觸媒電極係經熱塵成形, ° 之一溥膜狀之膜電極紐結構。成 本發明另提供一種直接甲轉取 組結構,其包括一質+傳導膜、二 陽極觸媒層。各陽極碣媒層内' AI =質子傳導膜上,其中各陽極躅 靠近質子傳導膜之陽招觸媒層為由 在一較佳實施例中,各^豳觸 陽極觸媒層之孔洞自遢靠近質寸傳 内向外逐層變大。又’陽極觸去某層 比例之導電微粒後,再逐層形蜮二 上述導電微粒為碳材微粒,陽輕觸 或疋外錢鈾/釕合金(Pt/Ru)之確材 在一較佳實施例中,在質丹傳 阻播層,該甲醇阻擋層係透過離子 膜表面之緻密陽極觸媒微粒,用以 在一較佳實施例中,上述茂極 陰極觸媒電極係經熱塵成形,邦成 之一薄膜狀之膜電極組結構。 降低甲醇之橫渡效考)。 觸媒層、質子傳導膜及 適合直接甲醇燃料電池 料電池之漸進式膜電極 陰極觸媒電極及複數層 極觸媒而相互重疊設置 層之陽極觸媒含量自最 内向外逐層遞增。 媒層為多孔性的,且各 ^膜之陽極觸媒層起由 係由陽極觸媒混合不同 質子傳導膜之上,其中 媒為麵/釕合金(P t / R u ) 微粒。 導膜之表面具有一甲醇 交換法沈積於質子傳導 降低甲醇之橫渡效應。 觸媒層、質子傳導膜及 適合直接曱醇燃料電池 本發明另提供一種直接甲辩燃料電池之漸進式膜電極 組製造方法’首先提供一質子導膜;再以不同比例之陽 極觸媒及導電微粒形成複數種巧^同配比之毁料;並由上述 漿料中陽極觸媒比例較少的槳斜逐層塗佈於質子傳導膜1229957 V. Description of the invention (4) Dense anode catalyst particles on the surface of the membrane, using r In a preferred embodiment, the above two cathode catalyst electrodes are formed by hot dust, one of which is a membrane-like membrane electrode button structure. . The present invention also provides a direct nail transfer assembly structure, which includes a mass + conductive film and two anode catalyst layers. Within each anode / catalyst layer, 'AI = on the proton conductive membrane, wherein each anode is close to the anode catalyst layer of the proton conductive membrane. In a preferred embodiment, each of the holes in the anode catalyst layer contacts It gets bigger and bigger layer by layer inward and outward. After the anode touches a certain proportion of conductive particles, the layers are formed layer by layer. The above conductive particles are carbon material particles. The positive touch or the external uranium / ruthenium alloy (Pt / Ru) is better. In the embodiment, in the mass transfer barrier layer, the methanol barrier layer is a dense anode catalyst particle that penetrates the surface of the ion membrane. In a preferred embodiment, the above-mentioned cathodic cathode catalyst electrode is formed by hot dust. , A thin film-like membrane electrode group structure. Reduce the crossover effect of methanol). The catalyst layer, proton conductive membrane, and progressive membrane electrode suitable for direct methanol fuel cell battery cells. Cathode catalyst electrode and multiple layers of catalyst are placed on top of each other. The anode catalyst content of the layers gradually increases from the inside to the outside. The dielectric layer is porous, and the anode catalyst layers of the respective membranes are formed by mixing the anode catalyst with different proton conductive membranes, where the medium is surface / ruthenium alloy (Pt / Ru) particles. The surface of the conductive membrane has a methanol exchange method deposited on proton conduction to reduce the crossover effect of methanol. Catalyst layer, proton conductive membrane and direct methanol fuel cell suitable The present invention also provides a method for manufacturing a progressive membrane electrode group of a direct fuel cell. First, a proton conductive membrane is provided; then anode catalysts with different ratios and conductivity are used. The particles form multiple kinds of materials with the same proportion; and are coated on the proton conductive film layer by layer by the paddle with a small proportion of the anode catalyst in the above slurry.
0l78-9190TWFl(Nl);05-910044Jimy.ptc 第9貢 1229957 修正 f 號 9Π3812Β 五、發明說明(5) =,使質子傳導膜上形成複數層陽極觸媒芦。 陰極觸媒電極,再將陰極觸媒電極陽^ 側’並將複數層陽極觸媒層、質子傳導之對 係以…、壓成形,形成一薄膜狀之膜電極组处構 在:較佳實施例中,該漸進式膜電極:製造方法,更 m ^ ^ ^ ^ ^ m 以降低甲醇之橫渡效 應。払者再依序將各種不同混合比兮 阻擋層上。 w之水枓塗佈於該甲醇 在:較佳實施例中,該漸進式膜電極組製造方法, 包括·提供一孔洞塑造劑·真於 w削,冉方;不同混合比例之喈斜Φ , 依照陽極觸媒之量依昭一既宗μμ如4 w <果枓中 ,斗 』卡心里伋…、既疋比例加入該孔洞塑造劑。 么’该孔洞塑造劑可為草酸銨⑽4)2认或是碳酸銨(ΝΗ4) 為始/在訂一人車 例中,導電微粒為破材微粒,陽極觸媒 ^翻““金(P"Ru)或是外鑛翻/釕合金(Pt/Ru)之碳材微 明顯ί:讓ί發:2上述和其他目的、特徵、㊉優點能更 ;易懂’下文特舉一較佳實施例,&配合所附圖示,作 5羊細氣明如下: 實施方式 第2圖為直接曱醇燃料電池陽極之反應示意圖。0l78-9190TWFl (Nl); 05-910044Jimy.ptc 9th Tribute 1229957 Amendment f No. 9Π3812B V. Description of the invention (5) = Make the proton conductive membrane to form a plurality of anode catalysts. The cathode catalyst electrode, and then the anode side of the cathode catalyst electrode, and a plurality of anode catalyst layers and proton conduction pairs are formed by pressing to form a film-shaped membrane electrode group. In the example, the progressive membrane electrode: a manufacturing method, more m ^ ^ ^ ^ ^ m to reduce the crossover effect of methanol. The person then sequentially put various mixing ratios on the barrier layer. W water is coated on the methanol. In a preferred embodiment, the method for manufacturing a progressive membrane electrode group includes: · providing a hole-shaping agent · true w cut, Ran Fang; 喈 oblique Φ of different mixing ratios, According to the amount of the anode catalyst, according to Zhao Yi's predecessor μμ, such as 4 w < in the fruit capsule, the bucket card will be drawn in the heart, the proportion of the former is added to the hole shaping agent. What's the hole shaping agent can be ammonium oxalate) 4) 2 or ammonium carbonate (ΝΗ4) as the starting / in the case of a one-person car, the conductive particles are broken particles, the anode catalyst ^ "Gold (P " Ru ) Or the carbon material of Pt / Ru alloy is slightly obvious. Let it be made: 2 The above and other purposes, features, and advantages can be more easily understood; 'A preferred embodiment is given below. & In accordance with the accompanying drawings, 5 sheep gas is described as follows: Embodiment 2 Figure 2 is a schematic diagram of the reaction of a direct methanol fuel cell anode.
IM 甲醇燃料電池是以甲醇水溶液(GMH + H2Q)在陽極觸媒層中 進打乳化反應,產生氫離子(6H+)、電子(6〇以及二氧^化The IM methanol fuel cell uses an aqueous methanol solution (GMH + H2Q) to perform an emulsification reaction in the anode catalyst layer to generate hydrogen ions (6H +), electrons (60, and dioxination).
第10頁 〇178-9190TWFl(Nl):05-910044;jimy.ptc 1229957 五、發明說明(6) 月 曰 修正 石反(C〇2),由第2圖可知,若要使陽極觸媒 化反應之生成物要持續被帶離陽m ’則乳 氧化反應所產生之氫離子'電子及二氧化姓換言之, 除,才不至於影響反對速#,甚至使υ持續被移 電池反應效能。因此,本發明即提出—種斷,降低 構’其有助於直接甲醇燃料電池在高度放電式 陽極觸媒表面形成之二氧化碳 =排, 反應效能。 誕同直接甲醇燃料電池之 第3圖為本發明直接甲醇 結構示意圖。如第3圖所:電池之漸進式臈電極組 傳導膜21及複數Γ陽圖極V;心陰極22、一質子 媒電極經熱壓經熱厂媒=3’、二】所形成之㈣ 說ί ί 3 Λ Λ組結構。為了簡化圖示及其後之實施例 t it 1 ϋ®以—層較厚之陽極觸媒層構成一膜電極組 之漸進式%極觸媒電極,〆9 發明所提出之製造方法,,亦則可=照本 成本發明之漸進式膜電極;;:層以上較薄之陽極觸媒層形 第一實施例 如第3圖所不’漸進式膜電極組2 〇由一質子傳導膜 朽網碰ί極觸媒22及複數層陽極觸4層23〜25所構成’陰 Πϊ9電極22與複數層陽極觸媒層23~25相對設置於質子 媒。、之兩側’在各陽極觸媒層2 3〜2 5内均含有陽極觸Page 10 〇178-9190TWFl (Nl): 05-910044; jimy.ptc 1229957 V. Description of the invention (6) Monthly correction of the stone counter (C02), as shown in Figure 2, if the anode is to be catalystized The product of the reaction must be continuously taken away from the anode, and the hydrogen ions produced by the lactation reaction and the surname of the dioxide, in other words, will not affect the opposition speed, and even make υ continue to be shifted in the battery reaction performance. Therefore, the present invention proposes a method for reducing the structure and reducing the structure, which helps the direct methanol fuel cell to form carbon dioxide on the surface of the highly-discharged anode catalyst, and the reaction efficiency. Figure 3 of the direct methanol fuel cell is a schematic diagram of the direct methanol structure of the present invention. As shown in Figure 3: the battery ’s progressive 臈 electrode group conductive film 21 and the plural Γ positive pole V; the heart cathode 22, a proton medium electrode through hot pressing and heat plant medium = 3 ′, two] ί ί 3 Λ Λ group structure. In order to simplify the illustration and the following embodiments, t it 1 ϋ® is a progressive% pole catalyst electrode with a thicker anode catalyst layer to form a membrane electrode group. 〆 9 The manufacturing method proposed by the invention, also Then it can be a progressive membrane electrode according to the present invention ;: A thin layer of anode catalyst layer above the first embodiment, as shown in FIG. 3, 'progressive membrane electrode group 2' 〇 It is touched by a proton conductive membrane The 'cavity 9' electrode 22 composed of the anode catalyst 22 and a plurality of anode contact layers 4 to 23 to 25 and the anode catalyst layers 23 to 25 are disposed opposite to the proton medium. Both sides' contain anode contacts in each of the anode catalyst layers 2 3 ~ 2 5
第11頁 1229957 修正 曰 ---------91138126___年 月 五、發明說明(7) 所$ 了増加反應表面積,加速排除陽極端在氧化反應後 個傳一乳化碳,在各陽極觸媒層23〜25中均具有複數 Μ,251(第3圖僅為部份載面圖),各層 數目自最靠近質子傳導㈣之陽極觸媒層23 ㈡=層遞增’且各層傳送通道之戴面寬度亦自最 傳導膜21之陽極觸媒層23起由内向外逐層增大。 媒;矣為了防止反應產生之二氧化碳氣泡附著於陽極觸 =ί Γ,成該陽極觸媒微無法持續反應,故越接近 ⑸,以幫助#^=5具有較多且較大之傳送通道 -導陽極觸媒電極23〜25之各陽極觸媒層係由 ^電薄Μ塗佈陽極觸媒所構成,且 之陽極觸媒含量自最靠近質子傳、曰23〜25 由内向外诼厣捵祕 、子傳泠膑21之%極觸媒層23起 :广外政層遞增,使甲醇水溶液一方 大部之氧化反應而排出二氧化碳,$古;Γ 70成 陽極觸媒電極t之陽朽覦也可有效節省 写烁罨枝中之險極觸媒含量,降低生產成本。 在本實施例中導電薄膜為一碳紙或是碳布, 粒^If%合金(Pt/RU)微粒或是外鍍鉬/釕合金之碳材微、 ",八I作方式是先將陽極觸媒加入 ^ 驗㈣及溶劑中,調製成一第又一換陽= 度之焚料,加入適當比例之碳粉接口 = 極觸媒濃度之漿W將上述不同濃度之 '於導電薄膜上,完成各陽極觸媒層2 3〜2 5之製備。义各 0178-919(mVFl(NI);05-91(X)44Jimy.ptc _案號911381邓 1229957Page 11 1229957 Amendment --------- 91138126___ May 5, Invention Description (7) The reaction surface area is added to accelerate the elimination of an emulsified carbon after the oxidation reaction at the anode end. The catalyst layers 23 to 25 each have a plurality of M, 251 (Figure 3 is only a partial surface view), and the number of each layer is from the anode catalyst layer 23 closest to the proton conduction ㈣ ㈡ = layer is increasing 'and the transmission channel of each layer The wearing surface width also increases layer by layer from the inside to the outside of the anode catalyst layer 23 of the most conductive film 21. In order to prevent the carbon dioxide bubbles generated by the reaction from attaching to the anode contact, the anode catalyst cannot continue to react slightly, so the closer it is to ⑸, to help # ^ = 5 have more and larger transmission channels-guide Each anode catalyst layer of the anode catalyst electrodes 23 to 25 is composed of a thin electrode coated with an anode catalyst, and the anode catalyst content is from the closest to the proton pass, which is 23 to 25 from the inside to the outside. , Zi Chuan Ling 膑 21% electrode catalyst layer 23: Canton's foreign policy layer is increased, so that most of the methanol aqueous solution is oxidized to emit carbon dioxide, which is ancient; Γ 70 becomes the anode catalyst electrode. It can effectively save the dangerous catalyst content in the writing stalk, and reduce the production cost. In this embodiment, the conductive film is a carbon paper or a carbon cloth, particles of If% alloy (Pt / RU) particles, or a carbon material coated with molybdenum / ruthenium alloy. The anode catalyst is added to the test solution and the solvent, and is prepared into a first and second anode = degree of incineration, and an appropriate proportion of the toner interface is added to the slurry of the pole catalyst concentration. The above different concentrations are applied to the conductive film. The preparation of each of the anode catalyst layers 2 3 to 25 is completed. Yoshiko 0178-919 (mVFl (NI); 05-91 (X) 44Jimy.ptc _Case No. 911381 Deng 1229957
五、發明說明(8) 陽極觸媒層23〜25中之傳導通道231, 241,251的製作方式 可以用機械式或是雷射刻晝的方式形成,使各陽極觸媒^ 23〜25中傳送通道231,241, 251之截面寬度介於1〇〇_至曰 1 ππη之間’其由内部之陽極觸媒層2 3向外部陽極觸媒層2 5 逐層增加、逐層變大,使增加反應表面積,加速排除0二 化碳氣泡。 ' 此外,為了降低甲醇的橫渡效應,在本發明漸進式膜 電極組2 0質子傳導膜2 1的陽極側表面具有一甲醇阻擔層、 2 1 1 ’ δ亥曱醇阻播層2 11是以離子交換法沈積於質子傳導膜 21表面之緻密陽極觸媒微粒層,其製作方式如第4八圖及第 4 Β圖所不。第4 Α圖為本發明利用離子交換法製作曱醇阻擋 層之f法示意圖,第4B圖為其範圍34之放大示意圖。製^ 此緻密沈積之觸媒層的目的在提供陽極觸媒氧化甲醇之最 後一道防線,緻密地陽極觸媒微粒2 1 2沈積在質子傳導膜 21上,其可填充於質子傳導膜2 1表面的微孔中,將滲透入 楗孔中之甲醇消耗至盡,避免甲醇進一步的橫渡至陰極 中,形成局部地區的自反應(Sel f — reacti〇n),導致的整 體電位下降及放電效能降低等情形。其製作步驟如下:V. Description of the invention (8) The conductive channels 231, 241, and 251 in the anode catalyst layers 23 to 25 can be formed mechanically or by laser engraving, so that each anode catalyst ^ 23 ~ 25 The cross-section widths of the transmission channels 231, 241, and 251 are between 100 and 1 ππη ', which increases from the internal anode catalyst layer 2 3 to the external anode catalyst layer 2 5 layer by layer, and becomes larger by layer. Increase the reaction surface area and accelerate the elimination of carbon dioxide bubbles. 'In addition, in order to reduce the crossover effect of methanol, the anode side surface of the proton conductive membrane 21 of the progressive membrane electrode group 20 of the present invention has a methanol barrier layer, 2 1 1' δHydranol barrier layer 2 11 is The dense anode catalyst particle layer deposited on the surface of the proton-conducting membrane 21 by the ion exchange method is manufactured in the manner shown in Figures 4 and 8 and Figure 4B. Fig. 4A is a schematic diagram of the f method for preparing a methanol barrier layer by an ion exchange method according to the present invention, and Fig. 4B is an enlarged schematic diagram of a range 34 thereof. The purpose of making this densely deposited catalyst layer is to provide the last line of defense for the anode catalyst to oxidize methanol. Dense anode catalyst particles 2 1 2 are deposited on the proton conductive membrane 21, which can fill the surface of the proton conductive membrane 2 1 In the micropores, the methanol that has penetrated into the pores is consumed to the full, avoiding the methanol to further cross into the cathode, forming a self-reaction (Sel f — reactio) in the local area, resulting in a decrease in the overall potential and discharge efficiency. And so on. The steps are as follows:
第13頁 首先將夤子傳導膜21置於如第4A圖所示之器具中,並 以3^具3 3固疋於反應槽3 1及還原槽3 2之間;接著,將欲沈 積陽極觸媒的那一面倒入Pt(NH3)4C12與““㈨⑶%、(依 Pt:Ru原子比為1:1)之水溶液,另一邊則僅倒入純水,靜 置一段適當之時間;再將適量的NaBH4慢慢加入僅有純水的 那並加以攪拌及控制溫度,避免在欲沈積的面上 土生氮氣氣泡。如第4B圖所示,當氫氣穿過質子傳導膜21 五、發明說明(9) 傳送至左側表面日卑 媒層,若其反庫時門子傳導膜21表面形成緻密的觸 古主i々土 m 甲s子’有效阻擋甲醇之橫渡效應。 €-¾ ^ I^第3圖,本發明之陰極觸媒電極22是由一導 1布今:丟極觸媒而⑨,此導電薄膜亦可為-碳紙、- 表面鍍金之鎳或夺而供八♦ Ϊ々·鈦、表面鍍金之銅、 表面塗佈之陰極觸媒可為翻(pt)微粒,而質子傳導膜以可 :2V2f//,司之·—。當完成上述複數層陽極觸媒 Γ將Γ數二=’即可以130 °c以上的溫度在適當的壓力 下夺=層%極觸媒層23〜25、質子傳導膜21及陰極觸媒 電丄J22熱壓成膜電極組2〇 ’完成本發明適用於辦 料電池之漸進式膜電極組。 子… 第二實施例 本發明另提供漸進式膜電極組之製作方式,請參閱第 3圖、如第一實施例所述,漸進式膜電極組2〇包括一〃質子 傳導膜21、一陰極觸媒電極22及複數層陽極觸媒層、 23〜25。各陽極觸媒層23〜25内含陽極觸媒而相互重聂μ 於質子傳導膜21上,其中各陽極觸媒層23〜25之陽極1觸<媒 含量自最靠近質子傳導膜21之陽極觸媒層23起由内向外逐 層遞增’使陽極端之甲醇水溶液可在表層即完成大部之氧 化反應而排出二氧化破,並有效節省陽極觸媒之使用量,On page 13, first place the rafter conductive film 21 in the apparatus as shown in FIG. 4A, and fix it between the reaction tank 31 and the reduction tank 32 with 3 ^ 3 3; then, the anode to be deposited Pour the side of the catalyst into an aqueous solution of Pt (NH3) 4C12 and "" ㈨⑶%, (according to the Pt: Ru atomic ratio of 1: 1), and pour pure water on the other side, and leave it for a proper period of time; Add an appropriate amount of NaBH4 slowly to the one with pure water, stir and control the temperature, and avoid nitrogen bubbles on the surface to be deposited. As shown in Figure 4B, when hydrogen passes through the proton conductive membrane 21 V. Description of the invention (9) is transmitted to the left surface layer of the Japanese media. m 甲子 子 'effectively prevents the crossover effect of methanol. € -¾ ^ I ^ Fig. 3, the cathode catalyst electrode 22 of the present invention is made of one conductor and one electrode: this is a dipole catalyst. This conductive film can also be-carbon paper,-nickel-plated or gold-plated on the surface. The cathode catalyst for 八 · titanium, gold-plated copper, and surface-coated cathodes can be pt particles, and the proton conductive film can be: 2V2f //, Sizhi · —. When the above-mentioned multiple layers of anode catalyst Γ are completed, the number of Γ will be two = ', that is, the temperature of 130 ° c or higher can be taken under appropriate pressure = layer% pole catalyst layer 23 ~ 25, proton conductive film 21, and cathode catalyst electrode. J22 hot-pressed film-forming electrode group 20 ′ completes the present invention, which is suitable for a progressive film-electrode group for a battery. The second embodiment. The present invention also provides a method for manufacturing a progressive membrane electrode group. Please refer to FIG. 3. As described in the first embodiment, the progressive membrane electrode group 20 includes a proton conductive film 21 and a cathode. The catalyst electrode 22 and a plurality of anode catalyst layers 23 to 25. Each of the anode catalyst layers 23 to 25 contains an anode catalyst and mutually weighs each other on the proton conductive film 21, and the anode 1 of each of the anode catalyst layers 23 to 25 contacts < the medium content from the closest to the proton conductive film 21 The anode catalyst layer 23 is gradually increased from the inside to the outside, so that the methanol solution at the anode end can complete most of the oxidation reaction at the surface layer and discharge the dioxide, and effectively save the amount of anode catalyst used.
1229957 案號 91138126 五、發明說明(10) 降低膜電極組之生產成本。 此外,為了降低甲醇的橫渡效應, 式膜電極組20質子傳導膜21的陽極側表面,口士實^1229957 Case number 91138126 V. Description of the invention (10) Reduce the production cost of membrane electrode group. In addition, in order to reduce the crossover effect of methanol, the anode side surface of the proton conductive membrane 21 of the membrane electrode group 20
有一甲醇阻擔層211’該甲醇阻擋層‘以;J ΐ ί Ϊ :於:子傳導膜21表面之緻密陽極觸媒微粒212 層,其衣作方式如前所述,在此不再贅述。 較第一實施例不同的是,篦—每^ .9Q , , J J疋弟一貝知例中之各陽極觸媒 層23〜25為夕孔性的,且各陽極觸媒層23〜25之孔洞自最靠 近枭子傳導膜2 1之陽極觸媒層2 3起由内向外逐層變大,故 越接近陽極端表面之陽極觸媒層25具有較大之通孔,可幫 助排出二氧化碳氣體。其次,陽極觸媒層23〜25是由陽極 觸媒混合不同比例之導電微粒後,再逐層形成於質子傳導 膜2 1之上。上述導電微粒為碳材微粒,陽極觸媒為鉑/釕 合金(Pt/Ru)或是外鍍鉑/釕合金之碳材微粒。 本實施例所使用的奈米陽極觸媒之製作方式分別敘述 如下: 首先’將 H2PtCl6 ·6Η20 及 RUC13(依 pt:Ru 原子比為 1:1)There is a methanol barrier layer 211 ′, and the methanol barrier layer ′ is: J 于 于: On: The dense anode catalyst particles 212 layer on the surface of the sub-conducting film 21, and the clothing method is as described above, which is not repeated here. The difference from the first embodiment is that each of the anode catalyst layers 23 to 25 in the case of 篦 .9Q, JJ is known as porous, and each of the anode catalyst layers 23 to 25 The pores become larger layer by layer from the anode catalyst layer 2 3 closest to the conductive film 21, so the anode catalyst layer 25 closer to the anode end surface has larger through holes, which can help to discharge carbon dioxide gas. . Secondly, the anode catalyst layers 23 to 25 are formed by mixing the anode catalyst with conductive particles of different proportions, and then forming the anode catalyst layer by layer on the proton conductive film 21. The conductive particles are carbon material particles, and the anode catalyst is platinum / ruthenium alloy (Pt / Ru) or carbon material particles plated with platinum / ruthenium alloy. The manufacturing methods of the nano-anode catalyst used in this embodiment are described as follows: First, ‘H2PtCl6 · 6Η20 and RUC13 (according to the pt: Ru atomic ratio of 1: 1)
溶於適量之去離子水中,用Na2C〇3中和至中性後,加入適 量之NaHS〇3並攪拌以促進反應完全,然後再加入適量之 Na/O3,即得深色沈澱物;接著將沈澱物過濾出並混入去 離子水中’再加入適1之離子交換樹脂(I〇n_ExchangeDissolve in an appropriate amount of deionized water, neutralize to neutrality with Na2CO3, add an appropriate amount of NaHS03 and stir to promote the reaction to complete, and then add an appropriate amount of Na / O3 to obtain a dark precipitate; then The precipitate was filtered off and mixed into deionized water, and then an appropriate ion exchange resin (Ion_Exchange was added).
Resin,Dowex 50WX4,100 〜200 mesh)攪拌之;最後過濾 掉懸浮之離子交換樹脂,即得鉑/釕之懸浮溶液。 接下來’若欲製作,即直接於pt/Ru懸浮溶液中加入 適量之H2 02,攪拌後加熱煮沸持續一小時;接著,待溶液Resin, Dowex 50WX4, 100 ~ 200 mesh); Finally, the suspended ion exchange resin was filtered to obtain a platinum / ruthenium suspension solution. Next, if you want to make it, add the appropriate amount of H2 02 directly to the pt / Ru suspension solution, stir and heat for one hour. Then, wait for the solution
0178-919〇rrWFl(Nl);05-910044uimy.ptc 第15頁 _ 案號 91138126 12299570178-919〇rrWFl (Nl); 05-910044uimy.ptc Page 15 _ Case No. 91138126 1229957
曰 五、發明說明(11) 冷卻後以多孔性陶瓷漏斗過濾得黑色粉末,置 真空烘箱中乾燥,即得鉑/釕合金(Pt/Ru)。苦==0 °C之 翻/釕合金之碳材微粒,則需於Pt/Rll懸浮溶2欲製作外鍍 熱酸回流處理過之高石墨化碳粉,並強烈授彳=。中、’加入經 震盪至碳粉均勻分散,然後再加入適量之丨^0 ',或以超音波 熱煮/弗持纟員一小時;接著’待溶液冷卻後以多 _後加 斗過渡得黑色粉末,置入11 〇。(:之真空烘箱中^乾孔^生陶究漏 外鍍紐/釕合金之碳材微粒。最後,將鉑/舒合0金即得 或是外鍍鉑/釕合金之碳材微粒送入管型高溫擴i中t/ R u) 氣為保護氣氛升溫至250 °C後,改通入氫惫=二工’以氩V. Description of the invention (11) After cooling, filter through a porous ceramic funnel to obtain a black powder and dry in a vacuum oven to obtain a platinum / ruthenium alloy (Pt / Ru). Suffering == 0 ° C of carbon / fine particles of ruthenium alloy, need to be suspended and dissolved in Pt / Rll. Medium, 'Add to the toner to evenly disperse after shaking, and then add an appropriate amount of ^^ 0', or cook with ultrasound for 1 hour; then, 'After the solution cools, it will turn black after adding more and more buckets. Place the powder in 110. (: In the vacuum oven ^ dry holes ^ raw ceramics leaked carbon particles of externally plated button / ruthenium alloy. Finally, the platinum / Shuhe 0 gold is obtained or externally plated carbon material particles of platinum / ruthenium alloy into After the tube type high temperature expansion i / t) gas is heated to 250 ° C as a protective atmosphere, it is switched into hydrogen exhaustion = diplexing with argon
、、付〉皿兩小睹IV 上’再以氬氣為保護氣氛降至常溫,即得木给 媒所使用之鉑/釕合金(Pt/Ru)或是外鍍鉑/ 玉觸 微粒。 】口至之妷材 本實施例所使用之漿料之製備方式敘述如下,兩 配不同成份配比的漿料(INK),其漿料調配步驟如下""·· 5周 首先將上述之奈米陽極觸媒混入少量水中, 1 行加入週當比、, 付> 上 一 小 一 小 IV on the two small watch IV, and then use argon as the protective atmosphere to reduce the temperature to normal temperature, that is, the platinum / ruthenium alloy (Pt / Ru) or platinum / jade contact particles used in the wood medium. ] The method of preparing the slurry used in this example is as follows. Two slurry (INK) with different composition ratios, the slurry preparation steps are as follows: " " 5 weeks Nano anode catalyst mixed into a small amount of water
例之質子交換溶液 (Nafion® Solution 11〇〇 e\V) ,彤成 ★ 一陽極觸媒濃度之漿料。接著以該第一陽極觸媒濃"度之—將第 枓,加入適當比例之碳粉(1:2),製作成第二及第三陽極t 觸媒濃度之漿料,完成三種具有不用陽極觸媒濃度之漿 接者’為了使各陽極觸媒層2 3〜2 5產生多孔性結構, 且各1%極觸媒層23〜25之孔洞自最靠近質子傳導膜?!之陽 極觸媒層23起由内向外逐層變大。因此上述第一至第三陽For example, the proton exchange solution (Nafion® Solution 1 100 e \ V), Tongcheng ★ a slurry of anode catalyst concentration. Then, with the concentration of the first anode catalyst " degree-then, add the appropriate proportion of carbon powder (1: 2) to make the slurry of the second and third anode catalyst concentrations to complete three For the anode catalyst concentration slurry connector, 'In order to make each anode catalyst layer 2 3 ~ 2 5 have a porous structure, and the pores of each of the 1% anode catalyst layers 23 ~ 25 are closest to the proton conductive membrane? !! The anode catalyst layer 23 becomes larger layer by layer from the inside to the outside. So the first to third sun
12299571229957
案號 五、發明說明(12) 極觸媒濃度之漿料,需再依照一既 劑,如:草酸錄⑽4)2c2〇4或是碳酸錢力〇入孔:, 於形成陽極觸媒層25之第—陽極觸 ϋυ仔用 孔洞塑造劑,用於形成陽極觸媒層含較多曲的 之漿料含適當的孔洞塑造劑,用於形 「全觸媒派度 三陽極觸媒濃度之裂料含較少的孔洞塑、生二觸媒層23之第 成各個陽極觸媒層㈣之時,當 =劑析出而形成本發明所需之由内層逐層擴大之多孔性結 好之;再ΐ考!3圖’在第二實施例中,當各種锻料調配 (Decal以複塗佈法(Repeat-c〇at)、轉印製程 ^ Π Γ, d) 51 ^ ep ^ ^(Die-Coating) f ^ 式將不同%極觸媒濃度之漿料重, - ^2 Π # ^ ^ ^ 'Λ ;3〇 2 3二的:子度Λ適當的壓力下將複數層陽極觸媒層 租2 ,ΛΛ Λ21及陰極觸媒電極22熱壓成一膜電極 極二凡成本發明適用於直接甲醇燃料電池之漸進式膜電 實驗數據 純甲Γ中漸進式犋電極組與傳統膜電極組在 圖反應時,電動勢與電流密度之關係圖;第5Β =為=膜電極組與傳統膜電極組在10%甲醇水溶液7 進订反應時’電壓與電流密度 -進式膜電極組結構在純甲醇的環境下所產生Case No. 5. Description of the invention (12) The slurry with extremely high catalyst concentration should be used in accordance with an existing agent, such as: oxalic acid 4) 2c2 04 or carbonic acid pores: to form the anode catalyst layer 25 No. 1—Anode-forming pore-forming agent, used to form anode catalyst layer. The slurry with more curvature contains appropriate hole-forming agent, which is used to shape the “three anode catalyst concentration cracks with full catalyst system”. When the material contains fewer pores, the first anode catalyst layer 23 of the second catalyst layer 23, when the agent precipitates to form the porous layer expanded from the inner layer layer by layer required by the invention; Take a look! Figure 3 In the second embodiment, when various forging materials are blended (Decal is repeated-coated) and the transfer process is ^ Π Γ, d) 51 ^ ep ^ ^ (Die- Coating) f ^ formula weights slurry with different% electrode catalyst concentration,-^ 2 Π # ^ ^ ^ 'Λ; 302 32: sub-degree Λ will rent multiple anode catalyst layers under appropriate pressure 2, ΛΛ Λ21 and cathode catalyst electrode 22 are hot-pressed into a membrane electrode. The cost of the invention is suitable for direct methanol fuel cell. The relationship between the electromotive force and the current density when the electrode group and the traditional membrane electrode group are reacted; 5B === The membrane electrode group and the traditional membrane electrode group are in a 10% methanol aqueous solution. Structure of the membrane electrode group under pure methanol environment
0178-9190rnVFl(Nl);〇5-910〇44〇imy.ptc 第17頁 度與電流密度之關传θ t:叉關係圖’弟5C圖為功率密 4 * 奇糸圖由第5 A〜5C圖中的實驗數據可 1229957 修正 月 曰 案號911381邓 五、發明說明(13) 的電動勢,雖然較傳統膜電極組略小,但是漸進式陽極結 構有f於快速排除在陽極觸媒表面所形成的二氧化碳氣 j,k幵燃料電池的反應效能,因此在較高電流密度的狀 心下本發明之漸進式膜電極組具有較高之輸出電壓,且 本毛明漸進式膜電極組的輸出功率密度也比較傳統的燃料 電池之膜電極組高出許多(第5C圖)。 由上所述’本發明之直接甲醇燃料電池之膜電極組呈 有漸進式的陽極結構’其傳送孔道由質子傳導膜由内向外 f層變大,其有助於直接甲醇燃料電池在高度放電下,快 速排除陽極觸媒表面形成之-童 # 礙,以提昇陽極上陽極乳泡’並減少質傳阻 燃料電池之反應效Γ 之用率’間接提高直接甲醇 可有效面匕:密的陽極觸媒微粒, 由外層向内層逐層減少的陽極觸二力"電池的穩定性。而 觸媒的使用量,降低直接甲醇燃料=度’可有效減少陽極 大大增加商業化的可能性。…、’、電池之製造成本,故可 雖然本發明已以較佳實施例命 限定本發明,任何熟習此技藝者,路如上,然其並非用以 和範圍内,當可作些許之更動與、門在不脫離本發明之精神 範圍當視後附之申請專利範圍所=斜’因此本發明之保護 介定者為準。 1229957 ΜΆ^ 91138126 圖式簡單說明 第1 Α圖為傳統堆疊形 ^ 圖。 < ^離子父換膜燃料電池的立體分解 圖為第U圖中膜電極組之剖面圖。 ㈣二:直接甲醇燃料電池陽極之反應示意圖。 ® :、、、本發明直接曱醇燃料池式膜 結構示意圖。 第4 A圖為本發明利用離子交換法製作甲醇阻擋層之方 法示意圖。 ,4B圖為本發明第4A圖中範圍34之放大示意圖。 第5 Α圖為本發明漸進式膜電極組與傳統膜電極組在純 甲醉中進行反應時,電動勢與電流密度之關係圖。 第5B圖為本發明漸進式膜電極組與傳統膜電極組在 1 0%曱醇水溶液中進行反應時,電壓與電流密度之關係 圖。 第5C圖為本發明漸進式膜電極組與傳統膜電極組在 1 0 %甲醇水溶液中進行反應時,功率密度與電流密度之關 係圖。 符號說明 10 傳統離子交換膜燃料電池 令 11 端電極板 111 流道 12 膜電極組 12 1 陽極觸媒電極 12 2 質子傳導膜0178-9190rnVFl (Nl); 〇5-910〇44〇imy.ptc Page 17 Degree and current density pass θ t: Cross-Relation diagram '5C picture is power density 4 * The strange picture is from 5 A ~ The experimental data in the 5C chart can be 1229957 to amend case number 911381, Deng Wu, Invention Note (13). Although the electromotive force is slightly smaller than the traditional membrane electrode group, the progressive anode structure can be quickly excluded from the anode catalyst surface. The reaction efficiency of the formed carbon dioxide gas j, k fuel cell, so the progressive membrane electrode group of the present invention has a higher output voltage under the center of higher current density, and the output of this Maoming progressive membrane electrode group The power density is also much higher than the membrane electrode group of traditional fuel cells (Figure 5C). From the above-mentioned "the membrane electrode group of the direct methanol fuel cell of the present invention has a progressive anode structure", its transmission channel is enlarged from the proton conductive membrane from the inside to the f layer, which helps the direct methanol fuel cell to discharge at a high level. In order to improve the anode milk bubbles on the anode and reduce the reaction efficiency of the mass transfer fuel cell, the rate of indirect increase of the direct methanol can be effectively eliminated. The anode catalyst particles reduce the anode contact force one by one from the outer layer to the inner layer " stability of the battery. And the use of catalyst, reducing direct methanol fuel = degree 'can effectively reduce the anode and greatly increase the possibility of commercialization. ..., ', the manufacturing cost of the battery, so although the present invention has been limited to the present invention by a preferred embodiment, anyone skilled in the art is as above, but it is not intended to be used within the scope. 2. The door shall not deviate from the spirit scope of the present invention as the oblique scope of the attached patent application. Therefore, the protection of the present invention shall prevail. 1229957 ΜΆ ^ 91138126 Brief description of the drawing Figure 1 A is a traditional stacked figure. < Dimensional exploded view of the ion-exchange membrane fuel cell is a sectional view of the membrane electrode group in the Uth figure. II: Schematic of the reaction of the direct methanol fuel cell anode. ®: Schematic diagram of the structure of the direct methanol fuel pool membrane of the present invention. Fig. 4A is a schematic diagram of a method for manufacturing a methanol barrier layer by an ion exchange method according to the present invention. Figure 4B is an enlarged schematic view of the range 34 in Figure 4A of the present invention. Figure 5A is a graph of the relationship between electromotive force and current density when the progressive membrane electrode group of the present invention and a conventional membrane electrode group react in pure methyl alcohol. Fig. 5B is a graph showing the relationship between voltage and current density when the progressive membrane electrode group of the present invention and a conventional membrane electrode group are reacted in a 10% methanol aqueous solution. Fig. 5C is a graph showing the relationship between power density and current density when the progressive membrane electrode group of the present invention and a conventional membrane electrode group are reacted in a 10% methanol aqueous solution. DESCRIPTION OF SYMBOLS 10 Conventional ion exchange membrane fuel cell 11 Terminal electrode plate 111 Flow channel 12 Membrane electrode group 12 1 Anode catalyst electrode 12 2 Proton conductive membrane
0178-9190TWFl(Nl);05-910044Jimy.ptc 第19頁 1229957 案號 911381260178-9190TWFl (Nl); 05-910044Jimy.ptc page 19 1229957 case number 91138126
0178-9190TWFl(Nl);05-910044;jimy.ptc 第20頁0178-9190TWFl (Nl); 05-910044; jimy.ptc Page 20
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091138126A TWI229957B (en) | 2002-12-31 | 2002-12-31 | Structure of progressive-type membrane electrode assembly for direct methanol fuel cell and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091138126A TWI229957B (en) | 2002-12-31 | 2002-12-31 | Structure of progressive-type membrane electrode assembly for direct methanol fuel cell and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200411972A TW200411972A (en) | 2004-07-01 |
TWI229957B true TWI229957B (en) | 2005-03-21 |
Family
ID=36083247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091138126A TWI229957B (en) | 2002-12-31 | 2002-12-31 | Structure of progressive-type membrane electrode assembly for direct methanol fuel cell and method for producing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI229957B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI501443B (en) * | 2013-09-26 | 2015-09-21 | Lg Chemical Ltd | Method of manufacturing electrode assembly |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107915210B (en) * | 2017-12-08 | 2024-07-09 | 碳氢技术工程管理(武汉)有限公司 | Active oxygen generator device |
-
2002
- 2002-12-31 TW TW091138126A patent/TWI229957B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI501443B (en) * | 2013-09-26 | 2015-09-21 | Lg Chemical Ltd | Method of manufacturing electrode assembly |
US10033063B2 (en) | 2013-09-26 | 2018-07-24 | Lg Chem, Ltd. | Method of manufacturing electrode assembly |
Also Published As
Publication number | Publication date |
---|---|
TW200411972A (en) | 2004-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100768960B1 (en) | Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment | |
KR100550998B1 (en) | Catalyst for fuel cell and fuel cell system comprising same | |
KR100612873B1 (en) | Method for preparing metal catalyst and an electrode | |
JPH05258755A (en) | Manufacture of solid polyelectrolyte fuel cell | |
JP4293831B2 (en) | Fuel cell | |
JP2013209685A (en) | Electrochemical cell for ammonia production and ammonia synthesis method using the same | |
JP2013209684A (en) | Electrochemical cell for ammonia production and ammonia synthesis method using the same | |
WO2018029994A1 (en) | Hydrogen processing device | |
JP2015506536A (en) | Fuel cell | |
KR100551035B1 (en) | Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same | |
TWI229957B (en) | Structure of progressive-type membrane electrode assembly for direct methanol fuel cell and method for producing the same | |
JP2001118583A (en) | Fuel cell electrode and method for manufacturing the same | |
JP2013014820A (en) | Electrolytic cell for reforming fuel gas, and method of generating reformed gas using electrolytic cell | |
JP2006079888A (en) | Manufacturing method of fuel cell and fuel cell | |
JP5110835B2 (en) | Catalyst electrode for fuel cell, membrane / electrode assembly using the same, and fuel cell | |
TWI288027B (en) | Manufacturing method of platinum alloy electrochemical catalyst carried by carbon nanotube | |
JP2009070733A (en) | Manufacturing method of single-chamber fuel cell and modified manganese oxide | |
JP7207579B1 (en) | catalyst layer, membrane electrode assembly | |
JP4501357B2 (en) | Catalyst electrode and method for producing the same, membrane-electrode assembly, and electrochemical device | |
JP4245405B2 (en) | Fuel cell | |
KR100778412B1 (en) | Cathode catalyst for fuel cell and membrane-electrode assembly for fuel cell comprising same | |
KR20240051841A (en) | Method of manufacturing porous transport electrodes and polymer electrolyte membrane water electrolysis having the porous transport electrode manufactured by the method | |
TWI312699B (en) | ||
JP5128824B2 (en) | Fuel cell system | |
JP2004327413A (en) | Solid oxide fuel cell and electrode material for fuel reformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |