WO2017141952A1 - 高強度冷延鋼板 - Google Patents

高強度冷延鋼板 Download PDF

Info

Publication number
WO2017141952A1
WO2017141952A1 PCT/JP2017/005466 JP2017005466W WO2017141952A1 WO 2017141952 A1 WO2017141952 A1 WO 2017141952A1 JP 2017005466 W JP2017005466 W JP 2017005466W WO 2017141952 A1 WO2017141952 A1 WO 2017141952A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
pickling
strength
Prior art date
Application number
PCT/JP2017/005466
Other languages
English (en)
French (fr)
Inventor
真平 吉岡
義彦 小野
弘之 増岡
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/999,603 priority Critical patent/US11085099B2/en
Priority to EP17753208.2A priority patent/EP3399064B1/en
Priority to JP2017537329A priority patent/JP6308334B2/ja
Priority to KR1020187023563A priority patent/KR102115691B1/ko
Priority to MX2018009968A priority patent/MX2018009968A/es
Priority to CN201780011764.2A priority patent/CN108699647B/zh
Publication of WO2017141952A1 publication Critical patent/WO2017141952A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet. Furthermore, the present invention relates to a high-strength cold-rolled steel sheet having a tensile strength of 1180 MPa or more and excellent delayed fracture resistance and chemical conversion treatment properties.
  • automotive steel sheets are used after being coated, and chemical conversion treatment such as phosphate treatment is performed as a pretreatment for the coating. Since this chemical conversion treatment is one of the important treatments for ensuring the corrosion resistance after coating, the automotive steel sheet is also required to have excellent chemical conversion treatment properties.
  • Si is an element that improves the ductility of steel with the same strength by strengthening ferrite in solid solution and refining the carbide in martensite and bainite. Moreover, in order to suppress the production
  • Patent Document 1 describes a steel sheet with 1 to 3% by mass of Si and having a structure composed of ferrite and tempered martensite and having excellent delayed fracture resistance with a tensile strength of 1320 MPa or more.
  • One element that improves delayed fracture resistance is Cu.
  • the corrosion resistance of the electric resistance welded steel pipe manufactured from the hot rolled steel sheet is improved by adding Cu, and the delayed fracture resistance is remarkably improved.
  • Patent Document 3 describes a steel sheet excellent in chemical conversion treatment by adding 0.5 to 3 mass% of Si and 2 mass% or less of Cu.
  • JP 2012-12642 A Japanese Patent No. 3545980 Japanese Patent No. 5729211
  • Patent Document 1 an oxide mainly composed of Si is formed on the surface layer of the steel sheet in the continuous annealing line, and the chemical conversion treatment performance deteriorates. Further, just increasing the Si content will cause problems in production such as increasing the hot rolling load, rather than saturating the effect.
  • Si is an effective element for ensuring the strength without significantly reducing the ductility of the steel sheet. It also refines carbides and improves delayed fracture resistance. Since the steel component described in Patent Document 2 has a low Si content, it is considered that workability and delayed fracture resistance are inferior.
  • Patent Document 3 pickling is performed on the surface of a steel sheet that has been continuously annealed, and by removing an oxide layer mainly composed of Si formed on the steel sheet surface layer during annealing, 0.5 mass% or more of Si is added. Is trying to ensure excellent chemical conversion. However, the above-mentioned pickling dissolves the base iron and reprecipitates Cu on the steel sheet surface, so that the dissolution reaction of iron in the chemical conversion treatment is suppressed at the Cu precipitation portion, and precipitation of chemical crystals such as zinc phosphate is inhibited. There's a problem. In high-strength steel sheets where delayed fracture due to corrosion is a concern, the requirements for chemical conversion properties related to paint adhesion are becoming stricter, and steel sheets that can achieve good chemical conversion properties even under more severe processing conditions in chemical conversion treatment. Development is required.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a high-strength cold-rolled steel sheet having a tensile strength of 1180 MPa or more and excellent delayed fracture resistance and chemical conversion property.
  • the inventors of the present invention have made extensive studies to solve the above problems, and as a result, the oxide layer mainly composed of Si on the steel sheet surface layer is removed by pickling after the continuous annealing, and Cu S / Cu B Is controlled to 4.0 or less (Cu S is the Cu content in the steel sheet surface layer and Cu B is the Cu content in the base metal), thereby preventing deterioration of the chemical conversion treatment property due to Si and Cu and the delayed fracture resistance. I found that it can be improved.
  • the present invention is based on the above findings. That is, the gist of the present invention is as follows.
  • C 0.10% to 0.50%
  • Si 1.0% to 3.0%
  • Mn 1.0% to 2.5%
  • P 0.00. 05% or less
  • S 0.02% or less
  • Al 0.01% or more and 1.5% or less
  • N 0.005% or less
  • Cu 0.05% or more and 0.50% or less
  • the balance has a component composition consisting of Fe and inevitable impurities
  • the steel sheet surface coverage of the oxide mainly composed of Si is 1% or less
  • the steel sheet surface coverage of Fe-based oxide is 40% or less
  • a high-strength cold-rolled steel sheet having a Cu S / Cu B of 4.0 or less and a tensile strength of 1180 MPa or more.
  • the Cu S is the Cu content in the steel sheet surface layer
  • the Cu B is the Cu content in the base material.
  • a steel sheet structure containing at least one selected from martensite and bainite in a volume ratio of 40% to 100%, ferrite in a volume ratio of 0% to 60%, and residual austenite in a range of 0% to 20%.
  • the component composition further includes, by mass%, Nb: 0.2% or less, Ti: 0.2% or less, V: 0.5% or less, Mo: 0.3% or less, Cr: 1.%.
  • the component composition further includes, by mass%, Sn: 0.1% or less, Sb: 0.1% or less, W: 0.1% or less, Co: 0.1% or less, Ca: 0.0.
  • FIG. 1 is a histogram of the number of pixels against the gray value of a reflection electron image photograph.
  • FIG. 2 is a schematic diagram showing a stress load state in delayed fracture resistance evaluation.
  • % representing the content of component elements means “% by mass” unless otherwise specified.
  • C 0.10% to 0.50% C is an element effective for improving the strength-ductility balance of the steel sheet. If the C content is less than 0.10%, it is difficult to ensure a tensile strength of 1180 MPa or more. On the other hand, when the C content exceeds 0.50%, coarse cementite is precipitated, and hydrogen cracking occurs starting from the coarse cementite. For this reason, C content shall be 0.10% or more and 0.50% or less of range. The lower limit is preferably 0.12% or more. The upper limit is preferably 0.30% or less.
  • Si 1.0% or more and 3.0% or less Si is an effective element for ensuring the strength without greatly reducing the ductility of the steel sheet.
  • Si content is less than 1.0%, not only high strength and high workability can be achieved, but also coarsening of cementite cannot be suppressed and delayed fracture resistance is deteriorated.
  • Si content exceeds 3.0%, not only the rolling load load at the time of hot rolling will increase, but an oxidation scale will be produced on the steel plate surface, and chemical conversion property will be deteriorated. For this reason, Si content was taken as 1.0 to 3.0% of range.
  • the lower limit is preferably 1.2% or more.
  • the upper limit is preferably 2.0% or less.
  • Mn 1.0% to 2.5%
  • Mn is an element that increases the strength of the steel sheet.
  • the upper limit of the Mn content is set to 2.5% from the viewpoint of weldability stability. For this reason, Mn content shall be 1.0% or more and 2.5% or less.
  • the lower limit is preferably 1.5% or more.
  • the upper limit is preferably 2.4% or less.
  • P 0.05% or less
  • P is an impurity element. If it exceeds 0.05%, the steel sheet after forming is delayed through deterioration of local ductility due to grain boundary embrittlement due to P segregation to the austenite grain boundary during casting. Destructive properties are degraded. For this reason, it is preferable to reduce P content as much as possible, and the content shall be 0.05% or less. Preferably it is 0.02% or less. In view of manufacturing cost, the P content is preferably 0.001% or more.
  • S 0.02% or less S is present as MnS in the steel sheet, and causes a reduction in impact resistance, strength, and delayed fracture resistance. For this reason, it is preferable to reduce S content as much as possible. Therefore, the upper limit of the content is 0.02%, preferably 0.002% or less. More preferably, it is 0.001% or less. In consideration of the manufacturing cost, the S content is preferably 0.0001% or more.
  • Al 0.01% or more and 1.5% or less Since Al reduces oxides such as Si by itself forming an oxide, it has the effect of improving delayed fracture resistance. However, a significant effect cannot be obtained at less than 0.01%. On the other hand, if it exceeds 1.5% and Al is excessively contained, Al and N are combined to form a nitride. Nitride precipitates on the austenite grain boundary during casting and causes the grain boundary to become brittle, which degrades the delayed fracture resistance. For this reason, Al content shall be 0.01% or more and 1.5% or less. The lower limit is preferably 0.02% or more. The upper limit is preferably 0.05 or less.
  • N 0.005% or less
  • the N content is 0.005% or less.
  • the N content is preferably 0.0005% or more.
  • Cu 0.05% or more and 0.50% or less
  • Cu when exposed to a corrosive environment, has an effect of reducing the amount of hydrogen entering the steel sheet by suppressing dissolution of the steel sheet. If the Cu content is less than 0.05%, the effect is small. Moreover, when it contains exceeding 0.50%, control of the pickling conditions for obtaining predetermined surface layer Cu density
  • the lower limit is preferably 0.08% or more.
  • the upper limit is preferably 0.3% or less.
  • one or more selected from Nb, Ti, V, Mo, Cr, and B may be contained.
  • Nb 0.2% or less Nb may be contained as necessary in order to form fine Nb carbonitride, refine the steel sheet structure and improve delayed fracture resistance by the hydrogen trap effect. Even if the content exceeds 0.2%, the effect of refining the structure is saturated, and in the presence of Ti, coarse composite carbides are formed with Ti and Nb to deteriorate the strength-ductility balance and delayed fracture resistance. There is a fear. For this reason, when it contains Nb, 0.2% or less is preferable. More preferably, it is 0.1% or less, More preferably, it is 0.05% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.004% or more.
  • Ti 0.2% or less Since Ti has the effect of generating carbides to refine the steel sheet structure and the hydrogen trapping effect, Ti may be contained as necessary. Even if the content exceeds 0.2%, not only the effect of refining the structure is saturated but also coarse TiN is formed, and in the presence of Nb, Ti—Nb composite carbide is formed, and the strength-ductility balance and delay resistance are formed. Destructive properties may be deteriorated. For this reason, when it contains Ti, 0.2% or less is preferable. More preferably, it is 0.1% or less, More preferably, it is 0.05% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.004% or more.
  • V 0.5% or less Fine carbides formed by combining V and C are effective in improving the delayed fracture resistance because they act as precipitation strengthening of steel sheets and hydrogen trap sites. You may contain. If the V content exceeds 0.5% by mass, carbides may be precipitated excessively and the strength-ductility balance may deteriorate. For this reason, the V content is preferably 0.5% or less. More preferably, it is 0.1% or less, More preferably, it is 0.05% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.004% or more.
  • Mo 0.3% or less Mo is effective for improving the hardenability of the steel sheet, and also has a hydrogen trap effect due to fine precipitates.
  • Mo content is preferably 0.3% or less. More preferably, it is 0.1% or less, More preferably, it is 0.05% or less.
  • the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.005% or more.
  • Cr 1.0% or less Cr, like Mo, is effective for improving the hardenability of the steel sheet, and may be contained if necessary. If the content exceeds 1.0%, the Cr oxide on the surface of the steel sheet may not be removed even if the pickling treatment is performed after the continuous annealing, and the chemical conversion treatment property of the steel sheet may be significantly lowered. For this reason, the Cr content is preferably 1.0% or less. More preferably, it is 0.5% or less, More preferably, it is 0.1% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.04% or more.
  • B 0.005% or less B segregates at austenite grain boundaries during heating in continuous annealing, suppresses ferrite transformation and bainite transformation from austenite during cooling, and facilitates the formation of martensite. In addition, the delayed fracture resistance is improved by strengthening the grain boundaries. If the B content exceeds 0.005%, borocarbide Fe 23 (C, B) 6 is generated, which may cause deterioration of workability and strength. For this reason, the B content is preferably 0.005% or less. More preferably, it is 0.003% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.0002% or more.
  • one or more selected from Sn, Sb, W, Co, Ca, and REM may be further contained within a range that does not adversely affect the characteristics.
  • Sn and Sb 0.1% or less, respectively Sn and Sb may be contained as necessary because they have the effect of suppressing surface oxidation, decarburization, and nitriding. However, even if the content exceeds 0.1%, the effect is saturated. For this reason, when it contains Sn and Sb, 0.1% or less is preferable respectively. More preferably, each is 0.05% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, each content is preferably at least 0.001%.
  • W and Co 0.1% or less respectively W and Co have the effect of improving the properties of the steel sheet through sulfide morphology control, grain boundary strengthening, and solid solution strengthening, and may be contained as necessary. . However, if it is excessively contained, the ductility may be deteriorated due to grain boundary segregation or the like. More preferably, each is 0.05% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effects, each content is preferably at least 0.01%.
  • Ca and REM each 0.005% or less Ca and REM may be contained as necessary because they have the effect of improving ductility and delayed fracture resistance through the form control of sulfides. However, if it is excessively contained, ductility may be deteriorated due to grain boundary segregation or the like, so each content is preferably 0.005% or less. More preferably, each is 0.002% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, each content is preferably at least 0.0002%.
  • the remainder other than the above is Fe and inevitable impurities.
  • the steel sheet surface coverage of an oxide mainly composed of Si is 1% or less.
  • the steel sheet surface coverage of the oxide mainly composed of Si is set to 1% or less.
  • it is 0%.
  • “mainly Si” means that the atomic concentration ratio of Si is 70% or more among elements other than oxygen constituting the oxide.
  • the oxide mainly composed of Si is, for example, SiO 2 .
  • the steel sheet surface coverage of the oxide mainly composed of Si can be measured by a method of an example described later.
  • Fe-based oxide steel sheet surface coverage is 40% or less If the Fe-based oxide steel sheet surface coverage exceeds 85%, the dissolution reaction of iron in chemical conversion treatment is inhibited, and growth of chemical crystals such as zinc phosphate Is suppressed.
  • the chemical conversion treatment liquid has been lowered in temperature, and the chemical conversion treatment conditions are stricter than before.
  • an Fe-based oxide steel sheet surface coverage of 85% or less is insufficient, and in the present invention, it is 40% or less.
  • it is 35% or less.
  • a minimum is not specifically limited, In this invention, it is 20% or more normally.
  • the steel plate surface coverage of the Fe-based oxide can be measured by the method of the examples described later.
  • the iron-based oxide means an iron-based oxide having an atomic concentration ratio of iron of 30% or more among elements other than oxygen constituting the oxide.
  • Cu S / Cu B is 4.0 or less (Cu S is Cu content in steel sheet surface layer, Cu B is Cu content in base material) In order to obtain the desired effect of the present invention, it is not sufficient to adjust the Si and Cu contents to the above ranges. In pickling for removing oxides mainly composed of Si, Cu in the steel sheet surface layer is sufficient. It is necessary to control the concentration distribution. That is, in the present invention, the Cu content needs to be 0.05% or more and 0.50% or less and Cu S / Cu B needs to be 4.0 or less. Preferably it is 2.0 or more.
  • a steel plate surface layer refers to the area
  • a base material refers to the area
  • This Cu concentration distribution can be achieved, for example, by controlling the pickling loss within the range of the following formula (1) in the pickling treatment after continuous annealing.
  • the pickling weight loss is determined by the method of Examples described later. WR ⁇ 33.25 ⁇ exp ( ⁇ 7.1 ⁇ [Cu%]) (1) (WR: pickling loss (g / m 2 ), [Cu%]: Cu content (% by mass) in cold-rolled steel sheet) Evaluation of the Cu concentration distribution on the surface layer of the steel sheet is performed by discharge emission spectroscopy (GDS).
  • a 30 mm square was sheared from the target steel plate, and GDS analysis was performed using a RDAKU GDA750, with an 8 mm ⁇ anode, 50 mA DC, 2.9 hPa measurement time of 0 to 200 s, and a sampling period of 0.1 s. To do.
  • the sputtering rate of the steel sheet under this discharge condition is about 20 nm / s.
  • the measurement emission line uses Fe: 371 nm, Si: 288 nm, Mn: 403 nm, and O: 130 nm. Then, the ratio of the average Cu intensity at the sputtering time of 0 to 1 s and the average Cu intensity at the sputtering time of 50 to 100 s is obtained. The value of this ratio can be determined as the value of Cu S / Cu B , which is the ratio of the Cu content (Cu S ) in the surface layer of the steel sheet and the Cu content (Cu B ) in the base material.
  • Tensile strength 1180 MPa or more
  • the tensile strength is set to 1180 MPa or more in order to realize an increase in strength of the steel plate and a reduction in weight when the steel plate is used as a part.
  • the tensile strength is 1320 MPa or more.
  • tensile strength is calculated
  • Si Si content (mass%)
  • Mn Mn content (mass%)
  • the amounts of Si-based oxide and Si—Mn composite oxide are determined by the balance between Si and Mn.
  • the steel sheet structure when the characteristics are further improved, the steel sheet structure may be controlled as follows.
  • martensite and bainite are 40% or more and 100% or less in volume ratio. Martensite and bainite are effective structures for increasing the strength of steel. When the volume ratio is less than 40%, a tensile strength of 1180 MPa or more may not be obtained. Therefore, it is preferable to contain at least one selected from martensite and bainite by 40 to 100% by volume.
  • the simple description of “martensite” means tempered martensite.
  • Ferrite may be combined in a volume ratio of 0% or more and 60% or less as necessary in order to contribute to ductility and improve the workability of steel.
  • the volume fraction of ferrite exceeds 60%, in order to obtain a tensile strength of 1180 MPa or more, it is necessary to extremely increase the hardness of martensite or bainite. As a result, delayed fracture may be promoted by stress / strain concentration at the interface due to the hardness difference between the structures. Therefore, it is preferable to contain ferrite in a volume ratio of 0% to 60%.
  • Residual austenite is 0% or more and 20% or less in volume ratio. Residual austenite may be generated as necessary to improve the strength-ductility balance of the steel. However, residual austenite transforms into hard, tempered martensite when subjected to processing, and as described above, delayed fracture may be promoted by stress / strain concentration at the interface due to the difference in hardness between structures. There is. Therefore, it is preferable that the retained austenite is contained in a volume ratio of 0% to 20%. The upper limit is preferably less than 8%, more preferably 7% or less.
  • the present invention may include phases other than the martensite, bainite, ferrite, and retained austenite as the steel sheet structure.
  • phases other than the martensite, bainite, ferrite, and retained austenite may be included.
  • pearlite, as-quenched martensite, or the like may be included.
  • the other phase is preferably 5% or less by volume ratio.
  • the slab obtained by continuous casting is preferably a steel material, hot-rolled, and after finishing rolling, cooled and wound into a coil, then pickled, cold-rolled, continuously Annealing is performed, and after the overaging treatment, pickling is performed, and further re- pickling is performed to obtain a cold-rolled steel sheet.
  • the processes from the steel making process to the cold rolling can be manufactured according to a conventional method.
  • Subsequent continuous annealing and pickling treatment are preferably performed under the following conditions.
  • the temperature is the steel sheet surface temperature.
  • the annealing temperature is less than Ac 1 point, austenite (transformation into martensite after quenching) necessary for securing a predetermined strength is not generated during annealing, and a tensile strength of 1180 MPa or more is not obtained even after quenching is performed. There is a fear. Therefore, the annealing temperature is preferably Ac 1 point or higher. From the viewpoint of stably securing an equilibrium area ratio of 40% or higher for austenite, the annealing temperature is more preferably 800 ° C. or higher. In this invention, Ac 1 point (degreeC) is calculated
  • the annealing temperature holding time is preferably 30 to 1200 seconds.
  • a particularly preferable lower limit of the holding time is 250 seconds or more.
  • a particularly preferred upper limit is 600 seconds or less.
  • the process from annealing to overaging treatment may be appropriately adjusted according to the target structure.
  • the composite structure of ferrite and martensite (including bainite in some cases) is used as the target structure, it can be suitably produced by the following method, for example.
  • Primary cooling is performed from the annealing temperature to a primary cooling stop temperature of 600 ° C. or higher at an average cooling rate of 100 ° C./s or lower.
  • the average cooling rate is more preferably 50 ° C./s or less. It becomes possible to precipitate ferrite during the primary cooling from the annealing temperature, and to control the balance between strength and ductility. Further, by setting the primary cooling stop temperature to be equal to or higher than the ferrite formation start temperature, it is possible to obtain a uniform martensite single phase structure by secondary cooling described later.
  • the primary cooling stop temperature is less than 600 ° C., a large amount of ferrite and pearlite may be generated in the steel sheet structure, and the strength may be drastically lowered, and a tensile strength of 1180 MPa or more may not be obtained.
  • the lower limit of the average cooling rate of primary cooling is preferably 5 ° C./s or more.
  • the secondary cooling is performed at an average cooling rate of 100 ° C./s or higher to a secondary cooling stop temperature of 100 ° C. or lower. Secondary cooling is performed to transform austenite into martensite. If the average cooling rate is less than 100 ° C./s, austenite may be transformed into ferrite, bainite or pearlite during cooling, and the target structure may not be obtained.
  • the secondary cooling is preferably rapid quenching by water quenching, and there is no upper limit on the cooling rate.
  • the cooling stop temperature is preferably 100 ° C. or lower.
  • an overaging treatment is performed by reheating to a temperature of 100 ° C to 300 ° C and holding at a temperature range of 100 to 300 ° C for 120 to 1800 seconds.
  • martensite is tempered, fine carbides are formed in the martensite, and the delayed fracture resistance is improved. If the overaging treatment is performed at less than 100 ° C, the precipitation of the carbide may be insufficient, and if the tempering is performed at a temperature exceeding 300 ° C, the carbide becomes coarse, so that the strength is significantly reduced and the delayed fracture resistance is deteriorated. There is a risk of causing.
  • the target structure is a composite structure of martensite, bainite, and retained austenite, for example, it can be suitably produced by the following method. Further, ferrite may be included.
  • Primary cooling is performed to a primary cooling stop temperature of 150 ° C. or more and 500 ° C. or less at an average cooling rate of 3 ° C./s or more and 100 ° C./s or less. Thereafter, it is kept in a temperature range of 150 ° C. or more and 500 ° C. or less for 200 to 3000 seconds, and then cooled to room temperature.
  • the holding temperature need not be the same temperature. For example, after cooling to the Ms point or less by primary cooling, the holding temperature may be reheated and held within the holding temperature range.
  • the average cooling rate in the primary cooling is less than 3 ° C./s, a large amount of ferrite and pearlite is generated in the steel sheet structure, and the strength is suddenly lowered, so that a tensile strength of 1180 MPa or more may not be obtained. Moreover, if it exceeds 100 ° C./s, it becomes difficult to control the primary cooling stop temperature. When the primary cooling stop temperature is less than 150 ° C., most of the steel sheet structure becomes martensite and high strength is obtained, but the workability may be inferior to the composite structure with bainite or retained austenite. On the other hand, if it exceeds 500 ° C., a tensile strength of 1180 MPa or more may not be obtained.
  • Ms point (degreeC) is calculated
  • Ms point 565-31 ⁇ [Mn%] ⁇ 13 ⁇ [Si%] ⁇ 10 ⁇ [Cr%] ⁇ 18 ⁇ [Ni%] ⁇ 12 ⁇ [Mo%] ⁇ 600 ⁇ (1-exp ( ⁇ 0. 96 ⁇ [C%]) (3)
  • [M] is the content (mass%) of the element, and 0 for elements not contained.
  • the composition of the solution used for pickling is not particularly limited.
  • any one of nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid and an acid obtained by mixing two or more of them can be used.
  • re-pickling it is preferable to use a non-oxidizing acid as the pickling solution, unlike the pickling solution used in pickling.
  • the steel sheet after overaging treatment is pickled with a strong acid such as nitric acid having a concentration of more than 50 g / L and not more than 200 g / L, for example.
  • a strong acid such as nitric acid having a concentration of more than 50 g / L and not more than 200 g / L, for example.
  • the pickling weight loss (total of pickling and re- pickling) is expressed by the above formula (1). It is preferable to control the range.
  • Fe dissolved from the steel sheet surface by the pickling generates Fe-based oxides, and precipitates on the steel sheet surface to cover the steel sheet surface, so that the chemical conversion processability deteriorates.
  • the non-oxidizing acid include hydrochloric acid, sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, oxalic acid, and acids obtained by mixing two or more of these.
  • hydrochloric acid having a concentration of 0.1 to 50 g / L, sulfuric acid of 0.1 to 150 g / L, an acid obtained by mixing 0.1 to 20 g / L hydrochloric acid and 0.1 to 60 g / L sulfuric acid, and the like are preferable.
  • hydrochloric acid having a concentration of 0.1 to 50 g / L, sulfuric acid of 0.1 to 150 g / L, an acid obtained by mixing 0.1 to 20 g / L hydrochloric acid and 0.1 to 60 g / L sulfuric acid, and the like are preferable.
  • the pickling temperature for pickling and re-pickling is 30 to 68 ° C.
  • the re-washing temperature is 50 ° C. or higher, Cu S / Cu B is 2.0 or higher, and chemical conversion treatment properties are improved.
  • the re-acid wash temperature exceeds 68 ° C.
  • Cu S / Cu B exceeds 4.0, and the chemical conversion treatment property becomes low.
  • the pickling time for pickling and re- pickling can be selected as appropriate, and is preferably 2 to 40 seconds.
  • a sample steel having the composition shown in Table 2 (the balance is Fe and inevitable impurities) is vacuum-melted into a slab, and then hot-rolled under the conditions shown in Table 3 to obtain a hot-rolled steel sheet.
  • Table 3 the slab heating temperature to the winding temperature are the steel sheet surface temperature).
  • the hot-rolled steel sheet was pickled to remove the surface scale, and then cold-rolled. Next, continuous annealing and overaging treatment were performed under the conditions described in Table 3, and pickling and re- pickling were performed.
  • the area ratio of the ferrite region was obtained by image analysis of a SEM image at a magnification of 2000 times, and the value of the area ratio was defined as the volume ratio of the ferrite.
  • the volume ratio was calculated
  • the amount of retained austenite was observed on the plate surface. After grinding to a thickness of 1 ⁇ 4 of the plate thickness, chemical polishing was performed, and the volume fraction of retained austenite was obtained by X-ray diffraction.
  • the volume ratio of martensite and bainite was determined as the remainder of the volume ratio of ferrite, pearlite, and retained austenite.
  • the steel sheet surface coverage of the oxide mainly composed of Si was identified by observing the surface of the steel sheet at 1000 times using SEM and analyzing the same field of view by EDX.
  • “mainly Si” means that the atomic concentration ratio of Si is 70% or more among elements other than oxygen constituting the oxide.
  • 15 straight lines are arranged at equal intervals in the vertical and horizontal directions, and the presence or absence of an oxide mainly composed of Si at the intersection of the vertical and horizontal straight lines is determined.
  • the coverage was calculated by dividing the total number by the total number of intersections.
  • the average value of the five fields of view was defined as the steel sheet surface coverage of the oxide mainly composed of Si.
  • the hot-rolled steel sheet was pickled, scale was removed, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.8 mm.
  • this cold-rolled steel sheet is heated to a soaking temperature of 750 ° C. and held for 30 seconds, and then cooled from the soaking temperature to a cooling stop temperature of 400 ° C. at 20 ° C./second, and the above cooling stop temperature range Were subjected to continuous annealing for 100 seconds. Thereafter, under the conditions shown in Table 1, pickling, re-acid pickling, washing with water, drying, 0.7% temper rolling was performed, and the amount of iron-based oxide on the steel sheet surface was different. Two types of cold-rolled steel sheets a and b were obtained.
  • the cold rolled steel sheet a is a standard sample with a lot of iron-based oxides
  • the cold rolled steel sheet b was a standard sample with a small amount of iron-based oxides, and a reflected electron image was obtained for each steel sheet under the conditions described above.
  • FIG. 1 is a histogram of the number of pixels with respect to a gray value (a parameter value indicating a color tone between white and black) of the reflected electronic image photograph.
  • No. 1 shown in FIG. The gray value (point Y) corresponding to the intersection (point X) of the histograms a and b was set as a threshold value, and the area of the gray value (black color tone) portion below the threshold value was defined as the surface coverage of the iron-based oxide.
  • No. When the surface coverage of the iron-based oxide of the steel sheets a and b was determined, No.
  • the steel sheet of a is 85.3%, No. As for the steel plate of b, 25.8% was obtained.
  • the surface Cu concentration distribution was determined by GDS analysis, and the analysis conditions described above were used.
  • the chemical conversion treatment evaluation was conducted using a degreasing agent: Surf Cleaner EC90, a surface conditioner: 5N-10, and a chemical conversion treatment agent: Surfdyne EC1000 manufactured by Nippon Paint Co., Ltd. under the following standard conditions. Chemical conversion treatment was performed so as to be 1.7 to 3.0 g / m 2 .
  • the surface of the steel sheet is observed with 5 fields using a SEM at a magnification of 500 times, and when all the 5 fields have chemical conversion crystals generated with an area ratio of 95% or more, the chemical conversion processability is good.
  • the chemical conversion processability is relatively good when the area ratio is 90% or more, “ ⁇ ”, and the chemical conversion processability is inferior when “scaling” exceeds 10% even in one field of view. It was evaluated.
  • the delayed fracture resistance evaluation was conducted by an immersion test. After cutting to 35 mm ⁇ 105 mm with the direction perpendicular to the rolling direction as the long side, the end face was ground to prepare a test piece of 30 mm ⁇ 100 mm. After bending the test piece by 180 ° with a punch having a curvature radius of 10 mm at the tip so that the bending ridge line is parallel to the rolling direction, the inner distance between the test pieces 1 is reduced to 10 mm with bolts 2 as shown in FIG. Stress was applied. The test piece under stress was immersed in hydrochloric acid at 25 ° C. and pH 1, and the time until failure occurred was measured up to 100 hours.
  • Those with a destruction time of less than 40 hours are evaluated as “ ⁇ ”, those with a breakdown time of 40 hours or more and less than 100 hours are evaluated as “ ⁇ ”, and those without cracking for 100 hours are evaluated as “ ⁇ ”, and the breakdown time is 40 hours or more. It was decided to have excellent delayed fracture resistance.
  • the invention steels that meet the conditions of the present invention have a tensile strength of 1180 MPa or more, an excellent chemical conversion treatment property is obtained, and no fracture occurs for 40 hours in delayed fracture resistance. It was confirmed to have excellent delayed fracture resistance.
  • No. 15 to 21 are examples in which the steel component is outside the scope of the present invention.
  • No. No. 15 has a low C content, so the tensile strength is below 1180 MPa.
  • No. 16 has a high C content, the carbides are coarsened and the delayed fracture resistance is inferior.
  • No. 17 has a small Si content, the carbides are coarsened and the delayed fracture resistance is inferior.
  • No. 18 has a large Si content, the oxide mainly composed of Si on the surface of the steel sheet cannot be sufficiently removed by pickling, and the chemical conversion property is inferior. If the pickling weight loss is increased, the Cu concentration distribution in the surface layer exceeds the specified range, so the chemical conversion treatment performance is not improved.
  • No. Nos. 22 to 26 and 28 are examples in which the manufacturing method is outside the range recommended by the present invention, and the tensile strength, the steel sheet surface coverage, and Cu S / Cu B are outside the range of the present invention.
  • No. 22 has a low annealing temperature, austenite is not generated and the tensile strength is lower than 1180 MPa.
  • No. 23 Since the primary cooling stop temperature of No. 23 is low, ferrite is excessively precipitated and the tensile strength is below 1180 MPa.
  • No. No. 24 is an example in which pickling was not performed after the continuous annealing, and an oxide mainly composed of Si remained on the steel sheet surface, so that the chemical conversion treatment property was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

引張強度が1180MPa以上であり、耐遅れ破壊特性および化成処理性に優れた高強度冷延鋼板を提供すること。 質量%で、C:0.10%以上0.50%以下、Si:1.0%以上3.0%以下、Mn:1.0%以上2.5%以下、P:0.05%以下、S:0.02%以下、Al:0.01%以上1.5%以下、N:0.005%以下、Cu:0.05%以上0.50%以下、を含有し、残部はFe及び不可避的不純物からなる成分組成を有し、Siを主体とする酸化物の鋼板表面被覆率が1%以下であり、Fe系酸化物の鋼板表面被覆率が40%以下であり、Cu/Cuが4.0以下であって、かつ引張強度が1180MPa以上である高強度冷延鋼板。なお、前記Cuは鋼板表層におけるCu含有量、前記Cuは母材におけるCu含有量である。

Description

高強度冷延鋼板
 本発明は高強度冷延鋼板に関する。さらには、引張強度が1180MPa以上であり、耐遅れ破壊特性および化成処理性に優れた高強度冷延鋼板に関する。
 近年、CO排出量低減と衝突安全性に対するニーズを背景に、自動車ボディの軽量化と高強度化が進められている。現状、これらの自動車用鋼板の引張強度は980MPa級が主流であるが、鋼板の高強度化への要求は益々増加しており、引張強度で1180MPa以上の高強度鋼板の開発が必要とされている。しかし、鋼板を高強度化すると、延性が低下するとともに、使用環境から侵入した水素による遅れ破壊が懸念される。
 また、自動車用鋼板は塗装をして使用されており、その塗装の前処理として、リン酸塩処理等の化成処理が施される。この化成処理は塗装後の耐食性を確保するための重要な処理のひとつであるため、自動車用鋼板には化成処理性に優れることも要求される。
 Siはフェライトを固溶強化するとともにマルテンサイトおよびベイナイト内部の炭化物を微細化することで、同一強度で鋼の延性を向上させる元素である。また、炭化物の生成を抑制するため、延性に寄与する残留オーステナイトの確保をも容易にする。更にはマルテンサイトおよびベイナイト中の粒界炭化物を微細化することで粒界近傍における応力・歪の集中を小さくし、耐遅れ破壊特性を向上させることも知られている。そのため、これまでにSiを活用した高強度薄鋼板の製造技術が多数開示されている。
 特許文献1ではSiを1~3質量%添加した、フェライトと焼戻しマルテンサイトからなる組織を有した引張強度が1320MPa以上の耐遅れ破壊特性に優れた鋼板に関して記載されている。
 耐遅れ破壊特性を向上させる元素のひとつとしてCuが挙げられる。特許文献2ではCuの添加により熱延鋼板から製造した電縫鋼管の耐食性を向上させ、耐遅れ破壊特性を著しく向上させている。
 特許文献3ではSiを0.5~3質量%、Cuを2質量%以下添加した化成処理性に優れた鋼板に関して記載されている。
特開2012-12642号公報 特許3545980号公報 特許5729211号公報
 しかしながら、特許文献1に記載の製造方法では、連続焼鈍ライン内にて鋼板表層にSiを主体とする酸化物が形成され、化成処理性が劣化する。また、Si含有量を増やすだけではその効果が飽和するどころか、熱間圧延負荷を増大させるなどの製造上の問題が生じる。
 Siは鋼板の延性をさほど低下させることなく強度を確保するために有効な元素である。また、炭化物を微細化し、耐遅れ破壊特性を向上させる。特許文献2に記載の鋼成分はSi含有量が低いため、加工性と耐遅れ破壊特性が劣位であると考えられる。
 特許文献3では、連続焼鈍した鋼板表面を酸洗し、焼鈍時に鋼板表層に形成されたSiを主体とする酸化物の層を除去することで、0.5質量%以上のSi添加であっても優れた化成処理性を確保しようとしている。しかしながら上記酸洗により地鉄が溶解し、鋼板表面にCuが再析出することで、化成処理における鉄の溶解反応がCu析出部で抑制され、リン酸亜鉛などの化成結晶の析出が阻害される問題がある。腐食による遅れ破壊が懸念される高強度鋼板において、塗装密着性に関わる化成処理性への要求はますます厳しくなっており、化成処理においてより厳しい処理条件でも良好な化成処理性が得られる鋼板の開発が求められている。
 本発明はかかる事情に鑑みてなされたものであって、引張強度が1180MPa以上であり、耐遅れ破壊特性および化成処理性に優れた高強度冷延鋼板を提供することを課題とする。
 上記のように、Siを0.5質量%以上、およびCu含有した鋼を冷間圧延後、連続焼鈍した鋼板表面を酸洗することで、鋼板表面のSiを主体とする酸化物は除去される。しかし、鋼板表面にCuが再析出するため良好な化成処理性が得られない。
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねたところ、上記連続焼鈍後の酸洗で鋼板表層のSiを主体とする酸化物の層を除去し、かつCu/Cuを4.0以下(Cuは鋼板表層におけるCu含有量、Cuは母材におけるCu含有量)に制御することによって、SiおよびCuによる化成処理性の劣化を防ぐとともに、耐遅れ破壊特性を向上できることを見出した。
 本発明は、上記の知見に立脚するものである。すなわち、本発明の要旨は次の通りである。
 [1]質量%で、C:0.10%以上0.50%以下、Si:1.0%以上3.0%以下、Mn:1.0%以上2.5%以下、P:0.05%以下、S:0.02%以下、Al:0.01%以上1.5%以下、N:0.005%以下、Cu:0.05%以上0.50%以下、を含有し、残部はFe及び不可避的不純物からなる成分組成を有し、Siを主体とする酸化物の鋼板表面被覆率が1%以下であり、Fe系酸化物の鋼板表面被覆率が40%以下であり、Cu/Cuが4.0以下であって、かつ引張強度が1180MPa以上である高強度冷延鋼板。なお、前記Cuは鋼板表層におけるCu含有量、前記Cuは母材におけるCu含有量である。
 [2]さらに、マルテンサイトおよびベイナイトから選ばれる1種以上を体積率で40%以上100%以下、フェライトを体積率で0%以上60%以下、残留オーステナイトを0%以上20%以下含む鋼板組織を有する[1]に記載の高強度冷延鋼板。
 [3]さらに、[Si]/[Mn]>0.4([Si]はSi含有量(質量%)、[Mn]はMn含有量(質量%))である[1]または[2]に記載の高強度冷延鋼板。
 [4]前記成分組成は、さらに、質量%で、Nb:0.2%以下、Ti:0.2%以下、V:0.5%以下、Mo:0.3%以下、Cr:1.0%以下、B:0.005%以下から選ばれる1種以上を含有する[1]~[3]のいずれかに記載の高強度冷延鋼板。
 [5]前記成分組成は、さらに、質量%で、Sn:0.1%以下、Sb:0.1%以下、W:0.1%以下、Co:0.1%以下、Ca:0.005%以下、REM:0.005%以下から選ばれる1種以上を含有する[1]~[4]のいずれかに記載の高強度冷延鋼板。
 本発明によれば、引張強度で1180MPa以上の高強度を有しながら耐遅れ破壊特性および化成処理性に優れた高強度冷延鋼板を得ることができる。
図1は、反射電子像写真のグレー値に対するピクセル数のヒストグラムである。 図2は、耐遅れ破壊特性評価における応力負荷状態を表す模式図である。
 以下に、本発明の実施形態を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。まず、冷延鋼板の成分組成について説明する。
 C:0.10%以上0.50%以下
 Cは鋼板の強度-延性バランスを改善するのに有効な元素である。C含有量が0.10%未満では引張強度1180MPa以上を確保するのが困難である。一方、C含有量が0.50%を超えると粗大なセメンタイトが析出し、粗大セメンタイトを起点として水素割れが発生する。このため、C含有量は0.10%以上0.50%以下の範囲とする。下限について好ましくは0.12%以上である。上限について好ましくは0.30%以下の範囲である。
 Si:1.0%以上3.0%以下
 Siは鋼板の延性をさほど低下させることなく強度を確保するために有効な元素である。Si含有量が1.0%未満の場合、高強度かつ高加工性を達成できないばかりかセメンタイトの粗大化を抑制できず耐遅れ破壊特性が劣化する。また、Si含有量が3.0%を超えると、熱間圧延時の圧延負荷荷重が増大するばかりか、鋼板表面に酸化スケールを生じ、化成処理性を劣化させる。このため、Si含有量は1.0%以上3.0%以下の範囲とした。下限について好ましくは1.2%以上である。上限について好ましくは2.0%以下の範囲である。
 Mn:1.0%以上2.5%以下
 Mnは鋼板の強度を高める元素である。Mn含有量が1.0%未満の場合、引張強度1180MPa以上を確保するのが困難である。一方、Mn含有量の上限は溶接性の安定性から2.5%とする。このため、Mn含有量は1.0%以上2.5%以下とする。下限について好ましくは1.5%以上である。上限について好ましくは2.4%以下の範囲である。
 P:0.05%以下
 Pは不純物元素であり0.05%を超えると、鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により局部延性の劣化を通じて成型後の鋼板の耐遅れ破壊特性を劣化させる。このため、P含有量は極力低減させることが好ましく、その含有量は0.05%以下とする。好ましくは0.02%以下とする。なお、製造コストの観点を考慮すれば、P含有量は、0.001%以上が好ましい。
 S:0.02%以下
 Sは鋼板中にMnSとして存在し、耐衝撃特性や強度、耐遅れ破壊特性の低下を招く。このため、S含有量は極力低減させることが好ましい。そのため、含有量の上限は0.02%とし、好ましくは0.002%以下とする。より好ましくは0.001%以下とする。なお、製造コストを考慮すれば、S含有量は0.0001%以上が好ましい。
 Al:0.01%以上1.5%以下
 Alは自身が酸化物を形成することによってSiなどの酸化物を低減するため、耐遅れ破壊特性を改善する効果がある。しかしながら、0.01%未満では有意な効果は得られない。また、1.5%を超えてAlを過度に含有するとAlとNとが結合して窒化物が生成される。窒化物は鋳造時にオーステナイト粒界上に析出して粒界脆化させるため、耐遅れ破壊特性を劣化させる。このため、Al含有量は0.01%以上1.5%以下とする。下限について好ましくは、0.02%以上である。上限について好ましくは0.05以下である。
 N:0.005%以下
 Nは前述の通り、Alと結合して窒化物を生成し耐遅れ破壊特性を劣化させるため、極力低減することが好ましい。よってN含有量は0.005%以下とする。好ましくは0.003%以下とする。なお、製造コストを考慮すれば、N含有量は0.0005%以上が好ましい。
 Cu:0.05%以上0.50%以下
 Cuは腐食環境に晒された際、鋼板の溶解を抑制することで、鋼板に侵入する水素量を低減させる効果がある。Cu含有量が0.05%未満では、その効果は小さい。また、0.50%を超えて含有すると、所定の表層Cu濃度分布を得るための酸洗条件の制御が困難となる。このため、Cu含有量は0.05%以上0.50%以下とする。下限について好ましくは0.08%以上である。上限について好ましくは0.3%以下とする。
 本発明において、更に特性を向上させる場合、上記元素に加えてさらに、Nb、Ti、V、Mo、Cr、Bから選ばれる1種以上を含有してもよい。
 Nb:0.2%以下
 Nbは微細なNb炭窒化物を形成し、鋼板組織を微細化するとともに水素トラップ効果により耐遅れ破壊特性を向上させるため、必要に応じて含有してもよい。0.2%を超えて含有しても組織微細化の効果は飽和するばかりか、Ti存在下ではTiとNbで粗大な複合炭化物を形成して強度-延性バランスと耐遅れ破壊特性を劣化させるおそれがある。このため、Nbを含有する場合には、0.2%以下が好ましい。より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.004%以上の含有が好ましい。
 Ti:0.2%以下
 Tiは炭化物を生成して鋼板組織を微細化する効果と水素トラップ効果を有するため、必要に応じて含有してもよい。0.2%を超えて含有しても組織微細化の効果は飽和するばかりか、粗大なTiNを形成し、Nbの存在下ではTi-Nb複合炭化物を形成して強度-延性バランスと耐遅れ破壊特性を劣化させるおそれがある。このため、Tiを含有する場合には0.2%以下が好ましい。より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.004%以上の含有が好ましい。
 V:0.5%以下
 VとCとが結合して形成される微細炭化物は、鋼板の析出強化および水素のトラップサイトとして作用するため耐遅れ破壊特性向上に有効であるため、必要に応じて含有してもよい。V含有量が0.5質量%を超えると、炭化物が過剰に析出して強度-延性バランスが劣化するおそれがある。このため、V含有量は0.5%以下が好ましい。より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.004%以上の含有が好ましい。
 Mo:0.3%以下
 Moは鋼板の焼入性向上に有効であり、微細析出物による水素トラップ効果も有するので必要に応じて含有してもよい。Mo含有量が0.3%を超えると、効果が飽和するばかりか、連続焼鈍時に鋼板表面にMo酸化物の形成が促進され、鋼板の化成処理性が著しく低下するおそれがある。このため、Mo含有量は0.3%以下が好ましい。より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.005%以上の含有が好ましい。
 Cr:1.0%以下
 CrはMoと同様、鋼板の焼入性向上に有効であり、必要に応じて含有してもよい。含有量が1.0%を超えると、連続焼鈍後に酸洗処理を施しても鋼板表面のCr酸化物を除去しきれないおそれがあり、鋼板の化成処理性が著しく低下するおそれがある。このため、Cr含有量は1.0%以下が好ましい。より好ましくは0.5%以下であり、さらに好ましくは0.1%以下である。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.04%以上の含有が好ましい。
 B:0.005%以下
 Bは連続焼鈍における加熱時にオーステナイト粒界に偏析し、冷却時のオーステナイトからのフェライト変態およびベイナイト変態を抑制して、マルテンサイトの形成を容易化するため、鋼板の強化に有効であり、また、粒界強化により耐遅れ破壊特性を向上させる。B含有量が0.005%を超えると、ホウ炭化物Fe23(C,B)が生じて加工性の劣化と強度の低下が起きるおそれがある。このため、B含有量は0.005%以下が好ましい。より好ましくは0.003%以下である。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.0002%以上の含有が好ましい。
 本発明において、特性に悪影響を及ぼさない範囲で、さらにSn、Sb、W、Co、Ca、REMから選ばれる一種以上を含有してもよい。
 Sn、Sb:それぞれ0.1%以下
 Sn、Sbはいずれも表面酸化や脱炭、窒化を抑制する効果を有するため、必要に応じて含有してもよい。しかしながら、含有量がそれぞれ0.1%を超えてもその効果は飽和する。このため、Sn、Sbを含有する場合にはそれぞれ0.1%以下が好ましい。より好ましくはそれぞれ0.05%以下である。本発明では特に下限値を規定していないが、上記効果を得るためにはそれぞれ少なくとも0.001%以上の含有が好ましい。
 W、Co:それぞれ0.1%以下
 W、Coはいずれも硫化物の形態制御や粒界強化、固溶強化を通じて鋼板の特性を向上させる効果を有するため、必要に応じて含有してもよい。しかしながら、過度に含有すると粒界偏析などにより延性が劣化するおそれがあるため、それぞれ0.1%以下とするのが好ましい。より好ましくはそれぞれ0.05%以下である。本発明では特に下限値を規定していないが、上記効果を得るためにはそれぞれ少なくとも0.01%以上の含有が好ましい。
 Ca、REM:それぞれ0.005%以下
 Ca、REMはいずれも硫化物の形態制御を通じて延性や耐遅れ破壊特性向上させる効果を有するため、必要に応じて含有してもよい。しかしながら、過度に含有すると粒界偏析などにより延性が劣化するおそれがあるため、それぞれ0.005%以下とするのが好ましい。より好ましくはそれぞれ0.002%以下である。本発明では特に下限値を規定していないが、上記効果を得るためにはそれぞれ少なくとも0.0002%以上の含有が好ましい。
 上記以外の残部はFeおよび不可避的不純物である。
 Siを主体とする酸化物の鋼板表面被覆率が1%以下
 Siを主体とする酸化物が鋼板表面に存在すると、化成処理性が著しく低下する。そこで、Siを主体とする酸化物の鋼板表面被覆率は1%以下とする。好ましくは0%である。なお、「Siを主体とする」とは酸化物を構成する酸素以外の元素のうちSiの原子濃度比が70%以上であるものを意味する。Siを主体とする酸化物とは、例えばSiOである。また、Siを主体とする酸化物の鋼板表面被覆率は後述する実施例の方法にて測定できる。
 Fe系酸化物の鋼板表面被覆率が40%以下
 Fe系酸化物の鋼板表面被覆率が85%を超えると、化成処理における鉄の溶解反応が阻害されて、リン酸亜鉛等の化成結晶の成長が抑制される。近年では、製造コスト削減の観点から、化成処理液を低温化しており、化成処理条件としては従来よりも厳しい条件となっている。そのため、Fe系酸化物の鋼板表面被覆率85%以下では不十分であり、本発明では40%以下である。好ましくは35%以下である。下限は特に限定されないが、本発明では、通常20%以上である。Fe系酸化物の鋼板表面被覆率は後述する実施例の方法にて測定できる。なお、鉄系酸化物とは酸化物を構成する酸素以外の元素のうち鉄の原子濃度比が30%以上である鉄主体の酸化物のことを意味する。
 次に本発明において最も重要な構成であるCu/Cuを説明する。
 Cu/Cuが4.0以下(Cuは鋼板表層におけるCu含有量、Cuは母材におけるCu含有量)
 本発明で所期した効果を得るには、Si、Cu含有量を上記の範囲に調整するだけでは不十分で、Siを主体とする酸化物を除去するための酸洗において、鋼板表層におけるCu濃度分布を制御する必要がある。すなわち、本発明では、Cu含有量を0.05%以上0.50%以下とし、かつ、Cu/Cuを4.0以下とする必要がある。好ましくは2.0以上である。なお、鋼板表層とは鋼板表面から板厚方向20nmまでの領域を指し、母材とは鋼板表面から板厚方向1μmまでを除いた領域を指す。
 このCu濃度分布は、例えば、連続焼鈍後の酸洗処理において、酸洗減量を下記(1)式の範囲に制御することにより達成できる。本発明において、酸洗減量は後述する実施例の方法により求める。
WR≦33.25×exp(-7.1×[Cu%])・・・(1)
(なお、WR:酸洗減量(g/m)、[Cu%]:冷延鋼板中のCu含有量(質量%))
 鋼板表層のCu濃度分布の評価は、放電発光分光分析法(GDS)で行う。対象の鋼板より30mm角をせん断し、GDS分析は、Rigaku製GDA750を使用し、8mmφアノード、DC50mA、2.9hPaの放電条件のもと測定時間0~200sとし、サンプリング周期0.1sの測定条件にて行う。なお、この放電条件における鋼板のスパッタ速度は約20nm/sである。また、測定発光線はFe:371nm、Si:288nm、Mn:403nm、O:130nmを使用する。そして、スパッタ時間0~1sにおけるCuの平均強度とスパッタ時間50~100sにおけるCuの平均強度の比を求める。該比の値を、鋼板表層におけるCu含有量(Cu)と母材におけるCu含有量(Cu)の比であるCu/Cuの値として求めることができる。
 引張強度:1180MPa以上
 鋼板の高強度化と、鋼板を部品としたときの重量の低減とを実現させるため、本発明では引張強度を1180MPa以上とする。好ましくは、引張強度は1320MPa以上である。本発明では、引張強度は後述の実施例に記載の方法により求める。
 [Si]/[Mn]>0.4([Si]はSi含有量(質量%)、[Mn]はMn含有量(質量%))
 SiとMnのバランスにより、Si主体の酸化物とSi-Mn複合酸化物のそれぞれの生成量が決まる。各々の酸化物のどちらか一方が極端に多く生成した場合、酸洗後に再酸洗する工程を経たとしても鋼板表面の酸化物を除去しきれず、化成処理性が劣化するおそれがある。そのため、SiとMnの含有量比を規定することが好ましい。Si含有量に比べてMn含有量が過剰に多い場合、つまり[Si]/[Mn]≦0.4のとき、Si-Mnを主体とする酸化物が過剰に生成し、本発明で意図する化成処理性が得られないおそれがある。よって、[Si]/[Mn]>0.4が好ましい。また、Si含有量の最大3.0%及びMn含有量の最小1.0%から[Si]/[Mn]は3.0以下である。
 本発明において、更に特性を向上させる場合、鋼板組織を以下のように制御すれば良い。
 マルテンサイトおよびベイナイトから選ばれる1種以上を体積率で40%以上100%以下
 マルテンサイトおよびベイナイトは鋼の高強度化に有効な組織である。その体積率が40%未満の場合、1180MPa以上の引張強度が得られないおそれがある。よって、マルテンサイトおよびベイナイトから選ばれる1種以上を体積率で40%以上100%以下含むことが好ましい。なお、本発明冷延鋼板の組織の説明において、単に「マルテンサイト」と記載する場合は焼戻しマルテンサイトを意味する。
 フェライトを体積率で0%以上60%以下
 フェライトは延性に寄与し鋼の加工性を向上させるため必要に応じて複合させてもよい。フェライトの体積率が60%を超えると、1180MPa以上の引張強度を得るためには、マルテンサイトもしくはベイナイトの硬度を極度に高める必要がある。その結果、組織間の硬度差に起因した界面での応力・歪集中により遅れ破壊が助長されるおそれがある。よって、フェライトを体積率で0%以上60%以下含むことが好ましい。
 残留オーステナイトを体積率で0%以上20%以下
 残留オーステナイトは、鋼の強度-延性バランスを向上させるため必要に応じて生成させてもよい。しかし残留オーステナイトは、加工を受けると硬質な焼戻されていないマルテンサイトに変態するため、前述のように組織間の硬度差に起因した界面での応力・歪集中により遅れ破壊が助長されるおそれがある。よって、残留オーステナイトを体積率で0%以上20%以下含むことが好ましい。上限について好ましくは8%未満であり、より好ましくは7%以下である。
 その他
 本発明は、鋼板組織として、上記マルテンサイト、ベイナイト、フェライト、残留オーステナイト以外のその他の相を含んでも良い。例えば、パーライト、焼き入れままのマルテンサイト等を含んでもよい。本発明の効果を確保する観点から、該その他の相は体積率で5%以下とすることが好ましい。
 次に、本発明において好適な高強度冷延鋼板の製造方法について説明する。本発明では、好適には連続鋳造で得られたスラブを鋼素材とし、熱間圧延を施し、仕上げ圧延終了後、冷却してコイルに巻き取り、ついで酸洗後、冷間圧延したのち、連続焼鈍を施し、過時効処理後、酸洗し、さらに再酸洗を施すことによって冷延鋼板とする。
 本発明において、製鋼工程から冷間圧延までの工程は常法に従って製造することができる。それ以降の連続焼鈍および酸洗処理は以下の条件とするのが好ましい。
 連続焼鈍条件
 以下、焼鈍条件および過時効条件の説明において、温度は鋼板表面温度である。焼鈍温度がAc点未満では、焼鈍中に所定の強度確保に必要なオーステナイト(焼入れ後にマルテンサイトに変態)が生成せず、焼鈍後焼入れを実施しても1180MPa以上の引張強度が得られないおそれがある。そのため、焼鈍温度はAc点以上が好ましい。オーステナイトの平衡面積率40%以上を安定して確保する観点から、焼鈍温度は800℃以上とするのがより好ましい。本発明において、Ac点(℃)は下記式(2)により求める。
Ac=723-10.7×[Mn%]-16.9×[Ni%]+29.1×[Si%]+16.9×[Cr%]+290×[As%]+6.38×[W%]・・・(2)
上記式(2)において[M]は元素の含有量(質量%)であり、含有しない元素は0とする。
 また、焼鈍温度の保持時間が短かすぎると、鋼板組織は、十分に焼鈍されずに冷間圧延による加工組織が存在した不均一な組織となり延性が低下するおそれがある。一方、焼鈍温度の保持時間が長すぎると製造時間の増加を招き製造コスト上好ましくない。このため、焼鈍温度の保持時間は30~1200秒が好ましい。特に好ましい保持時間の下限は250秒以上である。特に好ましい上限は600秒以下である。
 焼鈍から過時効処理までの工程は目標組織により適宜調整してよい。
 フェライトとマルテンサイト(場合によりさらにベイナイトを含む)の複合組織を目標組織とするならば、例えば以下の方法で好適に製造できる。100℃/s以下の平均冷却速度で焼鈍温度から600℃以上の一次冷却停止温度まで一次冷却する。本発明において、平均冷却速度は、50℃/s以下がより好ましい。焼鈍温度からの一次冷却中にフェライトを析出させ、強度と延性のバランスを制御することが可能となる。また、一次冷却停止温度をフェライト生成開始温度以上にすることで、後述の二次冷却によって均一なマルテンサイト単相組織を得ることも可能である。一次冷却停止温度が600℃未満の場合、鋼板組織中にフェライトやパーライトが多量に生成し強度が急激に低下するおそれがあり、1180MPa以上の引張強度を得ることができないおそれがある。なお、一次冷却の平均冷却速度の下限は5℃/s以上が好ましい。
 上記一次冷却に引き続き、100℃/s以上の平均冷却速度で100℃以下の二次冷却停止温度まで二次冷却する。二次冷却はオーステナイトをマルテンサイトに変態させるために行う。その平均冷却速度が100℃/s未満では、冷却中にオーステナイトがフェライト、ベイナイトまたはパーライトに変態するおそれがあり、目標組織が得られないおそれがある。なお、二次冷却は水焼入れによる急冷が好ましく、冷却速度に上限は設けない。冷却停止温度が100℃超えの場合、安定な島状残留オーステナイトが生成し、機械的特性を劣化させるおそれがある。そこで冷却停止温度は100℃以下が好ましい。
 上記二次冷却に引き続き、マルテンサイトの過時効のために、100℃以上300℃以下の温度まで再加熱して100~300℃の温度域で120~1800秒間保持する過時効処理を行う。この過時効処理によりマルテンサイトが焼戻され、マルテンサイト中に微細な炭化物が形成し、耐遅れ破壊特性が向上する。過時効処理を100℃未満で行った場合、炭化物の析出が不十分となるおそれがあり、また、焼戻しを300℃超で行うと炭化物が粗大化するため著しい強度低下と耐遅れ破壊特性の劣化を起こすおそれがある。保持時間を120秒未満とした場合、炭化物の析出が十分には生じないため、耐遅れ破壊特性の向上効果が期待できないおそれがある。また、滞留時間が1800秒を超える場合、炭化物の粗大化が進行するため強度が著しく低下するとともに耐遅れ破壊特性が劣化するおそれがある。
 マルテンサイトとベイナイトと残留オーステナイトの複合組織を目標組織とするならば、例えば以下の方法で好適に製造できる。なお、さらにフェライトを含んでもよい。3℃/s以上100℃/s以下の平均冷却速度で150℃以上500℃以下の一次冷却停止温度まで一次冷却する。その後、150℃以上500℃以下の温度域で200~3000秒保持した後、室温まで冷却する。なお、保持温度は同じ温度である必要はなく、例えば、一次冷却でMs点以下まで冷却後、保持温度域内まで再加熱、保持してもよい。一次冷却における平均冷却速度が3℃/s未満になると、鋼板組織中にフェライトやパーライトが多量に生成し強度が急激に低下するために、1180MPa以上の引張強度を得ることができないおそれがある。また、100℃/sを超えると一次冷却停止温度の制御が困難になる。一次冷却停止温度が150℃未満になると、鋼板組織の大部分がマルテンサイトとなり、高強度が得られるが、加工性はベイナイトや残留オーステナイトとの複合組織に劣るおそれがある。一方、500℃を超えると1180MPa以上の引張強度が得られなくなるおそれがある。保持時間が200秒未満または3000秒超えの場合、残留オーステナイトが十分に得られないおそれがある。本発明において、Ms点(℃)は下記式(3)により求める。
Ms点=565-31×[Mn%]-13×[Si%]-10×[Cr%]-18×[Ni%]-12×[Mo%]-600×(1-exp(-0.96×[C%]))・・・(3)
上記式(3)において[M]は元素の含有量(質量%)であり、含有しない元素は0とする。
 酸洗、再酸洗
 酸洗に用いる溶液の組成は特に限定されない。例えば、硝酸、塩酸、弗酸、硫酸およびそれらを2種以上混合した酸のいずれかを用いることができる。再酸洗では、酸洗で用いる酸洗液とは異なり、かつ、非酸化性の酸を酸洗液として用いることが好ましい。
 過時効処理後の鋼板に例えば濃度:50g/L超200g/L以下の硝酸等の強酸を用いて酸洗することで、化成処理性を劣化させる鋼板表面のSiを主体とする酸化物やSi-Mn複合酸化物を除去することが可能である。しかし、前述の通り、鋼板表層に再析出したCuの影響を抑制し、化成処理性を更に向上させるためには、酸洗減量(酸洗および再酸洗の合計)を上記式(1)の範囲に制御することが好ましい。また、上記酸洗によって鋼板表面から溶解したFeがFe系酸化物を生成し、鋼板表面に沈殿析出して鋼板表面を覆うことにより化成処理性が劣化してしまう。そのため、化成処理性改善のためには、上記酸洗後にさらに適正な条件で再酸洗し、鋼板表面に析出した鉄系酸化物を溶解・除去することが好ましい。以上の理由により、再酸洗では、酸洗で用いる酸洗液とは異なり、かつ、非酸化性の酸を酸洗液として用いることが好ましい。上記非酸化性の酸とは、例えば、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸およびこれらの2種以上を混合した酸のいずれかが挙げられる。例えば、濃度が0.1~50g/Lの塩酸、0.1~150g/Lの硫酸、0.1~20g/Lの塩酸と0.1~60g/Lの硫酸を混合した酸などが好適に利用できる。
 酸洗、再酸洗の酸洗液温度は、30~68℃とする。特に、再酸洗の温度が50℃以上であれば、Cu/Cuが2.0以上となり、化成処理性が高まる。再酸洗の温度が68℃を超えると、Cu/Cuが4.0を超え、化成処理性が低くなる。また、酸洗、再酸洗の酸洗処理時間もそれぞれ適宜選択可能であり、2~40秒が好ましい。
 以下、本発明を、実施例に基づいて具体的に説明する。本発明の技術的範囲は以下の実施例に限定されない。
 表2に記載の成分組成(残部はFeおよび不可避的不純物である)からなる供試鋼を真空溶製し、スラブとした後、表3に記載の条件で熱間圧延し熱延鋼板を得た(表3においてスラブ加熱温度~巻取り温度は鋼板表面温度である)。この熱延鋼板を酸洗処理して表面スケールを除去し、その後、冷間圧延した。次いで、表3に記載の条件で連続焼鈍および過時効処理を施し、酸洗、再酸洗を行った。
 以上のように得られた鋼板から試験片を採取し、鋼板組織の観察、表面酸化物の観察、表層Cu濃度分布の分析、引張試験、化成処理性評価および耐遅れ破壊特性評価を実施した。結果は表4に示した。
 酸洗減量は過時効処理後の鋼板から50mm×50mmの試験片を切出し、酸洗前後の重量を精密天秤にて測定し、下記式(4)により酸洗減量を求めた。
W=(W-W)/S・・・(4)
(なお、W:酸洗減量(g/m)、W:酸洗前重量(g)、W:酸洗後重量(g)、S:試験片表面積(m))
 鋼板組織の観察は圧延方向に平行な板厚断面を、ナイタールエッチング後、代表的な鋼板組織を走査型電子顕微鏡(SEM)にて観察した。倍率2000倍のSEM像を画像解析することで、フェライト領域の面積率を求め、該面積率の値をフェライトの体積率とした。なお、パーライトが生成しているものについても、上記SEM像を使用して同様にして体積率を求めた。残留オーステナイト量は板面を観察対象とした。板厚の4分の1の厚さまで研削したのち化学研磨し、X線回折法により残留オーステナイトの体積率を得た。マルテンサイトおよびベイナイトの体積率は、フェライトとパーライトと残留オーステナイトを合計した体積率の残部として求めた。
 Siを主体とする酸化物の鋼板表面被覆率は、鋼板表面を、SEMを用いて1000倍で観察するとともに同一視野をEDXで分析することでSiを主体とする酸化物を同定した。なお、「Siを主体とする」とは酸化物を構成する酸素以外の元素のうちSiの原子濃度比が70%以上であるものを意味する。
 得られた画像に縦横に15本ずつの直線を等間隔で配置し、縦横の直線の交点におけるSiを主体とする酸化物の有無を判定し、Siを主体とする酸化物が存在した交点の合計数を交点の総数で除して被覆率を求めた。5視野の平均値を、Siを主体とする酸化物の鋼板表面被覆率とした。
 Fe系酸化物の鋼板表面被覆率:極低加速電圧の走査型電子顕微鏡(ULV-SEM;SEISS社製;ULTRA55)を用いて鋼板表面を加速電圧2kV、作動距離3.0mm、倍率1000倍で5視野を観察し、エネルギー分散型X線分光器(EDX;Thermo Fisher社製;NSS312E)を用いて分光分析して反射電子像を得た。この反射電子像を2値化処理して黒色部の面積率を測定し、5視野の平均値を求めて、Fe系酸化物の鋼板表面被覆率とした。
 ここで、上記2値化処理の閾値について説明する。
 C:0.14mass%、Si:1.7mass%、Mn:1.3mass%、P:0.02mass%、S:0.002mass%およびAl:0.035mass%を含有し、残部がFeおよび不可避的不純物からなる鋼を、転炉、脱ガス処理等を経る通常の精練プロセスで溶製し、連続鋳造してスラブとした。次いで、このスラブを1150℃に再加熱した後、仕上圧延終了温度を850℃とする熱間圧延を施し、550℃でコイルに巻き取り、板厚が3.2mmの熱延鋼板とした。その後、この熱延鋼板を酸洗し、スケールを除去した後、冷間圧延し、板厚が1.8mmの冷延鋼板とした。次いで、この冷延鋼板を、750℃の均熱温度に加熱し、30秒間保持した後、上記均熱温度から400℃の冷却停止温度までを20℃/秒で冷却し、上記冷却停止温度範囲に100秒間保持する連続焼鈍を施した。その後、表1に示した条件で、酸洗と再酸洗し、水洗し、乾燥した後、0.7%の調質圧延を施して、鋼板表面の鉄系酸化物量が異なるNo.aおよびbの2種類の冷延鋼板を得た。次いで、上記No.aの冷延鋼板を鉄系酸化物の多い標準サンプル、No.bの冷延鋼板を鉄系酸化物の少ない標準サンプルとし、それぞれの鋼板について、前述した条件で反射電子像を得た。
 図1は上記反射電子像写真のグレー値(白から黒の中間の色調を示すパラメータ値)に対するピクセル数のヒストグラムである。本発明では、図1に示したNo.a,bのヒストグラムの交点(X点)に対応するグレー値(Y点)を閾値として定めその閾値以下のグレー値(黒い色調)の部分の面積を鉄系酸化物の表面被覆率とした。因みに、上記閾値を用いて、No.a,bの鋼板の鉄系酸化物の表面被覆率を求めたところ、No.aの鋼板は85.3%、No.bの鋼板は25.8%が得られた。
 表層のCu濃度分布はGDS分析で行い、前述の分析条件で行った。
 引張試験は鋼板表面において圧延方向と垂直な方向を長手としてJIS5号試験片(標点間距離:50mm、平行部幅:25mm)を切出し、JIS Z 2241に準拠し、ひずみ速度3.3×10-3-1で行った。引張強度:1180MPa以上を良好とした。
 化成処理性評価は、日本ペイント社製の脱脂剤:サーフクリーナEC90、表面調整剤:5N-10、および化成処理剤:サーフダインEC1000を用いて、下記の標準条件で、化成処理皮膜付着量が1.7~3.0g/mとなるように化成処理を施した。
<標準条件>
・脱脂工程:処理温度45℃、処理時間120秒
・表面調整工程:pH8.5、処理温度室温、処理時間30秒
・化成処理工程:化成処理剤の温度40℃、処理時間90秒
化成処理後の鋼板表面を、SEMを用いて倍率500倍で5視野観察し、5視野全てにおいて面積率95%以上で化成結晶が生成している場合を化成処理性が良好「○」、5視野全てにおいて面積率90%以上で化成結晶が生成している場合を化成処理性が比較的良好「△」、1視野でも面積率10%超えのスケが認められた場合を化成処理性が劣位「×」と評価した。
 耐遅れ破壊特性評価は浸漬試験にて行った。圧延方向と垂直な方向を長手として35mm×105mmに切断後、端面を研削加工し30mm×100mmの試験片を作成した。試験片を先端の曲率半径10mmのポンチで曲げ稜線が圧延方向と平行になるように180°曲げ加工後、図2に示すようにボルト2により試験片1の内側間隔が10mmになるように絞込むことで応力を負荷した。応力が負荷された状態の試験片を25℃、pH1の塩酸中に浸漬し、破壊が生じるまでの時間を最大100時間まで測定した。破壊時間が40時間未満のものを「×」、40時間以上100時間未満のものを「○」、100時間割れが発生しなかったものを「◎」と評価し、破壊時間が40時間以上のものを耐遅れ破壊特性に優れることとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 表2~表4によれば、本発明の条件に適合した発明鋼は、引張強度1180MPa以上で、優れた化成処理性が得られ、耐遅れ破壊特性において、40時間破壊が生じておらず、優れた耐遅れ破壊特性を有することが確認された。
 No.15~21は鋼成分が本発明の範囲外となっている例である。
No.15はC含有量が少ないため、引張強度が1180MPaを下回っている。
No.16はC含有量が多いため、炭化物が粗大化し、耐遅れ破壊特性が劣位である。
No.17はSi含有量が少ないため、炭化物が粗大化し、耐遅れ破壊特性が劣位である。
No.18はSi含有量が多いため、鋼板表面のSiを主体とする酸化物が酸洗によって十分に除去しきれず、化成処理性が劣位である。酸洗減量を増すと、表層におけるCu濃度分布が規定の範囲を超えるため、化成処理性は改善しない。
No.19はMn含有量が少ないため、フェライトが多量に析出し、引張強度が1180MPaを下回っている。
No.20はCu含有量が少ないため、耐遅れ破壊特性が劣位である。
No.21はCu含有量が多いため、所定の表層Cu濃度分布を得るための酸洗条件の制御が困難となる。No.21では酸洗減量が小さくなるように制御したが、Siを主体とする酸化物が十分に除去されなかったために化成処理性が劣位であった。
 No.22~26、28は製造方法が本発明推奨の範囲外となり、引張強度や鋼板表面の被覆率やCu/Cuの少なくとも1つが本発明の範囲外となっている例である。
No.22は焼鈍温度が低いため、オーステナイトが生成せず、引張強度が1180MPaを下回っている。
No.23は一次冷却停止温度が低いため、フェライトが過度に析出し、引張強度が1180MPaを下回っている。
No.24は連続焼鈍後に酸洗を行わなかった例で、鋼板表面にSiを主体とする酸化物が残存していたため、化成処理性が劣位である。
No.25は酸洗減量を多くしたため、本発明規定の表層Cu濃度分布が得られず、化成処理性が劣位である。
No.26は酸洗後の再酸洗を省略した例で、鋼板表面にFe系酸化物が残存していたため、化成処理性が劣位である。
No.28は再酸洗の酸洗液温度が好適範囲の上限を超えており、本発明規定の表層Cu濃度分布が得られず、化成処理性が劣位である。
1 試験片
2 ボルト

Claims (5)

  1. 質量%で、
    C:0.10%以上0.50%以下、
    Si:1.0%以上3.0%以下、
    Mn:1.0%以上2.5%以下、
    P:0.05%以下、
    S:0.02%以下、
    Al:0.01%以上1.5%以下、
    N:0.005%以下、
    Cu:0.05%以上0.50%以下、
    を含有し、残部はFe及び不可避的不純物からなる成分組成を有し、
     Siを主体とする酸化物の鋼板表面被覆率が1%以下であり、Fe系酸化物の鋼板表面被覆率が40%以下であり、Cu/Cuが4.0以下であって、かつ引張強度が1180MPa以上である高強度冷延鋼板。
    なお、前記Cuは鋼板表層におけるCu含有量、前記Cuは母材におけるCu含有量である。
  2.  さらに、マルテンサイトおよびベイナイトから選ばれる1種以上を体積率で40%以上100%以下、フェライトを体積率で0%以上60%以下、残留オーステナイトを0%以上20%以下含む鋼板組織を有する請求項1に記載の高強度冷延鋼板。
  3.  さらに、[Si]/[Mn]>0.4([Si]はSi含有量(質量%)、[Mn]はMn含有量(質量%))である請求項1または2に記載の高強度冷延鋼板。
  4.  前記成分組成は、さらに、質量%で、Nb:0.2%以下、Ti:0.2%以下、V:0.5%以下、Mo:0.3%以下、Cr:1.0%以下、B:0.005%以下から選ばれる1種以上を含有する請求項1~3のいずれかに記載の高強度冷延鋼板。
  5.  前記成分組成は、さらに、質量%で、Sn:0.1%以下、Sb:0.1%以下、W:0.1%以下、Co:0.1%以下、Ca:0.005%以下、REM:0.005%以下から選ばれる1種以上を含有する請求項1~4のいずれかに記載の高強度冷延鋼板。
     
PCT/JP2017/005466 2016-02-18 2017-02-15 高強度冷延鋼板 WO2017141952A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/999,603 US11085099B2 (en) 2016-02-18 2017-02-15 High-strength cold-rolled steel sheet
EP17753208.2A EP3399064B1 (en) 2016-02-18 2017-02-15 High-strength cold-rolled steel sheet
JP2017537329A JP6308334B2 (ja) 2016-02-18 2017-02-15 高強度冷延鋼板
KR1020187023563A KR102115691B1 (ko) 2016-02-18 2017-02-15 고강도 냉연 강판
MX2018009968A MX2018009968A (es) 2016-02-18 2017-02-15 Lamina de acero laminada en frio de alta resistencia.
CN201780011764.2A CN108699647B (zh) 2016-02-18 2017-02-15 高强度冷轧钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028880 2016-02-18
JP2016028880 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017141952A1 true WO2017141952A1 (ja) 2017-08-24

Family

ID=59625170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005466 WO2017141952A1 (ja) 2016-02-18 2017-02-15 高強度冷延鋼板

Country Status (7)

Country Link
US (1) US11085099B2 (ja)
EP (1) EP3399064B1 (ja)
JP (1) JP6308334B2 (ja)
KR (1) KR102115691B1 (ja)
CN (1) CN108699647B (ja)
MX (1) MX2018009968A (ja)
WO (1) WO2017141952A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162509A1 (ja) * 2019-02-05 2020-08-13 日本製鉄株式会社 鋼部材、鋼板、及びそれらの製造方法
JP2020125535A (ja) * 2019-02-04 2020-08-20 Jfeスチール株式会社 冷延鋼板及びその製造方法
WO2020230795A1 (ja) * 2019-05-13 2020-11-19 Jfeスチール株式会社 中空スタビライザー用電縫鋼管

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699647B (zh) 2016-02-18 2020-07-28 杰富意钢铁株式会社 高强度冷轧钢板
KR102114741B1 (ko) * 2016-02-18 2020-05-25 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판
JP6699633B2 (ja) * 2017-07-25 2020-05-27 Jfeスチール株式会社 塗装後耐食性と耐遅れ破壊特性に優れた高強度冷延鋼板及びその製造方法
US11827964B2 (en) 2019-11-22 2023-11-28 Nippon Steel Corporation Coated steel member, coated steel sheet, and methods for producing same
CN114196874B (zh) * 2020-09-18 2022-06-28 宝山钢铁股份有限公司 一种1000MPa冷轧超强钢拉伸标样及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231377A (ja) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd 高強度鋼板
JP2012132092A (ja) * 2010-08-31 2012-07-12 Jfe Steel Corp 冷延鋼板の製造方法、冷延鋼板および自動車部材
JP2012172183A (ja) * 2011-02-21 2012-09-10 Jfe Steel Corp Si含有冷延鋼板とその製造方法および自動車部材
JP2013124383A (ja) * 2011-12-14 2013-06-24 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2013173976A (ja) * 2012-02-24 2013-09-05 Jfe Steel Corp 冷延鋼板の製造方法およびその製造設備
JP2015193907A (ja) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011696B2 (ja) 1977-06-16 1985-03-27 財団法人仙台複素環化学研究所 2−置換テトラハイドロピリジン誘導体の製造法
JPS56126422A (en) 1980-03-10 1981-10-03 Kiyamerotsukusu:Kk Continuous gas adsorbing apparatus
JP3545980B2 (ja) 1999-12-06 2004-07-21 株式会社神戸製鋼所 耐遅れ破壊特性の優れた自動車用超高強度電縫鋼管およびその製造方法
JP4362318B2 (ja) * 2003-06-02 2009-11-11 新日本製鐵株式会社 耐遅れ破壊特性に優れた高強度鋼板及びその製造方法
KR20110121727A (ko) 2006-03-31 2011-11-08 가부시키가이샤 고베 세이코쇼 화성 처리성이 우수한 고강도 냉연 강판
JP5354178B2 (ja) * 2009-03-25 2013-11-27 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5668337B2 (ja) 2010-06-30 2015-02-12 Jfeスチール株式会社 延性及び耐遅れ破壊特性に優れる超高強度冷延鋼板およびその製造方法
JP5835558B2 (ja) * 2010-08-31 2015-12-24 Jfeスチール株式会社 冷延鋼板の製造方法
UA112771C2 (uk) * 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл Сталевий лист з високою механічною міцністю, пластичністю і формованістю, спосіб виготовлення та застосування таких листів
JP6037882B2 (ja) * 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5825343B2 (ja) * 2012-10-03 2015-12-02 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法
JP5632947B2 (ja) * 2012-12-12 2014-11-26 株式会社神戸製鋼所 加工性と低温靭性に優れた高強度鋼板およびその製造方法
JP5821912B2 (ja) 2013-08-09 2015-11-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2016147549A1 (ja) * 2015-03-18 2016-09-22 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
BR112018007877B1 (pt) * 2015-10-26 2021-09-21 Nippon Steel Corporation Chapa de aço elétrico com grão orientado, chapa de aço descarburada usada para produzir a mesma e métodos de produção das referidas chapas de aço
CN108699647B (zh) 2016-02-18 2020-07-28 杰富意钢铁株式会社 高强度冷轧钢板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231377A (ja) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd 高強度鋼板
JP2012132092A (ja) * 2010-08-31 2012-07-12 Jfe Steel Corp 冷延鋼板の製造方法、冷延鋼板および自動車部材
JP2012172183A (ja) * 2011-02-21 2012-09-10 Jfe Steel Corp Si含有冷延鋼板とその製造方法および自動車部材
JP2013124383A (ja) * 2011-12-14 2013-06-24 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2013173976A (ja) * 2012-02-24 2013-09-05 Jfe Steel Corp 冷延鋼板の製造方法およびその製造設備
JP2015193907A (ja) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125535A (ja) * 2019-02-04 2020-08-20 Jfeスチール株式会社 冷延鋼板及びその製造方法
WO2020162509A1 (ja) * 2019-02-05 2020-08-13 日本製鉄株式会社 鋼部材、鋼板、及びそれらの製造方法
CN111801436A (zh) * 2019-02-05 2020-10-20 日本制铁株式会社 钢构件、钢板及它们的制造方法
JPWO2020162509A1 (ja) * 2019-02-05 2021-02-18 日本製鉄株式会社 鋼部材、鋼板、及びそれらの製造方法
CN111801436B (zh) * 2019-02-05 2021-10-29 日本制铁株式会社 钢构件、钢板及它们的制造方法
US11352684B2 (en) 2019-02-05 2022-06-07 Nippon Steel Corporation Steel member, steel sheet, and methods for manufacturing same
WO2020230795A1 (ja) * 2019-05-13 2020-11-19 Jfeスチール株式会社 中空スタビライザー用電縫鋼管
JPWO2020230795A1 (ja) * 2019-05-13 2021-05-20 Jfeスチール株式会社 中空スタビライザー用電縫鋼管
CN113811625A (zh) * 2019-05-13 2021-12-17 杰富意钢铁株式会社 中空稳定器用电阻焊钢管
JP7070696B2 (ja) 2019-05-13 2022-05-18 Jfeスチール株式会社 中空スタビライザー用電縫鋼管
CN113811625B (zh) * 2019-05-13 2023-12-15 杰富意钢铁株式会社 中空稳定器用电阻焊钢管

Also Published As

Publication number Publication date
JP6308334B2 (ja) 2018-04-11
CN108699647B (zh) 2020-07-28
KR102115691B1 (ko) 2020-05-26
EP3399064B1 (en) 2021-07-14
EP3399064A1 (en) 2018-11-07
CN108699647A (zh) 2018-10-23
KR20180104014A (ko) 2018-09-19
EP3399064A4 (en) 2019-01-09
US11085099B2 (en) 2021-08-10
US20200071784A1 (en) 2020-03-05
MX2018009968A (es) 2018-11-09
JPWO2017141952A1 (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6308334B2 (ja) 高強度冷延鋼板
JP6237962B1 (ja) 高強度鋼板及びその製造方法
JP6210175B2 (ja) 高強度冷延鋼板およびその製造方法
WO2017138504A1 (ja) 高強度鋼板及びその製造方法
JP4714574B2 (ja) 高強度鋼板及びその製造方法
WO2018147400A1 (ja) 高強度鋼板およびその製造方法
CN111511945B (zh) 高强度冷轧钢板及其制造方法
JP6308335B2 (ja) 高強度冷延鋼板
EP3106528B1 (en) High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet
JP6597889B2 (ja) 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法
CN110475892B (zh) 高强度冷轧钢板及其制造方法
JP2022510873A (ja) 冷間圧延熱処理鋼板及びその製造方法
JP4840269B2 (ja) 高強度鋼板とその製造方法
KR20200100164A (ko) 고강도 냉연 강판 및 그의 제조 방법
JP6879441B1 (ja) 高強度冷延鋼板およびその製造方法
JP7136335B2 (ja) 高強度鋼板及びその製造方法
JP7020594B2 (ja) 鋼板、部材及びそれらの製造方法
JP7006849B1 (ja) 鋼板、部材及びそれらの製造方法
JP7006848B1 (ja) 鋼板、部材及びそれらの製造方法
EP4043594B1 (en) High-strength steel sheet, shock-absorbing member, and method for producing high-strength steel sheet
WO2020195279A1 (ja) 鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017537329

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017753208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753208

Country of ref document: EP

Effective date: 20180801

ENP Entry into the national phase

Ref document number: 20187023563

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009968

Country of ref document: MX

Ref document number: 1020187023563

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE