WO2017141870A1 - 有機el表示装置の製造方法及び有機el表示装置 - Google Patents

有機el表示装置の製造方法及び有機el表示装置 Download PDF

Info

Publication number
WO2017141870A1
WO2017141870A1 PCT/JP2017/005137 JP2017005137W WO2017141870A1 WO 2017141870 A1 WO2017141870 A1 WO 2017141870A1 JP 2017005137 W JP2017005137 W JP 2017005137W WO 2017141870 A1 WO2017141870 A1 WO 2017141870A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
film
display device
inorganic
barrier film
Prior art date
Application number
PCT/JP2017/005137
Other languages
English (en)
French (fr)
Inventor
剛 平瀬
岡本 哲也
亨 妹尾
通 園田
越智 貴志
石田 守
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/073,814 priority Critical patent/US20190036077A1/en
Publication of WO2017141870A1 publication Critical patent/WO2017141870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to a method for manufacturing an organic EL display device and an organic EL display device.
  • a self-luminous organic EL display device using an organic EL (electroluminescence) element has attracted attention as a display device that replaces a liquid crystal display device.
  • organic EL display device in order to suppress deterioration of the organic EL element due to mixing of moisture, oxygen, or the like, for example, an ODF (filling a resin material inside a sealing material provided in a frame shape between substrates)
  • ODF filling a resin material inside a sealing material provided in a frame shape between substrates
  • a sealing technique such as laser frit sealing in which a glass frit material provided in a frame shape between substrates is melted and solidified with laser light has been proposed.
  • Patent Document 1 in order to prevent damage to the element due to the high heat of laser light applied to the glass frit when sealing the substrate, an organic flattening film is not provided below the glass frit.
  • An organic electroluminescence display device provided with an interlayer insulating film is disclosed.
  • the present invention has been made in view of the above points, and an object of the present invention is to improve the sealing performance and realize a narrow frame.
  • an organic EL display device manufacturing method includes an organic EL element forming step of forming an organic EL element on a base substrate, and a sealing film so as to cover the organic EL element.
  • the organic EL display device includes an organic EL display including a base substrate, an organic EL element provided on the base substrate, and a sealing film provided to cover the organic EL element.
  • the sealing film includes an inorganic barrier film and an inorganic-organic composite barrier film provided on the inorganic barrier film.
  • the inorganic barrier film is formed by the atomic layer deposition method and the inorganic-organic composite barrier film is formed by the molecular layer deposition method. It is possible to realize a narrow frame.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of an organic EL display device according to a first embodiment of the present invention. It is sectional drawing which shows the internal structure of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is sectional drawing which shows the organic electroluminescent layer which comprises the organic electroluminescent display apparatus which concerns on the 1st Embodiment of this invention. It is explanatory drawing which shows the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is sectional drawing which shows schematic structure of the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. It is sectional drawing which shows schematic structure of the organic electroluminescence display which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the organic EL display device 30a of the present embodiment.
  • FIG. 2 is a cross-sectional view showing the internal configuration of the organic EL display device 30a.
  • FIG. 3 is a cross-sectional view showing the organic EL layer 16 constituting the organic EL display device 30a.
  • the organic EL display device 30 a covers the base substrate 10, the organic EL element 18 provided on the base substrate 10 via the base coat film 11, and the organic EL element 18. And a sealing film 20a provided.
  • a display area for displaying an image is provided in a rectangular shape, and a plurality of pixels are arranged in a matrix in the display area.
  • a sub-pixel for performing red gradation display, a sub-pixel for performing green gradation display, and a sub-pixel for performing blue gradation display are adjacent to each other. It is arranged.
  • a frame-shaped frame region is provided around a rectangular display region.
  • the base substrate 10 is, for example, a plastic substrate made of polyimide resin or the like, or a glass substrate.
  • the base coat film 11 is, for example, an inorganic insulating film such as a silicon oxide film or a silicon nitride film.
  • the organic EL element 18 includes a plurality of TFTs 12, an interlayer insulating film 13, a plurality of first electrodes 14, an edge cover 15, a plurality of organic EL layers 16, and a first electrode provided in order on the base coat film 11. Two electrodes 17 are provided.
  • the TFT 12 is a switching element provided for each sub-pixel on the base coat film 11 as shown in FIG.
  • the TFT 12 includes, for example, a gate electrode provided on the base coat film 11, a gate insulating film provided so as to cover the gate electrode, and a semiconductor layer provided on the gate insulating film so as to overlap the gate electrode. And a source electrode and a drain electrode provided on the semiconductor layer so as to face each other.
  • the bottom gate type TFT 12 is illustrated, but the TFT 12 may be a top gate type TFT.
  • the interlayer insulating film 13 is provided so as to cover a portion other than a part of the drain electrode of each TFT 12.
  • the interlayer insulating film 13 is made of, for example, a colorless and transparent organic resin material such as an acrylic resin.
  • the plurality of first electrodes 14 are provided in a matrix on the interlayer insulating film 13 so as to correspond to the plurality of subpixels.
  • the first electrode 14 is connected to the drain electrode of each TFT 12 through a contact hole formed in the interlayer insulating film 13.
  • the first electrode 14 has a function of injecting holes into the organic EL layer 16.
  • the first electrode 14 is more preferably formed of a material having a large work function in order to improve the efficiency of hole injection into the organic EL layer 16.
  • the first electrode 14 for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au) , Calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb) And metal materials such as lithium fluoride (LiF).
  • the material constituting the first electrode 14 is, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidation.
  • the material constituting the first electrode 14 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. There may be.
  • the first electrode 14 may be formed by laminating a plurality of layers made of the above materials. Examples of the material having a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the edge cover 15 is provided in a lattice shape so as to cover the peripheral portion of each first electrode 14.
  • the material constituting the edge cover 15 include silicon nitride (SiO 2 ), silicon nitride such as trisilicon tetranitride (Si 3 N 4 ) (SiNx (x is a positive number)), silicon oxynite.
  • An inorganic film such as a ride (SiNO) or an organic film such as a polyimide resin, an acrylic resin, a polysiloxane resin, or a novolac resin can be used.
  • the plurality of organic EL layers 16 are arranged on the first electrodes 14 and are provided in a matrix so as to correspond to the plurality of sub-pixels.
  • the organic EL layer 16 includes a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4, and an electron injection layer that are sequentially provided on the first electrode 14. 5 is provided.
  • the hole injection layer 1 is also called an anode buffer layer, and has a function of improving the efficiency of hole injection from the first electrode 14 to the organic EL layer 16 by bringing the energy levels of the first electrode 14 and the organic EL layer 16 close to each other.
  • a material constituting the hole injection layer for example, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, Examples include hydrazone derivatives and stilbene derivatives.
  • the hole transport layer 2 has a function of improving the hole transport efficiency from the first electrode 14 to the organic EL layer 16.
  • examples of the material constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, oxadiazole.
  • Derivatives imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, Examples include hydrogenated amorphous silicon carbide, zinc sulfide, and zinc selenide.
  • the light emitting layer 3 when voltage is applied by the first electrode 14 and the second electrode 17, holes and electrons are injected from the first electrode 14 and the second electrode 17, respectively, and the holes and electrons are recombined. It is an area.
  • the light emitting layer 3 is formed of a material having high light emission efficiency. Examples of the material constituting the light emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complexes], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives.
  • the electron transport layer 4 has a function of efficiently moving electrons to the light emitting layer 3.
  • examples of the material constituting the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , Silole derivatives, metal oxinoid compounds and the like.
  • the electron injection layer 5 has a function of bringing the energy levels of the second electrode 17 and the organic EL layer 16 closer to each other, and improving the efficiency with which electrons are injected from the second electrode 17 into the organic EL layer 16.
  • the drive voltage of the organic EL element 18 can be lowered.
  • the electron injection layer 5 is also called a cathode buffer layer.
  • a material constituting the electron injection layer 5 for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride.
  • Inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like can be given.
  • the second electrode 17 is provided so as to cover each organic EL layer 16 and the edge cover 15.
  • the second electrode 17 has a function of injecting electrons into the organic EL layer 16.
  • the second electrode 17 is more preferably composed of a material having a small work function in order to improve the efficiency of electron injection into the organic EL layer 16.
  • the second electrode 17 for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au) , Calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb) And lithium fluoride (LiF).
  • the second electrode 17 is, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidized astatine (AtO 2).
  • the second electrode 17 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. .
  • the second electrode 17 may be formed by stacking a plurality of layers made of the above materials.
  • Examples of materials having a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), and sodium.
  • (Na) / potassium (K) lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al) Etc.
  • the sealing film 20 a includes an inorganic barrier film 21 provided so as to cover the organic EL element 18, an inorganic-organic composite barrier film 22 provided so as to cover the inorganic barrier film 21, and an inorganic film And an inorganic barrier film 23 provided so as to cover the organic composite barrier film 22.
  • the inorganic barrier films 21 and 23 are formed of, for example, an aluminum oxide film formed by an atomic layer deposition (ALD) method.
  • the inorganic-organic composite barrier film 22 is formed by, for example, an organic aluminum film formed by molecular layer deposition (MLD) and mixed and laminated with aluminum and ethylene glycol (referred to as alucone). Has been.
  • the atomic layer deposition method has a cycle in which molecules (precursors) of a film forming material are adsorbed and reacted on the surface of a substrate placed in a vacuum chamber, and then excess molecules are removed by purging with an inert gas.
  • This is a film forming method in which reaction products are deposited one layer at a time at the atomic layer level by repeating.
  • the film formed by the atomic layer deposition method is a very thin film and is uniform and has high coverage.
  • the molecular layer deposition method is a film formation method derived from the atomic layer deposition method, and is a film formation method in which reaction products are deposited one layer at a time at the molecular layer level.
  • the organic EL display device 30a having the above configuration has flexibility and is configured to display an image by appropriately emitting light from the light emitting layer 3 of the organic EL layer 16 via the TFT 12 in each sub-pixel. Yes.
  • FIG. 4 is explanatory drawing which shows the manufacturing method of the organic electroluminescence display 30a.
  • the manufacturing method of the organic EL display device 30a of this embodiment includes an organic EL element forming step, and a sealing film forming step including an atomic layer deposition step, a molecular layer deposition step, and an atomic layer deposition step.
  • the base coat film 11 (see FIG. 2) and the organic EL element 18 (TFT 12, interlayer insulation) are formed on the surface of the base substrate 10 made of polyimide resin using a well-known method as shown in step (a) of FIG. Film 13, first electrode 14, edge cover 15, organic EL layer 16 (hole injection layer 1, hole transport layer 2, light emitting layer 3, electron transport layer 4, electron injection layer 5), second electrode 17) Form.
  • an aluminum oxide film having a thickness of about 10 nm to 500 nm is formed by an atomic layer deposition method so as to cover the organic EL element 18 formed in the organic EL element formation step.
  • the inorganic barrier film 21 is formed by film formation (atomic layer deposition step).
  • the film thickness of the aluminum oxide film is smaller than 10 nm, the barrier performance of the inorganic barrier film 21 may be lowered.
  • the film thickness of the aluminum oxide film is larger than 500 nm, the inorganic barrier film 21 may be cracked by the film stress.
  • an organic aluminum film is formed with a film thickness of about 10 nm to 1000 nm so as to cover the inorganic barrier film 21, and trimethylaluminum and ethylene glycol are, for example, 13.56 MHz.
  • the inorganic organic composite barrier film 22 is formed by a molecular layer deposition method in which it is excited by a high frequency power and reacted in a plasma state (molecular layer deposition step).
  • the film thickness of the organic aluminum film is smaller than 10 nm, the barrier performance of the inorganic-organic composite barrier film 22 may be deteriorated. Further, when the thickness of the organic aluminum film is larger than 1000 nm, the inorganic / organic composite barrier film 22 may be cracked by the film stress.
  • an inorganic barrier film 23 is formed by, for example, depositing an aluminum oxide film by an atomic layer deposition method so as to cover the inorganic-organic composite barrier film 22 with a film thickness of about 10 nm to 500 nm. Atomic layer deposition process).
  • the film thickness of the aluminum oxide film is smaller than 10 nm, the barrier performance of the inorganic barrier film 23 may be deteriorated.
  • the film thickness of the aluminum oxide film is larger than 500 nm, the inorganic barrier film 23 may be cracked due to the film stress.
  • the sealing film 20a having a three-layered structure of the inorganic barrier film 21, the inorganic-organic composite barrier film 22, and the inorganic barrier film is illustrated.
  • the sealing film 20a includes the inorganic barrier film 21 and the inorganic barrier film 21.
  • the inorganic / organic composite barrier film 22 may have a two-layer structure.
  • the organic EL display device 30a of this embodiment can be manufactured.
  • the organic EL display device 30a and the manufacturing method thereof of the present embodiment the following effects (1) and (2) can be obtained.
  • the inorganic barrier film 21 is formed by forming an aluminum oxide film by an atomic layer deposition method in the atomic layer deposition step performed in the first and third steps.
  • an inorganic organic composite barrier film 22 is formed by depositing an organic aluminum film by a molecular layer deposition method.
  • the inorganic barrier film 21 made of an aluminum oxide film is formed by an atomic layer deposition method so as to cover the organic EL element 18. That is, even if a pinhole or crack is formed on the surface of the second electrode 17, the inorganic barrier film 21 can be formed in the pinhole or crack.
  • the inorganic-organic composite barrier film 22 made of an organic aluminum film is formed by the molecular layer deposition method so as to cover the inorganic barrier film 21, a film generated in the sealing film 20a Stress can be reduced.
  • the inorganic barrier film 23 made of an aluminum oxide film is formed by the atomic layer deposition method so as to cover the inorganic / organic composite barrier film 22. Even if pinholes or cracks are formed on the surface, the inorganic barrier film 23 can be formed in the pinholes or cracks.
  • the dense sealing film 20a with few pinholes and cracks can be formed by the laminated film of the inorganic barrier film 21, the inorganic / organic composite barrier film 22 and the inorganic barrier film 23, so that the organic EL display device
  • the sealing performance in 30a can be improved.
  • a frame-shaped sealing material at the peripheral edge of the substrate which is necessary in the conventional sealing technology such as ODF method or laser frit sealing
  • the frit material is unnecessary, the frame area around the display area can be narrowed. Thereby, the sealing performance of the organic EL display device 30a can be improved, and a narrow frame can be realized.
  • FIG. 5 shows a second embodiment of the organic EL display device according to the present invention.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the organic EL display device 30b of the present embodiment.
  • the same parts as those in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the organic EL display device 30a including the sealing film 20a having the three-layer stacked structure is illustrated.
  • the organic EL display device 30b having the five-layer stacked structure is provided.
  • the EL display device 30b is illustrated.
  • the organic EL display device 30 b covers the base substrate 10, the organic EL element 18 provided on the base substrate 10 via the base coat film 11 (see FIG. 2), and the organic EL element 18. And a sealing film 20b provided as described above.
  • a display area for displaying an image is provided in a rectangular shape, and a plurality of pixels are arranged in a matrix in the display area.
  • the sealing film 20 b includes an inorganic barrier film 21 provided so as to cover the organic EL element 18, an inorganic-organic composite barrier film 22 provided so as to cover the inorganic barrier film 21, and an inorganic film
  • An inorganic barrier film 25 is provided.
  • the inorganic barrier layer 25 is substantially the same as the inorganic barrier films 21 and 23 of the first embodiment.
  • the inorganic-organic composite barrier film 24 is substantially the same as the inorganic-organic composite barrier film 22 of the first embodiment.
  • the organic EL display device 30b including the sealing film 20b having a five-layer laminated structure is illustrated, but the sealing film 20b is formed by forming an inorganic barrier film on at least the outermost surface. It may have a laminated structure of layers or a laminated structure of 6 or more layers.
  • the organic EL display device 30b having the above configuration has flexibility and is configured to display an image by appropriately emitting light from the light emitting layer 3 of the organic EL layer 16 via the TFT 12 in each sub-pixel. Yes.
  • the fourth step is the molecular layer deposition as in the second step. It can be manufactured by performing the step and performing the atomic layer deposition step as the first step and the third step as the fifth step.
  • the effects (1) and (2) described above and the following (3) effect can be obtained.
  • the aluminum oxide film is formed by the atomic layer deposition method.
  • Inorganic barrier films 21, 23 and 25 are formed by film formation, and in the molecular layer deposition step performed in the second and fourth steps, an organic aluminum film is formed by molecular layer deposition, thereby forming an inorganic / organic composite barrier film. 22 and 24 are formed.
  • the inorganic barrier film 21 made of an aluminum oxide film is formed by an atomic layer deposition method so as to cover the organic EL element 18.
  • the inorganic barrier film 21 can be formed in the pinhole or crack.
  • the inorganic-organic composite barrier film 22 made of an organic aluminum film is formed by the molecular layer deposition method so as to cover the inorganic barrier film 21, a film generated in the sealing film 20b Stress can be reduced.
  • the inorganic barrier film 23 made of an aluminum oxide film is formed by an atomic layer deposition method so as to cover the inorganic / organic composite barrier film 22. Even if pinholes or cracks are formed on the surface, the inorganic barrier film 23 can be formed in the pinholes or cracks.
  • the inorganic-organic composite barrier film 24 made of an organic aluminum film is formed by the molecular layer deposition method so as to cover the inorganic barrier film 23, so that the film generated in the sealing film 20b Stress can be reduced.
  • the inorganic barrier film 25 made of an aluminum oxide film is formed by the atomic layer deposition method so as to cover the inorganic / organic composite barrier film 24. Even if pinholes or cracks are formed on the surface, the inorganic barrier film 25 can be formed in the pinholes or cracks.
  • a dense sealing film 20b with few pinholes and cracks is formed by the laminated film of five layers of the inorganic barrier film 21, the inorganic / organic composite barrier film 22, the inorganic barrier film 23, the inorganic / organic composite barrier film 24, and the inorganic barrier film 25. Therefore, the sealing performance in the organic EL display device 30b can be improved. Further, due to the improvement in sealing performance by the sealing film 20b in the organic EL display device 30b, for example, a frame-shaped sealing material at the peripheral edge of the substrate, which is necessary in the conventional sealing technology such as ODF method or laser frit sealing In addition, since the frit material is unnecessary, the frame area around the display area can be narrowed. Thereby, the sealing performance of the organic EL display device 30b can be improved, and a narrow frame can be realized.
  • the sealing film 20b has a five-layer laminated structure, the sealing performance is higher than that of the organic EL display device 30a including the sealing film 20a having the three-layer laminated structure of the first embodiment. Can be improved.
  • FIG. 6 shows a third embodiment of the organic EL display device according to the present invention.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the organic EL display device 30c of the present embodiment.
  • the organic EL display devices 30a and 30b that do not include the cover base material (counter substrate) are illustrated, but in this embodiment, the organic EL display device 30c that includes the cover base material 27 is illustrated.
  • the organic EL display device 30 c covers the base substrate 10, the organic EL element 18 provided on the base substrate 10 via the base coat film 11 (see FIG. 2), and the organic EL element 18.
  • the sealing film 20a provided in this manner and the cover base material 27 provided on the sealing film 20a via the adhesive layer 26 are provided.
  • a display area for displaying an image is provided in a rectangular shape, and a plurality of pixels are arranged in a matrix in the display area.
  • the adhesive layer 26 is formed of, for example, an ultraviolet curable and / or thermosetting epoxy resin, acrylic resin, polyimide resin, phenol resin, or the like.
  • the cover base 27 is, for example, a plastic substrate made of polyimide resin or a glass substrate.
  • the organic EL display device 30c having the above configuration is flexible and configured to display an image by appropriately emitting light from the light emitting layer 3 of the organic EL layer 16 via the TFT 12 in each subpixel. Yes.
  • the adhesive layer 26 is formed on the sealing film 20a by coating, and subsequently, a dry atmosphere or reduced pressure is applied.
  • Manufacture can be performed by attaching the cover base material 27 under an atmosphere and further performing an attaching step of curing the adhesive layer 26.
  • the organic EL display device 30c of this embodiment As described above, according to the organic EL display device 30c of this embodiment and the manufacturing method thereof, the above-described effect (1) and the following effect (4) can be obtained.
  • the organic EL display device 30c includes the cover base material 27, the surface resistance of the organic EL display device 30c can be improved.
  • an organic EL layer having a five-layer structure of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer has been exemplified.
  • a three-layer structure of a hole injection layer / hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer may be employed.
  • the organic EL display device using the first electrode as an anode and the second electrode as a cathode has been exemplified.
  • the present invention reverses the stacked structure of the organic EL layers and uses the first electrode as a cathode.
  • the present invention can also be applied to an organic EL display device using the second electrode as an anode.
  • the organic EL display device including the element substrate using the TFT electrode connected to the first electrode as the drain electrode is illustrated.
  • the present invention is not limited to the TFT connected to the first electrode.
  • the present invention can also be applied to an organic EL display device including an element substrate whose electrode is called a source electrode.
  • the present invention is useful for flexible organic EL display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

ベース基板(10)上に有機EL素子(18)を形成する有機EL素子形成工程と、有機EL素子(18)を覆うように封止膜(20a)を形成する封止膜形成工程とを備え、封止膜形成工程は、原子層堆積法で封止膜(20a)として無機バリア膜(21)を形成する原子層堆積工程と、分子層堆積法で封止膜(20a)として無機有機複合バリア膜(22)を形成する分子層堆積工程とを備える。

Description

有機EL表示装置の製造方法及び有機EL表示装置
 本発明は、有機EL表示装置の製造方法及び有機EL表示装置に関するものである。
 近年、液晶表示装置に代わる表示装置として、有機EL(electroluminescence)素子を用いた自発光型の有機EL表示装置が注目されている。ここで、有機EL表示装置では、水分や酸素等の混入による有機EL素子の劣化を抑制するために、例えば、基板間に枠状に設けられたシール材の内部に樹脂材料を充填するODF(one drop fill)方式、基板間に枠状に設けられたガラス製のフリット材をレーザー光で溶融固化させるレーザーフリット封止等の封止技術が提案されている。
 例えば、特許文献1には、基板を封止する際にガラスフリットに照射するレーザー光の高熱による素子の損傷を防止するために、ガラスフリットの下部に有機平坦化膜を設けずに無機膜からなる層間絶縁膜を設けた有機電界発光表示装置が開示されている。
特開2007-200890号公報
 ところで、上述したODF方式やレーザーフリット封止では、シール材及びフリット材を基板の周端部に枠状に設ける必要があるので、表示領域の周囲の額縁領域が幅広くなってしまう。また、有機EL表示装置では、有機EL素子を覆う封止膜を構成する無機膜に形成されたピンホールやクラック、封止膜に発生する膜応力による界面剥離、シール材の端面全体等からの水分侵入により、封止性能が低下するおそれがある。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、封止性能を向上させて、狭額縁化を実現することにある。
 上記目的を達成するために、本発明に係る有機EL表示装置の製造方法は、ベース基板上に有機EL素子を形成する有機EL素子形成工程と、前記有機EL素子を覆うように封止膜を形成する封止膜形成工程とを備える有機EL表示装置の製造方法であって、前記封止膜形成工程は、原子層堆積法で前記封止膜として無機バリア膜を形成する原子層堆積工程と、分子層堆積法で前記封止膜として無機有機複合バリア膜を形成する分子層堆積工程とを備えることを特徴とする。
 また、本発明に係る有機EL表示装置は、ベース基板と、前記ベース基板上に設けられた有機EL素子と、前記有機EL素子を覆うように設けられた封止膜とを備えた有機EL表示装置であって、前記封止膜は、無機バリア膜と、該無機バリア膜上に設けられた無機有機複合バリア膜とを備えていることを特徴とする。
 本発明によれば、有機EL素子を覆う封止膜を形成する際に、原子層堆積法で無機バリア膜を形成し、分子層堆積法で無機有機複合バリア膜を形成するので、封止性能を向上させて、狭額縁化を実現することができる。
本発明の第1の実施形態に係る有機EL表示装置の概略構成を示す断面図である。 本発明の第1の実施形態に係る有機EL表示装置の内部構成を示す断面図である。 本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL層を示す断面図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を示す説明図である。 本発明の第2の実施形態に係る有機EL表示装置の概略構成を示す断面図である。 本発明の第3の実施形態に係る有機EL表示装置の概略構成を示す断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 《第1の実施形態》
 図1~図4は、本発明に係る有機EL表示装置の第1の実施形態を示している。ここで、図1は、本実施形態の有機EL表示装置30aの概略構成を示す断面図である。また、図2は、有機EL表示装置30aの内部構成を示す断面図である。また、図3は、有機EL表示装置30aを構成する有機EL層16を示す断面図である。
 有機EL表示装置30aは、図1及び図2に示すように、ベース基板10と、ベース基板10上にベースコート膜11を介して設けられた有機EL素子18と、有機EL素子18を覆うように設けられた封止膜20aとを備えている。ここで、有機EL表示装置30aでは、画像表示を行う表示領域が矩形状に設けられ、その表示領域には、複数の画素がマトリクス状に配列されている。そして、各画素では、例えば、赤色の階調表示を行うためのサブ画素、緑色の階調表示を行うためのサブ画素、及び青色の階調表示を行うためのサブ画素が互いに隣り合うように配列されている。なお、有機EL表示装置30aでは、矩形状の表示領域の周囲に枠状の額縁領域が設けられている。
 ベース基板10は、例えば、ポリイミド樹脂製等のプラスチック基板やガラス基板である。
 ベースコート膜11は、例えば、酸化シリコン膜、窒化シリコン膜等の無機絶縁膜である。
 有機EL素子18は、図2に示すように、ベースコート膜11上に順に設けられた複数のTFT12、層間絶縁膜13、複数の第1電極14、エッジカバー15、複数の有機EL層16及び第2電極17を備えている。
 TFT12は、図2に示すように、ベースコート膜11上に各サブ画素毎に設けられたスイッチング素子である。ここで、TFT12は、例えば、ベースコート膜11上に設けられたゲート電極と、ゲート電極を覆うように設けられたゲート絶縁膜と、ゲート絶縁膜上にゲート電極と重なるように設けられた半導体層と、半導体層上に互いに対峙するように設けられたソース電極及びドレイン電極とを備えている。なお、本実施形態では、ボトムゲート型のTFT12を例示したが、TFT12は、トップゲート型のTFTであってもよい。
 層間絶縁膜13は、図2に示すように、各TFT12のドレイン電極の一部以外を覆うように設けられている。ここで、層間絶縁膜13は、例えば、アクリル樹脂等の無色透明な有機樹脂材料により構成されている。
 複数の第1電極14は、図2に示すように、複数のサブ画素に対応するように、層間絶縁膜13上にマトリクス状に設けられている。ここで、第1電極14は、図2に示すように、層間絶縁膜13に形成されたコンタクトホールを介して、各TFT12のドレイン電極に接続されている。また、第1電極14は、有機EL層16にホール(正孔)を注入する機能を有している。また、第1電極14は、有機EL層16への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。ここで、第1電極14を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等の金属材料が挙げられる。また、第1電極14を構成する材料は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、又はフッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金であっても構わない。さらに、第1電極14を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第1電極14は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数の大きな材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。
 エッジカバー15は、図2に示すように、各第1電極14の周縁部を覆うように格子状に設けられている。ここで、エッジカバー15を構成する材料としては、例えば、酸化シリコン(SiO)、四窒化三ケイ素(Si)のような窒化シリコン(SiNx(xは正数))、シリコンオキシナイトライド(SiNO)等の無機膜、又はポリイミド樹脂、アクリル樹脂、ポリシロキサン樹脂、ノボラック樹脂等の有機膜が挙げられる。
 複数の有機EL層16は、図2に示すように、各第1電極14上に配置され、複数のサブ画素に対応するように、マトリクス状に設けられている。ここで、有機EL層16は、図3に示すように、第1電極14上に順に設けられた正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。
 正孔注入層1は、陽極バッファ層とも呼ばれ、第1電極14と有機EL層16とのエネルギーレベルを近づけ、第1電極14から有機EL層16への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。
 正孔輸送層2は、第1電極14から有機EL層16への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。
 発光層3は、第1電極14及び第2電極17による電圧印加の際に、第1電極14及び第2電極17から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンズチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。
 電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。
 電子注入層5は、第2電極17と有機EL層16とのエネルギーレベルを近づけ、第2電極17から有機EL層16へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子18の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)等が挙げられる。
 第2電極17は、図2に示すように、各有機EL層16及びエッジカバー15を覆うように設けられている。また、第2電極17は、有機EL層16に電子を注入する機能を有している。また、第2電極17は、有機EL層16への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。ここで、第2電極17を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等が挙げられる。また、第2電極17は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第2電極17は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第2電極17は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。
 封止膜20aは、図1に示すように、有機EL素子18を覆うように設けられた無機バリア膜21と、無機バリア膜21を覆うように設けられた無機有機複合バリア膜22と、無機有機複合バリア膜22を覆うように設けられた無機バリア膜23とを備えている。ここで、無機バリア膜21及び23は、例えば、原子層堆積法(ALD:atomic layer deposition)で成膜された酸化アルミニウム膜により形成されている。また、無機有機複合バリア膜22は、例えば、分子層堆積法(MLD:molecular layer deposition)で成膜され、アルミニウム及びエチレングリコールが混合積層された(アルコーン(alucone)と呼ばれる)有機アルミニウム膜により形成されている。なお、原子層堆積法は、真空チャンバ内に設置した基板の表面において成膜材料の分子(前駆体)を吸着及び反応させた後に、余分な分子を不活性ガスによるパージによって取り除く、というサイクルを繰り返すことにより、原子層レベルで1層ずつ反応生成物を堆積させる成膜方法である。そして、原子層堆積法で形成された膜は、非常に薄膜でありながら、均一で被覆性が高いものである。また、分子層堆積法は、原子層堆積法から派生した成膜方法であり、分子層レベルで反応生成物を1層ずつ堆積させる成膜方法である。
 上記構成の有機EL表示装置30aは、可撓性を有し、各サブ画素において、TFT12を介して有機EL層16の発光層3を適宜発光させることにより、画像表示を行うように構成されている。
 次に、本実施形態の有機EL表示装置30aの製造方法について、図4を用いて説明する。ここで、図4は、有機EL表示装置30aの製造方法を示す説明図である。なお、本実施形態の有機EL表示装置30aの製造方法は、有機EL素子形成工程、並びに原子層堆積工程、分子層堆積工程及び原子層堆積工程を含む封止膜形成工程を備える。
 <有機EL素子形成工程>
 例えば、ポリイミド樹脂製のベース基板10の表面に、図4の工程(a)に示すように、周知の方法を用いて、ベースコート膜11(図2参照)及び有機EL素子18(TFT12、層間絶縁膜13、第1電極14、エッジカバー15、有機EL層16(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)、第2電極17)を形成する。
 <封止膜形成工程>
 図4の工程(b)に示すように、上記有機EL素子形成工程で形成された有機EL素子18を覆うように、例えば、膜厚10nm以上500nm以下程度で酸化アルミニウム膜を原子層堆積法で成膜して、無機バリア膜21を形成する(原子層堆積工程)。ここで、酸化アルミニウム膜の膜厚が10nmよりも小さい場合には、無機バリア膜21のバリア性能が低下するおそれがある。また、酸化アルミニウム膜の膜厚が500nmよりも大きい場合には、膜応力により無機バリア膜21にクラックが生じるおそれがある。
 図4の工程(c)に示すように、無機バリア膜21を覆うように、例えば、膜厚10nm以上1000nm以下程度で有機アルミニウム膜を、トリメチルアルミニウムとエチレングリコールとを、例えば、13.56MHzの高周波電力で励起してプラズマ状態で反応させる分子層堆積法で成膜して、無機有機複合バリア膜22を形成する(分子層堆積工程)。ここで、有機アルミニウム膜の膜厚が10nmよりも小さい場合には、無機有機複合バリア膜22のバリア性能が低下するおそれがある。また、有機アルミニウム膜の膜厚が1000nmよりも大きい場合には、膜応力により無機有機複合バリア膜22にクラックが生じるおそれがある。
 図1に示すように、無機有機複合バリア膜22を覆うように、例えば、膜厚10nm以上500nm以下程度で酸化アルミニウム膜を原子層堆積法で成膜して、無機バリア膜23を形成する(原子層堆積工程)。ここで、酸化アルミニウム膜の膜厚が10nmよりも小さい場合には、無機バリア膜23のバリア性能が低下するおそれがある。また、酸化アルミニウム膜の膜厚が500nmよりも大きい場合には、膜応力により無機バリア膜23にクラックが生じるおそれがある。
 なお、本実施形態では、無機バリア膜21、無機有機複合バリア膜22及び無機バリア膜の3層の積層構造を有する封止膜20aを例示したが、封止膜20aは、無機バリア膜21及び無機有機複合バリア膜22の2層の積層構造を有するものであってもよい。
 以上のようにして、本実施形態の有機EL表示装置30aを製造することができる。
 以上説明したように、本実施形態の有機EL表示装置30a及びその製造方法によれば、以下の(1)及び(2)の効果を得ることができる。
 (1)封止膜20aを形成する封止膜形成工程では、第1及び第3の工程で行う原子層堆積工程において、酸化アルミニウム膜を原子層堆積法で成膜することにより無機バリア膜21及び23を形成し、第2の工程で行う分子層堆積工程において、有機アルミニウム膜を分子層堆積法で成膜することにより無機有機複合バリア膜22を形成する。ここで、第1の工程の原子層堆積工程では、有機EL素子18を覆うように原子層堆積法で酸化アルミニウム膜からなる無機バリア膜21を形成するので、仮に、有機EL素子18の表面、すなわち、第2電極17の表面にピンホールやクラックが形成されていても、そのピンホールやクラック内にも無機バリア膜21を形成することができる。また、第2の工程の分子層堆積工程では、無機バリア膜21を覆うように分子層堆積法で有機アルミニウム膜からなる無機有機複合バリア膜22を形成するので、封止膜20aに発生する膜応力を低減することができる。さらに、第3の工程の原子層堆積工程では、無機有機複合バリア膜22を覆うように原子層堆積法で酸化アルミニウム膜からなる無機バリア膜23を形成するので、仮に、無機有機複合バリア膜22の表面にピンホールやクラックが形成されていても、そのピンホールやクラック内にも無機バリア膜23を形成することができる。したがって、無機バリア膜21、無機有機複合バリア膜22及び無機バリア膜23の3層の積層膜により、ピンホールやクラックの少ない緻密な封止膜20aを形成することができるので、有機EL表示装置30aにおける封止性能を向上させることができる。さらに、有機EL表示装置30aにおける封止膜20aによる封止性能の向上により、例えば、ODF方式やレーザーフリット封止の従来の封止技術で必要であった基板周端部の枠状のシール材及びフリット材が不要になるので、表示領域の周囲の額縁領域を幅狭にすることができる。これにより、有機EL表示装置30aの封止性能を向上させて、狭額縁化を実現することができる。
 (2)有機EL表示装置30aでは、封止膜20aによる封止性能の向上により、ベース基板10に対向するように封止用の対向基板を貼り付ける必要がないので、製品コスト及び製造コストを低減することができる。
 《第2の実施形態》
 図5は、本発明に係る有機EL表示装置の第2の実施形態を示している。ここで、図5は、本実施形態の有機EL表示装置30bの概略構成を示す断面図である。なお、以下の各実施形態において、図1~図4と同じ部分については同じ符号を付して、その詳細な説明を省略する。
 上記実施形態1では、3層の積層構造を有する封止膜20aを備えた有機EL表示装置30aを例示したが、本実施形態では、5層の積層構造を有する封止膜20bを備えた有機EL表示装置30bを例示する。
 有機EL表示装置30bは、図5に示すように、ベース基板10と、ベース基板10上にベースコート膜11(図2参照)を介して設けられた有機EL素子18と、有機EL素子18を覆うように設けられた封止膜20bとを備えている。ここで、有機EL表示装置30bでは、画像表示を行う表示領域が矩形状に設けられ、その表示領域には、複数の画素がマトリクス状に配列されている。
 封止膜20bは、図5に示すように、有機EL素子18を覆うように設けられた無機バリア膜21と、無機バリア膜21を覆うように設けられた無機有機複合バリア膜22と、無機有機複合バリア膜22を覆うように設けられた無機バリア膜23と、無機バリア膜23を覆うように設けられた無機有機複合バリア膜24と、無機有機複合バリア膜24を覆うように設けられた無機バリア膜25と備えている。ここで、無機バリア層25は、上記実施形態1の無機バリア膜21及び23と実質的に同じである。また、無機有機複合バリア膜24は、上記実施形態1の無機有機複合バリア膜22と実質的に同じである。
 なお、本実施形態では、5層の積層構造を有する封止膜20bを備えた有機EL表示装置30bを例示したが、封止膜20bは、少なくとも最表面に無機バリア膜が形成されてなる4層の積層構造を有するものや6層以上の積層構造を有するものであってもよい。
 上記構成の有機EL表示装置30bは、可撓性を有し、各サブ画素において、TFT12を介して有機EL層16の発光層3を適宜発光させることにより、画像表示を行うように構成されている。
 本実施形態の有機EL表示装置30bは、上記実施形態1の封止膜形成工程において、第3の工程の原子層堆積工程の後に、第4の工程として第2の工程と同様に分子層堆積工程を行い、第5の工程として第1及び第3の工程と同様に原子層堆積工程を行うことにより、製造することができる。
 以上説明したように、本実施形態の有機EL表示装置30b及びその製造方法によれば、上述の(1)及び(2)の効果、並びに以下の(3)効果を得ることができる。
 (1)について詳述すると、封止膜20bを形成する封止膜形成工程では、第1、第3及び第5の工程で行う原子層堆積工程において、酸化アルミニウム膜を原子層堆積法で成膜することにより無機バリア膜21、23及び25を形成し、第2及び第4の工程で行う分子層堆積工程において、有機アルミニウム膜を分子層堆積法で成膜することにより無機有機複合バリア膜22及び24を形成する。ここで、第1の工程の原子層堆積工程では、有機EL素子18を覆うように原子層堆積法で酸化アルミニウム膜からなる無機バリア膜21を形成するので、仮に、有機EL素子18の表面、すなわち、第2電極17の表面にピンホールやクラックが形成されていても、そのピンホールやクラック内にも無機バリア膜21を形成することができる。また、第2の工程の分子層堆積工程では、無機バリア膜21を覆うように分子層堆積法で有機アルミニウム膜からなる無機有機複合バリア膜22を形成するので、封止膜20bに発生する膜応力を低減することができる。また、第3の工程の原子層堆積工程では、無機有機複合バリア膜22を覆うように原子層堆積法で酸化アルミニウム膜からなる無機バリア膜23を形成するので、仮に、無機有機複合バリア膜22の表面にピンホールやクラックが形成されていても、そのピンホールやクラック内にも無機バリア膜23を形成することができる。また、第4の工程の分子層堆積工程では、無機バリア膜23を覆うように分子層堆積法で有機アルミニウム膜からなる無機有機複合バリア膜24を形成するので、封止膜20bに発生する膜応力を低減することができる。さらに、第5の工程の原子層堆積工程では、無機有機複合バリア膜24を覆うように原子層堆積法で酸化アルミニウム膜からなる無機バリア膜25を形成するので、仮に、無機有機複合バリア膜24の表面にピンホールやクラックが形成されていても、そのピンホールやクラック内にも無機バリア膜25を形成することができる。したがって、無機バリア膜21、無機有機複合バリア膜22、無機バリア膜23、無機有機複合バリア膜24及び無機バリア膜25の5層の積層膜により、ピンホールやクラックの少ない緻密な封止膜20bを形成することができるので、有機EL表示装置30bにおける封止性能を向上させることができる。さらに、有機EL表示装置30bにおける封止膜20bによる封止性能の向上により、例えば、ODF方式やレーザーフリット封止の従来の封止技術で必要であった基板周端部の枠状のシール材及びフリット材が不要になるので、表示領域の周囲の額縁領域を幅狭にすることができる。これにより、有機EL表示装置30bの封止性能を向上させて、狭額縁化を実現することができる。
 (3)封止膜20bは、5層の積層構造を有しているので、上記実施形態1の3層の積層構造を有する封止膜20aを備えた有機EL表示装置30aよりも封止性能を向上させることができる。
 《第3の実施形態》
 図6は、本発明に係る有機EL表示装置の第3の実施形態を示している。ここで、図6は、本実施形態の有機EL表示装置30cの概略構成を示す断面図である。
 上記実施形態1では、カバー基材(対向基板)を備えない有機EL表示装置30a及び30bを例示したが、本実施形態では、カバー基材27を備えた有機EL表示装置30cを例示する。
 有機EL表示装置30cは、図6に示すように、ベース基板10と、ベース基板10上にベースコート膜11(図2参照)を介して設けられた有機EL素子18と、有機EL素子18を覆うように設けられた封止膜20aと、封止膜20a上に接着層26を介して設けられたカバー基材27とを備えている。ここで、有機EL表示装置30cでは、画像表示を行う表示領域が矩形状に設けられ、その表示領域には、複数の画素がマトリクス状に配列されている。
 接着層26は、例えば、紫外線硬化性及び/又は熱硬化性を有するエポキシ樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂等により形成されている。
 カバー基材27は、例えば、ポリイミド樹脂製等のプラスチック基板やガラス基板である。
 上記構成の有機EL表示装置30cは、可撓性を有し、各サブ画素において、TFT12を介して有機EL層16の発光層3を適宜発光させることにより、画像表示を行うように構成されている。
 本実施形態の有機EL表示装置30cは、上記実施形態1の封止膜形成工程を行った後に、まず、封止膜20a上に接着層26を塗布により形成し、続いて、乾燥雰囲気又は減圧雰囲気下でカバー基材27を貼り付け、さらに、接着層26を硬化させる貼付工程を行うことにより、製造することができる。
 以上説明したように、本実施形態の有機EL表示装置30c及びその製造方法によれば、上述の(1)の効果及び以下の(4)の効果を得ることができる。
 (4)有機EL表示装置30cは、カバー基材27を備えているので、有機EL表示装置30cの表面耐性を向上させることができる。
 《その他の実施形態》
 上記各実施形態では、有機EL表示装置30a~30cを例示したが、本発明は、例示した各有機EL表示装置30a~30cの積層構造の組み合わせも自在に適用することができる。
 また、上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。
 また、上記各実施形態では、第1電極を陽極とし、第2電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第1電極を陰極とし、第2電極を陽極とした有機EL表示装置にも適用することができる。
 また、上記各実施形態では、第1電極に接続されたTFTの電極をドレイン電極とした素子基板を備えた有機EL表示装置を例示したが、本発明は、第1電極に接続されたTFTの電極をソース電極と呼ぶ素子基板を備えた有機EL表示装置にも適用することができる。
 以上説明したように、本発明は、フレキシブルな有機EL表示装置について有用である。
10  ベース基板
18  有機EL素子
20a,20b  封止膜
21,23,25  無機バリア膜
22,24  無機有機複合バリア膜
27  カバー基材
30a~30c  有機EL表示装置

Claims (9)

  1.  ベース基板上に有機EL素子を形成する有機EL素子形成工程と、
     前記有機EL素子を覆うように封止膜を形成する封止膜形成工程とを備える有機EL表示装置の製造方法であって、
     前記封止膜形成工程は、
     原子層堆積法で前記封止膜として無機バリア膜を形成する原子層堆積工程と、
     分子層堆積法で前記封止膜として無機有機複合バリア膜を形成する分子層堆積工程とを備えることを特徴とする有機EL表示装置の製造方法。
  2.  前記封止膜形成工程は、前記原子層堆積工程と、前記分子層堆積工程とを交互に繰り返し、該原子層堆積工程を複数回行うことを特徴とする請求項1に記載の有機EL表示装置の製造方法。
  3.  前記無機バリア膜は、10nm以上500nm以下の膜厚を有する酸化アルミニウム膜であり、
     前記無機有機複合バリア膜は、10nm以上1000nm以下の膜厚を有する有機アルミニウム膜であることを特徴とする請求項1又は2に記載の有機EL表示装置の製造方法。
  4.  前記有機アルミニウム膜は、トリメチルアルミニウムとエチレングリコールとをプラズマ状態で反応させて成膜することを特徴とする請求項3に記載の有機EL表示装置の製造方法。
  5.  前記封止膜上に前記ベース基板に対向するようにカバー基材を貼り付ける貼付工程を備えることを特徴とする請求項1~4の何れか1つに記載の有機EL表示装置の製造方法。
  6.  ベース基板と、
     前記ベース基板上に設けられた有機EL素子と、
     前記有機EL素子を覆うように設けられた封止膜とを備えた有機EL表示装置であって、
     前記封止膜は、無機バリア膜と、該無機バリア膜上に設けられた無機有機複合バリア膜とを備えていることを特徴とする有機EL表示装置。
  7.  前記無機バリア膜は、10nm以上500nm以下の膜厚を有する酸化アルミニウム膜であり、
     前記無機有機複合バリア膜は、10nm以上1000nm以下の膜厚を有する有機アルミニウム膜であることを特徴とする請求項6に記載の有機EL表示装置。
  8.  前記有機アルミニウム膜は、アルミニウム及びエチレングリコールが混合積層されて形成されていることを特徴とする請求項7に記載の有機EL表示装置。
  9.  前記封止膜上には、前記ベース基板に対向するようにカバー基材が設けられていることを特徴とする請求項6~8の何れか1つに記載の有機EL表示装置。
PCT/JP2017/005137 2016-02-18 2017-02-13 有機el表示装置の製造方法及び有機el表示装置 WO2017141870A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/073,814 US20190036077A1 (en) 2016-02-18 2017-02-13 Method for producing organic el display device, and organic el display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028752 2016-02-18
JP2016028752 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017141870A1 true WO2017141870A1 (ja) 2017-08-24

Family

ID=59625037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005137 WO2017141870A1 (ja) 2016-02-18 2017-02-13 有機el表示装置の製造方法及び有機el表示装置

Country Status (2)

Country Link
US (1) US20190036077A1 (ja)
WO (1) WO2017141870A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019223120A1 (zh) * 2018-05-21 2019-11-28 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN112114454A (zh) * 2019-06-21 2020-12-22 乐金显示有限公司 显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448006B (zh) * 2018-03-29 2021-01-22 京东方科技集团股份有限公司 封装结构、电子装置以及封装方法
CN113725381A (zh) * 2021-08-05 2021-11-30 广东志慧芯屏科技有限公司 一种显示模组及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532917A (ja) * 2007-06-22 2010-10-14 ザ・リージエンツ・オブ・ザ・ユニバーシティ・オブ・コロラド 原子層堆積法及び分子層堆積法を用いて製造された有機電子デバイス用の保護被膜
JP2011515789A (ja) * 2008-01-30 2011-05-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子構成素子を作製する方法および電子構成素子
JP2014063573A (ja) * 2012-09-20 2014-04-10 Denso Corp 有機el表示装置
WO2015030298A1 (ko) * 2013-08-30 2015-03-05 한양대학교 산학협력단 기판 구조물 및 이의 제조 방법
WO2015029608A1 (ja) * 2013-08-28 2015-03-05 シャープ株式会社 エレクトロルミネッセンス装置、及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268695B1 (en) * 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US20130333835A1 (en) * 2012-06-14 2013-12-19 E I Du Pont De Nemours And Company Process for manufacturing gas permeation barrier material and structure
DE102012214411B4 (de) * 2012-08-14 2022-05-25 Osram Oled Gmbh Vorrichtung und verfahren zum herstellen hermetisch dichter kavitäten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532917A (ja) * 2007-06-22 2010-10-14 ザ・リージエンツ・オブ・ザ・ユニバーシティ・オブ・コロラド 原子層堆積法及び分子層堆積法を用いて製造された有機電子デバイス用の保護被膜
JP2011515789A (ja) * 2008-01-30 2011-05-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子構成素子を作製する方法および電子構成素子
JP2014063573A (ja) * 2012-09-20 2014-04-10 Denso Corp 有機el表示装置
WO2015029608A1 (ja) * 2013-08-28 2015-03-05 シャープ株式会社 エレクトロルミネッセンス装置、及びその製造方法
WO2015030298A1 (ko) * 2013-08-30 2015-03-05 한양대학교 산학협력단 기판 구조물 및 이의 제조 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019223120A1 (zh) * 2018-05-21 2019-11-28 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN112114454A (zh) * 2019-06-21 2020-12-22 乐金显示有限公司 显示装置
US11785800B2 (en) 2019-06-21 2023-10-10 Lg Display Co., Ltd. Display device having cover window
CN112114454B (zh) * 2019-06-21 2024-01-16 乐金显示有限公司 显示装置

Also Published As

Publication number Publication date
US20190036077A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US10497901B2 (en) Display device
WO2018229991A1 (ja) 表示装置及びその製造方法
WO2018179035A1 (ja) 表示装置
WO2019130480A1 (ja) 表示装置及びその製造方法
WO2019026237A1 (ja) 表示装置
EP2445317A1 (en) Organic electroluminescent display device and method for producing the same
CN109644531B (zh) 有机el显示装置及其制造方法
WO2017141870A1 (ja) 有機el表示装置の製造方法及び有機el表示装置
WO2016132721A1 (ja) 有機el表示装置
WO2020044439A1 (ja) 表示装置
WO2016088355A1 (ja) 有機el表示装置
WO2017033440A1 (ja) 有機el表示装置
WO2016147645A1 (ja) 有機el表示装置
WO2016147639A1 (ja) 有機el表示装置およびその製造方法
WO2019187121A1 (ja) 表示装置
WO2019163134A1 (ja) 表示装置及びその製造方法
WO2018173177A1 (ja) 有機el表示装置及びその製造方法
WO2019138579A1 (ja) 表示装置及びその製造方法
US10497907B1 (en) Method for manufacturing display device by UV-curing organic layer of sealing film
WO2017043057A1 (ja) 有機el表示装置
WO2016166958A1 (ja) 有機el表示装置
WO2019142261A1 (ja) 表示装置及びその製造方法
WO2018179288A1 (ja) 表示装置及びその製造方法
WO2019180838A1 (ja) 表示装置及びその製造方法
US10714706B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP