WO2017141811A1 - 保護回路、および保護回路の動作方法、および半導体集積回路装置 - Google Patents

保護回路、および保護回路の動作方法、および半導体集積回路装置 Download PDF

Info

Publication number
WO2017141811A1
WO2017141811A1 PCT/JP2017/004743 JP2017004743W WO2017141811A1 WO 2017141811 A1 WO2017141811 A1 WO 2017141811A1 JP 2017004743 W JP2017004743 W JP 2017004743W WO 2017141811 A1 WO2017141811 A1 WO 2017141811A1
Authority
WO
WIPO (PCT)
Prior art keywords
nmos transistor
power supply
protection circuit
zener diode
gate
Prior art date
Application number
PCT/JP2017/004743
Other languages
English (en)
French (fr)
Inventor
直樹 ▲高▼橋
俊太郎 高橋
徹 宅間
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to EP17753069.8A priority Critical patent/EP3419170B1/en
Priority to CN201780012200.0A priority patent/CN108702147B/zh
Priority to KR1020187025253A priority patent/KR102066367B1/ko
Priority to JP2018500075A priority patent/JP6889146B2/ja
Publication of WO2017141811A1 publication Critical patent/WO2017141811A1/ja
Priority to US16/042,637 priority patent/US11128117B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/003Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to reversal of power transmission direction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • H02H11/003Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection using a field effect transistor as protecting element in one of the supply lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08104Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/042Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage comprising means to limit the absorbed power or indicate damaged over-voltage protection device

Definitions

  • the present embodiment relates to a protection circuit, an operation method of the protection circuit, and a semiconductor integrated circuit device.
  • IC integrated circuit
  • in-vehicle IC a protection function is required to prevent the IC from being destroyed even when the in-vehicle battery is reversely connected.
  • an external diode is generally used as a reverse connection measure.
  • This embodiment provides a protection circuit capable of protecting a semiconductor integrated circuit from destruction due to reverse connection of an external power supply and capable of reducing the applied voltage, and a method for operating the protection circuit.
  • This embodiment provides a protection circuit and a semiconductor integrated circuit device that can protect a semiconductor integrated circuit from electrostatic breakdown and can also protect the semiconductor integrated circuit from breakdown due to reverse connection of an external power supply.
  • a semiconductor integrated circuit connected to a power supply terminal to which a predetermined power supply voltage is supplied from an external power supply, and the external power supply connected to the semiconductor integrated circuit to the power supply terminal And a switch for preventing energization of the semiconductor integrated circuit at the time of reverse connection, and a protection circuit for protecting the semiconductor integrated circuit from destruction.
  • a method for operating a protection circuit that protects a semiconductor integrated circuit connected to a power supply terminal to which a predetermined power supply voltage is supplied from an external power supply, from being destroyed.
  • a method of operating a protection circuit is provided in which a current path between a ground terminal and the power supply terminal is interrupted by a switch when the external power supply is reversely connected to the terminal.
  • the clamp circuit unit is connected to the clamp circuit unit inserted between the power supply terminal and the ground terminal, and when the external power supply is reversely connected to the power supply terminal, There is provided a protection circuit as described above that protects against destruction.
  • the protection circuit for protecting a semiconductor integrated circuit connected between a power supply terminal to which a predetermined power supply voltage is supplied from an external power supply and a ground terminal from electrostatic breakdown. A semiconductor integrated circuit device is provided.
  • the present embodiment it is possible to provide a protection circuit capable of protecting a semiconductor integrated circuit from destruction due to reverse connection of an external power supply and capable of reducing the applied voltage, and a method for operating the protection circuit.
  • a protection circuit and a semiconductor integrated circuit device that can protect the semiconductor integrated circuit from electrostatic breakdown and can also protect the semiconductor integrated circuit from breakdown due to reverse connection of an external power supply.
  • FIG. 2 is a circuit configuration diagram illustrating a specific example of the protection circuit illustrated in FIG. 1.
  • FIG. 3 is a circuit configuration diagram showing a specific example of the high-side switch shown in FIGS. 1 and 2.
  • FIG. 1 A schematic configuration of an in-vehicle IC (integrated circuit) on which the protection circuit according to this embodiment can be mounted is expressed as shown in FIG.
  • FIG. 1 A schematic configuration of an in-vehicle IC on which a protection circuit according to a comparative example can be mounted is expressed as shown in FIG.
  • the in-vehicle IC on which the protection circuit according to this embodiment can be mounted includes a high-side switch 10 as a semiconductor integrated circuit connected to the power supply terminal 102 and an external power supply as shown in FIG. And a protection circuit 12 that prevents energization of the high-side switch 10 when a vehicle battery (not shown) is reversely connected.
  • the protection circuit 12 includes a semiconductor integrated circuit (high-side switch) 10 connected to a power supply terminal 102 to which a predetermined power supply voltage is supplied from an external power supply, and a semiconductor integrated circuit.
  • a switch MT1 that is connected to the circuit 10 and prevents energization of the semiconductor integrated circuit 10 when an external power supply is reversely connected to the power supply terminal 102 is provided to protect the semiconductor integrated circuit 10 from destruction.
  • the semiconductor integrated circuit 10 is a high-side switch (10) provided with an N-type semiconductor substrate (N-sub), and the external power source is an in-vehicle battery.
  • the high side switch 10 is provided between a vehicle battery (power supply terminal 102) and a load (corresponding to 100 in FIG. 3) connected to the output terminal 104.
  • the high-side switch 10 has, for example, a power supply voltage (applied voltage) VBB from an in-vehicle battery as an operating voltage in response to the supply of a high level signal (control signal) to the input terminal (IN) 106, and an output terminal (OUT). Output from 104.
  • the general high-side switch 10 is used for protection against static electricity (ESD: Electro Static Static Discharge), for example, by a surge current absorbing clamp circuit (described later) inserted between a power supply terminal 102 and a ground (GND) terminal.
  • ESD Electro Static Static Discharge
  • the switch 10 is protected from failure or destruction against overcurrent.
  • the high-side switch 10 may include a functional block for protecting against breakdown or destruction when an output negative voltage is detected.
  • the protection circuit 12 is a circuit for preventing the high-side switch 10 from being destroyed even when the in-vehicle battery is reversely connected to the power supply terminal 102. Although details will be described later, the protection circuit 12 is grounded at the time of reverse connection.
  • an N-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) MT1 that functions as a switch for cutting off a current path between the terminal and the power supply terminal 102 is provided.
  • the vehicle-mounted battery supplies a power supply voltage VBB of about 12V to 14V from the power supply terminal 102 at normal times.
  • the in-vehicle battery is reversely connected so that the power supply voltage VBB to be applied to the power supply terminal 102 is erroneously applied to the ground terminal side.
  • the protection circuit 12 blocks the current path from the ground terminal side to the power supply terminal side to prevent the high-side switch 10 from being destroyed.
  • the in-vehicle IC according to the comparative example is a current limiting circuit between the high side switch 10 and the ground terminal as a protection circuit for protecting the high side switch 10 as shown in FIG.
  • a resistance element 20 and a voltage clamping diode 22 are connected in parallel.
  • the circuit current flowing in the in-vehicle IC and the resistance value of the resistance element 20 (for example, about 100 ⁇ ) Accordingly, since the GND potential rises, the applied voltage range is narrow and is not suitable for lowering the applied voltage.
  • the protection circuit 12 can reduce the on-resistance of the switch by adopting the MOSFET, so that the applied voltage can be easily lowered. .
  • the in-vehicle IC on which the protection circuit 12 according to the present embodiment can be mounted employs a so-called N-sub that employs a semiconductor substrate (N-sub) whose conductivity type is N-type. Formed by the process.
  • FIG. 2 shows a configuration example of the protection circuit 12 according to the present embodiment, which can be applied to an in-vehicle IC.
  • the protection circuit 12 includes N-channel MOSFETs (MOS transistors) MT1, MT2, MT3, and MT4, and a zener diode ZD1 for withstand voltage clamping.
  • MOS transistors MT1, MT2, and MT3 may constitute an output negative voltage protection (hereinafter referred to as NVP (Negative Voltage Protection)) circuit 14.
  • NVP Negative Voltage Protection
  • the MOS transistors MT1 and MT2 are for high voltage (HV), and both are constituted by enhancement type N-channel MOSFETs (E-NMOS transistors).
  • the MOS transistor MT3 is for low voltage (LV)
  • the MOS transistor MT4 is for HV, both of which are constituted by a depletion type N-channel MOSFET (D-NMOS transistor).
  • the D-NMOS transistor MT4 may be replaced by a resistance element (resistor).
  • the protection circuit 12 includes a first D-NMOS transistor MT4 having a drain (D) connected to the power supply terminal 102, and a gate (G) and a source (S) of the first D-NMOS transistor MT4.
  • a second E-NMOS transistor (switch) MT1 having a drain connected to the ground terminal and a source connected to the ground connection terminal GND_REF of the high-side switch 10, and a gate of the first D-NMOS transistor MT4
  • a third E-NMOS transistor MT2 having a gate connected to the source, a drain connected to the ground terminal, and a drain connected to the back gate (B) which is the body terminal of the second E-NMOS transistor MT1;
  • the gate and source of the second E-NMOS transistor MT1 are backed up.
  • a fourth D-NMOS transistor MT3 connected to the gate, a drain connected to the source of the second E-NMOS transistor MT1, an anode connected to the source of the second E-NMOS transistor MT1, and a cathode connected to the first And a Zener diode ZD1 connected to the gate and source of one D-NMOS transistor MT4.
  • the switch MT1 has a gate connected to the gate and source of the first NMOS transistor MT4 whose drain is connected to the power supply terminal 102, a drain connected to the ground terminal, and a source connected to the semiconductor integrated circuit (high-side switch )
  • a second NMOS transistor MT1 connected to the transistor 10.
  • the back gate (B) of the second NMOS transistor MT1 has a gate connected to the gate and source of the first NMOS transistor MT4 and a third NMOS transistor MT2 whose source is connected to the ground terminal.
  • the drain is connected to the gate and source of the fourth NMOS transistor MT3 whose drain is connected to the source of the second NMOS transistor MT1.
  • the E-NMOS transistor MT1 is turned on / off in accordance with the state of the vehicle-mounted battery, the gate voltage is pulled up to the power supply voltage VBB.
  • the gate voltage of the E-NMOS transistor MT1 becomes equal to or higher than a predetermined voltage (drain voltage + Vth), and the E-NMOS transistor MT2 is turned on. To do.
  • the back gate of the E-NMOS transistor MT1 becomes the same potential as the drain, and the E-NMOS transistor MT1 is turned on (the source and drain are short-circuited).
  • the gate voltage of the E-NMOS transistor MT1 becomes lower than a predetermined voltage, and the E-NMOS transistor MT2 is turned off. Then, the D-NMOS transistor MT3 causes the back gate of the E-NMOS transistor MT1 to have the same potential as the source, so that the E-NMOS transistor MT1 is turned off.
  • the E-NMOS transistor MT2 or D-NMOS connected to the back gate of the E-NMOS transistor MT1 in the NVP circuit 14 in accordance with the connection state of the on-vehicle battery.
  • One of the transistors MT3 is selectively turned on.
  • the D-NMOS transistor MT3 is selectively turned on and the E-NMOS transistor MT1 is turned off.
  • the current path from the ground terminal (drain) side to the power supply terminal (source) 102 side is cut off, and energization to the high-side switch 10 is blocked.
  • FIG. 3 shows an example of the configuration of the high-side switch 10.
  • the high-side switch 10 includes a PMOS transistor (first PMOS transistor) 108, a Zener diode 110, an OSC (Oscillator) 112, a charge pump (CP) 114, and gate drive circuits (DRV) 116 and 120.
  • PMOS transistor first PMOS transistor
  • Zener diode 110 an OSC (Oscillator) 112
  • CP charge pump
  • DDRV gate drive circuits
  • the Zener diode 110, OSC (oscillation circuit) 112, CP (boost circuit) 114, and DRV 116 may constitute the drive control unit 140 of the NMOS transistor 118.
  • the high side switch 10 may include a power supply terminal (VBB) 102, an output terminal (OUT) 104, and an input terminal (IN) 106.
  • the fifth NMOS transistor 118 is connected between the power supply terminal 102 and the output terminal 104 to which a load to which an operating voltage is to be supplied is connected.
  • the drive control unit 140 is connected to the gate of the fifth NMOS transistor 118.
  • the sixth NMOS transistor 122 is provided between the drive control unit 140 and the input terminal 106 to which a control signal is input, and the source is connected to the protection circuit (switch) 12 via the ground connection terminal GND_REF.
  • the negative voltage control unit 126 is provided between the sixth NMOS transistor 122 and the drive control unit 140.
  • the first PMOS transistor MT4 is provided between the drive control unit 140 and the power supply terminal 102, and a control signal is input to the gate.
  • the clamp circuit 130 is provided between the power supply terminal 102 and the gate of the fifth NMOS transistor 118.
  • a predetermined power supply voltage VBB (for example, about 14 V) is applied to the power supply terminal 102 as an applied voltage from a vehicle-mounted battery (not shown) during normal operation.
  • the power supply terminal 102 is connected to the source of the PMOS transistor 108 and the drain of the NMOS transistor 118.
  • a high-level control signal for setting the high-side switch 10 to an enable state is supplied to the input terminal 106 from an external control circuit (not shown).
  • the external control circuit may be configured by, for example, an ECU (Engine Control Unit).
  • the DRV 120 is connected to the gate of the PMOS transistor 108 and the gate of the MOS transistor 122.
  • the source of the NMOS transistor 122 is connected to the protection circuit 12 via the ground connection terminal GND_REF, and the drain is connected to the negative voltage control unit 126.
  • the NMOS transistor 122 includes a body diode 124 between the source and the drain.
  • the protection circuit 12 By connecting the protection circuit 12 to the ground connection terminal GND_REF, the ground of the high-side switch 10 becomes the ground of the protection circuit 12.
  • the DRV 120 supplies a high level output voltage to the gate of the NMOS transistor 122 and supplies a low level output voltage to the gate of the PMOS transistor 108 when the signal of the input terminal 106 is high level.
  • the DRV 120 supplies a low-level output voltage to the gate of the NMOS transistor 122 and supplies a high-level output voltage to the gate of the PMOS transistor 108 when the signal at the input terminal 106 is low level.
  • the gate of the PMOS transistor 108 is at a low level, the PMOS transistor 108 is turned on, the gate of the NMOS transistor 122 is at a high level, and the NMOS transistor 122 is also turned on.
  • the gate of the PMOS transistor 108 is at high level, the PMOS transistor 108 is off, the gate of the NMOS transistor 122 is at low level, and the NMOS transistor 122 is also off.
  • the PMOS transistor 108 is turned on and the NMOS transistor 122 is also turned on.
  • the PMOS transistor 108 When the signal at the input terminal 106 of the DRV 120 is at a low level, the PMOS transistor 108 is turned off and the NMOS transistor 122 is also turned off.
  • the negative voltage control unit 126 is a functional block for protecting the high-side switch 10 from destruction when an output negative voltage is detected.
  • the negative voltage control unit 126 includes MOS transistors MT1, MT2, and MT3. It may have the same configuration as the NVP circuit 14.
  • a Zener diode 110 Between the negative voltage control unit 126 and the drain of the PMOS transistor 108, a Zener diode 110, an OSC 112, and a CP 114 constituting the drive control unit 140 are connected in parallel. Further, the DR 114 of the drive control unit 140 is connected to the CP 114, and the gate and source of the NMOS transistor 118 and the output terminal 104 are connected to the DRV 116. That is, the DRV (drive circuit) 116 is connected between the OSC (boost circuit) 112 and the gate of the fifth NMOS transistor 118 and the output terminal 104. The DRV 116 outputs the input as it is without inverting the input.
  • the drive control unit 140 supplies the voltage boosted by the CP 114 to the DRV 116 based on the oscillation output of the OSC 112, thereby turning on the NMOS transistor 118.
  • the oscillation output of the OSC 112 and the degree of boosting of the CP 114 may be determined by the Zener diode 110.
  • a clamp circuit 130 is connected between the gate of the NMOS transistor 118 and the power supply terminal 102.
  • the clamp circuit 130 is an ESD protection device for absorbing a surge current. Further, the clamp circuit 130 temporarily clamps the gate voltage when the NMOS transistor 118 is driven, thereby preventing the operating voltage supplied from the output terminal 104 from drastically decreasing (for example, about ⁇ 30V). ing.
  • the load 100 is connected to the output terminal 104.
  • electronic parts such as various in-vehicle accessories that operate by supplying an operating voltage corresponding to the power supply voltage VBB are assumed.
  • the negative voltage control unit 126 is provided, so that the high side switch 10 is destroyed even when an output negative voltage is detected except when the vehicle battery is reversely connected. Can be protected from.
  • FIG. 4 is a diagram schematically showing a part of the element structure in the protection circuit 12 according to the embodiment, and is a diagram for explaining the operation of the protection circuit 12.
  • FIG. At the time of connection, (b) corresponds to the case of reverse connection of the vehicle battery.
  • FIGS. 4A and 4B only the cross-sectional structure of the E-NMOS transistor MT2 is illustrated for convenience.
  • the operation of the protection circuit 12 is an operation for protecting the semiconductor integrated circuit 10 connected to the power supply terminal 102 to which a predetermined power supply voltage is supplied from an external power supply from being destroyed.
  • the switch MT1 is a MOS transistor (MT1), and the MOS transistor (MT1) is turned off when an external power supply is reversely connected to the power supply terminal 102 to prevent the semiconductor integrated circuit 10 from being energized.
  • the switch MT1 has a gate connected to the gate and source of a depletion type first NMOS transistor MT4 whose drain is connected to the power supply terminal 102, a drain connected to the ground terminal, and a source connected to the semiconductor integrated circuit 10.
  • An enhanced second NMOS transistor may be used.
  • the back gate of the second NMOS transistor MT1 is connected to the gate and source of the first NMOS transistor MT4, and the enhancement type third NMOS transistor MT2 whose source is connected to the ground terminal.
  • the third NMOS transistor MT2 and the fourth NMOS transistor MT3 connected to the back gate of the second NMOS transistor MT1 are connected to the power supply terminal 102 from the third NMOS transistor MT2 when the external power supply is reversely connected.
  • the protection circuit 12 includes an N + type semiconductor substrate 30, an N type semiconductor layer 32 formed on the N + type semiconductor substrate 30, and a high voltage P formed on the N type semiconductor layer 32.
  • a gate electrode 40G is provided on the P-type well region 34 via a gate oxide film. The gate electrode 40G is connected to the gate and source of the D-NMOS transistor MT4.
  • N + -type diffusion regions 36S and 42D and a P + -type diffusion region 46B are formed on the surface of the P-type well region 34.
  • the N + type diffusion region 36S is connected to the ground terminal and the drain of the E-NMOS transistor MT1 via the source electrode 38S.
  • the N + type diffusion region 42D is connected to the source of the E-NMOS transistor MT1 via the drain electrode 44D and the D-NMOS transistor MT3 (not shown).
  • the P + -type diffusion region 46B is connected to the back gate of the E-NMOS transistor MT1 through the back gate electrode 48B.
  • a back electrode 50 to which the power supply voltage VBB is applied is provided.
  • the protection circuit 12 having such a configuration can be formed on an N-type semiconductor substrate (N-sub) on which the high-side switch 10 is formed. That is, the first NMOS transistor MT4, the second NMOS transistor MT1, the third NMOS transistor MT2, and the fourth NMOS transistor MT3 can be formed on an N-type semiconductor substrate (N-sub).
  • the N + type diffusion region 36S and the P + type diffusion region 46B are connected via the back gate of the E-NMOS transistor MT1 as the E-NMOS transistor MT2 is turned on. Connected to the ground terminal. As a result, the E-NMOS transistor MT1 is turned on and the source and the drain are short-circuited, whereby the high-side switch 10 can be energized by the E-NMOS transistor MT1.
  • the power supply voltage VBB is applied to the N + type diffusion region 36S as shown in FIG. MT2 is turned off, and accordingly, the back gate of the E-NMOS transistor MT1 is connected to the source via the D-NMOS transistor MT3.
  • the current path for energizing the high-side switch 10 is interrupted by turning off the E-NMOS transistor MT1.
  • the high-side switch 10 can be prevented from being destroyed even when the vehicle-mounted battery is reversely connected.
  • the E-NMOS transistor MT2 normally connected to the back gate of the E-NMOS transistor MT1 is switched to the D-NMOS transistor MT3 when the battery is reversely connected.
  • the E-NMOS transistor MT1 can be turned off to cut off the current path from the ground terminal side to the power supply terminal 102 side. Therefore, even when a predetermined power supply voltage VBB is applied to the terminal G102 from the vehicle-mounted battery, the high-side switch 10 can be prevented from being destroyed.
  • the E-NMOS transistor MT1 can be turned on / off according to the selection of the back gate (selection of the NMOS transistors MT2 and MT3), the on-resistance of the switch can be reduced.
  • the on-resistance can be reduced as compared with the case where a resistance element is used, so the setting of the applied voltage range is expanded. become able to. Therefore, the applied voltage can be easily lowered, and for example, a microcomputer having an operating voltage of 5V (hereinafter referred to as a microcomputer) can be switched to a 3.3V microcomputer.
  • the protection circuit according to the present embodiment is not limited to an in-vehicle IC, and can be used for all ICs to which an external power source is connected.
  • various storage batteries represented by lithium batteries are used as an external power source. It can be widely applied to various fields to be used.
  • a protection circuit capable of protecting a semiconductor integrated circuit from destruction due to reverse connection of an external power supply and a voltage applied to the circuit can be reduced, and a method for operating the protection circuit is provided. it can.
  • the ESD protection device 130 is inserted, for example, between the power supply terminal 102 and the ground terminal, and an ESD clamp circuit as an original clamp circuit for protecting the high-side switch 10 from electrostatic breakdown.
  • the protection circuit unit 88 may be the protection circuit 12 illustrated in FIG. 1A, FIG. 2, FIG. 4, etc.
  • the protection circuit 12 includes, for example, a power supply terminal 102, a ground terminal, and the like.
  • the ESD clamp circuit unit 131 is connected to the power supply terminal 102 so that the ESD clamp circuit unit 131 is protected from destruction (as a protection circuit unit 88) when the external power supply is reversely connected to the power supply terminal 102. .
  • the electrostatic protection device 130 includes a semiconductor integrated circuit (high-side switch) 10 (FIG. 1A) connected between a power supply terminal 102 to which a predetermined power supply voltage is supplied from an external power supply and a ground terminal. 3, FIG. 4), a clamp circuit portion 131 inserted between the power supply terminal 102 and the ground terminal, and connected to the clamp circuit portion 131 so that the external power supply to the power supply terminal 102 is reversely connected.
  • a protection circuit unit 88 that protects the clamp circuit unit 131 from destruction, and protects the semiconductor integrated circuit 10 from electrostatic breakdown.
  • the semiconductor integrated circuit 10 is a high-side switch (10) including an N-type semiconductor substrate (N-sub).
  • the ESD clamp circuit unit 131 is provided in the high side switch 10.
  • the ESD clamp circuit unit 131 absorbs a surge current.
  • the ESD clamp circuit unit 131 includes an NMOS transistor 84, first to ninth Zener diodes 80 1 , 80 2 , 80 3, ... 80 9 and a tenth Zener diode 81 connected in series, and a resistance element. 82 and eleventh and twelfth Zener diodes 86 1 and 86 2 connected in series. That is, the ESD clamp circuit unit 131 includes an NMOS transistor 84 whose drain is connected to the power supply terminal 102, a first Zener diode 80 1 whose cathode is connected to the drain of the NMOS transistor 84, and a first Zener diode 80 1.
  • a second Zener diode 80 2 having a cathode connected to the anode thereof, a third Zener diode 80 3 having a cathode connected to the anode of the second Zener diode 80 2, and an anode of the third Zener diode 80 3 in a fourth Zener diode 80 4 having a cathode connected, a fifth Zener diode 80 5 having a cathode connected to the anode of the fourth Zener diode 80 4, the cathode to the anode of the fifth Zener diode 80 5
  • a sixth Zener diode 80 6 connected to Sixth and seventh Zener diode 80 7 of the cathode to the anode of the Zener diode 80 6 is connected to a Zener diode 80 8 eighth having a cathode connected to the anode of a seventh Zener diode 80 7, 8 a ninth zener diode 80 9 Zener diode 80 8 cathode to the anode
  • the first to ninth Zener diodes 80 1 , 80 2 , 80 3, ... 80 9 are in the same direction, and the tenth Zener diode 81 is the first to ninth Zener diodes 80 1.
  • 80 2 , 80 3, ... 80 9 are connected in different directions.
  • the anode of the ninth Zener diode 809 and the anode of the tenth Zener diode 81 are connected, and the power supply terminal 102 is connected to the cathode of the first Zener diode 801, so that the tenth Zener
  • the gate of the NMOS transistor 84 (G) is connected to the cathode of the diode 81.
  • the power supply terminal 102 is connected to the drain (D) of the NMOS transistor 84, and the protection circuit unit 88 is connected in series to the source (S).
  • a resistance element 82 and eleventh and twelfth Zener diodes 86 1 and 86 2 are connected between the gate and source of the NMOS transistor 84.
  • the eleventh and twelfth Zener diodes 86 1 and 86 2 are connected in the same direction, with the cathode of the eleventh Zener diode 86 1 being the gate of the NMOS transistor 84 and the anode of the twelfth Zener diode 86 2 being the anode.
  • Each is connected to the source of the NMOS transistor 84.
  • the protection circuit unit 88 has a configuration in which a plurality of (for example, three) Zener diodes 88 1 , 88 2, and 88 3 are connected in series.
  • the Zener diodes 88 1 , 88 2, and 88 3 may be configured by, for example, bipolar transistors (npn transistors) in which the base (B) and the collector (C) are connected. That is, the protection circuit unit 88 may be configured by a series stage of a plurality of bipolar transistors in which a plurality of Zener diodes 88 1 , 88 2, and 88 3 are short-circuited at the base and collector.
  • the protection circuit unit 88 is set so that the reverse breakdown voltage by the Zener diodes 88 1 , 88 2, and 88 3 is set to be equal to or higher than the power supply voltage VBB (for example, about 24 V) of the vehicle battery (external power supply).
  • VBB the power supply voltage of the vehicle battery (external power supply).
  • the NMOS transistor 84 can be prevented from being destroyed when the battery for battery is reversely connected.
  • the protection circuit unit 88 in which the Zener diodes 88 1 , 88 2, and 88 3 are connected in series so that the reverse breakdown voltage is equal to or higher than the battery voltage (VBB) in series with the ESD clamp circuit unit 131,
  • the body diode (not shown) of the NMOS transistor 84 existing from the terminal side toward the power supply terminal 102 side can be protected from destruction due to reverse connection of the in-vehicle battery.
  • the protection circuit unit 88 can be formed on an N-type semiconductor substrate (N-sub).
  • Zener diode 80 1, 80 2, 80 3 ... 80 9 - 81 - 86 1 - 86 2 was configured from the npn transistor can be protected from breakdown due to the reverse connection of the vehicle battery.
  • the electrostatic protection device 130 can not only protect the high-side switch 10 from electrostatic breakdown by a relatively simple configuration in which the protection circuit unit 88 is added to the existing clamp circuit, but also by reverse connection of the in-vehicle battery.
  • the high side switch 10 can be protected from destruction.
  • the circuit configuration of the protection circuit unit 88 is represented as shown in FIG. 6A, and the schematic cross-sectional structure of the protection circuit unit 88 is represented as shown in FIG.
  • the protection circuit unit 88 forms Zener diodes 88 1 , 88 2, and 88 3 together with, for example, the ESD clamp circuit unit 131 on the N + type semiconductor substrate 30 on which the protection circuit 12 is formed. It is also good to include.
  • the Zener diodes 88 1 , 88 2, and 88 3 of the protection circuit unit 88 are formed on the N-type semiconductor layer 32 formed on the N + -type semiconductor substrate 30 and on the surface portion of the N-type semiconductor layer 32, respectively. have been a P-type well region 52, the N + -type diffusion region 54E and the P + -type diffusion region 54B formed in a surface portion of the P-type well region 52, formed on the surface portion of the N-type semiconductor layer 32 N + And a mold diffusion region 54C.
  • the N + -type diffusion region 54C is taken out via the collector electrode 56C and becomes the collector of each Zener diode 88 1 , 88 2 , 88 3 .
  • the N + -type diffusion regions 54E are taken out through the emitter electrode 56E and become the emitters of the respective Zener diodes 88 1 , 88 2, and 88 3 .
  • the P + -type diffusion regions 54B are respectively taken out via the base electrodes 56B and become the bases of the Zener diodes 88 1 , 88 2, and 88 3 .
  • the base electrode 56B and the collector electrode 56C are connected to each other via the connection electrode 56T.
  • the base and collector of the Zener diode 88 1 is connected to the ESD clamp circuit 131, the emitter of the Zener diode 88 1 is connected to the base and collector of the Zener diode 88 2, an emitter of the Zener diode 88 2, Zener is connected to the base and collector of the diode 88 3, the emitter of the Zener diode 88 3, for example, is connected to the ground terminal, N + -type semiconductor substrate 30 protective circuit section 88 can be mounted on is formed.
  • the circuit configuration of the NMOS transistor 84 is expressed as shown in FIG. 7A, and the schematic cross-sectional structure of the NMOS transistor 84 is shown in FIG. It is expressed as shown in (b).
  • the NMOS transistor 84 may be formed on the N + type semiconductor substrate 30 on which the protection circuit 12 is formed, for example, as a part of the ESD clamp circuit unit 131.
  • the NMOS transistor 84 includes an N-type semiconductor layer 32 formed on the N + -type semiconductor substrate 30, a P-type well region 52 formed on the surface of the N-type semiconductor layer 32, and a P-type well region 52.
  • the gate electrode 64G is connected to the source of the NMOS transistor 84, the cathode of the tenth Zener diode 81, and the like.
  • N + -type diffusion region 60S is connected to protection circuit unit 88 via source electrode 62S.
  • N + -type diffusion region 60D is connected to power supply terminal 102 via drain electrode 62D.
  • P + -type diffusion region 60B is connected to source electrode 62S through back gate electrode 62B.
  • the high-side switch 10 can be prevented from being broken even when the in-vehicle battery is reversely connected.
  • the protection circuit unit 88 set so that the reverse withstand voltage is equal to or higher than the power supply voltage VBB of the vehicle-mounted battery is connected in series to the ESD clamp circuit unit 131.
  • the high-side switch 10 can be protected from damage due to static electricity
  • the NMOS transistor 84 which is an ESD protection element for protecting the static electricity, can be protected from being destroyed when the on-vehicle battery is reversely connected.
  • the protection circuit portion that constitutes a part of the electrostatic protection device according to this embodiment can be applied to various ICs that require ESD protection between the power supply terminal and the ground terminal.
  • it can be used not only for in-vehicle ICs but also for all ICs to which an external power supply is connected, and particularly widely applied to various fields in which various storage batteries represented by lithium batteries are used as external power supplies. Is possible.
  • a semiconductor integrated circuit device (not shown) according to the present embodiment includes a semiconductor integrated circuit (high-side switch) 10 (connected between a power supply terminal 102 to which a predetermined power supply voltage is supplied from an external power supply and a ground terminal. 1 (a), FIG. 3, and FIG. 4) and an electrostatic protection device 130 (see FIGS. 5 to 6) that protects the semiconductor integrated circuit 10 from electrostatic breakdown.
  • the electrostatic protection device 130 is connected to the ESD clamp circuit unit 131 and the ESD clamp circuit unit 131 inserted between the power supply terminal 102 and the ground terminal.
  • a protection circuit unit 88 that protects the circuit unit 131 from destruction.
  • the protection circuit unit 88 may be the protection circuit 12 illustrated in FIG. 1A, FIG. 2, FIG. 4, and the like. In that case, the semiconductor integrated circuit device according to the present embodiment (not shown).
  • the semiconductor integrated circuit 10 is a high-side switch (10) including an N-type semiconductor substrate (N-sub).
  • the ESD clamp circuit unit 131 is provided in the high side switch 10.
  • the ESD clamp circuit unit 131 absorbs a surge current.
  • the ESD clamp circuit 131 includes an NMOS transistor 84 having a drain connected to the power supply terminal 102, a first Zener diode 80 1 having a cathode connected to the drain of the NMOS transistor 84, and a first Zener diode 80 1.
  • a second Zener diode 80 2 having a cathode connected to the anode thereof, a third Zener diode 80 3 having a cathode connected to the anode of the second Zener diode 80 2, and an anode of the third Zener diode 80 3 in a fourth Zener diode 80 4 having a cathode connected, a fifth Zener diode 80 5 having a cathode connected to the anode of the fourth Zener diode 80 4, the cathode to the anode of the fifth Zener diode 80 5 6 and Zener diode 80 6, 6 but connected Zener seventh Zener diode 80 7 of the diode 80 6 cathode to the anode of which is connected, with the eighth Zener diode 80 8 having a cathode connected to the anode of a seventh Zener diode 80 7, 8 Zener of A ninth Zener diode 80 9 whose cathode is connected to the anode of the diode 80
  • Zener diode 80 10 resistance element 82 connected between the gate and source of NMOS transistor 84, eleventh Zener diode 80 11 whose cathode is connected to the gate of NMOS transistor 84, and eleventh Zener diode 80 11 the cathode is connected to the anode of the And a second Zener diode 80 12.
  • the protection circuit unit 88 is connected in series to the source (S) of the NMOS transistor 84.
  • the protection circuit unit 88 has a configuration in which a plurality of (for example, three) Zener diodes 88 1 , 88 2, and 88 3 are connected in series. Further, the protection circuit unit 88 is set so that the reverse breakdown voltage by the plurality of Zener diodes 88 1 , 88 2, and 88 3 is equal to or higher than the power supply voltage VBB (for example, about 24 V) of the vehicle battery (external power supply). .
  • VBB power supply voltage
  • the protection circuit unit 88 is constituted by a series stage of a plurality of bipolar transistors in which a plurality of Zener diodes 88 1 , 88 2, and 88 3 are short-circuited at the base and collector.
  • protection circuit unit 88 can be formed on an N-type semiconductor substrate (N-sub).
  • the semiconductor integrated circuit can be protected from electrostatic breakdown, and the semiconductor integrated circuit can be protected from breakdown due to reverse connection of an external power supply, and the electrostatic protection apparatus is provided.
  • a semiconductor integrated circuit can be provided.
  • the protection circuit according to this embodiment can be applied to an in-vehicle IC. Further, such a protection circuit can be used other than an in-vehicle IC, and in particular, can be applied to various semiconductor integrated circuits having a possibility that an external power supply is reversely connected.
  • the electrostatic protection device according to this embodiment can be applied to an in-vehicle IC. Further, such an electrostatic protection device can be used other than an in-vehicle IC, and in particular, can be applied to various semiconductor integrated circuits having a possibility that an external power source is reversely connected.
  • PMOS transistor 110 Zener diode 112 ... OSC (oscillation circuit) 114 ... Charge pump (boost circuit) 116, 120, gate drive 118, 122, NMOS transistor 124, body diode 126, negative voltage control unit 130, clamp circuit 131, ESD clamp circuit unit 140, drive control unit VBB, power supply voltage (applied voltage) MT1... E-N channel type MOSFET (second NMOS transistor, switch that cuts off the current path) MT2 ... E-N channel type MOSFET (third NMOS transistor) MT3 ... DN channel type MOSFET (fourth NMOS transistor) MT4... DN channel type MOSFET (first NMOS transistor) ZD1 ... Zener diode G102 ... terminal GND_REF ... ground connection terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

保護回路(12)は、車載用バッテリから所定の電源電圧VBBが供給される電源端子(102)に接続されたハイサイドスイッチ(10)と、ハイサイドスイッチ(10)に接続されて、電源端子(102)への車載用バッテリの逆接続時に、ハイサイドスイッチ(10)への通電を阻止するNMOSトランジスタMT1とを備え、外部電源の逆接続による破壊から半導体集積回路を保護する。 半導体集積回路装置は、外部電源から所定の電源電圧が供給される電源端子(102)とグランド端子との間に接続される半導体集積回路を静電気破壊から保護する上記保護回路を有する。保護回路は、電源端子(102)とグランド端子との間に挿入されたクランプ回路部(131)に接続されて、電源端子(102)への外部電源の逆接続時に、クランプ回路部(131)を破壊から保護する。

Description

保護回路、および保護回路の動作方法、および半導体集積回路装置
 本実施形態は、保護回路、および保護回路の動作方法、および半導体集積回路装置に関する。
 集積回路(IC:Integrated Circuits)、特に車載用ICの場合には、車載用バッテリが逆接続された際にもICが破壊されないようにするための保護機能が要求される。
 通常、逆接続対策としては、外付けによるダイオードの挿入が一般的である。
特開2012-90108号公報
 本実施の形態は、外部電源の逆接続による破壊から半導体集積回路を保護できると共に、印加電圧の低電圧化が可能な保護回路、および保護回路の動作方法を提供する。
 本実施の形態は、半導体集積回路を静電気破壊から保護できると共に、外部電源の逆接続による破壊からも半導体集積回路を保護できる保護回路および半導体集積回路装置を提供する。
 本実施の形態の一態様によれば、外部電源から所定の電源電圧が供給される電源端子に接続された半導体集積回路と、前記半導体集積回路に接続されて、前記電源端子への前記外部電源の逆接続時に、前記半導体集積回路への通電を阻止するスイッチとを備え、前記半導体集積回路を破壊から保護する保護回路が提供される。
 また、本実施の形態の他の態様によれば、外部電源から所定の電源電圧が供給される電源端子に接続される半導体集積回路を破壊から保護する保護回路の動作方法であって、前記電源端子への前記外部電源の逆接続時に、スイッチによってグランド端子と前記電源端子との間の電流経路を遮断する保護回路の動作方法が提供される。
 本実施の形態の一態様によれば、前記電源端子とグランド端子との間に挿入されたクランプ回路部に接続されて、前記電源端子への前記外部電源の逆接続時に、前記クランプ回路部を破壊から保護する上記保護回路が提供される。また、本実施の形態の他の態様によれば、外部電源から所定の電源電圧が供給される電源端子とグランド端子との間に接続される半導体集積回路を静電気破壊から保護する該保護回路を有する半導体集積回路装置が提供される。
 本実施の形態によれば、外部電源の逆接続による破壊から半導体集積回路を保護できると共に、印加電圧の低電圧化が可能な保護回路、および保護回路の動作方法を提供することができる。
 本実施の形態によれば、半導体集積回路を静電気破壊から保護できると共に、外部電源の逆接続による破壊からも半導体集積回路を保護できる保護回路および半導体集積回路装置を提供することができる。
(a)本実施の形態に係る保護回路を搭載可能な車載用ICの概略構成図、(b)比較例に係る保護回路を搭載可能な車載用ICの概略構成図。 図1に示した保護回路の具体例を示す回路構成図。 図1・図2に示したハイサイドスイッチの具体例を示す回路構成図。 本実施の形態に係る保護回路における素子構造の一部を例示すると共に、動作を説明するために示す図であって、(a)バッテリ通常接続時を示す模式的構成図、(b)バッテリ逆接続時を示す模式的構成図。 本実施の形態に係る静電気保護装置の具体例を示す概略構成図。 本実施の形態に係る静電気保護装置における保護回路部の具体例を示す図であって、(a)回路構成図、(b)模式的断面構造図。 本実施の形態に係る静電気保護装置におけるクランプ回路部が備えるNMOSトランジスタの具体例を示す図であって、(a)回路構成図、(b)模式的断面構造図。
 次に、図面を参照して、実施の形態について説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率などは現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 なお、以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、この実施の形態は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。この実施の形態は、特許請求の範囲内において、種々の変更を加えることができる。
 以下の説明においては、集積回路を車載用ICとして適用した場合について説明するが、あくまでも一例である。
 なお、電源端子に所定の電源電圧が与えられるように正常に車載用バッテリが接続される場合を通常時(または、通常接続時)とし、これとは逆に車載用バッテリが接続された場合を逆接続時と定義する。
 [保護回路の構成]
 本実施の形態に係る保護回路を搭載可能な車載用IC(集積回路)の概略構成は、図1(a)に示すように表される。なお、比較例に係る保護回路を搭載可能な車載用ICの概略構成は、図1(b)に示すように表される。
 すなわち、本実施の形態に係る保護回路を搭載可能な車載用ICは、図1(a)に示すように、電源端子102に接続される半導体集積回路としてのハイサイドスイッチ10と、外部電源である車載用バッテリ(図示省略)の逆接続時に、ハイサイドスイッチ10への通電を阻止する保護回路12とを備える。
 本実施の形態に係る保護回路12は、図2にも示すように、外部電源から所定の電源電圧が供給される電源端子102に接続された半導体集積回路(ハイサイドスイッチ)10と、半導体集積回路10に接続されて、電源端子102への外部電源の逆接続時に、半導体集積回路10への通電を阻止するスイッチMT1とを備え、半導体集積回路10を破壊から保護する。ここで、半導体集積回路10は、N型半導体基板(N-sub)を備えたハイサイドスイッチ(10)であり、外部電源は、車載用バッテリである。
 ハイサイドスイッチ10は、車載用バッテリ(電源端子102)と出力端子104につながる負荷(図3の100に相当)との間に設けられる。ハイサイドスイッチ10は、例えば、入力端子(IN)106へのハイレベル信号(制御信号)の供給に伴って、車載用バッテリからの電源電圧(印加電圧)VBBを動作電圧として出力端子(OUT)104より出力する。
 一般的なハイサイドスイッチ10は、静電気(ESD:Electro Static Discharge)保護として、例えば、電源端子102とグランド(GND)端子との間に挿入されるサージ電流吸収用のクランプ回路(後述する)によって、過電流に対する故障や破壊からスイッチ10を保護する。なお、ハイサイドスイッチ10としては、出力負電圧を検出した際に故障や破壊から保護するための機能ブロックなどを備えていても良い。
 保護回路12は、電源端子102に対して車載用バッテリが逆接続された際にもハイサイドスイッチ10が破壊されないようにするための回路であって、詳細については後述するが、逆接続時にグランド端子と電源端子102との間の電流経路を遮断するスイッチとして機能する、例えばNチャネル型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)MT1を備える。
 車載用バッテリは、通常時に、12V~14V程度の電源電圧VBBを電源端子102より供給する。
 すなわち、本実施の形態に係る保護回路12を搭載可能な車載用ICの場合、電源端子102に印加されるべき電源電圧VBBが誤ってグランド端子側に印加されるように車載用バッテリが逆接続された際には、保護回路12によってグランド端子側から電源端子側への電流経路を遮断し、ハイサイドスイッチ10が破壊されるのを防止するようになっている。
 これに対し、比較例に係る車載用ICは、図1(b)に示すように、ハイサイドスイッチ10を保護する保護回路として、ハイサイドスイッチ10とグランド端子との間に、電流制限用の抵抗素子20と電圧クランプ用のダイオード22とが並列に接続されている。
 比較例に係る車載用ICの場合、車載用バッテリの逆接続による破壊からハイサイドスイッチ10を保護できるものの、車載用IC内を流れる回路電流や抵抗素子20の抵抗値(例えば、100Ω程度)に応じてGND電位が上昇するため、印加電圧範囲が狭く、印加電圧の低電圧化には不向きである。
 本実施の形態に係る保護回路12を搭載可能な車載用ICによれば、保護回路12は、MOSFETの採用によりスイッチのオン抵抗を低減できるので、印加電圧の低電圧化が容易に可能となる。
 なお、本実施の形態に係る保護回路12を搭載可能な車載用IC、特に、ハイサイドスイッチ10は、導電型がN型とされた半導体基板(N-sub)を採用した、いわゆるN-subプロセスによって形成される。
 次に、車載用ICの具体的構成について、より詳細に説明する。
 図2は、車載用ICに適用可能な、本実施の形態に係る保護回路12の一構成例を示すものである。図2に示すように、保護回路12は、Nチャネル型MOSFET(MOSトランジスタ)MT1・MT2・MT3・MT4と、耐圧クランプ用のツェナーダイオードZD1とを備える。保護回路12において、例えば、MOSトランジスタMT1・MT2・MT3は、出力負電圧保護(以下、NVP(Negative Voltage Protection))回路14を構成しても良い。
 MOSトランジスタMT1・MT2はハイボルテージ(HV)用であって、いずれもエンハンスメント型のNチャネル型MOSFET(E-NMOSトランジスタ)によって構成される。MOSトランジスタMT3はローボルテージ(LV)用、MOSトランジスタMT4はHV用であって、いずれもデプレッション型のNチャネル型MOSFET(D-NMOSトランジスタ)によって構成される。
 なお、D-NMOSトランジスタMT4は、抵抗素子(抵抗体)によって代用するようにしても良い。
 すなわち、保護回路12は、電源端子102にドレイン(D)が接続された第1のD-NMOSトランジスタMT4と、第1のD-NMOSトランジスタMT4のゲート(G)およびソース(S)にゲートが接続され、ドレインがグランド端子に接続され、ソースがハイサイドスイッチ10のグランド接続用端子GND_REFに接続された第2のE-NMOSトランジスタ(スイッチ)MT1と、第1のD-NMOSトランジスタMT4のゲートおよびソースにゲートが接続され、ドレインがグランド端子に接続され、ドレインが第2のE-NMOSトランジスタMT1のボディ端子であるバックゲート(B)に接続された第3のE-NMOSトランジスタMT2と、ゲートおよびソースが第2のE-NMOSトランジスタMT1のバックゲートに接続され、ドレインが第2のE-NMOSトランジスタMT1のソースに接続された第4のD-NMOSトランジスタMT3と、アノードが第2のE-NMOSトランジスタMT1のソースに接続され、カソードが第1のD-NMOSトランジスタMT4のゲートおよびソースに接続されたツェナーダイオードZD1とを備える。
 換言すれば、スイッチMT1は、電源端子102にドレインが接続された第1のNMOSトランジスタMT4のゲートおよびソースにゲートが接続され、ドレインがグランド端子に接続され、ソースが半導体集積回路(ハイサイドスイッチ)10に接続された第2のNMOSトランジスタMT1である。そして、第2のNMOSトランジスタMT1のバックゲート(B)には、第1のNMOSトランジスタMT4のゲートおよびソースにゲートが接続されると共に、ソースがグランド端子に接続された第3のNMOSトランジスタMT2のドレインと、ドレインが第2のNMOSトランジスタMT1のソースに接続された第4のNMOSトランジスタMT3のゲートおよびソースとが接続されている。
 ここで、E-NMOSトランジスタMT1は、車載用バッテリの状態に応じてオン/オフ動作するため、ゲート電圧が電源電圧VBBにプルアップされている。
 本実施の形態においては、通常時、つまり、車載用バッテリが正常に接続されると、E-NMOSトランジスタMT1のゲート電圧が所定の電圧(ドレイン電圧+Vth)以上となり、E-NMOSトランジスタMT2がオンする。これにより、E-NMOSトランジスタMT1のバックゲートがドレインと同電位となって、E-NMOSトランジスタMT1がオン(ソース・ドレイン間がショート)する。
 一方、車載用バッテリの逆接続時にはE-NMOSトランジスタMT1のゲート電圧が所定の電圧以下となり、E-NMOSトランジスタMT2がオフする。すると、D-NMOSトランジスタMT3によって、E-NMOSトランジスタMT1のバックゲートがソースと同電位となるので、E-NMOSトランジスタMT1がオフする。
 すなわち、本実施の形態に係る保護回路12では、車載用バッテリの接続の状況に応じて、NVP回路14において、E-NMOSトランジスタMT1のバックゲートに接続されるE-NMOSトランジスタMT2またはD-NMOSトランジスタMT3のいずれか一方が選択的にオンされるようになっており、車載用バッテリの逆接続時には、D-NMOSトランジスタMT3が選択的にオンされてE-NMOSトランジスタMT1がオフされる。これにより、グランド端子(ドレイン)側から電源端子(ソース)102側への電流経路が遮断されて、ハイサイドスイッチ10への通電が阻止される。
 図3は、ハイサイドスイッチ10の一構成例を示すものである。図3に示すように、ハイサイドスイッチ10は、PMOSトランジスタ(第1のPMOSトランジスタ)108、ツェナーダイオード110、OSC(Oscillator)112、チャージポンプ(CP)114、ゲートドライブ回路(DRV)116・120、NMOSトランジスタ(第5・第6のNMOSトランジスタ)118・122、負電圧制御部126、およびクランプ回路(静電気保護装置)130を備える。
 ハイサイドスイッチ10において、例えば、ツェナーダイオード110、OSC(発振回路)112、CP(昇圧回路)114、およびDRV116は、NMOSトランジスタ118の駆動制御部140を構成しても良い。また、ハイサイドスイッチ10は、電源端子(VBB)102、出力端子(OUT)104、および入力端子(IN)106を備えていても良い。
 第5のNMOSトランジスタ118は、電源端子102と動作電圧を供給すべき負荷が接続される出力端子104との間に接続される。駆動制御部140は、第5のNMOSトランジスタ118のゲートに接続される。第6のNMOSトランジスタ122は、駆動制御部140と制御信号が入力される入力端子106との間に設けられ、ソースがグランド接続用端子GND_REFを介して保護回路(スイッチ)12に接続される。負電圧制御部126は、第6のNMOSトランジスタ122と駆動制御部140との間に設けられる。第1のPMOSトランジスタMT4は、駆動制御部140と電源端子102との間に設けられ、ゲートに制御信号が入力される。クランプ回路130は、電源端子102と第5のNMOSトランジスタ118のゲートとの間に設けられる。
 電源端子102には、通常時、車載用バッテリ(図示省略)から所定の電源電圧VBB(例えば、14V程度)が印加電圧として与えられる。電源端子102には、PMOSトランジスタ108のソース、およびNMOSトランジスタ118のドレインが接続されている。
 入力端子106には、入力として、例えば、ハイサイドスイッチ10をイネーブル状態に設定するためのハイレベルの制御信号が外部の制御回路(図示省略)より供給される。車載用ICの場合、外部の制御回路としては、例えば、ECU(Engine Control Unit)などによって構成されても良い。
 PMOSトランジスタ108のゲートおよびMOSトランジスタ122のゲートには、DRV120が接続される。NMOSトランジスタ122のソースは、グランド接続用端子GND_REFを介して保護回路12に接続され、ドレインは、負電圧制御部126に接続される。NMOSトランジスタ122は、ソース・ドレイン間にボディダイオード124を備える。
 グランド接続用端子GND_REFに保護回路12が接続されることによって、ハイサイドスイッチ10のグランドは保護回路12のグランドとなる。
 DRV120は、入力端子106の信号がハイレベルの時、ハイレベルの出力電圧をNMOSトランジスタ122のゲートに供給し、ローレベルの出力電圧をPMOSトランジスタ108のゲートに供給する。
 また、DRV120は、入力端子106の信号がローレベルの時、ローレベルの出力電圧をNMOSトランジスタ122のゲートに供給し、ハイレベルの出力電圧をPMOSトランジスタ108のゲートに供給する。
 入力端子106の信号がハイレベルの場合には、PMOSトランジスタ108のゲートがローレベルとなり、PMOSトランジスタ108はオンとなり、NMOSトランジスタ122のゲートはハイレベルとなり、NMOSトランジスタ122もオンとなる。
 入力端子106の信号がローレベルの場合には、PMOSトランジスタ108のゲートはハイレベルとなり、PMOSトランジスタ108はオフとなり、NMOSトランジスタ122のゲートはローレベルとなり、NMOSトランジスタ122もオフとなる。
 即ち、DRV120の入力端子106の信号がハイレベルの時、PMOSトランジスタ108はオンとなり、NMOSトランジスタ122もオンとなる。
 また、DRV120の入力端子106の信号がローレベルの時、PMOSトランジスタ108はオフとなり、NMOSトランジスタ122もオフとなる。
 負電圧制御部126は、出力負電圧を検出した際にハイサイドスイッチ10を破壊から保護するための機能ブロックであって、例えば、保護回路12において、MOSトランジスタMT1・MT2・MT3により構成されるNVP回路14と同様の構成を有したものであっても良い。
 負電圧制御部126とPMOSトランジスタ108のドレインとの間には、駆動制御部140を構成する、ツェナーダイオード110、OSC112、およびCP114が並列に接続されている。また、CP114には、駆動制御部140のDRV116が接続され、DRV116には、NMOSトランジスタ118のゲートおよびソースと出力端子104とが接続されている。すなわち、DRV(ドライブ回路)116は、OSC(昇圧回路)112と第5のNMOSトランジスタ118のゲートおよび出力端子104との間に接続される。DRV116は、入力を反転させずにそのまま出力する。これにより、駆動制御部140は、例えば、OSC112の発振出力に基づいてCP114により昇圧された電圧をDRV116に供給することによって、NMOSトランジスタ118をオンさせる。なお、OSC112の発振出力やCP114の昇圧の程度は、ツェナーダイオード110によって決定されるようにしても良い。
 また、NMOSトランジスタ118のゲートには、電源端子102との間に、クランプ回路130が接続されている。クランプ回路130は、サージ電流吸収用のESD保護装置である。また、クランプ回路130は、NMOSトランジスタ118の駆動時にゲート電圧を一時的にクランプすることによって、出力端子104より与えられる動作電圧が大幅に低下(例えば、-30V程度)するのを防ぐようになっている。
 出力端子104には、負荷100が接続される。車載用ICの場合、負荷100としては、電源電圧VBBに応じた動作電圧の供給により動作する各種の車載用アクセサリなどの電子部品が想定される。
 図3に示したハイサイドスイッチ10の場合、負電圧制御部126を備えたことにより、車載用バッテリの逆接続時以外において、出力負電圧が検出された場合にも、ハイサイドスイッチ10を破壊から保護できる。
 [保護回路の動作方法]
 図4は、実施の形態に係る保護回路12における素子構造の一部を模式的に示すと共に、保護回路12の動作を説明するために示す図であって、(a)は車載用バッテリの通常接続時に、(b)は車載用バッテリの逆接続時に、それぞれ対応する。ただし、図4(a),(b)では、便宜上、E-NMOSトランジスタMT2の断面構造のみを例示している。
 実施の形態に係る保護回路12の動作は、外部電源から所定の電源電圧が供給される電源端子102に接続される半導体集積回路10を破壊から保護する動作であって、電源端子102への外部電源の逆接続時に、スイッチMT1によってグランド端子と電源端子102との間の電流経路を遮断する。スイッチMT1は、MOSトランジスタ(MT1)であり、このMOSトランジスタ(MT1)が、電源端子102への外部電源の逆接続時にオフされて、半導体集積回路10への通電を阻止する。
 また、スイッチMT1は、電源端子102にドレインが接続されたデプレッション型の第1のNMOSトランジスタMT4のゲートおよびソースにゲートが接続され、ドレインがグランド端子に接続され、ソースが半導体集積回路10に接続されたエンハンスメント型の第2のNMOSトランジスタであってもよい。その場合、第2のNMOSトランジスタMT1のバックゲートには、第1のNMOSトランジスタMT4のゲートおよびソースにゲートが接続されると共に、ソースがグランド端子に接続されたエンハンスメント型の第3のNMOSトランジスタMT2のドレインと、ドレインが第2のNMOSトランジスタMT1のソースに接続されたデプレッション型の第4のNMOSトランジスタMT3のゲートおよびソースが接続される。そして、第2のNMOSトランジスタMT1のバックゲートに接続された第3のNMOSトランジスタMT2および第4のNMOSトランジスタMT3が、電源端子102への外部電源の逆接続時に、第3のNMOSトランジスタMT2から第4のNMOSトランジスタMT3に切り換えられる。
 本実施の形態に係る保護回路12は、N型半導体基板30と、N型半導体基板30に形成されたN型半導体層32と、N型半導体層32に形成されたハイボルテージ用のP型ウェル領域(HVPW)34とを有する。P型ウェル領域34上には、ゲート酸化膜を介して、ゲート電極40Gが設けられる。ゲート電極40Gは、D-NMOSトランジスタMT4のゲートおよびソースに接続される。
 P型ウェル領域34の表面には、N型拡散領域36S・42D、およびP型拡散領域46Bが形成されている。N型拡散領域36Sは、ソース電極38Sを介して、グランド端子およびE-NMOSトランジスタMT1のドレインに接続される。N型拡散領域42Dは、ドレイン電極44DおよびD-NMOSトランジスタMT3(図示省略)を介して、E-NMOSトランジスタMT1のソースに接続される。P型拡散領域46Bは、バックゲート電極48Bを介して、E-NMOSトランジスタMT1のバックゲートに接続される。
 また、N型半導体基板30上のゲート電極40Gと対向する面(裏面)には、電源電圧VBBが与えられる裏面電極50が設けられる。
 このような構成の保護回路12は、ハイサイドスイッチ10が形成されるN型半導体基板(N-sub)上に形成可能である。すなわち、第1のNMOSトランジスタMT4、第2のNMOSトランジスタMT1、第3のNMOSトランジスタMT2、および第4のNMOSトランジスタMT3は、N型半導体基板(N-sub)上に形成可能である。
 通常時には、図4(a)に示すように、E-NMOSトランジスタMT2のオンに伴って、N型拡散領域36S、およびP型拡散領域46BがE-NMOSトランジスタMT1のバックゲートを介してグランド端子に接続される。これにより、E-NMOSトランジスタMT1がオンし、ソースとドレインとの間がショートすることによって、E-NMOSトランジスタMT1によるハイサイドスイッチ10への通電が可能とされる。
 一方、本来はグランド端子であるはずの端子G102への車載用バッテリの逆接続時には、図4(b)に示すように、N型拡散領域36Sに電源電圧VBBが印加されてE-NMOSトランジスタMT2がオフし、それに伴って、E-NMOSトランジスタMT1のバックゲートがD-NMOSトランジスタMT3を介してソースと接続される。これにより、E-NMOSトランジスタMT1がオフされることによって、ハイサイドスイッチ10へ通電するための電流経路が遮断される。
 このように、本実施の形態に係る保護回路12によれば、車載用バッテリが逆接続された場合にも、ハイサイドスイッチ10が破壊されるのを防止できる。
 すなわち、通常時にE-NMOSトランジスタMT1のバックゲートに接続されるE-NMOSトランジスタMT2が、バッテリの逆接続時には、D-NMOSトランジスタMT3に切り替わるようになっている。これにより、車載用バッテリの逆接続時には、E-NMOSトランジスタMT1をオフさせて、グランド端子側から電源端子102側への電流経路を遮断できるようになる。したがって、端子G102に対して車載用バッテリから所定の電源電圧VBBが印加された場合にも、ハイサイドスイッチ10が破壊されるのを防止できる。
 しかも、バックゲートの選択(NMOSトランジスタMT2・MT3の選択)に応じて、E-NMOSトランジスタMT1をオン・オフさせることができるため、スイッチのオン抵抗を低減できる。特に、N-subプロセスによってN型半導体基板上に形成されるハイサイドスイッチ10の場合においては、抵抗素子などを用いる場合よりもオン抵抗の低減が可能となるため、印加電圧範囲の設定を拡大できるようになる。よって、印加電圧の低電圧化が容易となり、例えば、動作電圧が5Vのマイクロコンピュータ(以下、マイコン)を3.3Vのマイコンへ切り替えることなどが可能となる。
 また、本実施の形態に係る保護回路は、車載用ICに限らず、外部電源が接続されるIC全般に利用可能であり、特に、リチウム電池に代表されるような各種の蓄電池を外部電源として利用するような種々の分野に広く適用可能である。
 以上説明したように、本実施の形態によれば、外部電源の逆接続による破壊から半導体集積回路を保護できると共に、印加電圧の低電圧化が可能な保護回路、および保護回路の動作方法を提供できる。
 [静電気保護装置]
 次に、本実施の形態に係る静電気保護装置130の構成について説明する。静電気保護装置130の具体的な回路構成は、図5に示すように表わされる。
 すなわち、本実施の形態に係る静電気保護装置130は、例えば、電源端子102とグランド端子との間に挿入され、ハイサイドスイッチ10を静電気破壊から保護するための本来のクランプ回路としてのESDクランプ回路部131と、車載用バッテリの逆接続時に、ESDクランプ回路部131を破壊から保護する保護回路部88とを備える。
 ここで、保護回路部88は、図1(a)、図2、図4などに例示した保護回路12であってもよく、その場合、保護回路12は、例えば、電源端子102とグランド端子との間に挿入されたESDクランプ回路部131に接続されて、電源端子102への外部電源の逆接続時に、ESDクランプ回路部131を破壊から保護するように(保護回路部88として)構成される。
 本実施の形態に係る静電気保護装置130は、外部電源から所定の電源電圧が供給される電源端子102とグランド端子との間に接続される半導体集積回路(ハイサイドスイッチ)10(図1(a)、図3、図4参照)と、電源端子102とグランド端子との間に挿入されたクランプ回路部131と、クランプ回路部131に接続されて、電源端子102への外部電源の逆接続時に、クランプ回路部131を破壊から保護する保護回路部88とを備え、半導体集積回路10を静電気破壊から保護する。
 ここで、外部電源は、車載用バッテリである。半導体集積回路10は、N型半導体基板(N-sub)を備えたハイサイドスイッチ(10)である。
 また、ESDクランプ回路部131は、ハイサイドスイッチ10内に設けられる。ESDクランプ回路部131は、サージ電流を吸収する。
 ここで、ESDクランプ回路部131は、NMOSトランジスタ84と、直列に接続された第1~第9のツェナーダイオード80・80・80…80および第10のツェナーダイオード81と、抵抗素子82と、直列に接続された第11・第12のツェナーダイオード86・86とを有して構成される。すなわち、ESDクランプ回路部131は、電源端子102にドレインが接続されたNMOSトランジスタ84と、NMOSトランジスタ84のドレインにカソードが接続された第1のツェナーダイオード801と、第1のツェナーダイオード801のアノードにカソードが接続された第2のツェナーダイオード802と、第2のツェナーダイオード802のアノードにカソードが接続された第3のツェナーダイオード803と、第3のツェナーダイオード803のアノードにカソードが接続された第4のツェナーダイオード804と、第4のツェナーダイオード804のアノードにカソードが接続された第5のツェナーダイオード805と、第5のツェナーダイオード805のアノードにカソードが接続された第6のツェナーダイオード806と、第6のツェナーダイオード806のアノードにカソードが接続された第7のツェナーダイオード807と、第7のツェナーダイオード807のアノードにカソードが接続された第8のツェナーダイオード808と、第8のツェナーダイオード808のアノードにカソードが接続された第9のツェナーダイオード809と、第9のツェナーダイオード809のアノードにアノードが接続され、且つカソードがNMOSトランジスタ84のゲートに接続された第10のツェナーダイオード8010と、NMOSトランジスタ84のゲートとソースとの間に接続された抵抗素子82と、NMOSトランジスタ84のゲートにカソードが接続された第11のツェナーダイオード8011と、第11のツェナーダイオード8011のアノードにカソードが接続された第12のツェナーダイオード8012とを備える。
 ESDクランプ回路部131において、第1~第9のツェナーダイオード80・80・80…80は、同じ向きに、第10のツェナーダイオード81は、第1~第9のツェナーダイオード80・80・80…80とは異なる向きに、それぞれ接続されている。そして、第9のツェナーダイオード80のアノードと第10のツェナーダイオード81のアノードとが接続されると共に、第1のツェナーダイオード80のカソードには、電源端子102が接続され、第10のツェナーダイオード81のカソードには、NMOSトランジスタ84のゲート(G)が接続されている。
 NMOSトランジスタ84のドレイン(D)には、電源端子102が接続され、ソース(S)には、保護回路部88が直列に接続されている。また、NMOSトランジスタ84のゲートとソースとの間には、抵抗素子82、および第11・第12のツェナーダイオード86・86が接続されている。第11・第12のツェナーダイオード86・86は、同じ向きに接続されており、第11のツェナーダイオード86のカソードがNMOSトランジスタ84のゲートに、第12のツェナーダイオード86のアノードがNMOSトランジスタ84のソースに、それぞれ接続されている。
 保護回路部88は、複数(例えば、3個)のツェナーダイオード88・88・88が直列に接続された構成とされている。ツェナーダイオード88・88・88としては、例えばベース(B)およびコレクタ(C)間が接続されたバイポーラトランジスタ(npnトランジスタ)によって構成されても良い。すなわち、保護回路部88は、複数のツェナーダイオード88・88・883がベース・コレクタを短絡した複数のバイポーラトランジスタの直列段によって構成されていても良い。
 保護回路部88は、ツェナーダイオード88・88・88による逆耐圧が、車載用バッテリ(外部電源)の電源電圧VBB以上(例えば、24V程度)となるように設定されることにより、車載用バッテリの逆接続時にNMOSトランジスタ84が破壊されるのを回避できる。すなわち、ESDクランプ回路部131と直列に、逆耐圧がバッテリ電圧(VBB)以上となるようにツェナーダイオード88・88・88を直列に接続した保護回路部88を接続することによって、グランド端子側から電源端子102側に向けて存在するNMOSトランジスタ84のボディダイオード(図示省略)を、車載用バッテリの逆接続による破壊から保護できる。また、保護回路部88は、N型半導体基板(N-sub)上に形成可能である。
 同様に、npnトランジスタにより構成するようにしたツェナーダイオード80・80・80…80・81・86・86の場合にも、車載用バッテリの逆接続による破壊から保護できる。
 このように、静電気保護装置130は、既存のクランプ回路に保護回路部88を追加した比較的簡単な構成により、静電気破壊からハイサイドスイッチ10を保護できるのみでなく、車載用バッテリの逆接続による破壊からもハイサイドスイッチ10を保護できる。
 保護回路部88の回路構成は、図6(a)に示すように表わされ、保護回路部88の模式的断面構造は、図6(b)に示すように表わされる。
 保護回路部88は、図4に示したように、保護回路12が形成されるN型半導体基板30上に、例えばESDクランプ回路部131と共に、ツェナーダイオード88・88・88を作り込むこととしても良い。
 すなわち、保護回路部88の各ツェナーダイオード88・88・88は、それぞれ、N型半導体基板30上に形成されたN型半導体層32と、N型半導体層32の表面部に形成されたP型ウェル領域52と、P型ウェル領域52の表面部に形成されたN型拡散領域54EおよびP型拡散領域54Bと、N型半導体層32の表面部に形成されたN型拡散領域54Cとを有して形成されている。
 N型拡散領域54Cは、コレクタ電極56Cを介してそれぞれ取り出され、各ツェナーダイオード88・88・88のコレクタとなる。N型拡散領域54Eは、エミッタ電極56Eを介してそれぞれ取り出され、各ツェナーダイオード88・88・88のエミッタとなる。P型拡散領域54Bは、ベース電極56Bを介してそれぞれ取り出され、各ツェナーダイオード88・88・88のベースとなる。各ツェナーダイオード88・88・88において、ベース電極56Bとコレクタ電極56Cとの間は、接続電極56Tを介して相互に接続されている。
 そして、ツェナーダイオード88のベースおよびコレクタが、ESDクランプ回路部131に接続され、ツェナーダイオード88のエミッタが、ツェナーダイオード88のベースおよびコレクタに接続され、ツェナーダイオード88のエミッタが、ツェナーダイオード88のベースおよびコレクタに接続され、ツェナーダイオード88のエミッタが、例えばグランド端子に接続されて、N型半導体基板30上に実装可能な保護回路部88が構成される。
 一方、保護回路部88が接続されるESDクランプ回路部131において、NMOSトランジスタ84の回路構成は、図7(a)に示すように表わされ、NMOSトランジスタ84の模式的断面構造は、図7(b)に示すように表わされる。
 NMOSトランジスタ84は、図4に示したように、保護回路12が形成されるN型半導体基板30上に、例えば、ESDクランプ回路部131の一部として作り込むこととしても良い。
 すなわち、NMOSトランジスタ84は、N型半導体基板30上に形成されたN型半導体層32と、N型半導体層32の表面部に形成されたP型ウェル領域52と、P型ウェル領域52の表面部に形成されたN型拡散領域60S・60DおよびP型拡散領域60Bと、P型ウェル領域52上にゲート酸化膜を介して設けられたゲート電極64Gとを備える。
 ゲート電極64Gは、NMOSトランジスタ84のソースや第10のツェナーダイオード81のカソードなどと接続される。N型拡散領域60Sは、ソース電極62Sを介して、保護回路部88と接続される。N型拡散領域60Dは、ドレイン電極62Dを介して、電源端子102と接続される。P型拡散領域60Bは、バックゲート電極62Bを介して、ソース電極62Sと接続される。
 このように、本実施の形態に係る静電気保護装置130を備えた車載用ICによれば、車載用バッテリが逆接続された場合にも、ハイサイドスイッチ10が破壊されるのを防止できる。
 すなわち、静電気保護装置130において、逆耐圧が車載用バッテリの電源電圧VBB以上となるように設定された保護回路部88を、ESDクランプ回路部131に直列に接続するようにしている。これにより、ハイサイドスイッチ10を静電気による破壊から保護できると共に、その静電気保護のためのESD保護素子であるNMOSトランジスタ84が車載用バッテリの逆接続時に破壊されるのを保護することが可能となる。
 なお、本実施の形態に係る静電気保護装置の一部を構成する保護回路部は、電源端子とグランド端子との間においてESD保護を必要とする各種のICに適用可能である。特に、車載用ICに限らず、外部電源が接続されるIC全般に利用可能であり、特に、リチウム電池に代表されるような各種の蓄電池を外部電源として利用するような種々の分野に広く適用可能である。
 [半導体集積回路装置]
 本実施の形態に係る半導体集積回路装置(図示省略)は、外部電源から所定の電源電圧が供給される電源端子102とグランド端子との間に接続される半導体集積回路(ハイサイドスイッチ)10(図1(a)、図3、図4参照)と、半導体集積回路10を静電気破壊から保護する静電気保護装置130(図5~図6参照)とを備える。静電気保護装置130は、電源端子102とグランド端子との間に挿入されたESDクランプ回路部131と、ESDクランプ回路部131に接続されて、電源端子102への外部電源の逆接続時に、ESDクランプ回路部131を破壊から保護する保護回路部88とを有する。
 ここで、保護回路部88は、図1(a)、図2、図4などに例示した保護回路12であってもよく、その場合、本実施の形態に係る半導体集積回路装置(図示省略)は、外部電源から所定の電源電圧が供給される電源端子102とグランド端子との間に接続される半導体集積回路を静電気破壊から保護する保護回路12を有し、保護回路12は、電源端子102とグランド端子との間に挿入されたESDクランプ回路部131に接続されて、電源端子102への外部電源の逆接続時に、ESDクランプ回路部(131)を破壊から保護する。
 ここで、外部電源は、車載用バッテリである。半導体集積回路10は、N型半導体基板(N-sub)を備えたハイサイドスイッチ(10)である。
 また、ESDクランプ回路部131は、ハイサイドスイッチ10内に設けられる。ESDクランプ回路部131は、サージ電流を吸収する。
 また、ESDクランプ回路部131は、電源端子102にドレインが接続されたNMOSトランジスタ84と、NMOSトランジスタ84のドレインにカソードが接続された第1のツェナーダイオード801と、第1のツェナーダイオード801のアノードにカソードが接続された第2のツェナーダイオード802と、第2のツェナーダイオード802のアノードにカソードが接続された第3のツェナーダイオード803と、第3のツェナーダイオード803のアノードにカソードが接続された第4のツェナーダイオード804と、第4のツェナーダイオード804のアノードにカソードが接続された第5のツェナーダイオード805と、第5のツェナーダイオード805のアノードにカソードが接続された第6のツェナーダイオード806と、第6のツェナーダイオード806のアノードにカソードが接続された第7のツェナーダイオード807と、第7のツェナーダイオード807のアノードにカソードが接続された第8のツェナーダイオード808と、第8のツェナーダイオード808のアノードにカソードが接続された第9のツェナーダイオード809と、第9のツェナーダイオード809のアノードにアノードが接続され、且つカソードがNMOSトランジスタ84のゲートに接続された第10のツェナーダイオード8010と、NMOSトランジスタ84のゲートとソースとの間に接続された抵抗素子82と、NMOSトランジスタ84のゲートにカソードが接続された第11のツェナーダイオード8011と、第11のツェナーダイオード8011のアノードにカソードが接続された第12のツェナーダイオード8012とを備える。
 ここで、保護回路部88は、NMOSトランジスタ84のソース(S)に直列に接続される。また、保護回路部88は、複数(例えば、3個)のツェナーダイオード88・88・88が直列に接続された構成を備える。また、保護回路部88は、複数のツェナーダイオード88・88・88による逆耐圧が、車載用バッテリ(外部電源)の電源電圧VBB以上(例えば、24V程度)となるように設定される。
 また、保護回路部88は、複数のツェナーダイオード88・88・883がベース・コレクタを短絡した複数のバイポーラトランジスタの直列段によって構成される。
 また、保護回路部88は、N型半導体基板(N-sub)上に形成可能である。
 以上説明したように、本実施の形態によれば、半導体集積回路を静電気破壊から保護できると共に、外部電源の逆接続による破壊からも半導体集積回路を保護できる静電気保護装置、および静電気保護装置を備えた半導体集積回路を提供できる。
 [その他の実施の形態]
 上記のように、いくつかの実施の形態を記載したが、開示の一部をなす論述および図面は例示的なものであり、各実施の形態を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。このように、本実施の形態は、ここでは記載していない様々な形態などを含む。
 本実施の形態に係る保護回路は、車載用ICに適用することができる。また、このような保護回路は、車載用IC以外でも利用可能であり、特に、外部電源が逆接続される可能性を有する各種の半導体集積回路に応用することができる。
 本実施の形態に係る静電気保護装置は、車載用ICに適用することができる。また、このような静電気保護装置は、車載用IC以外でも利用可能であり、特に、外部電源が逆接続される可能性を有する各種の半導体集積回路に応用することができる。
10…ハイサイドスイッチ(半導体集積回路)
12…保護回路
14…NVP回路
30…N型半導体基板
32…N型半導体層
34…P型ウェル領域(HVPW)
36S・42D…N型拡散領域
38S…ソース電極
40G…ゲート電極
44D…ドレイン電極
46B…P型拡散領域
48B…バックゲート電極
50…裏面電極
52…P型ウェル領域
54B…P型拡散領域
54C・54E…N型拡散領域
56B…ベース電極
56C…コレクタ電極
56E…エミッタ電極
56T…接続電極
60B…P型拡散領域
60D・60S…N型拡散領域
62B…バックゲート電極
62D…ドレイン電極
62S…ソース電極
64G…ゲート電極
80・80・80…80…第1~第9のツェナーダイオード
81…第10のツェナーダイオード
82…抵抗素子
84…NMOSトランジスタ
86・86…第11・第12のツェナーダイオード
88…保護回路部
88・88・88…ツェナーダイオード(npnトランジスタ)
100…負荷
102…電源端子
104…出力端子(OUT)
106…入力端子(IN)
108…PMOSトランジスタ
110…ツェナーダイオード
112…OSC(発振回路)
114…チャージポンプ(昇圧回路)
116・120…ゲートドライブ
118・122…NMOSトランジスタ
124…ボディダイオード
126…負電圧制御部
130…クランプ回路
131…ESDクランプ回路部
140…駆動制御部
VBB…電源電圧(印加電圧)
MT1…E-Nチャネル型MOSFET(第2のNMOSトランジスタ、電流経路を遮断するスイッチ)
MT2…E-Nチャネル型MOSFET(第3のNMOSトランジスタ)
MT3…D-Nチャネル型MOSFET(第4のNMOSトランジスタ)
MT4…D-Nチャネル型MOSFET(第1のNMOSトランジスタ)
ZD1…ツェナーダイオード
G102…端子
GND_REF…グランド接続用端子

Claims (26)

  1.  外部電源から所定の電源電圧が供給される電源端子に接続された半導体集積回路と、
     前記半導体集積回路に接続されて、前記電源端子への前記外部電源の逆接続時に、前記半導体集積回路への通電を阻止するスイッチと
    を備え、
     前記半導体集積回路を破壊から保護することを特徴とする保護回路。
  2.  前記スイッチは、グランド端子側から前記電源端子側への電流経路を遮断するMOSトランジスタを備えることを特徴とする請求項1に記載の保護回路。
  3.  前記スイッチは、前記電源端子にドレインが接続された第1のNMOSトランジスタのゲートおよびソースにゲートが接続され、ドレインがグランド端子に接続され、ソースが前記半導体集積回路に接続された第2のNMOSトランジスタであって、
     前記第2のNMOSトランジスタのバックゲートには、前記第1のNMOSトランジスタの前記ゲートおよび前記ソースにゲートが接続され、ソースが前記グランド端子に接続された第3のNMOSトランジスタのドレイン、およびドレインが前記第2のNMOSトランジスタの前記ソースに接続された第4のNMOSトランジスタのゲートおよびソースが接続されていることを特徴とする請求項2に記載の保護回路。
  4.  前記第1のNMOSトランジスタおよび前記第4のNMOSトランジスタは、デプレッション型のNチャネル型MOSFETであり、前記第2のNMOSトランジスタおよび前記第3のNMOSトランジスタは、エンハンスメント型のNチャネル型MOSFETであることを特徴とする請求項3に記載の保護回路。
  5.  前記第2のNMOSトランジスタ、前記第3のNMOSトランジスタ、および前記第4のNMOSトランジスタによって、出力負電圧保護回路が構成されてなることを特徴とする請求項3または4に記載の保護回路。
  6.  前記第1のNMOSトランジスタは、抵抗体によって代用可能であることを特徴とする請求項3~5のいずれか1項に記載の保護回路。
  7.  前記外部電源が、車載用バッテリであることを特徴とする請求項1~6のいずれか1項に記載の保護回路。
  8.  前記半導体集積回路が、N型半導体基板を備えたハイサイドスイッチであることを特徴とする請求項1~7のいずれか1項に記載の保護回路。
  9.  前記ハイサイドスイッチは、
     前記電源端子と動作電圧を供給すべき負荷が接続される出力端子との間に接続された第5のNMOSトランジスタと、
     前記第5のNMOSトランジスタのゲートに接続された駆動制御部と、
     前記駆動制御部と制御信号が入力される入力端子との間に設けられ、ソースがグランド接続用端子を介して前記スイッチに接続される第6のNMOSトランジスタと、
     前記第6のNMOSトランジスタと前記駆動制御部との間に設けられた負電圧制御部と、
     前記駆動制御部と前記電源端子との間に設けられ、ゲートに前記制御信号が入力される第1のPMOSトランジスタと、
     前記電源端子と前記第5のNMOSトランジスタのゲートとの間に設けられたクランプ回路と
     を備えることを特徴とする請求項8に記載の保護回路。
  10.  前記駆動制御部は、
     前記第1のPMOSトランジスタと前記負電圧制御部との間に並列に接続されたダイオード、発振回路、および昇圧回路と、
     前記昇圧回路と前記第5のNMOSトランジスタのゲートおよび前記出力端子との間に接続されたドライブ回路と
     を備えることを特徴とする請求項9に記載の保護回路。
  11.  前記第1のNMOSトランジスタ、前記第2のNMOSトランジスタ、前記第3のNMOSトランジスタ、および前記第4のNMOSトランジスタが、前記N型半導体基板上に形成されてなることを特徴とする請求項8に記載の保護回路。
  12.  外部電源から所定の電源電圧が供給される電源端子に接続される半導体集積回路を破壊から保護する保護回路の動作方法であって、
     前記電源端子への前記外部電源の逆接続時に、スイッチによってグランド端子と前記電源端子との間の電流経路を遮断することを特徴とする保護回路の動作方法。
  13.  前記スイッチは、MOSトランジスタであって、
     前記MOSトランジスタが、前記電源端子への前記外部電源の逆接続時にオフされて、前記半導体集積回路への通電を阻止することを特徴とする請求項12に記載の保護回路の動作方法。
  14.  前記スイッチは、
     前記電源端子にドレインが接続されたデプレッション型の第1のNMOSトランジスタのゲートおよびソースにゲートが接続され、ドレインがグランド端子に接続され、ソースが前記半導体集積回路に接続されたエンハンスメント型の第2のNMOSトランジスタであって、
     前記第2のNMOSトランジスタのバックゲートには、
     前記第1のNMOSトランジスタの前記ゲートおよび前記ソースにゲートが接続され、ソースが前記グランド端子に接続されたエンハンスメント型の第3のNMOSトランジスタのドレイン、およびドレインが前記第2のNMOSトランジスタの前記ソースに接続されたデプレッション型の第4のNMOSトランジスタのゲートおよびソースが接続されると共に、
     前記第2のNMOSトランジスタのバックゲートに接続された前記第3のNMOSトランジスタおよび前記第4のNMOSトランジスタが、前記電源端子への前記外部電源の逆接続時に、前記第3のNMOSトランジスタから前記第4のNMOSトランジスタに切り換えられることを特徴とする請求項12または13に記載の保護回路の動作方法。
  15.  前記電源端子とグランド端子との間に挿入されたクランプ回路部
    に接続されて、前記電源端子への前記外部電源の逆接続時に、前記クランプ回路部を破壊から保護する請求項1に記載の保護回路。
  16.  前記外部電源が、車載用バッテリであることを特徴とする請求項15に記載の保護回路。
  17.  前記半導体集積回路が、N型半導体基板を備えたハイサイドスイッチであることを特徴とする請求項15または16に記載の保護回路。
  18.  前記クランプ回路部は、前記ハイサイドスイッチ内に設けられることを特徴とする請求項17に記載の保護回路。
  19.  前記クランプ回路部は、サージ電流を吸収することを特徴とする請求項18に記載の保護回路。
  20.  前記クランプ回路部は、
     前記電源端子にドレインが接続されたNMOSトランジスタと、
     前記NMOSトランジスタの前記ドレインにカソードが接続された第1のツェナーダイオードと、
     前記第1のツェナーダイオードのアノードにカソードが接続された第2のツェナーダイオードと、
     前記第2のツェナーダイオードのアノードにカソードが接続された第3のツェナーダイオードと、
     前記第3のツェナーダイオードのアノードにカソードが接続された第4のツェナーダイオードと、
     前記第4のツェナーダイオードのアノードにカソードが接続された第5のツェナーダイオードと、
     前記第5のツェナーダイオードのアノードにカソードが接続された第6のツェナーダイオードと、
     前記第6のツェナーダイオードのアノードにカソードが接続された第7のツェナーダイオードと、
     前記第7のツェナーダイオードのアノードにカソードが接続された第8のツェナーダイオードと、
     前記第8のツェナーダイオードのアノードにカソードが接続された第9のツェナーダイオードと、
     前記第9のツェナーダイオードのアノードにアノードが接続され、カソードが前記NMOSトランジスタのゲートに接続された第10のツェナーダイオードと、
     前記NMOSトランジスタの前記ゲートとソースとの間に接続された抵抗素子と、
     前記NMOSトランジスタの前記ゲートにカソードが接続された第11のツェナーダイオードと、
     前記第11のツェナーダイオードのアノードにカソードが接続された第12のツェナーダイオードと
     を備えることを特徴とする請求項19に記載の保護回路。
  21.  前記保護回路部は、前記NMOSトランジスタの前記ソースに直列に接続されることを特徴とする請求項15~20のいずれか1項に記載の保護回路。
  22.  前記保護回路部は、複数のツェナーダイオードが直列に接続された構成を備えることを特徴とする請求項21に記載の保護回路。
  23.  前記保護回路部は、前記複数のツェナーダイオードによる逆耐圧が、前記外部電源の電源電圧以上となるように設定されることを特徴とする請求項22に記載の保護回路。
  24.  前記保護回路部は、前記複数のツェナーダイオードがベース・コレクタを短絡した複数のバイポーラトランジスタの直列段によって構成されていることを特徴とする請求項22または23に記載の保護回路。
  25.  前記保護回路部は、前記N型半導体基板上に形成されてなることを特徴とする請求項17に記載の保護回路。
  26.  外部電源から所定の電源電圧が供給される電源端子とグランド端子との間に接続される半導体集積回路を静電気破壊から保護する請求項15~25のいずれか1項に記載の保護回路を有することを特徴とする半導体集積回路装置。
PCT/JP2017/004743 2016-02-18 2017-02-09 保護回路、および保護回路の動作方法、および半導体集積回路装置 WO2017141811A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17753069.8A EP3419170B1 (en) 2016-02-18 2017-02-09 Protective system
CN201780012200.0A CN108702147B (zh) 2016-02-18 2017-02-09 保护电路、保护电路的动作方法以及半导体集成电路装置
KR1020187025253A KR102066367B1 (ko) 2016-02-18 2017-02-09 보호 회로 및 보호 회로의 동작 방법, 및 반도체 집적 회로 장치
JP2018500075A JP6889146B2 (ja) 2016-02-18 2017-02-09 保護回路、および保護回路の動作方法、および半導体集積回路装置
US16/042,637 US11128117B2 (en) 2016-02-18 2018-07-23 Protection circuit and operational method of the protection circuit, and semiconductor integrated circuit apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-028510 2016-02-18
JP2016028510 2016-02-18
JP2016-028508 2016-02-18
JP2016028508 2016-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/042,637 Continuation US11128117B2 (en) 2016-02-18 2018-07-23 Protection circuit and operational method of the protection circuit, and semiconductor integrated circuit apparatus

Publications (1)

Publication Number Publication Date
WO2017141811A1 true WO2017141811A1 (ja) 2017-08-24

Family

ID=59625875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004743 WO2017141811A1 (ja) 2016-02-18 2017-02-09 保護回路、および保護回路の動作方法、および半導体集積回路装置

Country Status (6)

Country Link
US (1) US11128117B2 (ja)
EP (1) EP3419170B1 (ja)
JP (1) JP6889146B2 (ja)
KR (1) KR102066367B1 (ja)
CN (1) CN108702147B (ja)
WO (1) WO2017141811A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151631A1 (ko) * 2018-02-05 2019-08-08 삼성에스디아이 주식회사 배터리 보호 회로 및 이를 포함하는 배터리 팩
CN112054792A (zh) * 2019-06-06 2020-12-08 罗姆股份有限公司 高侧开关

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219551A1 (de) * 2017-11-03 2019-05-09 Continental Teves Ag & Co. Ohg Verpolschutzanordnung, Verfahren zum Betrieb der Verpolschutzanordnung und korrespondierende Verwendung
CN209250230U (zh) * 2018-11-06 2019-08-13 苏州赛芯电子科技有限公司 提高抗尖峰电压能力的单晶圆电池保护电路及充放电电路
CN111884489B (zh) * 2019-05-03 2022-03-11 台达电子工业股份有限公司 电力电路以及驱动电路
US11579645B2 (en) * 2019-06-21 2023-02-14 Wolfspeed, Inc. Device design for short-circuitry protection circuitry within transistors
CN110261794A (zh) * 2019-07-26 2019-09-20 科世达(上海)机电有限公司 一种带负压检测电路的cp信号检测电路和车载充电器
CN110825692B (zh) * 2019-10-08 2024-01-23 深圳市稳先微电子有限公司 片上系统
JP7292228B2 (ja) * 2020-02-07 2023-06-16 エイブリック株式会社 充放電制御回路及びバッテリ装置
CN111682616B (zh) * 2020-06-19 2022-05-10 无锡睿勤科技有限公司 一种防带电误接触电路系统
US11569656B2 (en) 2020-10-21 2023-01-31 Eaton Intelligent Power Limited Surge protection devices with surge level discrimination and methods of operating the same
US11658472B2 (en) * 2020-10-22 2023-05-23 Eaton Intelligent Power Limited Surge protection device with protection level determination and methods of operating the same
CN113271089B (zh) * 2021-04-14 2023-04-11 杭州士兰微电子股份有限公司 栅极驱动电路及其智能功率模块
CN113556115B (zh) * 2021-08-02 2024-06-04 江苏能华微电子科技发展有限公司 一种e型氮化镓器件的驱动电路
CN116008769B (zh) * 2023-03-24 2023-06-27 杭州飞仕得科技股份有限公司 一种自驱式功率半导体导通压降检测电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690520A (ja) * 1992-09-09 1994-03-29 Toshiba Corp 誤動作防止回路および保護回路
JP2001160748A (ja) * 1999-09-20 2001-06-12 Denso Corp 電気負荷駆動回路
JP2005109162A (ja) * 2003-09-30 2005-04-21 Nec Electronics Corp 出力mosトランジスタの過電圧保護回路
JP2009147995A (ja) * 2007-12-11 2009-07-02 Nec Electronics Corp 電力供給制御回路
JP2014011233A (ja) * 2012-06-28 2014-01-20 Alps Electric Co Ltd 保護回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344845A (en) * 1976-10-05 1978-04-22 Suwa Seikosha Kk Electronic watch
JP2525450Y2 (ja) * 1989-09-12 1997-02-12 関西日本電気株式会社 逆接保護回路
US5689209A (en) * 1994-12-30 1997-11-18 Siliconix Incorporated Low-side bidirectional battery disconnect switch
US6392463B1 (en) 2000-07-07 2002-05-21 Denso Corporation Electrical load driving circuit with protection
JP2004031980A (ja) * 2003-08-25 2004-01-29 Renesas Technology Corp 複合型mosfet
JP3739376B2 (ja) * 2003-12-08 2006-01-25 株式会社ルネサステクノロジ 半導体装置
JP5438469B2 (ja) * 2009-11-05 2014-03-12 ルネサスエレクトロニクス株式会社 負荷駆動装置
JP5607490B2 (ja) 2010-10-20 2014-10-15 ローム株式会社 ハイサイドスイッチ回路、インターフェイス回路、および電子機器
JP2013153597A (ja) * 2012-01-25 2013-08-08 Ricoh Co Ltd 保護回路
JP6190204B2 (ja) * 2012-09-25 2017-08-30 エスアイアイ・セミコンダクタ株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690520A (ja) * 1992-09-09 1994-03-29 Toshiba Corp 誤動作防止回路および保護回路
JP2001160748A (ja) * 1999-09-20 2001-06-12 Denso Corp 電気負荷駆動回路
JP2005109162A (ja) * 2003-09-30 2005-04-21 Nec Electronics Corp 出力mosトランジスタの過電圧保護回路
JP2009147995A (ja) * 2007-12-11 2009-07-02 Nec Electronics Corp 電力供給制御回路
JP2014011233A (ja) * 2012-06-28 2014-01-20 Alps Electric Co Ltd 保護回路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151631A1 (ko) * 2018-02-05 2019-08-08 삼성에스디아이 주식회사 배터리 보호 회로 및 이를 포함하는 배터리 팩
CN111699603A (zh) * 2018-02-05 2020-09-22 三星Sdi株式会社 电池保护电路和包括该电池保护电路的电池组
CN111699603B (zh) * 2018-02-05 2023-08-04 三星Sdi株式会社 电池保护电路和包括该电池保护电路的电池组
CN112054792A (zh) * 2019-06-06 2020-12-08 罗姆股份有限公司 高侧开关
JP2020202438A (ja) * 2019-06-06 2020-12-17 ローム株式会社 ハイサイドスイッチ
JP7319834B2 (ja) 2019-06-06 2023-08-02 ローム株式会社 ハイサイドスイッチ
CN112054792B (zh) * 2019-06-06 2024-04-19 罗姆股份有限公司 高侧开关

Also Published As

Publication number Publication date
CN108702147B (zh) 2022-04-29
EP3419170A1 (en) 2018-12-26
US11128117B2 (en) 2021-09-21
US20180331093A1 (en) 2018-11-15
KR102066367B1 (ko) 2020-01-14
EP3419170B1 (en) 2021-01-13
EP3419170A4 (en) 2018-12-26
KR20180109996A (ko) 2018-10-08
JP6889146B2 (ja) 2021-06-18
CN108702147A (zh) 2018-10-23
JPWO2017141811A1 (ja) 2018-12-13

Similar Documents

Publication Publication Date Title
WO2017141811A1 (ja) 保護回路、および保護回路の動作方法、および半導体集積回路装置
EP0626745B1 (en) Floating drive technique for reverse battery protection
CN108512534B (zh) 半导体器件和具有半导体器件的电子控制系统
EP2071724B1 (en) Power supply control circuit
JP5067786B2 (ja) 電力用半導体装置
KR102032334B1 (ko) 반도체 장치
JP2009147994A (ja) 電力供給制御回路
US7288856B2 (en) Reverse battery protection circuit for power switch
JP2005269885A (ja) Hブリッジ回路の駆動装置及びhブリッジ回路の保護方法
EP1137068B1 (en) Power semiconductor device having a protection circuit
US6778366B2 (en) Current limiting protection circuit
JP2005295753A (ja) 端子保護回路および同期整流型のスイッチング電源
JP6877597B2 (ja) ハイサイドゲートドライバ
JP2019046945A (ja) 半導体装置
US10454266B2 (en) System and method for circuit protection
JP2005277860A (ja) 負荷駆動装置及び負荷駆動装置の高電圧印加試験方法
JP3554353B2 (ja) 電界効果トランジスタの保護装置
JP6222381B2 (ja) 半導体装置および負電位印加防止方法
JP2024003953A (ja) 半導体装置
JP2023167424A (ja) ハイサイドスイッチ、電子機器、車両
JP2008154176A (ja) 逆流防止回路
JP2008135152A (ja) サイリスタprom回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018500075

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187025253

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017753069

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753069

Country of ref document: EP

Effective date: 20180918