WO2017138410A1 - リチウムイオン二次電池および蓄電装置 - Google Patents

リチウムイオン二次電池および蓄電装置 Download PDF

Info

Publication number
WO2017138410A1
WO2017138410A1 PCT/JP2017/003510 JP2017003510W WO2017138410A1 WO 2017138410 A1 WO2017138410 A1 WO 2017138410A1 JP 2017003510 W JP2017003510 W JP 2017003510W WO 2017138410 A1 WO2017138410 A1 WO 2017138410A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
ion secondary
mixture layer
electrode mixture
Prior art date
Application number
PCT/JP2017/003510
Other languages
English (en)
French (fr)
Inventor
西村 勝憲
鈴木 修一
修 久保田
久仁夫 福地
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2017138410A1 publication Critical patent/WO2017138410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery and a power storage device including the same.
  • Lithium ion secondary batteries have high energy density and are attracting attention as batteries suitable for electric vehicles and power storage. Since lithium ion secondary batteries used for such applications require a high energy density, advanced technology for ensuring reliability is required. As one of the techniques, it has been proposed to use a substance for suppressing the temperature rise of the lithium ion secondary battery.
  • Patent Document 1 discloses that lithium hydrogen carbonate is contained in a positive electrode mixture layer, a negative electrode mixture layer, or an electrolyte layer of a lithium ion secondary battery. According to Patent Document 1, when the battery becomes hot, water generated by thermal decomposition of lithium hydrogen carbonate hydrolyzes the supporting salt in the electrolytic solution, thereby reducing the supporting salt concentration in the electrolytic solution. It is described that the temperature rise of the battery is suppressed.
  • the present invention it is possible to provide a highly reliable lithium ion secondary battery and a power storage device in which the temperature rise of the battery is suppressed during a short circuit.
  • FIG. 1 is a schematic diagram showing the internal structure of the lithium ion secondary battery of the present embodiment.
  • FIG. 2 is a schematic diagram showing a cross-sectional structure of the positive electrode shown in FIG.
  • FIG. 3 is a table showing the compound particles used in the batteries and the evaluation results for Examples 1 to 24.
  • FIG. 4 is a table showing the compound particles used in the batteries and the evaluation results for Examples 25 to 43.
  • FIG. 5 is a graph showing the measurement results of the heating rate of the positive electrodes used in the examples and comparative examples.
  • FIG. 6 is a table showing the compound particles used in the batteries and the evaluation results regarding the comparative example.
  • FIG. 7 is a conceptual diagram illustrating a schematic configuration of the power storage device.
  • FIG. 1 is a schematic diagram showing an internal structure of a lithium ion secondary battery 101 according to the present embodiment.
  • an electrode group including a plurality of positive electrodes 107, a plurality of negative electrodes 108, and a plurality of separators 109 inserted between the positive electrodes 107 and the negative electrodes 108 is accommodated in the battery container 102.
  • the upper part of the battery container 102 is hermetically sealed by a battery lid 103.
  • the battery lid 103 is provided with a positive external terminal 104, a negative external terminal 105, and a liquid injection plug 106.
  • the battery cover 103 is put on the battery container 102, and the outer periphery of the battery cover 103 is welded to be integrated with the battery container 102.
  • the electrode group can have various configurations such as a configuration in which strip-shaped electrodes are wound into a cylindrical shape or a flat shape other than a configuration in which strip-shaped electrodes are stacked.
  • the battery case 102 can be selected from various shapes such as a cylindrical shape, a flat oval shape, and a square shape according to the shape of the electrode group.
  • the material of the battery container 102 is selected from materials that are corrosion resistant to the electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the battery lid 103 is provided with a liquid injection port for injecting the electrolyte L into the battery container 102.
  • a liquid injection port for injecting the electrolyte L into the battery container 102.
  • an electrolytic solution is injected into the battery 101 from the injection port.
  • the injection port is sealed by the injection plug 106.
  • the liquid injection stopper 106 may be provided with a safety mechanism. Examples of the safety mechanism include a pressure valve for releasing the internal pressure of the battery 101.
  • the battery cover 103 is provided with insertion openings for inserting the positive external terminal 104 and the negative external terminal 105, respectively.
  • An insulating seal member 112 is provided in these insertion openings, and the positive external terminal 104 and the negative external terminal 105 are fixed in a state insulated from the battery lid 103 by the insulating seal member 112.
  • the positive external terminal 104 is connected to the positive electrode 107 via the positive lead 110 and the negative external terminal 105 is connected to the negative 108 via the negative lead 111.
  • any shape such as a wire shape, a plate shape, and a foil shape can be adopted as long as the ohmic loss when a current is passed is not extremely large. .
  • Various materials can be used as long as they do not react with the electrolyte.
  • an insulating material that does not react with the electrolyte and has excellent airtightness can be used.
  • it can be selected from fluorine resin, thermosetting resin, glass hermetic seal, and the like.
  • the lithium ion secondary battery 101 has a battery container 102 with dimensions of, for example, a width of 100 mm, a height of 70 mm, a depth of 20 mm, an area of the battery lid 103 of, for example, 20 cm 2 , and the amount of electrolyte solution For example, 30 ml, and the discharge capacity is 5 Ah, for example.
  • the separator 109 prevents a short circuit between the positive electrode 107 and the negative electrode 108.
  • the separator 109 is also provided between the electrode group and the battery container 102, and prevents the positive electrode 107 and the negative electrode 108 from being short-circuited with the battery container 102.
  • a resin or an aluminum laminate in which aluminum is coated with a resin material is used as the material of the battery container 102, it is not necessary to provide the separator 109 between the electrode group and the battery container 102.
  • the separator 109 has pores as a whole.
  • the electrolyte enters and is held inside these pores.
  • a sheet of a polyolefin polymer material such as polyethylene or polypropylene, or a sheet having a multilayer structure in which a fluorine polymer sheet such as polytetrafluoroethylene and a polyolefin polymer are laminated is used.
  • a thin layer made of a mixture of ceramics and a binder may be provided on the surface of the separator 109 so that the separator 109 does not contract when the battery temperature rises.
  • the size of the pores provided in the separator 109 is preferably, for example, a diameter of 0.01 ⁇ m or more and 10 ⁇ m or less in order to transmit lithium ions when the lithium ion secondary battery 101 is charged and discharged.
  • the porosity which is the proportion of pores in the separator 109, is preferably 20% or more and 90% or less.
  • FIG. 2 is a schematic diagram showing a cross-sectional structure of the positive electrode 107.
  • the positive electrode 107 is configured by forming a positive electrode mixture layer 107d on the front and back surfaces of the positive electrode current collector 107e.
  • the positive electrode current collector 107e for example, an aluminum foil, an aluminum perforated foil in which pores are formed, an aluminum expanded metal, an aluminum foam plate, or the like is used.
  • the thickness is preferably 10 ⁇ m or more and 100 ⁇ m or less, and in the case of an aluminum perforated foil, the thickness is preferably 10 ⁇ m or more and 100 ⁇ m or less, and the pore size is preferably 0.1 mm or more and 10 mm or less.
  • a material of the positive electrode current collector 107e stainless steel, titanium, or the like can be used in addition to aluminum.
  • the positive electrode mixture layer 107d includes a positive electrode active material 107a, a conductive agent 107b, a binder, and a hydrogen carbonate particle or a hydrogen carbonate containing particle 107c (in this specification, for the sake of simplicity, a hydrogen carbonate particle and a hydrogen carbonate
  • the salt-containing particles are collectively referred to as compound particles).
  • the binder since the binder binds each particle and is indefinite, the binder is not shown in FIG.
  • the positive electrode active material 107a can be exemplified LiCoO 2, LiNiO 2, LiMn 2 O 4.
  • Li 2 Mn 3 MO 8 M is Fe, Co, Ni, Cu, Zn
  • LiFeO 2 , Fe 2 (SO 4 ) 3 LiCo 1-x M x O 2 (M is Ni, Fe, M
  • the positive electrode active material 107a is particulate, and the size of the particles of the positive electrode active material 107a is set to be smaller than the thickness of the positive electrode mixture layer 107d.
  • the size of the particles of the positive electrode active material 107a is set to be smaller than the thickness of the positive electrode mixture layer 107d.
  • the positive electrode active material 107a has a content of, for example, 75% by mass to 95% by mass in the positive electrode mixture layer 107d.
  • the content is preferably 85% by weight or more and 95% by weight or less.
  • the binder is used to bind the particles of the positive electrode active material 107a.
  • a material for the binder for example, polyvinylidene fluoride (hereinafter referred to as PVDF) can be used.
  • a binder previously dissolved in N-methyl-2-pyrrolidone hereinafter referred to as NMP
  • the binder is made to have a content of, for example, 1% by mass to 10% by mass in the positive electrode mixture layer 107d.
  • the conductive agent 107b for example, known materials such as graphite, amorphous carbon, graphitizable carbon, carbon black, activated carbon, conductive fiber, and carbon nanotube can be used.
  • the conductive fibers vapor grown carbon, fibers obtained by carbonizing raw materials of pitch (by-products such as petroleum, coal, coal tar) at high temperature, carbon fibers manufactured from acrylic fibers (Polyacrylonitrile), etc. are used. Can do. Further, it is not oxidized or dissolved at the charge / discharge potential of the positive electrode (usually 2.5 V or more and 2.8 V or less) and has a lower electrical resistance than the positive electrode active material, such as titanium.
  • a corrosion-resistant metal material such as gold can be used as the conductive agent 107b.
  • a carbide fiber such as SiC or WC, or a nitride fiber such as Si 3 N 4 or BN may be used as the conductive agent 107b.
  • These carbides and nitrides can be produced by an existing manufacturing method such as a melting method or a chemical vapor deposition method.
  • the surface of the positive electrode active material 107a may be covered with the conductive agent 107b.
  • the conductive agent 107b is included in order to increase the conductivity of the positive electrode mixture layer 107d.
  • the content of the conductive agent 107b is preferably included in the positive electrode mixture layer 107d so as to be, for example, 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more.
  • the compound particles 107c are materials expressed as follows.
  • M1 is a trivalent or higher metal element
  • x is a value of 3 or higher corresponding to the valence of M1
  • M2 is a monovalent or divalent metal element
  • y is a value of 1 or 2 corresponding to the valence of M2
  • a , B, C and D are positive integers
  • V is the valence of the metal element M1).
  • M1 in the chemical formula represented by M1 (HCO 3 ) x represents a trivalent or higher-valent metal element as described above. Since the hydrogen carbonate anion of M1 (HCO 3 ) x is not high in thermal stability, it is thermally decomposed even at a relatively low temperature. That is, when the temperature of the lithium ion secondary battery rises, M1 (HCO 3 ) x is thermally decomposed inside the lithium ion secondary battery even if the temperature is relatively low, such as less than 200 ° C. To generate carbon dioxide gas.
  • Examples of the compound represented by M1 (HCO 3 ) x include Al (HCO 3 ) 3 , Sc (HCO 3 ) 3 , and Fe (HCO 3 ) 3 , in which M1 is a trivalent metal element material. Further, examples of the material in which M1 is a tetravalent metal element include Ti (HCO 3 ) 4 , Si (HCO 3 ) 4, and the like.
  • M2 in the chemical formula represented by M2 (HCO 3 ) y represents a monovalent or divalent metal element as described above.
  • M2 (HCO 3) y is pyrolyzed even at relatively low temperatures .
  • M2 (HCO 3 ) y is thermally decomposed inside the lithium ion secondary battery even if the temperature is relatively low, such as less than 200 ° C. To generate carbon dioxide gas.
  • M2 (HCO 3 ) y is likely to be thermally decomposed even at a relatively low temperature is that M1 A (SO 4 ) B or M1 C (PO 4 ) D is thermally decomposed to M2 (HCO 3 ) y . This is considered to promote
  • Examples of the material represented by M2 (HCO 3 ) y include NaHCO 3 , LiHCO 3 , KHCO 3 , Mg (HCO 3 ) 2 , and Ca (HCO 3 ) 2 .
  • Examples of the material represented by M1 A (SO 4 ) B include Al 2 (SO 4 ) 3 , Sc 2 (SO 4 ) 3 , Fe 2 (SO 4 ) 3 , Ti (SO 4 ) 2 , and Si (SO 4). 2 ) and the like.
  • Examples of the material represented by M1 C (PO 4 ) D include AlPO 4 , FePO 4 , ScPO 4 , Ti 3 (PO 4 ) 4 , Si 3 (PO 4 ) 4 and the like.
  • Both of the compound particles of the first form and the second form contain M1 (HCO 3 ) x or M2 (HCO 3 ) y which are hydrogen carbonates, and these hydrogen carbonates are sources of carbon dioxide gas. .
  • the hydrogen carbonate is thermally decomposed to generate carbon dioxide gas inside the battery.
  • the carbon dioxide gas discharges the electrolytic solution held in the pores formed in the positive electrode mixture layer 107d from the pores, and suppresses discharge at the electrodes.
  • the electrolyte does not need to be completely discharged from the pores, and an amount of electrolyte that is about 50% of the total amount of electrolyte retained in the pores (ie, 50% of the pore volume) is discharged. Then, the resistance value with respect to the current that flows when the electrodes are short-circuited increases by about twice. Further, if about 80% of the total amount of the electrolyte retained in the pores is discharged, the resistance value increases about five times. Furthermore, if about 90% of the total amount of the electrolyte retained in the pores is discharged, the resistance value increases to about 10 times. In this way, the flow of current in a state where the electrodes are short-circuited is greatly suppressed, and the battery temperature rise is suppressed.
  • the generated carbon dioxide gas may also accumulate at the interface between the electrode and the separator. By doing in this way, since carbon dioxide gas restricts the movement of lithium ions, the current that flows when the electrodes are short-circuited is significantly suppressed.
  • the content of the compound particles 107c is preferably set to be, for example, 0.1% by mass or more and 10% by mass or less of the positive electrode mixture layer 107d. If the content of the compound particles 107c is 0.1% by mass or more, a new carbon dioxide gas discharged from the pores of the positive electrode mixture layer 107d is desorbed from the pores. With an appropriate carbon dioxide gas, the electrolyte solution can be discharged again from the pores.
  • the content rate of the compound particles 107c is less than 0.1% by mass, the amount of carbon dioxide gas generated when the electrodes are short-circuited is insufficient, and the electrolytic solution is sufficiently obtained from the pores formed in the positive electrode mixture layer 107d. Can not be discharged. Moreover, when the compound particle 107c is contained exceeding 10 mass%, the content rate of a positive electrode active material falls relatively, and the charge / discharge capacity per unit weight of an electrode reduces. Further, since the compound particle 107c is insulative, the resistance inside the positive electrode mixture layer 107d is increased.
  • the content of the compound particles 107c is 1% by mass or more and 3% by mass, even if a part of the hydrogen carbonate that constitutes the compound particles 107c is reduced by dissolving in the electrolyte, Since carbon dioxide gas is sufficiently generated, the electrolytic solution is discharged from the pores by the carbon dioxide gas.
  • the content of the material of the second form in the compound particles 107c is basically the same as that of the material of the first form. That is, it is preferable that the content rate of the compound particle 107c in the positive mix layer 107d is 0.1 to 10 mass%.
  • the content of hydrogen carbonate represented by M2 (HCO 3 ) y is 0.05% by mass or more and 5% by mass or less with respect to the positive electrode mixture layer 107d. Is preferably 1% by mass or more and 3% by mass.
  • the compound particles may be contained in the negative electrode mixture layer, or may be contained in both the positive electrode mixture layer and the negative electrode mixture layer.
  • the function performed by the compound particles in the negative electrode when the battery temperature rises is the same as the function in the positive electrode. That is, when the battery temperature rises, the hydrogen carbonate contained in the compound particles is thermally decomposed to generate carbon dioxide gas. This carbon dioxide gas suppresses discharge by discharging the electrolyte retained in the pores formed in the negative electrode mixture layer out of the pores. Thereby, the flow of current in a state where the electrodes are short-circuited is greatly suppressed.
  • the compound particles contained in the negative electrode mixture layer can be the same as the compound particles contained in the positive electrode mixture layer. Further, the content ratio when the compound particles are contained in the negative electrode mixture layer is the same as that when the compound particles are contained in the positive electrode mixture layer.
  • a positive electrode mixture slurry is prepared by further adding NMP to a solution obtained by mixing a binder in NMP while stirring the positive electrode active material 107a and the conductive agent 107b.
  • the compound particle 107c is included in the positive electrode mixture layer 107d, in addition to the positive electrode active material 107a and the conductive agent 107b, the compound particle 107c is also added to the NMP and stirred, and NMP is further added to the positive electrode layer.
  • a mixture slurry is prepared. The positive electrode mixture slurry is applied to the surface of the positive electrode current collector 107e by a blade coater, and then NMP is evaporated and dried to form the positive electrode mixture layer 107d on the surface of the positive electrode current collector 107e. Is made.
  • the method of applying the positive electrode mixture slurry to the surface of the positive electrode current collector 107e is not limited to the method using a blade coater, and known methods such as a doctor blade method, a dipping method, and a spray method can be applied.
  • the positive electrode mixture layer 107d can be laminated on the surface of the positive electrode current collector 107e by applying the positive electrode mixture slurry and drying a plurality of times.
  • the negative electrode 108 is produced by forming a negative electrode mixture layer on the surface of a negative electrode current collector that is, for example, a copper foil.
  • a negative electrode current collector for example, a copper foil, a copper perforated foil provided with pores, a copper expanded metal, a foamed copper plate, or the like is used.
  • the thickness is preferably 10 ⁇ m or more and 100 ⁇ m or less, and in the case of copper perforated foil, the thickness is preferably 10 ⁇ m or more and 100 ⁇ m or less, and the pore size is preferably 0.1 mm or more and 10 mm in diameter.
  • metals such as stainless steel and titanium and alloys thereof can be used in addition to copper.
  • the negative electrode mixture layer includes a negative electrode active material, a binder, and, if necessary, a conductive agent.
  • the negative electrode active material various materials capable of inserting and extracting lithium ions can be used.
  • materials include natural graphite, artificial graphite, mesophase carbon, expanded graphite, carbon fiber, vapor grown carbon fiber, pitch-based carbonaceous material, needle coke, petroleum coke, polyacrylonitrile-based carbon fiber, and carbon.
  • carbonaceous materials such as black, and amorphous carbon materials synthesized by thermal decomposition of 5-membered or 6-membered cyclic hydrocarbons or cyclic oxygen-containing organic compounds.
  • graphite powder having a (002) plane graphite layer spacing d 002 of 0.35 nm or more and 0.36 nm or less obtained from an X-ray diffraction peak can also be used.
  • the negative electrode active material may be a mixture of materials such as graphite, graphitizable carbon, and non-graphitizable carbon, or a mixture or composite of the carbon material and the metal or the alloy.
  • a conductive polymer material made of polyacene, polyparaphenylene, polyaniline, or polyacetylene can also be used as the negative electrode active material.
  • a material obtained by combining these materials with a carbon material having a graphene structure such as graphite, graphitizable carbon, and non-graphitizable carbon can also be used.
  • the negative electrode active material aluminum, silicon, tin, or the like alloyed with lithium can be used, and lithium titanate (Li 4 Ti 5 O 12 ) can also be used. Note that the negative electrode active material is not limited to the above materials, and materials other than those described above can also be used.
  • polyvinylidene fluoride a mixture of styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC), polyacrylic acid or an alkali metal salt thereof, polyimide, polyacrylimide and the like
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • polyacrylic acid or an alkali metal salt thereof polyimide, polyacrylimide and the like
  • the binder is not limited to the above materials, and materials other than those described above can also be used.
  • the content of the negative electrode active material is preferably 90% by mass to 99% by mass.
  • the content rate of the negative electrode active material is smaller than 90% by mass, it is difficult to improve the energy density of the lithium ion secondary battery 101.
  • the content rate of a negative electrode active material is larger than 99 mass%, it is difficult to ensure sufficient electroconductivity of the negative electrode 108.
  • the method of applying the negative electrode mixture slurry to the surface of the negative electrode current collector is not limited to the method using a blade coater, and for example, known methods such as a doctor blade method, a dipping method, and a spray method can be applied.
  • the negative electrode mixture layer may be laminated on the surface of the negative electrode current collector 108 by performing the application and drying of the positive electrode mixture slurry a plurality of times.
  • the electrolyte is configured by mixing an electrolyte with a non-aqueous solvent, and is held inside the lithium ion secondary battery 101.
  • the non-aqueous solvent is selected from solution ethylene carbonate (hereinafter referred to as EC), dimethyl carbonate (hereinafter referred to as DMC), ethyl methyl carbonate (hereinafter referred to as EMC), and diethyl carbonate (hereinafter referred to as DEC). 2 types or more are included.
  • EC solution ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • 2 types or more are included.
  • LiPF 6 lithium hexafluorophosphate
  • the concentration in that case is, for example, 1 mol / liter.
  • nonaqueous solvent various materials can be used as long as they do not decompose in the positive electrode 107 and the negative electrode 108 other than the above-mentioned solvents.
  • LiPF 6 various materials other than the above LiPF 6 can be used as long as they do not decompose in the positive electrode 107 and the negative electrode 108.
  • LiBF 4 LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6 or imide lithium salts represented by lithium trifluoromethane sulfonimide, LiNSO 2 F, Li (NSO 2) , such as 2
  • LiB (CN) 4 can also be used.
  • compound particles 107c are contained in the positive electrode mixture layer 107d of the positive electrode.
  • the positive electrode was produced by the following procedure. LiNi 1/3 Mn 1/3 Co 1/3 O 2 was prepared as the positive electrode active material 107a. The average particle diameter of the positive electrode active material 107a is 5 ⁇ m. PVDF was prepared as a binder. The content in the positive electrode mixture layer 107d was set to 7% by mass. Carbon black (Denka Black: manufactured by Denki Kagaku Kogyo Co., Ltd.) was prepared as the conductive material 107b. The content in the positive electrode mixture layer 107d was set to 7% by mass. Compound particles 107c were prepared.
  • FIG. 3 shows the types and content of compound particles used for producing the positive electrode of the battery for each example.
  • the compound particles of the first form are used for the batteries of Examples 1 to 9, and the compound particles of the second form are used for the batteries of Examples 10 to 24.
  • the content of the compound particles for each example is shown in FIG. 3 as the content p (mass%) of the compound particles in the positive electrode mixture layer.
  • the content of the positive electrode active material is (86-p)% by mass.
  • FIG. 3 also shows the decomposition start temperature of each compound particle.
  • the decomposition start temperature is determined by measuring the atmospheric temperature at which the calorific value of each compound particle shows a peak using a scanning differential calorimeter (manufactured by METTLER TOLEDO, DSC-1). The lowest decomposition start temperature was Sc (HCO 3 ) 3 at 80 ° C., and the highest mixed material of AlPO 4 and LiHCO 3 (weight ratio 1: 1) was 170 ° C.
  • NMP is further added while the positive electrode active material 107a, the conductive agent 107b, and the compound particles 107c are added and stirred to prepare a positive electrode used in the battery of each example.
  • a positive electrode mixture slurry was prepared. After applying this positive electrode mixture slurry to the surface of the positive electrode current collector 107e made of aluminum foil with a blade coater, NMP is evaporated and dried to form the positive electrode mixture layer 107d on the surface of the positive electrode current collector 107e.
  • the positive electrode 107 used for the battery of each example was manufactured.
  • the negative electrode was produced by the following procedure.
  • As a negative electrode active material graphite having amorphous carbon coated on the surface of natural graphite was prepared. The average particle diameter of natural graphite was 15 ⁇ m, and the thickness of amorphous carbon was 5 nm.
  • Styrene-butadiene rubber (SBR) and sodium carboxymethylcellulose (CMC) were prepared as binders. The mass ratio of SBR and CMC is 1: 1.
  • the binder was prepared so that the content rate in a negative mix layer might be 3 mass%.
  • the content rate of a negative electrode active material is 97 mass% with respect to a negative electrode raw material layer.
  • the negative electrode active material and SBR were added to water and stirred, and water and CMC were further added to prepare a negative electrode mixture slurry. After applying this negative electrode mixture slurry to the surface of the negative electrode current collector made of copper foil with a blade coater, water is evaporated to dryness, thereby forming a negative electrode mixture layer on the surface of the negative electrode current collector. 108 was produced.
  • the above-described positive electrode and negative electrode were laminated together with the separator 109 to form a strip-shaped electrode group shown in FIG.
  • the positive electrode 107 was connected to the positive electrode external terminal 104 via the positive electrode lead wire 110
  • the negative electrode 108 was connected to the negative electrode external terminal 105 via the negative electrode lead wire 111.
  • An insulating sealing member 112 was inserted between the positive electrode external terminal 104 and the battery case 102 and between the negative electrode external terminal 105 and the battery case 102 so that both terminals were not short-circuited.
  • a fluororesin was used as the insulating seal member 112.
  • the lithium ion secondary batteries of Examples 25 to 43 contain compound particles in the negative electrode mixture layer of the negative electrode.
  • the positive electrode was produced by the following procedure. The same positive electrode active material, binder, and conductive agent as those used for the positive electrodes of the batteries of Examples 1 to 24 were prepared. In the positive electrode mixture layer, the respective contents of the positive electrode active material, the binder, and the conductive agent were 86% by mass, 7% by mass, and 7% by mass. The binder and conductive agent content in the positive electrode mixture layer was 7% by mass, as in the batteries of Examples 1 to 24.
  • a positive electrode mixture slurry was prepared by adding NMP to a solution in which a binder was mixed in NMP and stirring the positive electrode active material 107a and the conductive agent 107b. After applying this positive electrode mixture slurry to the surface of the positive electrode current collector 107e made of aluminum foil with a blade coater, NMP is evaporated and dried to form the positive electrode mixture layer 107d on the surface of the positive electrode current collector 107e. Thus, the positive electrode 107 was produced.
  • the negative electrode was produced by the following procedure.
  • the same negative electrode active material and binder as those used in the batteries of Examples 1 to 24 were prepared.
  • the binder had a content of 3% by mass in the negative electrode mixture layer.
  • Compound particles were prepared.
  • FIG. 4 shows the types and contents of the compound particles used for producing the positive electrode of the battery for each example.
  • the compound particles of the first form are used for the batteries of Examples 25 to 33
  • the compound particles of the second form are used for the batteries of Examples 34 to 43.
  • the content of the compound particles for each example is shown in FIG. 4 as the content rate q (mass%) of the compound particles in the negative electrode mixture layer.
  • the content of the negative electrode active material is (97-p)% by mass.
  • FIG. 4 shows the decomposition start temperatures of the compound particles used in the negative electrodes of Examples 25 to 43.
  • the decomposition start temperature was determined by the same procedure as the decomposition start temperature of the compound particles shown in FIG.
  • the decomposition start temperature is the lowest Sc (HCO 3 ) 3 at 80 ° C., the highest mixed material of AlPO 4 and NaHCO 3 (weight ratio 1: 1) and mixed material of Al 2 (SO 4 ) 3 and NaHCO 3. Was 160 ° C.
  • a negative electrode mixture slurry was prepared by adding water and CMC while stirring the negative electrode active material, SBR as a binder, and compound particles into water.
  • the negative electrode mixture slurry is applied to the surface of the negative electrode current collector by a blade coater, and then the solvent is evaporated and dried to form a negative electrode mixture layer on the surface of the negative electrode current collector made of copper foil. Was made.
  • the lithium ion secondary batteries of Examples 25 to 43 were produced by the same procedure as the batteries of Examples 1 to 24 except that the positive electrode and the negative electrode 108 were used.
  • the rated capacities of the batteries in each example are all 5 Ah.
  • the battery of each example was evaluated by the following procedure.
  • the battery of each example was charged with a charging current of 5 A until the battery voltage reached 4.2V.
  • the battery was further charged until the charging current decreased to 0.1 A while maintaining the voltage of 4.2 V.
  • discharging was performed at a discharge current of 5 A until the battery voltage reached 2.8 V, and the discharge capacity at this time was defined as the initial capacity of the battery.
  • the initial capacities of the batteries of the respective examples thus obtained are shown in FIG. 3 and FIG.
  • charging to a capacity corresponding to the battery capacity (rated capacity) obtained above is referred to as full charging or charging to a charging depth (SOC) of 100%.
  • a thin metal rod for example, a nail
  • FIG. 3 and FIG. 4 show the reached temperature reached when the surface temperature of the battery container increases.
  • the initial capacity of the battery of each example was the same as the rated capacity of 5 Ah, or slightly lower than the rated capacity. That is, the battery capacity of the battery of each example is maintained.
  • the ultimate temperature was 145 ° C. at the highest (Example 21). That is, in the battery of each Example, it can be seen that the temperature rise when the positive electrode and the negative electrode are short-circuited can be suppressed to a temperature lower than about 145 ° C., even if it is large.
  • the positive electrode (NaHCO 3 and Al 2 (SO 4 ) 3 contained in the positive electrode mixture layer) used in the battery of Example 5 was charged, the ambient temperature was changed in this state, and the heat generation rate and atmosphere from the positive electrode were changed. The relationship with temperature was measured.
  • the above-described scanning differential calorimeter was used for the measurement. The result is shown by a solid line in FIG.
  • the rate of heat generation from the positive electrode used in the battery of Example 5 increased as the ambient temperature increased, but no conspicuous peak was observed. That is, in the battery of Example 5, it is considered that oxygen desorption from the positive electrode and oxidation of the electrolyte solution by the oxygen do not occur in the temperature range shown in FIG. The same applies to the batteries of the other examples.
  • Comparative Example 1 A positive electrode and a negative electrode were prepared so that compound particles were not contained in either the positive electrode mixture layer or the negative electrode mixture layer, and a battery was prepared using these in the same procedure as in the example. That is, the negative electrode used for the batteries of Examples 1 to 24 and the positive electrode used for the batteries of Examples 25 to 43 were combined, and a battery was fabricated with the same configuration as that of the battery of Examples.
  • the compound particle material contained in the positive electrode mixture layer was only NaHCO 3, and the content in the positive electrode mixture layer was 1% by mass.
  • positive electrodes were produced using the same materials as the positive electrode mixtures of Examples 1 to 24.
  • the content of the compound particles in the positive electrode mixture layer of this positive electrode was 1% by mass.
  • Each content rate of a positive electrode active material, a binder, and a electrically conductive agent is 85 mass%, 7 mass%, and 7 mass%.
  • a battery was fabricated in the same procedure as in Examples 1 to 24 except that the above positive electrode was used. Incidentally, was 200 ° C., which was determined by the same procedure as in Example decomposition initiation temperature of NaHCO 3.
  • the positive electrode of Comparative Example 1 that is, the positive electrode containing no compound particles was charged, and the relationship between the heat generation rate from the positive electrode and the ambient temperature was determined in the same manner as the procedure performed for the positive electrode of Example 5. It was measured. The result is shown by a broken line in FIG. As can be seen from FIG. 5, the heat generation rate from the positive electrode used in the battery of Comparative Example 1 increases as the temperature increases, and a peak is observed where the heat generation rate is significantly increased at an ambient temperature near 270 ° C. . From this result, in the battery of Comparative Example 1, that is, the battery containing no compound particles in either the positive electrode or the negative electrode, oxygen begins to desorb from the positive electrode at a temperature higher than 250 ° C. This phenomenon occurs at temperatures near 270 ° C. It is considered that oxygen released from the positive electrode oxidizes the electrolyte near the positive electrode.
  • the temperature rise can be sufficiently suppressed.
  • FIG. 7 is a conceptual diagram showing a schematic configuration of the power storage device 200.
  • FIG. 7 shows a configuration in which two lithium ion secondary batteries are connected in series for easy understanding of the configuration.
  • 201a and 201b represent lithium ion secondary batteries
  • 216 represents a charge / discharge controller.
  • the lithium ion secondary batteries may be connected in series or may be connected in parallel.
  • the number of batteries to be connected in series and the number of batteries to be connected in parallel are arbitrary, and they can be determined according to the DC voltage and the electric energy required for the device on which the power storage device 200 is mounted.
  • Each of the lithium ion secondary batteries 201a and 201b has an electrode group composed of a positive electrode 207, a negative electrode 208, and a separator 209, and an upper battery lid 203 has a positive electrode external terminal 204, a negative electrode external terminal 205, and an injection plug 206. Is provided.
  • An insulating seal member 212 is inserted between each of the positive external terminal 204 and the negative external terminal 205 and the battery case so that the positive external terminal 204 and the negative external terminal 205 are not short-circuited.
  • the negative external terminal 205 of the lithium ion secondary battery 201 a is connected to the negative input terminal of the charge / discharge controller 216 by the power cable 213.
  • the positive external terminal 204 of the lithium ion secondary battery 201a is connected to the negative external terminal 205 of the lithium ion secondary battery 201b via the power cable 214.
  • the positive external terminal 204 of the lithium ion secondary battery 201 b is connected to the positive input terminal of the charge / discharge controller 216 by the power cable 215.
  • the charge / discharge controller 216 transmits and receives power to / from an external device (hereinafter referred to as an external device) 219 via the power cables 217 and 218.
  • the external device 219 represents an external power source for supplying power to the charge / discharge controller 216, various electric devices such as a regenerative motor, an inverter, a converter, a load, and the like that supply power from the charge / discharge device.
  • the power generation device 222 represents, for example, a wind power generator as a device that generates renewable energy.
  • the power generation device 222 is connected to the charge / discharge controller 216 via the power cables 220 and 221.
  • the charge / discharge controller 216 is set to the charge mode, supplies power to the external device 219, and controls the surplus power to be charged to the lithium ion secondary batteries 201a and 201b.
  • the charge / discharge controller 216 controls to discharge the lithium ion secondary batteries 201a and 201b.
  • the power generation device 222 may be a power generation device other than a wind power generator, such as a solar cell, a geothermal power generation device, a fuel cell, or a gas turbine generator.
  • a program for performing the control as described above is stored in the charge / discharge controller 216 in advance.
  • the external device 219 supplies power to the lithium ion secondary batteries 201a and 201b via the charge / discharge controller 216 when charging the lithium ion secondary batteries 201a and 201b.
  • the lithium ion secondary batteries 201a and 201b are discharged, power is consumed from the lithium ion secondary batteries 201a and 201b via the charge / discharge controller 216.
  • the power storage device 200 performs normal charging to obtain a rated capacity for the lithium ion secondary batteries 201a and 201b. For example, 2.8V constant voltage charging can be performed for 0.5 hour at a charging current of 1 hour rate. Since the charging condition is determined by the number of lithium ion secondary batteries constituting the power storage device 200, the constituent material of each lithium ion secondary battery, and the like, optimal conditions are set.
  • the charge / discharge controller 216 is set to the discharge mode and discharges from the lithium ion secondary batteries 201a and 201b to the external device 219. Discharge is stopped when the lithium ion secondary batteries 201a and 201b reach a predetermined lower limit voltage.
  • the charge / discharge controller 216 functions as a control unit that controls the charge / discharge ranges of the lithium ion secondary batteries 201a and 201b. It is preferable that the charge / discharge controller 216 controls the charge / discharge range to be in the range of 10% or more and 90% or less based on the predetermined depth of charge (SOC) of the lithium ion secondary batteries 201a and 201b. Thereby, the temperature rise of a lithium ion secondary battery can be suppressed more effectively, and safety can be improved without deteriorating battery performance.
  • SOC depth of charge
  • the charge / discharge controller 216 may set the charge / discharge rate to a high speed of 0.1 hour rate or less based on the predetermined charging depth of the lithium ion secondary batteries 201a and 201b. In particular, in a hybrid electric vehicle, a high-speed charge / discharge rate is required. Even under such severe usage conditions that charge and discharge such a large amount of power in a short time, the power storage device of the present embodiment is sufficiently stable because the temperature rise of the lithium ion secondary battery is sufficiently suppressed. Operate.
  • the present invention is not limited to the embodiment described above. Specific constituent materials, parts, and the like may be changed without departing from the scope of the present invention. In addition, if the constituent elements of the present invention are included, a known technique can be added or replaced with a known technique.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

短絡時に電池の温度上昇が抑制され信頼性の高いリチウムイオン二次電池を提供する。リチウムイオン二次電池は、正極合剤層を有する正極と、負極合剤層を有する負極と、電解液と、を有するリチウムイオン二次電池において、前記正極合剤層または前記負極合剤層の少なくともいずれか一方には、M1(HCOで表わされる炭酸水素塩が含まれるか、または、M2(HCOで表わされる炭酸水素塩とM1(SOおよびM1(POのいずれかで表わされる化合物とが含まれる(ただし、M1は3価以上の金属元素、xはM1の価数に相当する3以上の値、M2は1価または2価の金属元素、yはM2の価数に相当する1または2の値、A、B、CおよびDは正の整数であり、AはB=AV/2が最小の正の整数となるような正の整数、CはD=CV/3が最小の正の整数となるような正の整数、Vは金属元素M1の価数である)。

Description

リチウムイオン二次電池および蓄電装置
 本発明は、リチウムイオン二次電池およびそれを備えた蓄電装置に関する。
 リチウムイオン二次電池は高いエネルギー密度を有し、電気自動車や電力貯蔵に適した電池として注目されている。このような用途に用いられるリチウムイオン二次電池は高いエネルギー密度が必要であるため、信頼性を確保するための高度な技術が求められる。その技術の一つとして、リチウムイオン二次電池の温度上昇を抑制するための物質を用いることが提案されている。
 例えば、特許文献1には、リチウムイオン二次電池の正極合剤層、負極合剤層、または電解質層に炭酸水素リチウムを含有させることが開示されている。特許文献1によれば、電池が高温になった場合、炭酸水素リチウムが熱分解して発生する水が電解液中の支持塩を加水分解して電解液中の支持塩濃度を低下させることで、電池の温度上昇を抑制することが記載されている。
特開2015-95330号公報
 しかしながら、特許文献1のリチウムイオン二次電池では、温度上昇の抑制が充分とは言えない。
 本発明の第1の態様によれば、リチウムイオン二次電池は、正極合剤層を有する正極と、負極合剤層を有する負極と、電解液と、を有するリチウムイオン二次電池において、前記正極合剤層または前記負極合剤層の少なくともいずれか一方には、M1(HCOで表わされる炭酸水素塩が含まれるか、または、M2(HCOで表わされる炭酸水素塩とM1(SOおよびM1(POのいずれかで表わされる化合物とが含まれる(ただし、M1は3価以上の金属元素、xはM1の価数に相当する3以上の値、M2は1価または2価の金属元素、yはM2の価数に相当する1または2の値、A、B、CおよびDは正の整数であり、AはB=AV/2が最小の正の整数となるような正の整数、CはD=CV/3が最小の正の整数となるような正の整数、Vは金属元素M1の価数である)。
 本発明の第2の態様によれば、蓄電装置は、リチウムイオン二次電池を複数含む蓄電装置であって、前記リチウムイオン二次電池は、第1の態様のリチウムイオン二次電池である。
 本発明によれば、短絡時に電池の温度上昇が抑制され信頼性の高いリチウムイオン二次電池および蓄電装置を提供することができる。
図1は、本実施の形態のリチウムイオン二次電池の内部構造を示す模式図である。 図2は、図1にした正極の断面構造を示す模式図である。 図3は、実施例1~24に関して、電池に用いた化合物粒子と評価結果を示す表である。 図4は、実施例25~43に関して、電池に用いた化合物粒子と評価結果を示す表である。 図5は、実施例および比較例に用いた正極の発熱速度測定結果を示すグラフである。 図6は、比較例に関して、電池に用いた化合物粒子と評価結果を示す表である。 図7は、蓄電装置の概略構成を示す概念図である。
(第1の実施の形態)
 以下、図面を参照しながら本発明の第1の実施の形態のリチウムイオン二次電池について説明する。図1は、本実施の形態に係るリチウムイオン二次電池101の内部構造を示す模式図である。リチウムイオン二次電池101において、複数の正極107、複数の負極108、および、正極107と負極108との間に挿入された複数のセパレータ109からなる電極群が、電池容器102に収納されている。電池容器102の上部は電池蓋103により内部が密閉状態とされている。電池蓋103には、正極外部端子104、負極外部端子105、注液栓106が設けられている。
 リチウムイオン二次電池101の組み立ては、電池容器102の内部に電極群を収納した後に、電池蓋103を電池容器102に被せ、電池蓋103の外周を溶接して電池容器102と一体化する。電池容器102に電池蓋103を一体化させるには、溶接の他に、かしめ、接着などの方法を用いることができる。なお、電極群は、短冊状の電極を積層させる構成以外に、帯状の電極を円筒状や扁平状に捲回した構成など、種々の構成とすることができる。電池容器102は、電極群の形状に対応して、円筒型、偏平長円形状、角型など、種々の形状を選択することができる。電池容器102の材料は、例えば、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製など、電解液に対して耐食性のある材料から選択される。
 電池蓋103には、電池容器102内に電解液Lを注入する注液口が設けられている。リチウムイオン二次電池101を組み立てた後、注液口から電池101の内部に電解液を注入する。電解液を注入した後、注液口は注液栓106によって密閉される。注液栓106には安全機構を設けることもある。安全機構としては、電池101の内部圧力を解放するための圧力弁などが挙げられる。
 電池蓋103には、正極外部端子104および負極外部端子105をそれぞれ挿入するための挿入口が設けられている。これらの挿入口には絶縁シール部材112が設けられ、正極外部端子104および負極外部端子105は、絶縁シール部材112によって電池蓋103とは絶縁された状態で固定される。正極外部端子104は正極リード線110を介して正極107に接続され、負極外部端子105は負極リード線111を介して負極108に接続される。
 正極リード線110および負極リード線111の形状は、電流を流したときのオーム損失が極端に大きくない形状であれば、ワイヤ状、板状、箔状などの任意の形状を採用することができる。また、これらの材質は、電解液と反応しないものであれば種々のものが使用可能である。
 リード線絶縁性シール部材112の材料としては、電解液と反応せず、かつ気密性に優れた絶縁材料を使用することができる。例えば、フッ素樹脂、熱硬化性樹脂、ガラスハーメチックシールなどから選択することができる。
 本実施の形態において、リチウムイオン二次電池101は、電池容器102の寸法は、例えば、幅100mm、高さ70mm、奥行20mm、電池蓋103の面積は、例えば、20cm、電解液の量は、例えば30ml、放電容量は、例えば5Ahである。
(セパレータ)
 セパレータ109は正極107と負極108との短絡を防止する。セパレータ109は電極群と電池容器102との間にも設けられ、正極107および負極108がそれぞれ電池容器102と短絡することを防止する。なお、電池容器102の材料として、樹脂、あるいは、樹脂材料によりアルミニウムを被覆したアルミニウム・ラミネートを用いる場合は、電極群と電池容器102との間にセパレータ109を設ける必要はない。
 セパレータ109は全体に細孔を有する。また、正極107および負極108の表面にそれぞれ形成された正極合剤層107dおよび負極合剤層も細孔を有する。これらの細孔の内部には電解液が入り込んで保持される。
 セパレータ109の材料としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系高分子材料のシート、ポリテトラフルオロエチレンなどのフッ素系高分子シートとポリオレフィン系高分子とを積層した多層構造のシートなどを用いることができる。また、電池の温度が上昇した際にセパレータ109が収縮しないように、セパレータ109の表面に、セラミックスとバインダとの混合物による薄い層を設けてもよい。
 セパレータ109に設けられた細孔の大きさは、リチウムイオン二次電池101が充放電する際にリチウムイオンを透過させるために、例えば、直径が0.01μm以上かつ10μm以下であることが好ましく、セパレータ109に占める細孔の割合である気孔率は、20%以上かつ90%以下であることが好ましい。
(正極)
 本実施の形態に係るリチウムイオン二次電池の正極107について、図2を参照しながら説明する。図2は、正極107の断面構造を示す模式図である。正極107は、正極集電体107eの表面および裏面に正極合剤層107dを形成して構成されている。正極集電体107eとしては、例えば、アルミニウム箔や、細孔が形成されたアルミニウム製穿孔箔、アルミニウム製エキスパンドメタル、発泡アルミニウム板などが用いられる。アルミニウム箔の場合、厚さは10μm以上かつ100μm以下が好ましく、アルミニウム製穿孔箔の場合、厚さは10μm以上かつ100μm以下で、細孔の大きさは径0.1mm以上かつ10mm以下が好ましい。正極集電体107eの材料としては、アルミニウムの他、ステンレス鋼、チタンなどを用いることができる。
 正極合剤層107dは、正極活物質107a、導電剤107b、バインダ、および、炭酸水素塩粒子または炭酸水素塩含有粒子107c(本明細書においては、簡単のために、炭酸水素塩粒子および炭酸水素塩含有粒子を総称して化合物粒子と呼ぶ)により構成される。なお、バインダは各粒子を結着して不定形であるため、図2において、バインダは図示していない。
 正極活物質107aとしては多様な材料を用いることができる。例えば、LiCoO、LiNiO、LiMnを例示することができる。また、正極活物質107aの別の例として、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-x(Mは、Co、Ni、Fe、Cr、Zn、Taのいずれかであって、x=0.01~0.2)、LiMnMO(Mは、Fe、Co、Ni、Cu、Zn)、Li1-xMn(Aは、Mg、Ba、B、Al、Fe、Co、Ni、Cr、Zn、Caであって、x=0.01~0.1)、LiNi1-x(Mは、Co、Fe、Gaであって、x=0.01~0.2)、LiFeO、Fe(SO、LiCo1-x(Mは、Ni、Fe、Mnであって、x=0.01~0.2)、LiNi1-x(Mは、Mn、Fe、Co、Al、Ga、Ca、Mgであって、x=0.01~0.2)、Fe(MoO、FeF、LiFePO、LiMnPOなども用いることができる。
 正極活物質107aは粒子状であり、正極活物質107aの粒子のサイズは正極合剤層107dの厚さより小さくなるように設定される。正極合剤層107dの厚さより大きいサイズの正極活物質107aの粒子が存在する場合には、予めふるい分級、風流分級などによりこのような大きいサイズの正極活物質を除去する。
 正極活物質107aは、正極合剤層107dにおいて、例えば75質量%以上かつ95質量%以下の含有率となるようにする。ただし、リチウムイオン二次電池101のエネルギー密度をさらに向上させる場合には、85重量%以上かつ95重量%以下の含有率とすることが好ましい。
 バインダは、正極活物質107aの粒子を結着させるために用いる。バインダの材料としては、例えば、ポリフッ化ビニリデン(以下、PVDFと記載する)を用いることができる。バインダは、N-メチル-2-ピロリドン(以下、NMPと記載する)に予め溶解させたものを用いることもできる。バインダは、正極合剤層107dにおいて、例えば1質量%以上かつ10質量%以下の含有率となるようにする。
 導電剤107bとしては、例えば、黒鉛、非晶質炭素、易黒鉛化炭素、カーボンブラック、活性炭、導電性繊維、カーボンナノチューブなどの公知の材料を用いることができる。導電性繊維としては、気相成長炭素、またはピッチ(石油、石炭、コールタールなどの副生成物)による原料を高温で炭化した繊維、アクリル繊維(Polyacrylonitrile)から製造された炭素繊維などを用いることができる。また、正極の充放電電位(通常は2.5V以上かつ2.8V以下である。)にて酸化されたり、あるいは溶解したりせず、正極活物質よりも電気抵抗の低い金属材料、例えばチタン、金などの耐食性金属材料を導電剤107bとして用いることもできる。さらに、SiCやWCなどの炭化物や、Si、BNなどの窒化物の繊維を導電剤107bとして用いてもよい。これらの炭化物や窒化物は、溶融法、化学気相成長法など既存の製造方法によって作製できる。また、導電剤107bにより正極活物質107aの表面を被覆した構成としてもよい。
 導電剤107bは正極合剤層107dの導電性を高めるために含有させる。正極活物質107aの導電性を高めると、正極に大きな電流が流れる際のオーム抵抗損失を小さくできるので、リチウムイオン二次電池101に対して大電流での充放電を行うことを可能とすることができる。導電剤107bの含有率は、正極合剤層107dにおいて、例えば1質量%以上10質量%以下となるように含有させることが好ましく、含有率が3重量%以上とすることがさらに好ましい。
 次に、化合物粒子107c(すなわち、炭酸水素塩粒子あるいは炭酸水素塩含有粒子107c)について説明する。化合物粒子107cは下記の通り表記される材料である。M1(HCO(第1形態)、または、M2(HCOとM1(SOおよびM1(POのいずれかとの混合材料(第2形態)(ただし、M1は3価以上の金属元素、xはM1の価数に相当する3以上の値、M2は1価または2価の金属元素、yはM2の価数に相当する1または2の値、A、B、CおよびDは正の整数であり、AはB=AV/2が最小の正の整数となるような正の整数、CはD=CV/3が最小の正の整数となるような正の整数、Vは金属元素M1の価数である)の2つの形態の材料である。
 第1形態の化合物粒子において、上記の通りM1(HCOに示す化学式中のM1は3価以上の金属元素を表す。M1(HCOの炭酸水素アニオンは熱安定性が高くないので、比較的低温でも熱分解される。すなわち、リチウムイオン二次電池の温度が上昇した場合、その温度が200℃に満たないような比較的低温であっても、M1(HCOはリチウムイオン二次電池の内部で熱分解して二酸化炭素ガスを発生する。M1(HCOで表わされる化合物としては、M1が3価の金属元素の材料である、Al(HCO、Sc(HCO、Fe(HCOなどが挙げられる。また、M1が4価の金属元素の材料としては、Ti(HCO、Si(HCOなどが挙げられる。
 第2形態の化合物粒子において、上記の通りM2(HCOに示す化学式中のM2は1~2価の金属元素を表す。M2(HCOとM1(SOおよびM1(POのいずれかとの混合材料である場合、M2(HCOは比較的低温であっても熱分解される。例えば、リチウムイオン二次電池の温度が上昇した場合、その温度が200℃に満たないような比較的低温であっても、M2(HCOはリチウムイオン二次電池の内部で熱分解して二酸化炭素ガスを発生させる。このように比較的低温であってもM2(HCOが熱分解されやすいのは、M1(SOあるいはM1(POが、M2(HCOの熱分解を促進するためであると考えられる。
 M1(SOとしてAl(SOが使用され、M2(HCOとしてNaHCOが使用された場合、下記の三段階の化学反応(第1反応、第2反応および第3反応)が進むことにより二酸化炭素ガスが発生し、その際のNaHCOの熱分解温度は200℃より低いと考えられる。
  Al(SO+6H → 2Al3++3HSO  (第1反応)
  HSO+2NaHCO → 2Na+HCO   (第2反応)
  HCO → HO+CO             (第3反応)
上記第1反応において、リチウムイオン二次電池内部において正極と負極が短絡した際に電解液の酸化が起こり、負極の被膜(Solid Electrolyte Interface)が分解することにより、水素イオン(H)が発生すると考えられる。
 M2(HCOで表される材料としては、NaHCO、LiHCO、KHCO、Mg(HCO、Ca(HCOなどが挙げられる。M1(SOで表される材料としては、Al(SO、Sc(SO、Fe(SO、Ti(SO、Si(SOなどが挙げられる。M1(POで表される材料としては、AlPO、FePO、ScPO、Ti(PO、Si(POなどが挙げられる。
 第1形態および第2形態のいずれの化合物粒子においても、炭酸水素塩であるM1(HCOあるいはM2(HCOを含み、これらの炭酸水素塩は二酸化炭素ガスの発生源となる。
 上記の通り、正極合剤層107dに化合物粒子107cが含有されたリチウムイオン二次電池の温度が上昇した場合、電池内部において炭酸水素塩が熱分解して二酸化炭素ガスを発生する。二酸化炭素ガスは、正極合剤層107dに形成された細孔中に保持されていた電解液を細孔から排出し、電極における放電を抑制する。
 この場合、電解液は細孔から完全に排出される必要はなく、細孔中に保持された電解液の総量の50%(すなわち細孔容積の50%)程度の量の電解液が排出されれば、電極間が短絡した際に流れる電流に対する抵抗値は2倍程度に増加する。また、細孔中に保持された電解液の総量の80%程度が排出されれば、上記抵抗値は5倍程度に増加する。さらに、細孔中に保持される電解液の総量の90%程度が排出されれば、上記抵抗値は10倍程度まで増加する。このように、電極間が短絡した状態における電流の流れが大幅に抑制されて、電池の温度上昇を抑制する。
 発生した二酸化炭素ガスが、電極とセパレータとの界面にも蓄積するようにしてもよい
。このようにすることで、二酸化炭素ガスがリチウムイオンの移動を制限するので、電極間が短絡した際に流れる電流は著しく抑制される。
 化合物粒子107cが第1形態の材料の場合、化合物粒子107cの含有率は、正極合剤層107dの、例えば0.1質量%以上かつ10質量%以下となるようにすることが好ましい。化合物粒子107cの含有率が0.1質量%以上であれば、正極合剤層107dの細孔から電解液を排出した二酸化炭素ガスの一部が細孔から脱離してしまった場合でも、新たな二酸化炭素ガスにより、細孔から再び電解液を排出させることができる。
 化合物粒子107cの含有率が0.1質量%を下回る場合、電極間が短絡した際に発生する二酸化炭素ガスの量が不足し、正極合剤層107dに形成された細孔から電解液を十分に排出することができない。また、化合物粒子107cを10質量%を超えて含有させた場合、正極活物質の含有率が相対的に低下し、電極の単位重量当りの充放電容量が減少する。また、化合物粒子107cは絶縁性なので、正極合剤層107dの内部における抵抗が高くなる。
 化合物粒子107cの含有率が1質量%以上かつ3質量%であれば、化合物粒子107cを構成する炭酸水素塩の一部が電解液に溶解することにより減少しても、別の炭酸水素塩から二酸化炭素ガスが充分に発生するので、この二酸化炭素ガスにより電解液は細孔から排出される。
 化合物粒子107cが第2形態の材料の含有率についても、第1形態の材料の場合と基本的に同様である。すなわち、正極合剤層107dにおける化合物粒子107cの含有率は、0.1質量%以上かつ10質量%以下であることが好ましい。二酸化炭素ガスの発生量の観点から、M2(HCOで表される炭酸水素塩の含有率は、正極合剤層107dに対して0.05質量%以上かつ5質量%以下であることが好ましく、1質量%以上かつ3質量%であればより好ましい。
 また、M1(SOまたはM1(POで表される化合物の含有率は、正極合剤層107dにおいて0.05質量%以上かつ5質量%以下であることが好ましい。M2(HCOで表される炭酸水素塩とM1(SOまたはM1(POで表される化合物との質量比は1:1でもよいが、それぞれの含有率が上記範囲であれば、質量比が1:1でなくても同様の効果が得られる。
 上記では、化合物粒子を正極合剤層に含有させる場合について説明した。しかし、化合物粒子は負極合剤層に含有させてもよく、また、正極合剤層および負極合剤層の両方に含有させてもよい。電池の温度が上昇した際に、負極において化合物粒子が果たす機能も正極における機能と同様である。すなわち、電池の温度が上昇した際に、化合物粒子に含まれる炭酸水素塩が熱分解して二酸化炭素ガスを発生する。この二酸化炭素ガスは、負極合剤層に形成された細孔中に保持された電解液を細孔外に排出し放電を抑制する。これにより、電極間が短絡した状態における電流の流れが大幅に抑制される。負極合剤層に含有させる化合物粒子は、正極合剤層に含有させる化合物粒子と同様のものが使用できる。また、化合物粒子を負極合剤層に含有させる場合の含有率についても、正極合剤層に含有させる場合と同様である。
(正極の作製)
 バインダをNMP中に混合させた溶液に、正極活物質107a、導電剤107bを投入して攪拌しながら、NMPをさらに添加して正極合剤スラリを調製する。正極合剤層107dに化合物粒子107cを含有させる場合には、正極活物質107a、導電剤107bに加えて化合物粒子107cも併せてNMP中に投入して攪拌しながら、NMPをさらに添加して正極合剤スラリを調製する。この正極合剤スラリをブレードコーターにより正極集電体107eの表面に塗布した後、NMPを蒸発させて乾燥し、正極集電体107eの表面に正極合剤層107dを形成することで、正極107を作製する。
 なお、形成された正極合剤層107dを必要に応じて、ロールプレスなどにより加圧してもよい。正極集電体107eの表面に正極合剤スラリを塗布する方法は、ブレードコーターによる方法に限定されることはなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの既知の方法を適用できる。正極合剤スラリの塗布および乾燥までを複数回行うことにより、正極合剤層107dを正極集電体107eの表面に積層化して形成することも可能である。
(負極)
 負極108は、例えば銅箔である負極集電体の表面に、負極合剤層を形成することにより作製される。負極集電体としては、例えば、銅箔や細孔が設けられた銅製穿孔箔、銅製エキスパンドメタル、発泡銅板などが用いられる。銅箔の場合、厚さが10μm以上かつ100μm以下が好ましく、銅製穿孔箔の場合、厚さが10μm以上かつ100μm以下、細孔の大きさは径0.1mm以上かつ10mmが好ましい。負極集電体の材料としては、銅の他に、ステンレス鋼、チタンなどの金属やこれらの合金を用いることができる。負極合剤層は、負極活物質、バインダ、および必要に応じて導電剤を含んで構成される。
 負極活物質としては、リチウムイオンを吸蔵・放出することが可能な多様な材料を用いることができる。このような材料としては、例えば、天然黒鉛、人造黒鉛、メソフェーズ炭素、膨張黒鉛、炭素繊維、気相成長法炭素繊維、ピッチ系炭素質材料、ニードルコークス、石油コークス、ポリアクリロニトリル系炭素繊維、カーボンブラックのなどの炭素質材料、あるいは5員環または6員環の環式炭化水素または環式含酸素有機化合物を熱分解によって合成した非晶質炭素材料、などが挙げられる。
 負極活物質としては、X線回折ピークから求めた(002)面のグラファイト層間隔d002が、0.35nm以上かつ0.36nm以下の範囲にある黒鉛粉末を用いることもできる。
 負極活物質は、黒鉛、易黒鉛化炭素、難黒鉛化炭素などの材料の混合、または前記炭素材料と前記金属もしくは前記合金の混合または複合であってもよい。また、負極活物質としてポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレンからなる導電性高分子材料も用いることができる。さらに、これらの材料と、黒鉛、易黒鉛化炭素、難黒鉛化炭素などのグラフェン構造を有する炭素材料とを組み合わせた材料も用いることができる。
 負極活物質としては、リチウムと合金化するアルミニウム、シリコン、スズなども使用可能であり、さらに、チタン酸リチウム(LiTi12)を用いることも可能である。なお、負極活物質としては上記の材料に限定されず、上記以外の材料も用いることができる。
 バインダとしては、ポリフッ化ビニリデン、スチレン-ブタジエンゴム(SBR)とカルボキシメチルセルロース(CMC)との混合物、ポリアクリル酸またはそのアルカリ金属塩、ポリイミド、ポリアクリルイミドなどを用いることができる。バインダとしては上記の材料に限定されず、上記以外の材料も用いることができる。
 負極合剤層において、負極活物質の含有率は、90質量%以上かつ99質量%以下とすることが好ましい。負極活物質の含有率が90質量%より小さい場合、リチウムイオン二次電池101のエネルギー密度を向上させることが難しい。また、負極活物質の含有率が99質量%より大きい場合、負極108の導電性を十分に確保することが難しい。例えば、大電流の充電または放電を行う場合、負極合剤層に導電剤を少量含有させることが好ましく、これにより、負極108の抵抗を下げることができる。
(負極の作製)
 負極活物質とバインダとしてのSBRとを水に投入して攪拌しながら、さらに水とCMCを添加して負極合剤スラリを調製する。負極合剤層に化合物粒子を含有させる場合には、負極活物質およびSBRに加えて化合物粒子も併せて水に投入して撹拌しながら、さらに水とCMCを添加して負極合剤スラリを調製する。この負極合剤スラリをブレードコーターにより負極集電体の表面に塗布した後、溶媒を蒸発させて乾燥し、銅箔製の負極集電体の表面に負極合剤層を形成することで負極108を作製する。
 なお、形成された負極合剤層を必要に応じて、ロールプレスなどにより加圧してもよい。負極集電体の表面に負極合剤スラリを塗布する方法は、ブレードコーターによる方法に限定されることはなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの既知の方法を適用できる。正極合剤スラリの塗布および乾燥までを複数回行うことにより、負極合剤層を負極集電体108の表面に積層化して形成することも可能である。
(電解液の作製)
 電解液は電解質が非水溶媒に混合されて構成され、リチウムイオン二次電池101の内部に保持される。非水溶媒としては、溶液炭酸エチレン(以下、ECと記載)、炭酸ジメチル(以下、DMCと記載)、炭酸エチルメチル(以下、EMCと記載)、およびジエチルカーボネート(以下、DECと記載)から選択される2種以上を含む。電解質としては、例えば、六フッ化リン酸リチウム(以下、LiPFと記載)が用いられ、その場合の濃度は、例えば、1モル/リットルとされる。
 非水溶媒としては、上記の溶媒以外にも、正極107および負極108において分解しないものであれば、様々な材料を用いることができる。例えば、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジエチルカーボネート、メチルエチルカーボネート、1、2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1、3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1、2-ジエトキシエタン、クロルエチレンカーボネート、クロルプロピレンカーボネートなども用いることができる。
 電解質としては、上記のLiPF以外にも、正極107および負極108において分解しないものであれば、様々な材料を用いることができる。例えば、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbFあるいはリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩、LiNSOF、Li(NSOなどの多種類のリチウム塩がある。さらに、LiB(CN)を使用することも可能である。
(実施例1~24の電池の作製)
 実施例1~24のリチウムイオン二次電池は、正極の正極合剤層107dに化合物粒子107cを含有する。正極は次の手順により作製した。正極活物質107aとしてLiNi1/3Mn1/3Co1/3を用意した。正極活物質107aの平均粒径は5μmである。バインダとしてPVDFを用意した。正極合剤層107dにおける含有率は7質量%となるようにした。導電材と107bしてカーボンブラック(デンカブラック:電気化学工業株式会社製)を用意した。正極合剤層107dにおける含有率は7質量%となるようにした。化合物粒子107cを用意した。
 実施例毎の電池の正極を作製するために用いた化合物粒子の種類とその含有量を図3に示す。図3からわかる通り、化合物粒子として、実施例1~9の電池には第1形態の化合物粒子が用い、実施例10~24の電池には第2形態の化合物粒子が用いている。実施例毎の化合物粒子の含有量は、正極合剤層における化合物粒子の含有率p(質量%)として図3に示している。上記の通り、正極合剤層には、バインダが7質量%および導電剤が7質量%含有されるので、正極活物質の含有率は(86-p)質量%となる。
 図3には各化合物粒子の分解開始温度も示している。分解開始温度は、走査型示差熱量計(メトラー・トレド社製、DSC-1)により各化合物粒子の発熱量がピークを示す雰囲気温度を計測することにより求めたものである。分解開始温度は最も低いSc(HCOが80℃、最も高いAlPOとLiHCOとの混合材料(重量比1:1)が170℃であった。
 バインダをNMP中に混合させた溶液に、正極活物質107a、導電剤107b、および化合物粒子107cを投入して攪拌しながら、NMPをさらに添加して、各実施例の電池に用いる正極作製用の正極合剤スラリを調製した。この正極合剤スラリをブレードコーターによりアルミニウム箔製の正極集電体107eの表面に塗布した後、NMPを蒸発させて乾燥し、正極集電体107eの表面に正極合剤層107dを形成することで、各実施例の電池に用いる正極107を作製した。
 負極は次の手順により作製した。負極活物質として天然黒鉛の表面に非晶質炭素を被覆した黒鉛を用意した。天然黒鉛の平均粒径は15μm、非晶質炭素の厚さは5nmとした。バインダとして、スチレン-ブタジエンゴム(SBR)とカルボキシメチルセルロースナトリウム(CMC)とを用意した。SBRとCMCの質量比は1:1である。バインダは負極合剤層における含有率が3質量%となるように用意した。負極活物質の含有率は負極造材層に対して97質量%である。
 上記負極活物質とSBRとを水に投入して攪拌しながら、さらに水とCMCを添加して負極合剤スラリを調製した。この負極合剤スラリをブレードコーターにより銅箔製の負極集電体の表面に塗布した後、水を蒸発させて乾燥し、負極集電体の表面に負極合剤層を形成することで、負極108を作製した。
 上記の正極および負極をセパレータ109と共に積層して図1に示す短冊状の電極群を構成した。電極群の上部において、正極107は正極リード線110を介して正極外部端子104に接続し、負極108は負極リード線111を介して負極外部端子105に接続した。正極外部端子104と電池容器102との間、および負極外部端子105と電池容器102との間には、絶縁性シール部材112を挿入し、両端子が短絡しないようにした。絶縁性シール部材112としてはフッ素樹脂を用いた。電極群を電池容器102に収納した後、電池蓋103を電池容器102に密着させて電池全体を密閉した。このようにして、実施例1~24のリチウムイオン二次電池を作製した。
(実施例25~43の電池の作製)
 実施例25~43のリチウムイオン二次電池は、負極の負極合剤層に化合物粒子を含有する。正極は次の手順により作製した。正極活物質、バインダ、および導電剤として、実施例1~24の電池の正極に用いたものと同様のものを用意した。正極合剤層において、正極活物質、バインダ、および導電剤のそれぞれの含有率は、86質量%、7質量%、および7質量%とした。正極合剤層におけるバインダおよび導電剤の含有率は、実施例1~24の電池と同様に、それぞれ7質量%となるようにした。
 バインダをNMP中に混合させた溶液に、正極活物質107aおよび導電剤107bを投入して攪拌しながら、NMPをさらに添加して正極合剤スラリを調製した。この正極合剤スラリをブレードコーターによりアルミニウム箔製の正極集電体107eの表面に塗布した後、NMPを蒸発させて乾燥し、正極集電体107eの表面に正極合剤層107dを形成することで、正極107を作製した。
 負極は次の手順により作製した。負極活物質およびバインダとして、実施例1~24の電池に用いたものと同様のものを用意した。バインダは負極合剤層における含有率が3質量%となるようにした。化合物粒子を用意した。
 実施例毎の電池の正極を作製するために用いた化合物粒子の種類と含有量を図4に示す。図4からわかる通り、化合物粒子として、実施例25~33の電池には第1形態の化合物粒子が用い、実施例34~43の電池には第2形態の化合物粒子が用いる。実施例毎の化合物粒子の含有量は、負極合剤層における化合物粒子の含有率q(質量%)として図4に示している。上記の通り、負極合剤層にはバインダが3質量%含有されるので、負極活物質の含有率は(97-p)質量%となる。
 実施例25~43の負極に用いた各化合物粒子の分解開始温度を図4に示す。分解開始温度は、図3に示す化合物粒子の分解開始温度と同様の手順により求めた。分解開始温度は、最も低いSc(HCOが80℃、最も高いAlPOとNaHCOとの混合材料(重量比1:1)およびAl(SOとNaHCOとの混合材料が160℃であった。
 負極活物質、バインダとしてのSBR、および化合物粒子を水に投入して攪拌しながら、さらに水とCMCを添加して負極合剤スラリを調製した。この負極合剤スラリをブレードコーターにより負極集電体の表面に塗布した後、溶媒を蒸発させて乾燥し、銅箔製の負極集電体の表面に負極合剤層を形成することで負極108を作製した。
 上記の正極および負極108を用いたこと以外は、実施例1~24の電池を作製した手順と同様の手順により、実施例25~43のリチウムイオン二次電池を作製した。各実施例の電池の定格容量は全て5Ahである。
(実施例の電池の評価)
 各実施例の電池の評価を次の手順により行った。各実施例の電池に対して、5Aの充電電流で電池電圧が4.2Vになるまで充電した。電圧4.2Vを維持しながら充電電流が0.1Aに低下するまでさらに充電を行った。30分間放置した後、5Aの放電電流で電池電圧が2.8Vになるまで放電を行い、この時の放電容量を電池の初期容量とした。このようにして求めた各実施例の電池の初期容量を図3および図4に示す。以下では、上で得られた電池容量(定格容量)を基準にして、それに相当する容量まで充電することをフル充電、または充電深度(SOC)が100%にまで充電すると表記する。
 次に、各実施例の電池を容量の100%まで充電(フル充電)した後、電池容器102の側面から細い金属棒(例えば、釘)を挿入して正極と負極を短絡させ、その後の電池容器の表面温度を測定した。図3および図4には、電池容器の表面温度が上昇して到達した到達温度を示す。
 図3および図4からわかる通り、各実施例の電池の初期容量は定格容量である5Ahと同様か、あるいは、定格容量を少し下回る程度だった。すなわち、各実施例の電池は電池容量が維持されている。到達温度は、最も高いもの(実施例21)で145℃であった。すなわち、各実施例の電池においては、正極と負極とが短絡した際の温度上昇が、大きいものでも145℃程度より低い温度に抑制できていることがわかる。
 実施例5の電池に用いた正極(NaHCOとAl(SOとを正極合剤層に含有)を充電状態とし、その状態で雰囲気温度を変化させ、正極からの発熱速度と雰囲気温度との関係を測定した。測定には上記の走査型示差熱量計を用いた。その結果を図5に実線で示す。図5からわかり通り、実施例5の電池に用いた正極からの発熱速度は雰囲気温度が高くなるに従って大きくなるものの、目立ったピークは観察されなかった。すなわち、実施例5の電池では、図5に示された温度範囲では、正極からの酸素の脱離や、その酸素による電解液の酸化などは発生しないことが考えられる。このことは、他の実施例の電池においても同様である。
(比較例1)
 正極合剤層および負極合剤層のどちらにも化合物粒子を含有させないように、正極および負極を作製し、これらを用いて実施例と同様の手順により電池を作製した。すなわち、実施例1~24の電池に用いた負極と、実施例25~43の電池に用いた正極とを組み合わせ、それ以外は実施例の電池と同様の構成により電池を作製した。
(比較例2)
 正極合剤層に含有させる化合物粒子の材料をNaHCOのみとし、正極合剤層における含有率を1質量%とした。正極活物質、バインダ、および導電剤は、実施例1~24の正極合剤と同様の材料を用いて正極を作製した。この正極の正極合剤層における化合物粒子の含有率は1質量%とした。正極活物質、バインダ、導電剤のそれぞれの含有率は、85質量%、7質量%、7質量%である。上記正極を用いること以外は、実施例1~24と同様の手順により電池を作製した。なお、NaHCOの分解開始温度を実施例における手順と同様の手順により求めたところ200℃であった。
(比較例の電池の評価)
 実施例の電池と同様の手順により、比較例1および比較例2の電池の評価を行った。その結果を図6に示す。図6からわかる通り、初期容量については定格容量からの低下は見られなかったものの、正極と負極の短絡時の温度上昇は大きく、比較例1では305℃、比較例2では280℃まで電池容器の表面温度が上昇した。すなわち、比較例1および2の電池では、正極と負極とが短絡した際の温度上昇の抑制が充分でないことがわかる。
 比較例2の電池の到達温度が比較例1の電池の到達温度より低かった理由として、比較例2の電池では、200℃を超えるような高温になった際に、NaHCOが熱分解して二酸化炭素ガスが発生したことによるものと考えられる。すなわち、比較例2の電池は、この二酸化炭素により温度上昇が抑制され、280℃で温度の上昇が止まったと考えられる。これに対して、比較例1の電池では、二酸化炭素ガスを発生する炭酸水素塩が含有されていなかったために、このような効果は現れず、その結果、電池の温度は305℃まで上昇したものと考えられる。
 比較例1の正極、すなわち、化合物粒子を含有しない正極を充電し、その状態で実施例5の正極に対して行った手順と同様の手順により、正極からの発熱速度と雰囲気温度との関係を測定した。その結果を図5に破線で示す。図5からわかり通り、比較例1の電池に用いた正極からの発熱速度は温度が高くなるにしたがって大きくなり、かつ、270℃近傍の雰囲気温度において顕著に発熱速度が大きくなるピークが観察される。この結果から、比較例1の電池、すなわち、化合物粒子を正極および負極のいずれにも含有しない電池では、250℃より高い温度になると正極から酸素が離脱し始め、270℃近傍の温度ではこの現象が激しくなり、正極から離脱した酸素は、正極近傍の電解液を酸化したことが考えられる。
 以上説明した通り、本実施の形態によるリチウムイオン二次電池によれば、温度上昇を十分に抑制できる。
(変形例)
 上記実施の形態によるリチウムイオン二次電池101において、正極リード線110または負極リード線111の途中、正極リード線110と正極外部端子104との接続部、または負極リード線111と負極外部端子105との接続部に、正温度係数(PTC:Positive Temperature Coefficient)抵抗素子を用いた電流遮断部を設けてもよい。このような電流遮断部を設けることで、リチウムイオン二次電池101の内部の温度が高くなったときに充放電を停止させ、より高い安全性を確保することが可能となる。
(第2の実施の形態)
(蓄電装置)
 上記第1の実施の形態のリチウムイオン二次電池101を複数備えた蓄電装置について説明する。実施例5のリチウムイオン二次電池を8個作製し、これらのリチウムイオン二次電池を直列に接続し、本実施の形態の蓄電装置200を作製した。図7は、この蓄電装置200の概略構成を示す概念図である。なお、図7においては、構成をわかりやすくするため、2個のリチウムイオン二次電池が直列に接続された構成を示している。図7において、201aおよび201bはリチウムイオン二次電池、216は充放電制御器を表わす。
 リチウムイオン二次電池は直列接続されていてもよいし、あるいは並列接続されていてもよい。直列接続させる電池の数と並列接続させる電池の数は任意であり、それらは蓄電装置200が搭載される装置に求められる直流電圧と電力量に応じて決定することができる。
 リチウムイオン二次電池201aおよび201bはそれぞれ、正極207、負極208、セパレータ209からなる電極群を有し、上部の電池蓋203には正極外部端子204、負極外部端子205、および注液栓206が設けられている。正極外部端子204および負極外部端子205のそれぞれと電池容器の間には絶縁シール部材212が挿入され、正極外部端子204と負極外部端子205とが短絡しないように構成されている。リチウムイオン二次電池201aの負極外部端子205は、電力ケーブル213により充放電制御器216の負極入力端子に接続されている。リチウムイオン二次電池201aの正極外部端子204は、電力ケーブル214を介して、リチウムイオン二次電池201bの負極外部端子205に接続されている。リチウムイオン二次電池201bの正極外部端子204は、電力ケーブル215により充放電制御器216の正極入力端子に接続されている。
 充放電制御器216は、電力ケーブル217、218を介して、外部に設置した機器(以下、外部機器と称する)219との間で電力の授受を行う。外部機器219は、充放電制御器216に給電するための外部電源、回生モータなどの各種電気機器、本充放電装置が電力を供給するインバータ、コンバータ、負荷などを表わす。
 222は、再生可能エネルギーを生み出す機器として、例えば風力発電機を表わす。発電装置222は、電力ケーブル220、221を介して充放電制御器216に接続されている。発電装置222が発電する時には、充放電制御器216は充電モードに設定され、外部機器219に給電すると共に、余剰電力をリチウムイオン二次電池201aおよび201bに充電するように制御する。風力発電機の発電量が外部機器219の要求電力よりも少ない時には、充放電制御器216は、リチウムイオン二次電池201aおよび201bを放電させるように制御する。発電装置222は、風力発電機以外の発電装置、例えば太陽電池、地熱発電装置、燃料電池、ガスタービン発電機などの装置であってもよい。上記のような制御を行うためのプログラムは、予め充放電制御器216に記憶させておく。
 外部機器219は、リチウムイオン二次電池201aおよび201bの充電時には充放電制御器216を介してリチウムイオン二次電池201aおよび201bに対して電力を供給する。また、リチウムイオン二次電池201aおよび201bの放電時には充放電制御器216を介してリチウムイオン二次電池201aおよび201bから電力を消費する。
 蓄電装置200は、リチウムイオン二次電池201aおよび201bに対して、定格容量が得られる通常の充電を行う。例えば、1時間率の充電電流にて2.8Vの定電圧充電を0.5時間行うことができる。充電条件は、蓄電装置200を構成するリチウムイオン二次電池の数や各リチウムイオン二次電池の構成材料などにより決まるので、最適な条件を設定する。
 蓄電装置200は、リチウムイオン二次電池201aおよび201bを充電させる際には、充放電制御器216は放電モードに設定され、リチウムイオン二次電池201aおよび201bから外部機器219に対して放電する。リチウムイオン二次電池201aおよび201bが所定の下限電圧に到達した時点で放電を停止させる。
 以上のように、充放電制御器216はリチウムイオン二次電池201a、201bの充放電範囲を制御する制御部として機能する。充放電制御器216は、リチウムイオン二次電池201aおよび201bの所定の充電深度(SOC)を基準として充放電範囲を10%以上かつ90%以下の範囲に制御することが好ましい。これにより、リチウムイオン二次電池の温度上昇をより効果的に抑制し、電池性能を低下させることなく安全性を向上させることができる。
 また、充放電制御器216は、リチウムイオン二次電池201aおよび201bの上記所定の充電深度を基準として、充放電のレートを0.1時間率以下の高速にしてもよい。特に、ハイブリッド電気自動車においては、高速の充放電レートが必要となる。このように大きな電力を短時間で充放電するような激しい使用条件であっても、本実施の形態の蓄電装置は、リチウムイオン二次電池の温度上昇が充分に抑制されるので、安定して動作する。
 本発明は、以上で説明した実施の形態に限定されない。本発明の要旨を変更しない範囲で、具体的な構成材料、部品などを変更しても良い。また、本発明の構成要素を含んでいれば、公知の技術を追加し、あるいは公知の技術で置き換えることも可能である。
101、201a、201b リチウムイオン二次電池
102、202 電池容器
103、203 電池蓋
104、204 正極外部端子
105、205 負極外部端子
106、206 注液栓
107、207 正極
108、208 負極
109、209 セパレータ
110 正極リード線
111 負極リード線
107a 正極活物質
216…充放電制御器

Claims (8)

  1.  正極合剤層を有する正極と、
     負極合剤層を有する負極と、
     電解液と、を有するリチウムイオン二次電池において、
     前記正極合剤層または前記負極合剤層の少なくともいずれか一方には、M1(HCOで表わされる炭酸水素塩が含まれるか、または、M2(HCOで表わされる炭酸水素塩とM1(SOおよびM1(POのいずれかで表わされる化合物とが含まれる(ただし、M1は3価以上の金属元素、xはM1の価数に相当する3以上の値、M2は1価または2価の金属元素、yはM2の価数に相当する1または2の値、A、B、CおよびDは正の整数であり、AはB=AV/2が最小の正の整数となるような正の整数、CはD=CV/3が最小の正の整数となるような正の整数、Vは金属元素M1の価数である)、リチウムイオン二次電池。
  2.  請求項1に記載のリチウムイオン二次電池において、
     前記M1は3価の金属元素であって、Al、ScおよびFeのいずれかであるリチウムイオン二次電池。
  3.  請求項1に記載のリチウムイオン二次電池において、
     前記M1(HCOで表わされる炭酸水素塩は、前記正極合剤層または前記負極合剤層に対して、0.1質量%以上かつ10質量%以下の含有率で含まれるリチウムイオン二次電池。
  4.  請求項3に記載のリチウムイオン二次電池において、
     前記M1(HCOで表わされる炭酸水素塩は、前記正極合剤層または前記負極合剤層に対して、1質量%以上かつ3質量%以下の含有率で含まれるリチウムイオン二次電池。
  5.  請求項1に記載のリチウムイオン二次電池において、
     前記M1(SOおよび前記M1(POのいずれかで表わされる化合物は、前記正極合剤層または前記負極合剤層に対して、0.05質量%以上かつ5質量%以下の含有率で含まれ、
     前記M2(HCOで表わされる炭酸水素塩は、前記正極合剤層または前記負極合剤層に対して、0.05質量%以上かつ5質量%以下の含有率で含まれるリチウムイオン二次電池。
  6.  請求項5に記載のリチウムイオン二次電池において、
     前記M2(HCOで表わされる炭酸水素塩は、前記正極合剤層または前記負極合剤層に対して、1質量%以上かつ3質量%以下の含有率で含まれるリチウムイオン二次電池。
  7.  請求項1に記載のリチウムイオン二次電池において、
     前記M2(HCOで表わされる炭酸水素塩と、前記M1(SOおよび前記M1(POのいずれかで表わされる化合物と、を合わせて、前記正極合剤層または前記負極合剤層に対して、0.1質量%以上かつ10質量%以下の含有率で含まれるリチウムイオン二次電池。
  8.  リチウムイオン二次電池を複数含む蓄電装置であって、
     前記リチウムイオン二次電池は、請求項1から請求項7までのいずれか一項に記載のリチウムイオン二次電池である蓄電装置。
PCT/JP2017/003510 2016-02-08 2017-02-01 リチウムイオン二次電池および蓄電装置 WO2017138410A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016021660A JP6572149B2 (ja) 2016-02-08 2016-02-08 リチウムイオン二次電池および蓄電装置
JP2016-021660 2016-02-08

Publications (1)

Publication Number Publication Date
WO2017138410A1 true WO2017138410A1 (ja) 2017-08-17

Family

ID=59563901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003510 WO2017138410A1 (ja) 2016-02-08 2017-02-01 リチウムイオン二次電池および蓄電装置

Country Status (2)

Country Link
JP (1) JP6572149B2 (ja)
WO (1) WO2017138410A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220037720A1 (en) * 2020-07-29 2022-02-03 Prologium Technology Co., Ltd. Thermal runaway suppressant of lithium batteries and the related applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191417A (ja) * 1997-06-06 1999-07-13 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造方法
JP2000149922A (ja) * 1998-11-05 2000-05-30 Samsung Sdi Co Ltd リチウムイオンポリマ―電池用電極活物質組成物、高分子電解質マトリックス組成物及びこれを用いたリチウムイオンポリマ―電池の製造方法
JP2008204789A (ja) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2012172586A1 (ja) * 2011-06-13 2012-12-20 株式会社 日立製作所 リチウム二次電池
JP2013178909A (ja) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd 二次電池、それを用いた組電池、および二次電池用シート状蓄熱部材
JP2015111553A (ja) * 2013-10-31 2015-06-18 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191417A (ja) * 1997-06-06 1999-07-13 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造方法
JP2000149922A (ja) * 1998-11-05 2000-05-30 Samsung Sdi Co Ltd リチウムイオンポリマ―電池用電極活物質組成物、高分子電解質マトリックス組成物及びこれを用いたリチウムイオンポリマ―電池の製造方法
JP2008204789A (ja) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2012172586A1 (ja) * 2011-06-13 2012-12-20 株式会社 日立製作所 リチウム二次電池
JP2013178909A (ja) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd 二次電池、それを用いた組電池、および二次電池用シート状蓄熱部材
JP2015111553A (ja) * 2013-10-31 2015-06-18 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Also Published As

Publication number Publication date
JP2017142892A (ja) 2017-08-17
JP6572149B2 (ja) 2019-09-04

Similar Documents

Publication Publication Date Title
JP5630189B2 (ja) リチウムイオン電池
JP5557793B2 (ja) 非水電解質二次電池
JP5872055B2 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP5341280B2 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JPWO2013099263A1 (ja) 非水電解質二次電池
WO2017110661A1 (ja) リチウムイオン二次電池
JP5949605B2 (ja) 非水電解質二次電池、及び蓄電装置
JP5411813B2 (ja) 非水電解質二次電池及びそれを有する電池システム
WO2018061479A1 (ja) リチウムイオン二次電池および蓄電装置
JP2014199723A (ja) プレドープ剤、これを用いた蓄電デバイス及びその製造方法
KR20130129819A (ko) 리튬 이온 이차 전지
KR102230038B1 (ko) 리튬 이차 전지
JP2017068939A (ja) リチウム二次電池
JP6572149B2 (ja) リチウムイオン二次電池および蓄電装置
JP2015082356A (ja) リチウムイオン二次電池用電解液、その電解液を用いたリチウムイオン二次電池、およびリチウムイオン二次電池を用いた充放電装置
JP2015191721A (ja) 二次電池および電池モジュール
JP6258180B2 (ja) リチウム二次電池用電解液の添加剤及びそれを用いたリチウム二次電池用電解液、リチウム二次電池
JP2020077575A (ja) リチウムイオン二次電池
KR102129499B1 (ko) 리튬 이차 전지
JP5954217B2 (ja) リチウムイオン電池
JP6115370B2 (ja) リチウムイオン二次電池用電解液、リチウムイオン二次電池用電解液の製造方法、その電解液を用いたリチウムイオン二次電池、およびリチウムイオン二次電池を用いた電源装置
JP5712808B2 (ja) リチウムイオン電池及びそれを利用した電池システム
JP6922373B2 (ja) 非水電解質蓄電素子用負極活物質、非水電解質蓄電素子用負極、及び非水電解質蓄電素子
WO2015132842A1 (ja) リチウムイオン二次電池用難燃剤、リチウムイオン二次電池用電解液、リチウムイオン二次電池、リチウムイオン二次電池を利用した電源または機器システム
JP2011150968A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750134

Country of ref document: EP

Kind code of ref document: A1