WO2017138254A1 - 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム - Google Patents

導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム Download PDF

Info

Publication number
WO2017138254A1
WO2017138254A1 PCT/JP2016/087660 JP2016087660W WO2017138254A1 WO 2017138254 A1 WO2017138254 A1 WO 2017138254A1 JP 2016087660 W JP2016087660 W JP 2016087660W WO 2017138254 A1 WO2017138254 A1 WO 2017138254A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive adhesive
adhesive film
group
metal particles
resin
Prior art date
Application number
PCT/JP2016/087660
Other languages
English (en)
French (fr)
Inventor
尚明 三原
切替 徳之
二朗 杉山
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP16889955.7A priority Critical patent/EP3415578B1/en
Priority to SG11201806325YA priority patent/SG11201806325YA/en
Priority to KR1020187022055A priority patent/KR102190151B1/ko
Priority to MYPI2018702803A priority patent/MY197274A/en
Priority to CN201680076981.5A priority patent/CN108431159B/zh
Publication of WO2017138254A1 publication Critical patent/WO2017138254A1/ja
Priority to PH12018501617A priority patent/PH12018501617A1/en
Priority to US16/056,896 priority patent/US11193047B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J157/00Adhesives based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09J157/06Homopolymers or copolymers containing elements other than carbon and hydrogen
    • C09J157/12Homopolymers or copolymers containing elements other than carbon and hydrogen containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2461/00Presence of condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a conductive adhesive film and a dicing die bonding film using the same.
  • a semiconductor device includes a step of forming a die mount material for bonding a semiconductor element (chip) on an element carrying part of a lead frame or a circuit electrode part of an insulating substrate, and on a lead frame or a circuit electrode. Mounting a semiconductor element on the surface of the die mount material, joining the element carrying part of the lead frame or the circuit electrode part of the insulating substrate and the semiconductor element, the electrode part of the semiconductor element, the terminal part of the lead frame or the insulating substrate; The semiconductor device is manufactured through a wire bonding step for electrically joining the terminal portions and a molding step for resin-covering the semiconductor device assembled in this way.
  • a bonding material is used when bonding the element carrying portion of the lead frame or the circuit electrode portion of the insulating substrate and the semiconductor element.
  • a bonding material for power semiconductors such as IGBT and MOS-FET
  • lead solder containing 85% by mass or more of lead having high melting point and heat resistance has been widely used.
  • the toxicity of lead has been regarded as a problem, and there is an increasing demand for lead-free bonding materials.
  • solders have a problem of poor wettability than lead solder. For this reason, when lead-free solder is used as a bonding material, the solder does not spread on the die pad portion, and the risk of occurrence of bonding failure such as solder removal increases. In particular, the problem of wettability tends to worsen as the melting point of lead-free solder becomes higher, so it has been difficult to achieve both heat resistance and mounting reliability.
  • Patent Document 2 and Patent Document 3 are researching diffusion-sintered solder such as Cu-based solder and Sn-based solder. These diffusion-sintered solders have a low melting point in the unsintered state and can lower the mounting temperature, and irreversibly increase the melting point in the state after the diffusion sintering reaction. Therefore, it is expected that heat resistance and mounting reliability, both of which are difficult to achieve, will be compatible.
  • diffusion sintered solder like conventional lead-free solder, has a problem of wettability, and the risk of solder removal cannot be avoided when joining large areas.
  • diffusion sintered solder is hard and brittle in the state of a sintered body, so there is a problem that stress relaxation properties are poor and heat fatigue resistance is low, and sufficient bonding reliability has not been obtained. It was.
  • flux such as carboxylic acid or alcohol is generally added for the purpose of removing a metal oxide film.
  • these flux components are easy to absorb moisture and bleed out, and such moisture absorption and generation of bleed out adversely affect the reflow reliability (MSL) after moisture absorption in the sealed package of the semiconductor element. It is known to give. Therefore, flux cleaning is generally performed after solder reflow mounting. However, such processing has a problem of labor and cleaning waste liquid processing.
  • the amount of flux components such as carboxylic acid and alcohol that cause moisture absorption and bleed out is reduced, the removal performance of the oxide film is insufficient, and the conductivity and other performances are reduced. The problem that it is not fully demonstrated arises. Therefore, it has not yet been fully resolved.
  • the present invention is suitably used as a conductive bonding material when, for example, a semiconductor chip (particularly a power device) is bonded to an element carrier portion of a lead frame or a circuit electrode portion of an insulating substrate, while achieving lead-free, Forms a bonding layer that has particularly excellent electrical conductivity and has excellent heat resistance and mounting reliability after bonding / sintering, on the element carrier of the semiconductor chip and lead frame, or between the circuit electrodes on the insulating substrate It is an object of the present invention to provide a conductive adhesive film that can be used, and a dicing die bonding film using the same.
  • the present inventors have found that, for example, by combining a predetermined metal particle (Q), a predetermined resin (M), and a predetermined organic phosphorus compound (A), for example, a semiconductor chip (especially power Between the device) and the lead frame element carrying part or the circuit electrode part of the insulating substrate. It is lead-free and has particularly excellent conductivity, both heat resistance after bonding and sintering, and mounting reliability. It was found that a conductive adhesive film suitable for use as a conductive bonding material capable of forming an excellent bonding layer was obtained, and the present invention was completed.
  • each R independently represents a vinyl group, an acrylic group, a methacryl group, a maleic ester group, a maleic amide group, a maleic imide group, or a primary amino group.
  • the metal particles (Q) further include second metal particles (Q2) made of spherical metal powder.
  • the second metal particles (Q2) have an average particle diameter (d50) of less than 7 ⁇ m.
  • the conductive adhesive film includes metal particles (Q), a resin (M), and a predetermined organophosphorus compound (A), and the resin (M) is a thermosetting resin (M1).
  • the metal particles (Q) have a mean particle diameter (d50) of 20 ⁇ m or less, and a fractal dimension of 1.1 or more when viewed in a projection view in a primary particle state.
  • d50 mean particle diameter
  • fractal dimension of 1.1 or more when viewed in a projection view in a primary particle state.
  • Conductive adhesive film suitable for use as a conductive bonding material that can be used to form a bonding layer that has conductivity and is excellent in both heat resistance after bonding / sintering and mounting reliability. Dicing die bonding fill It is possible to provide a.
  • FIG. 1A is an SEM image showing an example of a metal particle having a fractal dimension of 1.1 or more when viewed in a projection view in the state of a primary particle
  • FIG. FIG. 1 (C) is an image obtained by extracting the contour line of the lower particles from the binarized image
  • FIG. 1 (D) is the contour line image.
  • Is a graph obtained by plotting a common logarithm for the box pixel size (d) vs. the number of boxes (N (d)).
  • It is sectional drawing which shows the layer structure of the dicing die-bonding film which concerns on embodiment of this invention. It is a figure which shows the state which bonded the dicing die-bonding film of this invention to the semiconductor.
  • the conductive adhesive film according to the present embodiment includes predetermined metal particles (Q), a predetermined resin (M), and a predetermined organic phosphorus compound (A).
  • the conductive adhesive film may further contain various additives as necessary.
  • metal particles means not only metal particles composed of a single metal component, but also alloy particles composed of two or more metal components, unless otherwise specified. Also means.
  • the metal particles (Q) contain 10% by mass or more of the first metal particles (Q1) having a fractal dimension of 1.1 or more when viewed in a projection view in the state of primary particles. By containing 10 mass% or more of such first metal particles (Q1), a conductive adhesive film particularly excellent in conductivity can be obtained.
  • the metal particles (Q) need only contain 10% by mass or more of the first metal particles (Q1), and may consist of only the first metal particles (Q1), or the first In addition to the metal particles (Q1), a mixture containing one or more metal particles having other particle shapes may be used.
  • the primary particles mean single particles that are not aggregated with other particles.
  • the projection in the state of primary particles is obtained by performing image processing on an image of primary particles obtained by SEM (scanning electron microscope), TEM (transmission electron microscope) or the like. An outline is extracted. An example thereof is shown in FIG. FIG. 1 (A) is an SEM image of dendritic copper powder, and FIG. 1 (C) is a projection view (contour line) in the state of primary particles after image processing of the particles of FIG. 1 (A). It is a thing.
  • the fractal dimension analysis method is not particularly limited, and examples thereof include a box count method and a pixel method.
  • log 10 N (d) ⁇ D log 10 d + log 10 a (a is a positive constant) (II) If a logarithmic plot of d and N (d) is drawn, the fractal dimension D can be obtained from the slope of the straight line.
  • FIG. 1 An image of primary particles obtained by SEM, TEM, etc. (FIG. 1) using arbitrary image software (“Image-J” created by Wayne Rasband, National Institutes of Health (NIH) in the present invention).
  • image-J created by Wayne Rasband, National Institutes of Health (NIH) in the present invention.
  • FIG. 1B Here, the SEM image) is converted into a binary image format projection by binarization processing or the like (FIG. 1B), and a contour line is extracted from the projection (FIG. 1C).
  • each side has a length d (where d is an arbitrary number of pixels of 2 pixels or more), and each box For each (length d of one side), the number of boxes N (d) necessary for covering the contour of the primary particle is counted.
  • the obtained N (d) is plotted in a common logarithm with respect to the length d of one side of the box (FIG. 1D), the slope of the straight line is obtained according to the above formula (II), and the fractal dimension D is calculated.
  • the fractal dimension D of the projection figure in the state of the primary particle shown in FIG. 1 was 1.25 when analyzed by the box count method.
  • the first metal particle (Q1) having a fractal dimension of 1.1 or more when viewed in a projection view in the state of such a primary particle for example, a dendritic metal as shown in FIG.
  • a dendritic metal as shown in FIG.
  • examples thereof include metal powder having a relatively complicated contour shape such as powder, starfish shape, and spherical shape having a large number of minute irregularities on the surface.
  • metal powder having a dendritic shape is preferable.
  • the first metal particles (Q1) contain the dendritic metal powder, the contact probability between the metal particles is increased in the conductive adhesive film, so that the conductivity is improved.
  • the metal particles (Q) further include second metal particles (Q2) made of spherical metal powder in addition to the first metal particles (Q1).
  • the metal particles (Q) contain the second metal particles (Q2), the degree of increase in viscosity derived from the friction between the surface of the metal particles and the resin component can be controlled, and the optimum viscosity according to the application. Can be adjusted to.
  • the conductivity can be improved.
  • the spherical metal powder means metal particles having a fractal dimension of 1.0 or more and less than 1.1 when viewed in a projection view in a state of primary particles. Examples of such spherical metal powders include metal powders produced by an atomizing method.
  • the second metal particles (Q2) more preferably have an average particle diameter (d50) of less than 7 ⁇ m.
  • the first metal particles (Q1) and the second metal particles (Q2) are not particularly limited.
  • an alloy containing two or more selected from these groups is preferable.
  • copper (Cu) which is excellent in conductivity and thermal conductivity, is relatively inexpensive, and hardly causes ion migration.
  • At least one of the first metal particles (Q1) and the second metal particles (Q2) is made of copper (Cu), nickel (Ni), aluminum (Al), tin (Sn), zinc (Zn), titanium
  • an alloy containing at least two selected from (Ti) silver (Ag), gold (Au), indium (In), bismuth (Bi), gallium (Ga) and palladium (Pd)
  • the melting point of the metal particles (Q) as a whole can be further lowered.
  • the first metal particles (Q1) and the second metal particles (Q2) is coated with a noble metal (for example, silver or gold) on the surface of the metal particles. Since the surface of the metal particle is coated with a noble metal (preferably silver or gold), an oxide film is hardly formed on the surface of the metal particle, and high conductivity is exhibited in the conductive adhesive film. Further, according to such metal particles, it is difficult to form an oxide film on the surface thereof, so that the amount of flux component added for the purpose of removing the oxide film can be reduced.
  • the noble metal coating only needs to cover at least part of the surfaces of the first metal particles (Q1) and the second metal particles (Q2), and may not necessarily cover the entire surface. Is preferably as wide as possible. Examples of the first metal particles (Q1) and the second metal particles (Q2) include silver-coated dendritic copper powder and silver-coated spherical copper powder.
  • Each of the first metal particles (Q1) and the second metal particles (Q2) is composed of one type of metal powder (for example, a fractal dimension and an average particle diameter when viewed in a projection view in a state of primary particles. , Composition, presence / absence of coating, etc., or different metal powders (for example, fractal dimension, average particle diameter, composition, coating when viewed in projection in the state of primary particles) It may be a mixture of two or more of those having at least one of the presence or absence of or the like.
  • the second metal particles (Q2) are preferably a mixture.
  • the second metal particles (Q2) are the first metal particles (Q1) and the second metal particles (Q2), or the second metal particles (Q2) and the second metal particles (Q2).
  • a metal component capable of forming an intermetallic compound can form an intermetallic compound with each other.
  • the metal particles (Q) as a whole can form a high melting point intermetallic compound in a state after sintering while being a low melting point metal or alloy in an unsintered state.
  • the mounting temperature can be lowered, and after sintering, excellent heat resistance can be exhibited without deterioration in performance even at a temperature higher than the mounting temperature. Is possible.
  • a combination of metal components capable of forming such an intermetallic compound can be selected as appropriate.
  • metal components capable of forming such an intermetallic compound can be selected as appropriate.
  • each metal component corresponding to the combination which can form these intermetallic compounds is 2nd which consists of 2 or more types in each of 1st metal particle (Q1) and 2nd metal particle (Q2).
  • Each of the metal particles is preferably included for each combination.
  • the first metal particles are dendritic copper powder
  • the second metal particles (Q2) are spherical tin powders
  • the second metal particles (Q2) are different metals.
  • it is a mixture of two types of component metal powders when one second metal particle (Q2) is a spherical tin powder and the other second metal particle (Q2) is a spherical copper powder, etc. Is mentioned.
  • the first metal particles (Q1) are dendritic copper powder.
  • the second metal particles (Q2) are preferably a mixture containing metal particles made of spherical tin or an alloy containing tin.
  • the content of the first metal particles (Q1) in 100% by mass of the metal particles (Q) is 10% by mass or more, preferably 10 to 100% by mass, more preferably 30 to 80% by mass. .
  • the first metal particle (Q1) is less than 10% by mass, the effect of improving conductivity is not sufficiently exhibited.
  • the content of the second metal particles (Q2) in 100% by mass of the metal particles (Q) is preferably 0 to 90% by mass, more preferably 20 to 70% by mass.
  • the content of metal particles (Q2-1) made of Sn or an alloy containing Sn in 100% by mass of the second metal particles (Q2) is preferably 30% by mass or more.
  • the metal particles (Q) may further include other metal particles (Qn) having different particle shapes and particle diameters as necessary. May be further contained, and the content thereof is preferably 50% by mass or less in 100% by mass of the metal particles (Q).
  • a metal particle (Q) does not contain Pb (lead), Hg (mercury), Sb (antimony), and As (arsenic) substantially from a viewpoint of environmental impact reduction.
  • content of these components is less than 0.1 mass% in total in 100 mass% of metal particles (Q).
  • the content of the metal particles (Q) in the conductive adhesive film according to the present embodiment is preferably 70 to 96% by mass, more preferably 80 to 94% by mass.
  • the resin (M) includes a thermosetting resin (M1).
  • the thermosetting resin (M1) By including the thermosetting resin (M1), the conductive adhesive film contributes to film properties (ease of molding, ease of handling, etc.) in an unsintered state, and in a state after sintering, It plays the role of relieving stress and the like generated between the semiconductor element and the base material (lead frame or the like) by the thermal cycle.
  • the thermosetting resin (M1) is a maleic imide containing a maleic imide compound containing 2 units or more of imide groups in one molecule, particularly from the viewpoint of heat resistance and film properties when the metal particles (Q) are mixed. It preferably contains a resin (hereinafter sometimes referred to as “maleimide resin”). Since such a thermosetting resin (M1) is excellent in stress relaxation, the heat-resistant fatigue property can be improved in the conductive adhesive film after sintering. As a result, according to the conductive adhesive film containing such a thermosetting resin (M1), it is possible to overcome the drawbacks of the heat-resistant fatigue characteristics of being hard and brittle, which was a problem of conventional lead-free solders made of only metals. .
  • the maleic imide resin can be obtained, for example, by condensing maleic acid or an anhydride thereof with diamine or polyamine.
  • the maleic imide resin preferably contains a skeleton derived from an aliphatic amine having 10 or more carbon atoms from the viewpoint of stress relaxation, and particularly has 30 or more carbon atoms, and is represented by the following structural formula (2). Those having a simple skeleton are more preferred.
  • the maleic imide compound preferably has a number average molecular weight of 3000 or more.
  • the maleic imide resin contains a skeleton derived from an acid component other than maleic acid, for example, benzenetetracarboxylic acid or its anhydride, hydroxyphthalic acid bisether or its anhydride, etc., so that the molecular weight or glass transition temperature Tg can be obtained. Etc. may be adjusted. Moreover, as a hardening
  • maleic imide resin for example, bismaleimide resins represented by the following structural formulas (3) to (5) are preferably used.
  • n is an integer of 1 to 10.
  • the portion “X” is a skeleton of “C 36 H 72 ” represented by the following structural formula (6).
  • “*” means a binding site with N.
  • thermosetting resin (M1) further includes a phenol novolac resin.
  • the phenol novolac resin acts as a curing agent, and the adhesiveness of the conductive adhesive film is further improved.
  • the content of the resin (M) in the conductive adhesive film according to this embodiment is preferably 4 to 30% by mass, more preferably 6 to 20% by mass.
  • resin (M) may consist of only one type of resin, or may be a mixture of two or more types of resins. Moreover, you may further contain resin other than the above as needed.
  • Organophosphorus compound (A) In the conductive adhesive film according to this embodiment, the organic phosphorus compound (A) is represented by the following general formula (1).
  • R shows an organic group each independently, and R may mutually be same or different.
  • X and y are each an integer of 0 to 3, and the sum of x and y (x + y) is 3.
  • the organophosphorus compound (A) represented by the general formula (1) has a function as a flux that assists in removing the oxide film on the surface of the metal particles (Q) in the conductive adhesive film according to this embodiment. In particular, it works more effectively on easily oxidized metal components such as Cu, Sn, Ni and Al. In addition, the organophosphorus compound (A) is extremely difficult to absorb moisture and is excellent in moisture absorption resistance as compared with fluxes such as carboxylic acids and alcohols that have been generally used conventionally.
  • the organic phosphorus compound (A) is preferably at least one compound selected from alkyl phosphines, aryl phosphines, and phosphorous acid organic esters.
  • each R is independently selected from an alkyl group, an aryl group, an organic group having a functional group, an organic group having a hetero atom, and an organic group having an unsaturated bond. It is preferable that
  • the alkyl group may be linear, branched or cyclic, and may have a substituent.
  • the alkyl group is preferably linear or branched.
  • the alkyl group preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and still more preferably 6 to 15 carbon atoms.
  • Specific examples of such alkyl groups include propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, stearyl and isostearyl groups.
  • the aryl group may have a substituent and preferably has 6 to 10 carbon atoms.
  • Examples of such an aryl group include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
  • the organic group having a functional group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • examples of the functional group of the organic group include a chloro group, a bromo group, and a fluoro group.
  • Specific examples of the organic group having such a functional group include a chloroethyl group, a fluoroethyl group, a chloropropyl group, a dichloropropyl group, a fluoropropyl group, a difluoropropyl group, a chlorophenyl group, and a fluorophenyl group. Can be mentioned.
  • the organic group having a hetero atom preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and still more preferably 6 to 15 carbon atoms. Moreover, a nitrogen atom, an oxygen atom, a sulfur atom etc. are mentioned as a hetero atom which the said organic group has. Specific examples of the organic group having a hetero atom include a dimethylamino group, a diethylamino group, a diphenylamino group, a methyl sulfoxide group, an ethyl sulfoxide group, and a phenyl sulfoxide group.
  • the organic group having an unsaturated bond preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and still more preferably 6 to 15 carbon atoms.
  • Specific examples of the organic group having an unsaturated bond include a propenyl group, a propynyl group, a butenyl group, a butynyl group, an oleyl group, a phenyl group, a vinylphenyl group, and an alkylphenyl group. Among these, it is more preferable to have a vinylphenyl group.
  • each R is independently a vinyl group, an acrylic group, a methacryl group, a maleic ester group, a maleic amide group, a maleic imide group, or a primary amino group. It preferably has any one or more selected from secondary amino groups, thiol groups, hydrosilyl groups, hydroboron groups, phenolic hydroxyl groups and epoxy groups. Among these, it is more preferable to have a vinyl group, an acrylic group, a methacryl group, or a secondary amino group.
  • the organophosphorus compound (A) preferably contains p-styryldiphenylphosphine, which is an organic phosphine.
  • p-styryldiphenylphosphine is an organic phosphine.
  • Such a compound is suitable in that it has a low reactivity because it has a highly reactive vinyl group.
  • such an organic phosphorus compound (A) can form a copolymer with a maleimide resin when the thermosetting resin (M1) includes a maleimide resin, and thus acts as a thermosetting resin component.
  • the organophosphorus compound (A) is difficult to absorb moisture, has a sufficiently large molecular weight, and is polymerizable, it can effectively prevent bleed out when used as a flux component. Therefore, by using such an organophosphorus compound (A) in place of alcohol and carboxylic acid that easily absorb moisture, the risk of bleeding out can be reduced without flux cleaning, and sufficient reliability, especially moisture absorption. Later reflow resistance can be secured.
  • the number average molecular weight of the organophosphorus compound (A) is preferably 260 or more from the viewpoint of suppressing bleed out during sintering. Moreover, while making the number average molecular weight of an organophosphorus compound (A) 260 or more, and making it harden
  • the content of the organic phosphorus compound (A) in the conductive adhesive film according to this embodiment is preferably 0.5 to 10.0% by mass, more preferably 1.0 to 5.0% by mass. By setting it within the above range, the metal oxide film removing ability is sufficiently exhibited.
  • an organic phosphorus compound (A) may be used by 1 type, and may combine 2 or more types.
  • the conductive adhesive film according to the present embodiment may contain various additives in addition to the above components as long as they do not depart from the object of the present invention.
  • Such an additive can be appropriately selected as necessary, and examples thereof include a dispersant, a radical polymerization initiator, a leveling agent, and a plasticizer.
  • the conductive adhesive film according to this embodiment has a film shape. Therefore, for example, when connecting the power semiconductor element to the substrate, handling becomes easier than conventional solder or conductive paste.
  • the conductive adhesive film according to the present embodiment is attached to the back surface of the wafer on which the power semiconductor is formed, and is divided into wafers when the wafer is divided into chips (dicing process). It becomes possible to do. Therefore, since the conductive adhesive film can be formed on the entire back surface of the element (wafer) without excess or deficiency, it is possible to achieve good mounting without causing problems such as conventional solder wettability and protrusion.
  • the conductive adhesive film can be formed in a predetermined thickness in advance, the height of the element after die bonding can be controlled accurately and easily compared to conventional solder or conductive paste.
  • the method for producing the conductive adhesive film of the present embodiment is not particularly limited, and can be performed by a known method.
  • an appropriate amount of each of the above components is weighed and mixed by a known method, and the resulting mixture is formed into a film by a known method.
  • Examples of such a mixing method include stirring and mixing using a rotary blade, mixing using a homogenizer, mixing using a planetary mixer, mixing using a kneader, and the like.
  • a molding method for example, a method in which a varnish in which the above mixture is dissolved and dispersed in a solvent is applied on a substrate and then dried, a melt coating in which a conductive adhesive film is melted at a high temperature and then applied to the substrate.
  • a method of pressing a conductive adhesive film together with a substrate at a high pressure an extrusion method in which a conductive adhesive film is melted and then extruded using an extruder, and then stretched, and the varnish is screen mesh (screen printing) or a metal plate
  • the printing method include filling and transferring (gravure printing).
  • the thickness of the conductive adhesive film is preferably 5 to 100 ⁇ m, more preferably 20 to 50 ⁇ m. By setting the thickness of the conductive adhesive film in the above range, it is possible to obtain a sufficient adhesive force while suppressing electric resistance and thermal resistance.
  • the storage elastic modulus after sintering of the conductive adhesive film is preferably 1000 to 30000 MPa at 1 Hz, and more preferably 5000 to 20000 MPa.
  • TCT thermal shock test
  • the conductive adhesive film preferably has a heating weight reduction rate of less than 1% when heated at 250 ° C. for 2 hours in a nitrogen atmosphere.
  • the heating weight reduction rate within the above range, when the conductive adhesive film is sintered, the resin is mainly not thermally decomposed, so that the reliability can be ensured by the excellent low bleed-out property.
  • the conductive adhesive film has an endothermic peak in a temperature range of 100 to 250 ° C. when analyzed by DSC (differential scanning calorimetry), at least in a state before sintering (unsintered state). It is preferable that one is observed and disappears in the state after sintering (sintered state).
  • At least one endothermic peak observed in the above temperature range in an unsintered state means a melting point of a metal or alloy containing at least one metal component. That is, when an unsintered conductive adhesive film is heated (sintered) in the above temperature range, a specific metal component melts and spreads on the surface of the adherend, which is advantageous for mounting at a low temperature. Shows that it works.
  • the sintered state no endothermic peak is observed in the above temperature range, but this is because there is no melting point of a metal component (or alloy) of a metal or alloy containing at least one metal component in the above temperature range. Means. That is, it is shown that the metal once melted forms an intermetallic compound having a high melting point after sintering by a diffusion reaction between the metals, and as a result, has excellent heat resistance.
  • Such conductive adhesive films can be sintered (mounted) at low temperatures, but after sintering (after mounting), they exhibit excellent heat resistance, and can be wire-bonded with high melting point lead-free solder. Even if the reflow process is performed, no problem occurs.
  • the heat resistant temperature of the conductive adhesive film is preferably 250 ° C. or higher, more preferably 300 ° C. or higher.
  • a suitable mounting temperature when mounting a semiconductor chip or the like using the conductive adhesive film is preferably 100 to 250 ° C., and more preferably 100 to 200 ° C.
  • Measurement conditions are a measurement temperature range of room temperature to 350 ° C., a temperature rising rate of 5 ° C./min, a nitrogen flow rate of 20 mL / min, and an aluminum sample pan.
  • the conductive adhesive film according to the present embodiment is defined by the ratio (G ′′ / G ′) of the loss elastic modulus (G ′′) and storage elastic modulus (G ′) at 1 Hz at 60 ° C. in the B stage state.
  • the loss tangent (tan ⁇ ) is preferably 1.4 or more. The larger tan ⁇ under the above conditions, the better the conductive adhesive film is.
  • the method for measuring and calculating the loss elastic modulus (G ′′), storage elastic modulus (G ′), and tan ⁇ will be described in the Examples section described later.
  • the B stage state is the heat in DSC measurement. It means a state in which 80% or more of the calorific value before curing derived from the curable resin component is retained.
  • the conductive adhesive film according to the present embodiment can be bonded to a dicing tape to form a dicing die bonding film, so that the conductive adhesive film and the dicing tape can be bonded to the wafer at one time, and the process is omitted. it can.
  • FIG. 2 is a sectional view showing a dicing die bonding film 10 according to the present invention.
  • the dicing die bonding film 10 is mainly composed of a dicing tape 12 and a conductive adhesive film 13.
  • the dicing die bonding film 10 is an example of a semiconductor processing tape, and may be cut into a predetermined shape (pre-cut) in advance according to a use process or an apparatus, or cut for each semiconductor wafer. Alternatively, it may have a long roll shape.
  • the dicing tape 12 includes a support base 12a and an adhesive layer 12b formed thereon.
  • the release-treated PET film 11 covers the dicing tape 12 and protects the pressure-sensitive adhesive layer 12 b and the conductive adhesive film 13.
  • the support substrate 12a is preferably radiolucent, and specifically, plastic or rubber is usually used, and is not particularly limited as long as it transmits radiation.
  • the base resin composition of the pressure-sensitive adhesive layer 12b is not particularly limited, and a normal radiation curable pressure-sensitive adhesive is used.
  • An acrylic pressure-sensitive adhesive having a functional group capable of reacting with an isocyanate group such as a hydroxyl group is preferred.
  • the acrylic pressure-sensitive adhesive preferably has an iodine value of 30 or less and has a radiation-curable carbon-carbon double bond structure.
  • the conductive adhesive film 13 has a conductive adhesive including a predetermined metal particle (Q), a predetermined resin (M), and a predetermined organic phosphorus compound (A).
  • Q a predetermined metal particle
  • M a predetermined resin
  • a film is very preferable from the viewpoint of excellent electrical conductivity, heat resistance and mounting reliability when the semiconductor power element is bonded to the metal lead frame and having a small environmental load.
  • the dicing / die bonding film 10 of the present embodiment can be suitably used.
  • the peeling-treated PET film 11 is removed from the dicing die bonding film 10, and as shown in FIG. 3, the conductive adhesive film 13 is attached to the semiconductor wafer 1 and the side portion of the dicing tape 12 is fixed with the ring frame 20.
  • the ring frame 20 is an example of a dicing frame.
  • the conductive adhesive film 13 is laminated on a portion of the dicing tape 12 where the semiconductor wafer 1 is bonded. There is no conductive adhesive film 13 in the portion of the dicing tape 12 that contacts the ring frame 20.
  • the semiconductor wafer 1 is diced into a predetermined size using the dicing blade 21 while the lower surface of the dicing tape 12 is sucked and fixed by the suction stage 22 to manufacture a plurality of semiconductor chips 2.
  • the tape push-up ring 30 is raised, the central portion of the dicing tape 12 is bent upward, and radiation such as ultraviolet rays is radiated.
  • the adhesive strength of the adhesive layer 12b constituting the dicing tape 12 is weakened.
  • the push-up pin 31 is raised at a position corresponding to each semiconductor chip, and the semiconductor chip 2 is picked up by the suction collet 32.
  • the picked-up semiconductor chip 2 is bonded to a supporting member such as the lead frame 4 or another semiconductor chip 2 (die bonding process), and the conductive adhesive film is sintered.
  • a semiconductor device is obtained through steps such as attachment of an Al wire and resin molding.
  • ⁇ Raw material> The abbreviations of the raw materials used are shown below.
  • [Metal particles (Q)] ⁇ First metal particles (Q1)> Dendritic copper powder: ECY manufactured by Mitsui Mining & Smelting Co., Ltd. The average particle size (D50) is 6 ⁇ m, and the fractal dimension when viewed in a projection view in a primary particle state is 1.23.
  • Spherical tin powder ST-3 manufactured by Mitsui Mining & Smelting Co., Ltd.
  • the average particle size (D50) is 7 ⁇ m, and the fractal dimension when viewed in a projection view in a primary particle state is 1.04.
  • the average particle diameter (D50) of the metal particles was measured with a laser diffractometer (SALD-3100, manufactured by Shimadzu Corporation).
  • the fractal dimension when viewed in a projection view in the state of the primary particles was calculated by the box count method under the following conditions.
  • SEM images of each of the above metal powders were taken (measuring device: TM3030 Plus, manufactured by Hitachi High-Tech Science Co., Ltd., magnification: 1000 to 5000 times), and five primary particles were selected at random.
  • the photographed SEM image of the one primary particle is binarized using image processing software (Image-J) like the particles shown in FIG. The contour line was extracted.
  • the box counting tool of the image processing software the number of coatings N (d) of each d was measured while gradually changing the length d of one side of the square box from 2 to 36 pixels.
  • Maleimide resin 1 1,6 '. A mixture of bismaleimide- (2,2,4-trimethyl) hexane and perbutyl (registered trademark) O as a polymerization initiator in a mass ratio of 100: 5.
  • 1,6 '. -Bismaleimide- (2,2,4-trimethyl) hexane experimentally synthesized product. Note that the skeleton derived from the aliphatic amine has 9 carbon atoms.
  • ⁇ Maleimide resin 2 A mixture of 1,10-bismaleimide-normal decane and perbutyl (registered trademark) O as a polymerization initiator in a mass ratio of 100: 5.
  • 1,10-bismaleimide-normal decane experimentally synthesized product. Note that the skeleton derived from the aliphatic amine has 10 carbon atoms.
  • ⁇ Maleimide resin 3 A mixture of BMI-3000 and perbutyl (registered trademark) O as a polymerization initiator in a mass ratio of 100: 5.
  • BMI-3000 Bismaleimide resin represented by the following structural formula (7), manufactured by DESIGNER MOLECULES INC, number average molecular weight 3000.
  • n is an integer of 1 to 10. Note that the skeleton derived from the aliphatic amine has 36 carbon atoms.
  • -Phenol novolac resin H-4 manufactured by Meiwa Kasei Co., Ltd. Epoxy resin A mixture in which YD-128, YD-013, YP-50 and 2PHZ were mixed at a mass ratio of 15: 5: 10: 1.
  • YD-128 Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol A type liquid epoxy resin.
  • YD-013 A bisphenol A type solid epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • YP-50 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., phenoxy resin.
  • 2PHZ 2-phenyl-4,5-dihydroxymethylimidazole manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Example 1 a mixture shown in Table 1 among the above materials was prepared so that the ratio of metal particles (Q) was 86% by mass, resin (M) was 9% by mass, and flux was 5% by mass. Toluene was added as a solvent to make a slurry, and after stirring with a planetary mixer, it was thinly applied onto a release-treated PET film and dried at 120 ° C. for 2 minutes to obtain a conductive adhesive film having a thickness of 40 ⁇ m. .
  • the metal particles (Q) used here consist only of dendritic copper powder as the first metal particles (Q1).
  • Example 2 In Example 2, the materials shown in Table 1 among the above materials were mixed so that the ratio of the metal particles (Q) was 89% by mass, the resin (M) was 7.5% by mass, and the flux was 3.5% by mass.
  • a conductive adhesive film was obtained in the same manner as in Example 1 except that it was prepared.
  • Example 3 Maleimide resin 3 was used as the resin (M), and 100% by mass of the metal particles (Q) contained 20% by mass of dendritic copper powder as the first metal particles (Q1), and the second metal particles (Q2 In the same manner as in Example 2 except that the metal particles (Q) were adjusted so that the ratio of spherical copper powder to 40% by mass and spherical tin powder to 40% by mass was obtained. Obtained.
  • Example 4 a conductive adhesive film was obtained in the same manner as in Example 3 except that phosphorous acid organic ester was used as the flux.
  • Example 5 Example 5 In Example 5, Example 4 was carried out except that resin (M) was prepared such that maleimide resin 3 was 95% by mass and phenol novolac resin was 5% by mass in 100% by mass of resin (M). In the same manner as above, a conductive adhesive film was obtained.
  • Comparative Examples 1 and 2 In Comparative Examples 1 and 2, a mixture of materials shown in Table 1 among the above materials was prepared so that the ratio of metal particles (Q) was 85% by mass, resin (M) was 8% by mass, and flux was 7% by mass. Except for the above, a conductive adhesive film was obtained in the same manner as in Example 1.
  • Comparative Example 3 a conductive adhesive film was obtained in the same manner as in Comparative Example 1 except that dendritic copper powder was used as the metal particles (Q) and maleimide resin 2 was used as the resin (M).
  • Comparative Example 4 Maleimide resin 3 was used as resin (M), and in 100% by mass of metal particles (Q), dendritic copper powder was 20% by mass as first metal particles (Q1), and second metal particles (Q2 In the same manner as in Comparative Example 3 except that the metal particles (Q) were adjusted so that the ratio of spherical copper powder to 40% by mass and spherical tin powder to 40% by mass was obtained. Obtained.
  • volume resistivity (conductivity)
  • the conductive adhesive films according to the above Examples and Comparative Examples were placed on a Teflon (registered trademark) sheet and sintered at 230 ° C. for 3 hours to obtain a measurement sample.
  • the resistance value of this measurement sample was measured by the four-probe method according to JIS-K7194-1994, and the volume resistivity was calculated.
  • Lorester GX manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used for measurement of the resistance value.
  • the volume resistivity means that the reciprocal thereof is the conductivity, and the smaller the volume resistivity, the better the conductivity.
  • the volume resistivity was set to 1000 ⁇ ⁇ cm or less as an acceptable line.
  • the obtained measurement sample was subjected to MSL-Lv1 and 2 in a post-moisture reflow test (lead-free solder compliant) defined in JEDEC J-STD-020D1 under the following conditions. Thereafter, it was observed whether peeling occurred inside using an ultrasonic imaging apparatus (FineSAT, manufactured by Hitachi Power Solution Co., Ltd.). In this example, at least MSL-Lv2 and no PKG peeling were considered acceptable.
  • MSL-Lv1 is 168 hours at 85 ° C. and 85% RH.
  • MSL-Lv2 is 168 hours at 85 ° C. and 60% RH.
  • Reflow grade temperature MSL-Lv1 and 2 are both 260 ° C.
  • the scratch tool of the bond tester was made to collide with the side surface of the semiconductor chip of the measurement sample at 100 ⁇ m / s.
  • the stress at the time when the chip / lead frame junction was broken was measured as the shear adhesive strength at 260 ° C.
  • the shear adhesive strength before TCT was set to an acceptable level of 3 MPa or more.
  • the conductive adhesive films according to Examples 1 to 5 include the metal particles (Q), the resin (M), the predetermined organophosphorus compound, and (A), and the resin (M) is thermosetting.
  • the resin (M1) is included, the metal particles (Q) have an average particle diameter (d50) of 20 ⁇ m or less, and the fractal dimension when viewed in a projection view in the state of primary particles is 1.1 or more. Since it contains 10% by mass or more of the first metal particles (Q1), it has been confirmed that it has excellent conductivity, has both heat resistance after bonding and sintering, and mounting reliability, and has a remarkable effect not found in the prior art. It was.
  • the conductive adhesive films according to Comparative Examples 1 and 2 do not contain the predetermined organophosphorus compound (A) specified in the present invention, and the metal particles (Q) are in the state of primary particles. Therefore, the first metal particles (Q1) having a fractal dimension of 1.1 or more when viewed in a projection view are not included, so that they are more conductive and heat resistant than Examples 1 to 5 according to the present invention. Both mounting reliability and mounting reliability were inferior. Specifically, in Comparative Examples 1 and 2, the volume resistivity was extremely high, and in the moisture absorption test, PKG peeling occurred even in MSL-Lv2, and it was confirmed that the moisture absorption resistance was inferior. Moreover, although the adhesive force was not so high before TCT, the shear adhesive force after TCT was 0, and it was confirmed that it was inferior to thermal shock resistance.
  • the conductive adhesive films according to Comparative Examples 3 and 4 do not contain the predetermined organophosphorus compound (A) specified in the present invention, compared with Examples 1 to 5 according to the present invention, Heat resistance and mounting reliability were inferior. Specifically, in Comparative Examples 3 and 4, in the moisture absorption test, PKG peeling occurred even in MSL-Lv2, and it was confirmed that the moisture absorption resistance was inferior. Moreover, although the adhesive force was not so high before TCT, it was further deteriorated after TCT, and it was confirmed that it was inferior to thermal shock resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
  • Conductive Materials (AREA)

Abstract

例えば半導体チップ(特にパワーデバイス)をリードフレームの素子担持部上または絶縁基板の回路電極部上に接合する際の導電接合材として好適に用いられ、鉛フリーを達成しつつ、特に優れた導電性を有し、接合・焼結後の耐熱性と実装信頼性の双方に優れた接合層を、半導体チップとリードフレームの素子担持部上または絶縁基板の回路電極部間に形成することが可能な導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルムを提供すること。 本発明の導電性接着フィルムは、金属粒子(Q)と、樹脂(M)と、所定の有機リン化合物(A)を含み、前記樹脂(M)は、熱硬化性樹脂(M1)を含み、前記金属粒子(Q)は、平均粒子径(d50)が20μm以下であり、かつ1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である第1の金属粒子(Q1)を10質量%以上含む。

Description

導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
 本発明は、導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルムに関する。
 半導体装置は、一般に、リードフレームの素子担持部上または絶縁基板の回路電極部上に、半導体素子(チップ)を接合するためのダイマウント材を形成する工程と、リードフレーム上もしくは回路電極上のダイマウント材表面に半導体素子を搭載し、リードフレームの素子担持部もしくは絶縁基板の回路電極部と半導体素子とを接合する工程と、半導体素子の電極部と、リードフレームの端子部もしくは絶縁基板の端子部を電気的に接合するワイヤボンディング工程と、このようにして組み立てた半導体装置を樹脂被覆するモールド工程とを経て製造される。
 ここで、リードフレームの素子担持部もしくは絶縁基板の回路電極部と半導体素子とを接合する際には、接合材が用いられている。例えば、IGBTやMOS-FET等のパワー半導体の接合材としては、高融点で耐熱性のある鉛を85質量%以上含んだ鉛はんだが広く用いられてきた。しかし、近年、鉛の有害性が問題視されており、接合材についても鉛フリーの要求が高まってきている。
 また、SiCパワー半導体は、Siパワー半導体と比較して、低損失であるとともに、高速および高温での動作が可能であるという特徴があり、次世代パワー半導体として期待されている。このようなSiCパワー半導体は、理論上200℃以上での動作が可能であるが、インバータ等のシステムの高出力高密度化を実用化する上では、接合材を含む周辺材料についても耐熱性の向上が望まれている。
 これらの背景から、近年では、鉛フリータイプで、高融点の各種接合材料が評価されている。このような高融点の鉛フリータイプの接合材料としては、例えば特許文献1で開示されているAu-Sn系合金やAu-Ge系合金等のAu系合金などがあり、これらは電気伝導および熱伝導が良好で、化学的にも安定である点で注目されている。しかし、このようなAu系合金材料は、貴金属を含むため材料コストが高くなり、また、よりよい実装信頼性を得るためには高価な高温真空リフロー装置が必要となるため、未だ実用化には至っていない。
 また、多くの鉛フリーはんだは、鉛はんだよりも濡れ性が悪いという問題がある。そのため、鉛フリーはんだを接合材として用いた場合には、ダイパッド部分にはんだが塗れ拡がらず、はんだ抜けなどの接合不良を発生するリスクが高くなる。特に、濡れ性の問題は、鉛フリーはんだの融点が高くなる程、悪化する傾向にあるため、耐熱性と実装信頼性とを両立することが困難であった。
 このような課題を解決する為、特許文献2や特許文献3では、Cu系はんだやSn系はんだ等の拡散焼結型のはんだの研究が進められている。これら拡散焼結型のはんだは、未焼結の状態では低融点であり実装温度を低温化でき、さらに、拡散焼結反応後の状態では不可逆的に高融点化するため、従来の鉛フリーはんだでは困難であった耐熱性と実装信頼性との両立が期待されている。しかし、拡散焼結型はんだも、従来の鉛フリーはんだ同様に、濡れ性の問題があり、大面積を接合する際には、はんだ抜けのリスクは回避できない。また、拡散焼結型はんだは、焼結体の状態では硬くて脆いため、応力緩和性に乏しく、耐熱疲労特性が低いという問題があり、十分な接合信頼性が得られるまでには至っていなかった。
 また、鉛はんだや鉛フリーはんだの多くは、金属の酸化被膜を除去する目的で、カルボン酸やアルコール等のフラックスを添加する事が一般的である。しかし、これらフラックス成分は、吸湿し易い上に、ブリードアウトし易く、このような吸湿水分とブリードアウトの発生が、半導体素子の封止パッケージにおける吸湿後の耐リフロー信頼性(MSL)に悪影響を与えることが知られている。そこで、一般的には、はんだリフロー実装後に、フラックス洗浄が行われているが、このような処理は、その手間や洗浄廃液の処理の問題がある。一方で、これらの問題を回避すべく、吸湿およびブリードアウトの原因となるカルボン酸やアルコール等のフラックス成分の添加量を低減すると、酸化膜の除去性能が不足し、導電性やその他の性能が十分に発揮されないという問題が生じる。そのため、未だ十分な解決には至っていない。
特開2006-032888号公報 特開2007-152385号公報 特開2002-263880号公報
 そこで本発明は、例えば半導体チップ(特にパワーデバイス)をリードフレームの素子担持部上または絶縁基板の回路電極部上に接合する際の導電接合材として好適に用いられ、鉛フリーを達成しつつ、特に優れた導電性を有し、接合・焼結後の耐熱性と実装信頼性の双方に優れた接合層を、半導体チップとリードフレームの素子担持部上または絶縁基板の回路電極部間に形成することが可能な導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルムを提供することを目的とする。
 本発明者らは、鋭意検討した結果、特に、所定の金属粒子(Q)と、所定の樹脂(M)と、所定の有機リン化合物(A)とを組み合わせることによって、例えば半導体チップ(特にパワーデバイス)と、リードフレームの素子担持部上または絶縁基板の回路電極部との間に、鉛フリーで、特に優れた導電性を有し、接合・焼結後の耐熱性と実装信頼性の双方に優れた接合層を形成することが可能な、導電接合材として用いるのに好適な導電性接着フィルムが得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明の要旨構成は、以下のとおりである。
[1] 金属粒子(Q)と、樹脂(M)と、下記一般式(1)で示される有機リン化合物(A)とを含み、
 前記樹脂(M)は、熱硬化性樹脂(M1)を含み、
 前記金属粒子(Q)は、平均粒子径(d50)が20μm以下であり、
 前記金属粒子(Q)は、1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である第1の金属粒子(Q1)を10質量%以上含む、導電性接着フィルム。
Figure JPOXMLDOC01-appb-C000002
 ただし、上記一般式(1)においてRは、それぞれ独立して、有機基を示し、Rは互いに同一であっても異なっていてもよい。また、xおよびyは、ともに0~3の整数であり、かつ、xおよびyの和(x+y)は、3である。
[2] 前記第1の金属粒子(Q1)は、デンドリック状金属粉である、上記[1]に記載の導電性接着フィルム。
[3] 前記有機リン化合物(A)は、アルキルホスフィン、アリールホスフィンおよび亜リン酸有機エステルから選択される少なくとも1種の化合物である、上記[1]または[2]に記載の導電性接着フィルム。
[4] 前記一般式(1)においてRは、それぞれ独立して、その一部にビニル基、アクリル基、メタアクリル基、マレイン酸エステル基、マレイン酸アミド基、マレイン酸イミド基、1級アミノ基、2級アミノ基、チオール基、ヒドロシリル基、ヒドロホウ素基、フェノール性水酸基およびエポキシ基から選択されるいずれか1種以上を有する、上記[1]~[3]のいずれか1項に記載の導電性接着フィルム。
[5] 前記金属粒子(Q)は、球状金属粉からなる第2の金属粒子(Q2)をさらに含む、上記[1]~[4]のいずれか1項に記載の導電性接着フィルム。
[6] 前記第2の金属粒子(Q2)は、平均粒子径(d50)が7μm未満である、上記[5]に記載の導電性接着フィルム。
[7] 前記第2の金属粒子(Q2)は、スズまたはスズを含有する合金からなる金属粒子を含む、上記[5]または[6]に記載の導電性接着フィルム。
[8] Bステージ状態において、60℃で1Hzにおける損失弾性率(G’’)と貯蔵弾性率(G’)との比(G’’/G’)で定義される損失正接(tanδ)が、1.4以上である、上記[1]~[7]のいずれか1項に記載の導電性接着フィルム。
[9] 前記熱硬化性樹脂(M1)は、イミド基を1分子中に2単位以上有するマレイン酸イミド化合物を含む、上記[1]~[8]のいずれか1項に記載の導電性接着フィルム。
[10] 前記マレイン酸イミド化合物が、炭素数10以上の脂肪族アミンに由来する骨格を含む、上記[9]に記載の導電性接着フィルム。
[11] 前記熱硬化性樹脂(M1)が、フェノールノボラック樹脂をさらに含む、上記[9]または[10]に記載の導電性接着フィルム。
[12] 上記[1]~[11]のいずれか1項に記載の導電性接着フィルムと、ダイシングテープとを貼り合せてなる、ダイシング・ダイボンディングフィルム。
 本発明によれば、導電性接着フィルムが金属粒子(Q)と、樹脂(M)と、所定の有機リン化合物(A)とを含み、前記樹脂(M)は、熱硬化性樹脂(M1)を含み、前記金属粒子(Q)は、平均粒子径(d50)が20μm以下であり、かつ1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である第1の金属粒子(Q1)を10質量%以上含むことによって、例えば半導体チップ(特にパワーデバイス)と、リードフレームの素子担持部上または絶縁基板の回路電極部との間に、鉛フリーで、特に優れた導電性を有し、接合・焼結後の耐熱性と実装信頼性の双方に優れた接合層を形成することが可能な、導電接合材として用いるのに好適な導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルムを提供することができる。
図1(A)は、1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である金属粒子の一例を示すSEM画像であり、図1(B)は、このSEM画像を2値化処理した画像であり、図1(C)は、この2値化処理画像のうち、下部の粒子について輪郭線を抽出した画像であり、図1(D)は、この輪郭線に基づいて、ボックスピクセルサイズ(d)対ボックス数(N(d))について、常用対数プロットしたグラフである。 本発明の実施形態に係るダイシング・ダイボンディングフィルムの層構成を示す断面図である。 本発明のダイシング・ダイボンディングフィルムを半導体に貼合した状態を示す図である。 ダイシング工程を説明するための図である。 ピックアップ工程を説明するための図である。 ダイボンディング工程を説明するための図である。 樹脂モールドした半導体素子(装置)の断面を示す図である。
 本発明に従う導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルムの実施形態について、以下で詳細に説明する。
<導電性接着フィルム>
 本実施形態に係る導電性接着フィルムは、所定の金属粒子(Q)と、所定の樹脂(M)と、所定の有機リン化合物(A)とを含む。また、導電性接着フィルムは、必要に応じて、さらに各種添加剤を含有してもよい。
 なお、ここでいう「金属粒子」とは、特に区別して記載しない限りは、単一の金属成分からなる金属粒子のことを意味するだけではなく、2種以上の金属成分からなる合金粒子のことも意味する。
[1]金属粒子(Q)
 本実施形態に係る導電性接着フィルムにおいて、金属粒子(Q)は、平均粒子径(d50)が、20μm以下である。上記範囲とすることにより、例えば、半導体チップ(特にパワーデバイス)をリードフレームの素子担持部上または絶縁基板の回路電極部上に接合する際の導電接合材として用いた場合に、比較的薄層(例えば、30μm以下)の接着層を形成することが可能となる。なお、本発明において平均粒子径(d50)は、レーザー回折散乱式粒度分布測定法による測定に基づいて算出された値とする。なお、平均粒子径(d50)の測定条件は、後述する実施例の項で説明する。
 また、金属粒子(Q)は、1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である第1の金属粒子(Q1)を10質量%以上含有する。このような第1の金属粒子(Q1)を10質量%以上含有することにより、特に導電性に優れた導電性接着フィルムが得られる。金属粒子(Q)は、第1の金属粒子(Q1)を10質量%以上含むものであればよく、第1の金属粒子(Q1)のみからなるものであってもよいし、あるいは、第1の金属粒子(Q1)に加えて、他の粒子形状の金属粒子を1種以上含む混合物であってもよい。
 ここで、1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上とは、金属粒子の形状(特に粒子の表面輪郭形状)が複雑であることを意味している。フラクタル次元とは、幾何学的な複雑さの指標であり、本実施形態では、1次粒子の状態にて投影図で見たときのフラクタル次元、すなわち2次元のフラクタル次元を規定している。なお、2次元のフラクタル次元において、例えば、表面輪郭形状が、真円や、正方形、長方形等のシンプルな形状はフラクタル次元がおよそ1であり、多数の凸凹を有する形状等、形状が複雑になるほどフラクタル次元は大きくなり、2に近づく。
 ここで、1次粒子とは、他の粒子と凝集していない、単独の粒子を意味する。
 また、本実施形態において、1次粒子の状態での投影図は、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)等により得られた1次粒子の画像について、画像処理を行って輪郭線を抽出したものである。その一例として、図1を示す。
 図1(A)は、デンドリック状銅粉のSEM画像であり、図1(C)は、図1(A)の粒子を画像処理して、一次粒子の状態での投影図(輪郭線)としたものである。
 本実施形態において、フラクタル次元の解析方法は、特に限定されないが、例えば、ボックスカウント法やピクセル法が挙げられる。
 例えば、ボックスカウント法によるフラクタル次元の解析は次のように行われる。
 まず、ある平面内に存在する図形を、1辺の長さがdの正方形で分割するとき、その図形がN(d)個の正方形で覆われていたとすると、N(d)とdの間に、
 N(d)=ad-D (aは正の定数)  ・・・(I)
という関係が成り立つとき、Dをその図形のフラクタル次元と定義する。
 さらに、上記式(I)の両辺の対数を取ると、
 log10N(d)=-D log10d+log10a (aは正の定数)・・・(II)
となり、dとN(d)の両対数プロットを描けば、その直線の傾きからフラクタル次元Dを求めることができる。
 以下、図1を参照しながら、具体的な手順を説明する。なお、以下の手順は一例であり、下記の手順に限定されるものではない。
 まず、任意の画像ソフト(本発明ではアメリカ国立衛生研究所 (NIH) Wayne Rasband氏が作成した”Image-J”)を用いて、SEMやTEM等により得られた1次粒子の画像(図1(A):ここではSEM画像)を2値化処理等によりバイナリ画像形式の投影図とし(図1(B))、同投影図から輪郭線を抽出する(図1(C))。
 次に、上記処理画像において、1辺の長さをd(ここで、dは、2ピクセル以上の任意のピクセル数である。)とする、ピクセルサイズの異なる正方形のボックスを定義し、各ボックス(1辺の長さd)毎に、上記一次粒子の輪郭線を覆う場合に必要となるボックス数N(d)を数える。
 その後、得られたN(d)を、ボックスの一辺の長さdに対して常用対数プロットし(図1(D))、上記式(II)に従って直線の傾きを求め、フラクタル次元Dを算出する。なお、図1に示される1次粒子の状態での投影図のフラクタル次元Dは、上記ボックスカウント法により解析したところ、1.25であった。
 このような1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である第1の金属粒子(Q1)としては、例えば、図1に示されるようなデンドリック形状の金属粉や、ヒトデ形状、表面に多数の微小凹凸を有する球形状等の比較的複雑な輪郭形状を有する金属粉が挙げられる。中でも、デンドリック形状を有する金属粉が好ましい。第1の金属粒子(Q1)がデンドリック状金属粉を含むことにより、導電性接着フィルム中において、金属粒子同士の接触確率が高くなるため、導電性が向上する。
 金属粒子(Q)は、第1の金属粒子(Q1)の他に、さらに球状金属粉からなる第2の金属粒子(Q2)を含むことが好ましい。金属粒子(Q)が、第2の金属粒子(Q2)を含むことにより、金属粒子表面と樹脂成分の界面摩擦に由来する粘度上昇の程度をコントロールすることができ、用途に合わせて最適な粘度に調節することができる。また、導電性の向上も図ることができる。なお、ここでいう球状金属粉とは、1次粒子の状態にて投影図で見たときのフラクタル次元が、1.0以上、1.1未満の金属粒子を意味する。このような球状金属粉としては、例えばアトマイズ法により作製された金属粉などが挙げられる。
 また、第2金属粒子(Q2)は、平均粒子径(d50)が7μm未満であることがより好ましい。上記範囲とすることにより、第2の金属粒子(Q2)が第1の金属粒子(Q1)の隙間に入り込みやすくなり、金属の充填密度を高めることができ、導電率を高めることができる。
 上記第1の金属粒子(Q1)および第2の金属粒子(Q2)は、特に限定されるものではないが、例えば、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)、銀(Ag)、金(Au)、インジウム(In)、ビスマス(Bi)、ガリウム(Ga)およびパラジウム(Pd)の群から選択される1種の金属またはこれらの群から選択される2種以上を含有する合金からなるものが好ましく、中でも、導電性および熱伝導性に優れ、比較的安価で、イオンマイグレーションが起こりにくい点で、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)およびスズ(Sn)の群から選択される1種の金属またはこれらの群から選択される2種以上を含有する合金からなるものがより好ましい。また、第1の金属粒子(Q1)および第2の金属粒子(Q2)の少なくとも一方が、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)、銀(Ag)、金(Au)、インジウム(In)、ビスマス(Bi)、ガリウム(Ga)およびパラジウム(Pd)から選択される少なくとも2種を含有する合金である場合には、全体としての金属粒子(Q)をさらに低融点化できる。
 また、第1の金属粒子(Q1)および第2の金属粒子(Q2)の少なくとも一方は、その金属粒子の表面が、貴金属(例えば銀または金等)で被覆されていることが好ましい。金属粒子の表面が、貴金属(好ましくは銀または金)で被覆されていることにより、金属粒子の表面に酸化被膜が形成され難くなり、導電性接着フィルムにおいて、高い導電性が発揮される。また、このような金属粒子によれば、その表面に酸化被膜が形成され難いため、酸化被膜の除去を目的とするフラックス成分の添加量を低減できる。なお、貴金属の被膜は、第1の金属粒子(Q1)および第2の金属粒子(Q2)の表面の少なくとも一部を覆っていればよく、必ずしも全面を覆っていなくてもよいが、被覆面積は広いほど好ましい。このような第1の金属粒子(Q1)および第2の金属粒子(Q2)としては、例えば、銀で被覆したデンドリック状銅粉や、銀で被覆した球状銅粉などが挙げられる。
 なお、第1の金属粒子(Q1)および第2の金属粒子(Q2)は、それぞれ1種類の金属粉(例えば、1次粒子の状態にて投影図で見たときのフラクタル次元、平均粒子径、組成、被膜の有無等が同じもの)で構成されていてもよいし、異なる金属粉(例えば、1次粒子の状態にて投影図で見たときのフラクタル次元、平均粒子径、組成、被膜の有無等のいずれか1つ以上が互いに異なるもの)を2種以上混合した混合物であってもよい。特に、第2の金属粒子(Q2)は、混合物であることが好ましい。
 また、第2の金属粒子(Q2)は、第1の金属粒子(Q1)と第2の金属粒子(Q2)とで、あるいは第2の金属粒子(Q2)と第2の金属粒子(Q2)とで、互いに、金属間化合物を形成し得る金属成分を含むことが好ましい。第1の金属粒子(Q1)と第2の金属粒子(Q2)同士が、あるいは第2の金属粒子(Q2)と第2の金属粒子(Q2)同士が、互いに、金属間化合物を形成し得ることにより、金属粒子(Q)全体として、未焼結の状態では低融点の金属または合金でありながら、焼結後の状態では高融点の金属間化合物を形成することが可能になる。その結果、このような第2の金属粒子を含むことにより、実装温度の低温化を達成しつつ、焼結後は実装温度以上の温度でも性能が劣化することなく優れた耐熱性を発揮することが可能となる。
 このような金属間化合物を形成し得る金属成分の組み合わせとしては、適宜選択できるが、例えば、Cu-Sn系、Ni-Sn系、Ag-Sn系、Cu-Zn系、Ni-Zn系、Ag-Zn系、Ni-Ti系、Sn-Ti系、Al-Ti系、Au-In系等の組合せが挙げられる。なお、これらの金属間化合物を形成し得る組み合わせに対応した各金属成分は、第1の金属粒子(Q1)および第2の金属粒子(Q2)のそれぞれに、あるいは2種以上からなる第2の金属粒子のそれぞれに、組み合わせごとに各1種ずつ含まれていることが好ましい。また、実装温度をできるだけ低めに設定する必要がある場合には、低融点のSnを含む組合せが好ましく、特にCuーSn系またはNiーSn系の組み合わせがより好ましい。また、具体例としては、第1の金属粒子がデンドリック状銅粉である場合に、第2の金属粒子(Q2)を球状スズ粉とする場合や、第2の金属粒子(Q2)が異なる金属成分系の2種の金属粉の混合物である場合に、一方の第2の金属粒子(Q2)を球状スズ粉とし、もう一方の第2の金属粒子(Q2)を球状銅粉とする場合等が挙げられる。
 以上を踏まえ、第1の金属粒子(Q1)は、デンドリック状銅粉であることが好ましい。
 また、第2の金属粒子(Q2)は、球状のスズまたはスズを含有する合金からなる金属粒子を含有する混合物であることが好ましい。
 金属粒子(Q)100質量%における、第1の金属粒子(Q1)の含有量は、10質量%以上であり、好ましくは10~100質量%であり、より好ましくは30~80質量%である。第1の金属粒子(Q1)が10質量%未満である場合には、導電性の向上効果が十分に発揮されない。
 また、金属粒子(Q)100質量%における、第2の金属粒子(Q2)の含有量は、好ましくは0~90質量%であり、より好ましくは20~70質量%である。また、第2の金属粒子(Q2)100質量%における、SnまたはSnを含有する合金からなる金属粒子(Q2-1)の含有量は、好ましくは30質量%以上である。
 なお、金属粒子(Q)は、第1の金属粒子(Q1)および第2の金属粒子(Q2)に加え、必要に応じて、さらに、粒子形状や粒子径の異なるその他の金属粒子(Qn)をさらに1種以上含んでいてもよく、その含有量は、金属粒子(Q)100質量%中に、好ましくは50質量%以下である。
 なお、金属粒子(Q)は、環境負荷低減の観点から、Pb(鉛)、Hg(水銀)、Sb(アンチモン)およびAs(ヒ素)を実質的に含有しないことが好ましい。なお、これらの成分の含有量は、金属粒子(Q)100質量%中に、合計して0.1質量%未満であることが好ましい。
 本実施形態に係る導電性接着フィルムにおける金属粒子(Q)の含有量は、好ましくは70~96質量%であり、より好ましくは80~94質量%である。上記範囲とすることにより、導電性接着フィルムを成形する際の成形性がよくなるとともに、フィルムとしての取り扱い性も良好で、さらに、接着・焼結後には、優れた導電性を発揮し得る。
[2]樹脂(M)
 本実施形態に係る導電性接着フィルムにおいて、樹脂(M)は、熱硬化性樹脂(M1)を含む。導電性接着フィルムが、熱硬化性樹脂(M1)を含むことにより、未焼結の状態では、フィルム性(成形のしやすさ、取り扱いやすさ等)に寄与し、焼結後の状態では、熱サイクルによって、半導体素子と基材(リードフレーム等)との間に生じる応力等を緩和する役割を果たす。
 熱硬化性樹脂(M1)は、特に、耐熱性と金属粒子(Q)を混ぜた際のフィルム性の観点から、イミド基を1分子中に2単位以上含むマレイン酸イミド化合物を含むマレイン酸イミド樹脂(以下、「マレイミド樹脂」ということがある。)を含むことが好ましい。このような熱硬化性樹脂(M1)は応力緩和性に優れるため、焼結後の導電性接着フィルムにおいて、耐熱疲労特性を向上できる。その結果、このような熱硬化性樹脂(M1)を含む導電性接着フィルムによれば、従来の金属のみの鉛フリーはんだの問題点であった、硬くて脆いという耐熱疲労特性の欠点を克服できる。
 マレイン酸イミド樹脂としては、例えば、マレイン酸またはその無水物と、ジアミンまたはポリアミンとを縮合すること等により得られる。また、マレイン酸イミド樹脂は、炭素数10以上の脂肪族アミンに由来する骨格を含むものが、応力緩和性の観点から好ましく、特に、炭素数30以上であり、下記構造式(2)のような骨格を有するものがより好ましい。また、マレイン酸イミド化合物は、数平均分子量が3000以上のものであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 マレイン酸イミド樹脂には、マレイン酸以外の酸成分、例えば、ベンゼンテトラカルボン酸またはその無水物、ヒドロキシフタル酸ビスエーテルまたはその無水物等に由来する骨格を含むことにより、分子量やガラス転移温度Tgなどを調整してもよい。また、マレイン酸イミド樹脂の硬化剤としては、フェノールノボラック樹脂やラジカル発生剤等が好ましい。
 また、このようなマレイン酸イミド樹脂としては、例えば、下記構造式(3)~(5)に示されるビスマレイミド樹脂等が好適に用いられる。
Figure JPOXMLDOC01-appb-C000004
 但し、上記式(4)において、nは、1~10の整数である。また、上記式(3)~(5)において、「X」の部分は、下記構造式(6)で表される「C3672」の骨格である。なお、下記式(6)において、「*」はNとの結合部位を意味する。
Figure JPOXMLDOC01-appb-C000005
 また、熱硬化性樹脂(M1)は、さらに、フェノールノボラック樹脂を含むことが好ましい。例えば、上記マレイン酸イミド樹脂と、フェノールノボラック樹脂とを組み合わせて用いることにより、フェノールノボラック樹脂が硬化剤として作用し、導電性接着フィルの接着性が更に向上する。
 本実施形態に係る導電性接着フィルムにおける樹脂(M)の含有量は、好ましくは4~30質量%であり、より好ましくは6~20質量%である。上記範囲とすることにより、未焼結の状態では、フィルム性(成形のしやすさ、取り扱いやすさ等)に優れ、焼結した状態では、熱サイクルによって、半導体素子と基材(リードフレーム等)との間に生じる応力等の緩和性に優れる。なお、樹脂(M)は、1種の樹脂のみからなるものであってもよいし、2種以上の樹脂を混合したものであってもよい。また、必要に応じて上記以外の樹脂をさらに含有してもよい。
[3]有機リン化合物(A)
 本実施形態に係る導電性接着フィルムにおいて、有機リン化合物(A)は、下記一般式(1)で示されるものである。
Figure JPOXMLDOC01-appb-C000006
 ただし、上記一般式(1)においてRは、それぞれ独立して、有機基を示し、Rは互いに同一であっても異なっていてもよい。また、xおよびyは、それぞれ0~3の整数であり、かつ、xおよびyの和(x+y)は、3である。例えば、一般式(1)において、x=3、y=0のときは、有機ホスフィン類を、x=0、y=3のときは、亜リン酸有機エステルをそれぞれ示す。
 上記一般式(1)で示される有機リン化合物(A)は、本実施形態に係る導電性接着フィルムにおいて、金属粒子(Q)表面の酸化膜を除去する働きを助ける、フラックスとしての機能を有し、特に、Cu、Sn、NiおよびAlのような酸化しやすい金属成分に対して、より効果的に作用する。また、上記有機リン化合物(A)は、従来一般的に用いられてきたカルボン酸やアルコール等のフラックスに比べて、極めて吸湿し難く、耐吸湿性に優れている。
 具体的には、有機リン化合物(A)としては、アルキルホスフィン、アリールホスフィンおよび亜リン酸有機エステルから選択される少なくとも1種の化合物であることが好ましい。
 上記一般式(1)において、Rは、それぞれ独立して、アルキル基、アリール基、官能基を有する有機基、ヘテロ原子を有する有機基、および不飽和結合を有する有機基から選択されるいずれかであることが好ましい。
 上記アルキル基は、直鎖状、分岐状及び環状のいずれであってもよく、置換基を有していてもよい。アルキル基は、直鎖状又は分岐状であることが好ましい。また、上記アルキル基は、炭素数が3以上であることが好ましく、炭素数が4~18であることがより好ましく、炭素数が6~15であることが更に好ましい。このようなアルキル基としては、具体的には、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ステアリル基およびイソステアリル基等が挙げられる。
 上記アリール基は、置換基を有していてもよく、炭素数が6~10であることが好ましい。このようなアリール基としては、例えば、フェニル基、トリル基、キシリル基、クメニル基、1-ナフチル基等が挙げられる。
 上記官能基を有する有機基は、炭素数が1~10であることが好ましく、炭素数が1~6であることがより好ましく、炭素数が1~3であることが更に好ましい。また、上記有機基が有する官能基としては、クロロ基、ブロモ基、フルオロ基等が挙げられる。また、このような官能基を有する有機基としては、具体的には、クロロエチル基、フルオロエチル基、クロロプロピル基、ジクロロプロピル基、フルオロプロピル基、ジフルオロプロピル基、クロロフェニル基およびフルオロフェニル基等が挙げられる。
 上記ヘテロ原子を有する有機基は、炭素数が3以上であることが好ましく、炭素数が4~18であることがより好ましく、炭素数が6~15であることが更に好ましい。また、上記有機基が有するヘテロ原子としては、窒素原子、酸素原子、硫黄原子等が挙げられる。また、このようなヘテロ原子を有する有機基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、メチルスルホキシド基、エチルスルホキシド基およびフェニルスルホキシド基等が挙げられる。
 上記不飽和結合を有する有機基は、炭素数が3以上であることが好ましく、炭素数が4~18であることがより好ましく、炭素数が6~15であることが更に好ましい。このような不飽和結合を有する有機基としては、具体的には、プロペニル基、プロピニル基、ブテニル基、ブチニル基、オレイル基、フェニル基、ビニルフェニル基およびアルキルフェニル基等が挙げられる。中でも、ビニルフェニル基を有することがより好ましい。
 また、上記一般式(1)において、Rは、それぞれ独立して、その一部にビニル基、アクリル基、メタクリル基、マレイン酸エステル基、マレイン酸アミド基、マレイン酸イミド基、1級アミノ基、2級アミノ基、チオール基、ヒドロシリル基、ヒドロホウ素基、フェノール性水酸基およびエポキシ基から選択されるいずれか1種以上を有することが好ましい。中でも、ビニル基やアクリル基、メタクリル基、2級アミノ基を有することがより好ましい。
 具体的には、有機リン化合物(A)は、有機ホスフィン類であるp-スチリルジフェニルホスフィンを含むことが好ましい。このような化合物は、反応性の高いビニル基を有する事で低ブリードアウトである点で好適である。
 また、このような有機リン化合物(A)は、前述の熱硬化性樹脂(M1)がマレイミド樹脂を含む場合に、マレイミド樹脂と共重合体を形成し得るため、熱硬化性樹脂成分としても作用する。また、上記有機リン化合物(A)は、吸湿しにくく、分子量が十分に大きく、かつ重合性であるため、フラックス成分として用いた場合にブリードアウトを有効に防止できる。したがって、吸湿しやすいアルコールやカルボン酸に替えて、このような有機リン化合物(A)を用いることにより、フラックス洗浄を経なくても、ブリードアウトのリスクを低減でき、十分な信頼性、特に吸湿後の耐リフロー性を担保できる。
 また、焼結時等のブリードアウトを抑制する点で、有機リン化合物(A)の数平均分子量は、260以上であることが好ましい。また、有機リン化合物(A)の数平均分子量を260以上とすると共に、上述のようにマレイミド樹脂と反応させて硬化させることにより、ブリードアウトを更に低減できる。その結果、ブリードアウトによる基板(リードフレーム等)の表面汚染を防止でき、パッケージ信頼性を向上できる。
 本実施形態に係る導電性接着フィルムにおける有機リン化合物(A)の含有量は、好ましくは0.5~10.0質量%であり、より好ましくは1.0~5.0質量%である。上記範囲とすることにより、金属酸化膜の除去能が十分に発揮される。なお、有機リン化合物(A)は、1種のみで用いてもよいし、2種以上を組み合わせてもよい。
[4]その他の成分
 本実施形態に係る導電性接着フィルムは、上記成分の他に、本発明の目的を外れない範囲で、各種添加剤を含んでいてもよい。このような添加剤としては、必要に応じて適宜選択できるが、例えば、分散剤、ラジカル重合開始剤、レベリング剤、可塑剤等が挙げられる。
 本実施形態に係る導電性接着フィルムは、フィルム形状を有している。そのため、例えば、パワー半導体素子を基板に接続する際に、従来のはんだや導電ペーストよりも取り扱いが容易になる。具体的には、本実施形態に係る導電性接着フィルムは、パワー半導体が形成されたウェハの裏面に貼り付けて、ウェハを素子毎に分割・チップ化する際(ダイシング工程)に、ウェハごと分割することが可能となる。そのため、素子(ウェハ)の裏面全体に、過不足なく導電性接着フィルムを形成できることから、従来のはんだの濡れ性やはみ出し等の問題を生じることなく、良好な実装が可能となる。また、予め所定の厚さに導電性接着フィルムを形成できるため、従来のはんだや導電ペーストに比べて、ダイボンド後の素子の高さ制御を精度よく、容易に行うことができる。
 本実施形態の導電性接着フィルムの作製方法は、特に限定されず、公知の方法により行うことができる。例えば、上記各成分を適量秤量し、公知の方法により混合して、さらに得られた混合物を、公知の方法により膜状に成形する方法等が挙げられる。このような混合方法としては、例えば、回転翼による撹拌混合、ホモジナイザーによる混合、プラネタリーミキサーによる混合およびニーダーによる混合等が挙げられる。また、成形方法としては、例えば、上記混合物を溶媒に溶解・分散させたワニスを基材上に塗布した後乾燥させる方法、導電性接着フィルムを高温下で溶融した後基材に塗布する溶融塗布法、導電性接着フィルムを基材とともに高圧にてプレスする方法、導電性接着フィルムを溶融した後押出し機を用いて押出した後に延伸する押出し法、上記ワニスをスクリーンメッシュ(スクリーン印刷)や金属版(グラビア印刷)に充填して転写する印刷法等が挙げられる。
 導電性接着フィルムの厚さは、5~100μmが好ましく、20~50μmがより好ましい。導電性接着フィルムの厚さを上記範囲とすることにより、電気抵抗および熱抵抗を抑制しつつ、十分な接着力を得ることが可能となる。
 また、導電性接着フィルムの焼結後の貯蔵弾性率は、1Hzにおいて、1000~30000MPaが好ましく、5000~20000MPaがより好ましい。導電性接着フィルムの弾性率を上記範囲とすることにより、強固な接着力を発揮しつつ、冷熱衝撃試験(TCT)にて評価される耐熱疲労性において、優れた性能を発揮することが可能となる。
 また、導電性接着フィルムは、窒素雰囲気下、250℃で2時間加熱したときの加熱重量減少率が、1%未満であることが好ましい。加熱重量減少率を上記範囲とすることにより、導電性接着フィルムを焼結した際に、主に樹脂が熱分解しないため、優れた低ブリードアウト性によって信頼性を確保できる。
 また、導電性接着フィルムは、DSC(示差走査熱量測定)による分析を行った場合に、100~250℃の温度範囲における吸熱ピークが、焼結を行う前の状態(未焼結状態)では少なくとも1つ観測され、かつ焼結を行った後の状態(焼結状態)では消失することが好ましい。
 未焼結状態で、上記温度範囲にて観測される少なくとも1つの吸熱ピークは、少なくとも1種の金属成分を含む金属または合金の融点を意味する。すなわち、未焼結の導電性接着フィルムを、上記温度範囲で加熱(焼結)する際に、特定の金属成分が溶融し、被着体表面にその成分が濡れ広がり、低温での実装に有利に働くことを示している。一方で、焼結状態では、上記温度範囲にて吸熱ピークは観測されないが、これは、上記温度範囲に少なくとも1種の金属成分を含む金属または合金の金属成分(または合金)の融点がないことを意味している。すなわち、一度溶融した金属が、金属間の拡散反応により、焼結後に高融点をもつ金属間化合物を形成し、その結果、優れた耐熱性を有することができることを示している。
 このような導電性接着フィルムは、低温での焼結(実装)が可能でありながら、焼結後(実装後)は、優れた耐熱性を発揮し、高融点鉛フリーはんだでワイヤーボンドしたり、リフロー処理を施したりしても不具合を生じることがない。なお、上記導電性接着フィルムの耐熱温度は、好ましくは250℃以上、更に好ましくは300℃以上である。また、上記導電性接着フィルムを用いて半導体チップ等を実装する際の好適な実装温度は、好ましくは100~250℃であり、更に好ましくは100~200℃である。
 なお、DSCの測定装置としては、例えば株式会社日立ハイテクサイエンス製 DSC7000X等が挙げられる。また、測定条件としては、測定温度範囲室温~350℃、昇温速度5℃/分、窒素流量20mL/分、アルミニウム製サンプルパンで測定する。
 また、本実施形態に係る導電性接着フィルムは、Bステージ状態において、60℃で1Hzにおける損失弾性率(G”)と貯蔵弾性率(G’)との比(G”/G’)で定義される損失正接(tanδ)が、1.4以上であることが好ましい。上記条件におけるtanδが大きいほど、導電性接着フィルムが柔軟性に優れていることを示している。なお、損失弾性率(G”)、貯蔵弾性率(G’)およびtanδの測定および算出方法は、後述する実施例の項で説明する。また、ここでBステージ状態とは、DSC測定における熱硬化性樹脂分に由来する硬化前発熱量の80%以上を保持している状態を意味している。
 更に、本実施形態に係る導電性接着フィルムは、ダイシングテープと貼り合わせてダイシング・ダイボンディングフィルムとすることで、導電性接着フィルムとダイシングテープとを一度にウェハに貼合でき、工程を省略化できる。
 上記した実施態様について、図面に基づいて説明する。
 図2は、本発明にかかるダイシング・ダイボンディングフィルム10を示す断面図である。ダイシング・ダイボンディングフィルム10は、主にダイシングテープ12、導電性接着フィルム13から構成されている。ダイシング・ダイボンディングフィルム10は、半導体加工用テープの一例であり、使用工程や装置にあわせて予め所定形状に切断(プリカット)されていてもよいし、半導体ウェハ1枚分ごとに切断されていてもよいし、長尺のロール状を呈していてもよい。
 ダイシングテープ12は、支持基材12aと、その上に形成された粘着剤層12bとから構成されている。
 剥離処理PETフィルム11は、ダイシングテープ12を覆っており、粘着剤層12bや導電性接着フィルム13を保護している。
 支持基材12aとしては、放射線透過性であることが好ましく、具体的には、通常、プラスチック、ゴムなどを用い、放射線を透過する限りにおいて特に制限されるものではない。
 粘着剤層12bの粘着剤のベース樹脂組成物は、特に限定されるものではなく、通常の放射線硬化性粘着剤が用いられる。好ましくは水酸基などのイソシアネート基と反応しうる官能基を有するアクリル系粘着剤がある。特に制限されるものではないが、アクリル系粘着剤はヨウ素価が30以下であり、放射線硬化性炭素-炭素二重結合構造を有するのが好ましい。
 本実施形態に係る導電性接着フィルム13の構成としては、上述した通り、所定の金属粒子(Q)と、所定の樹脂(M)と、所定の有機リン化合物(A)とを含む導電性接着フィルムであることが、半導体パワー素子を金属リードフレームに接合する際、導電性、耐熱性および実装信頼性に優れ、かつ環境への負荷の小さい点で非常に好ましい。
(ダイシング・ダイボンディングフィルムの使用方法)
 半導体装置の製造にあたり、本実施形態のダイシング・ダイボンディングフィルム10を好適に使用することができる。
 まず、ダイシング・ダイボンディングフィルム10から剥離処理PETフィルム11を取り除き、図3に示す通り、半導体ウェハ1に導電性接着フィルム13を貼り付けてダイシングテープ12の側部をリングフレーム20で固定する。リングフレーム20はダイシング用フレームの一例である。導電性接着フィルム13はダイシングテープ12の半導体ウェハ1が貼合される部位に積層されている。ダイシングテープ12のリングフレーム20と接する部位には導電性接着フィルム13はない。
 その後、図4に示す通り、ダイシングテープ12の下面を吸着ステージ22で吸着・固定しながら、ダイシングブレード21を用いて半導体ウェハ1を所定サイズにダイシングし、複数の半導体チップ2を製造する。
 その後、図5に示す通り、リングフレーム20によりダイシングテープ12を固定した状態で、テープ突き上げリング30を上昇させ、ダイシングテープ12の中央部を上方に撓ませるとともに、紫外線などの放射線をダイシングテープ12に照射し、ダイシングテープ12を構成する接着剤層12bの粘着力を弱める。その後、半導体チップごとにこれに対応した位置で突き上げピン31を上昇させ、半導体チップ2を吸着コレット32によりピックアップする。
 その後は、図6に示す通り、ピックアップした半導体チップ2を、リードフレーム4などの支持部材や他の半導体チップ2に接着(ダイボンディング工程)し、導電性接着フィルムを焼結させる。
 その後、図7に示す通り、Alワイヤの付設や樹脂モールド等の工程を経ることにより、半導体装置が得られる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。
<原料>
 以下に、使用した原料の略称を示す。
[金属粒子(Q)]
<第1の金属粒子(Q1)>
・デンドリック状銅粉:三井金属鉱業株式会社製 ECY、平均粒子径(D50)は6μm、1次粒子の状態にて投影図で見たときのフラクタル次元は1.23である。
<第2の金属粒子(Q2)>
・球状銅粉:三井金属鉱業株式会社製 MA-C05K、平均粒子径(D50)は5μm、1次粒子の状態にて投影図で見たときのフラクタル次元は1.04である。
・球状スズ粉:三井金属鉱業株式会社製 ST-3、平均粒子径(D50)は7μm、1次粒子の状態にて投影図で見たときのフラクタル次元は1.04である。
 なお、上記金属粒子の平均粒子径(D50)は、レーザー回折計(株式会社島津製作所製、SALD-3100)で測定した。
 また、上記1次粒子の状態にて投影図で見たときのフラクタル次元は、ボックスカウント法により、下記の条件で算出した。
 まず、上記各金属粉について、SEM画像を撮影し(測定装置:株式会社日立ハイテクサイエンス製 TM3030Plus、倍率:1000~5000倍)、一次粒子をランダムに5つ選定した。
 次に、その1つの一次粒子について、図1に示す粒子のように、撮影したSEM画像を、画像処理ソフト(Image―J)を用いて2値化処理し、さらにこの処理画像から一次粒子の輪郭線を抽出した。その後、同画像処理ソフトのボックスカウンティングツールを用いて、正方形のボックス一辺の長さdを、2~36ピクセルで段階的に変化させながら、各dの被覆数N(d)を計測した。得られた各正方形のボックス一辺の長さdと、それに対応した被覆数N(d)を、上記式(II)に従って常用対数プロットし、その直線の傾きから、フラクタル次元を算出した。
 同様の作業を、残りの4つの一次粒子についても行い、ランダムに選定した5つの粒子について算出したフラクタル次元を平均して、上記各金属粉の、1次粒子の状態にて投影図で見たときのフラクタル次元の値とした。
[熱硬化性樹脂(M1)]
・マレイミド樹脂1
 1,6′.-ビスマレイミド-(2,2,4-トリメチル)ヘキサンおよび重合開始剤としてパーブチル(登録商標)Oを、質量比100:5で混合した混合物。
 1,6′.-ビスマレイミド-(2,2,4-トリメチル)ヘキサン:実験合成品。なお脂肪族アミンに由来する骨格は、炭素数9である。
 パーブチル(登録商標)O:日本油脂株式会社製、t-ブチル パーオキシー2-エチルヘキサネート。(以下において同じ。)
・マレイミド樹脂2
 1,10-ビスマレイミド-ノルマルデカンおよび重合開始剤としてパーブチル(登録商標)Oを、質量比100:5で混合した混合物。
 1,10-ビスマレイミド-ノルマルデカン:実験合成品。なお、脂肪族アミンに由来する骨格は、炭素数10である。
・マレイミド樹脂3
 BMI-3000および重合開始剤としてパーブチル(登録商標)Oを、質量比100:5で混合した混合物。
 BMI-3000:DESIGNER MOLECULES INC製、数平均分子量3000、下記構造式(7)で表されるビスマレイミド樹脂。下記式(7)において、nは1~10の整数である。なお、脂肪族アミンに由来する骨格は、炭素数36である。
Figure JPOXMLDOC01-appb-C000007
・フェノールノボラック樹脂
 Hー4:明和化成株式会社製。
・エポキシ樹脂
 YD-128、YD-013、YP-50および2PHZを、質量比15:5:10:1で混合した混合物。
 YD-128:新日鉄住金化学株式会社製、ビスフェノールA型液状エポキシ樹脂。
 YD-013:新日鉄住金化学株式会社製、ビスフェノールA型固形エポキシ樹脂。(以下において同じ。)
 YP-50:新日鉄住金化学株式会社製、フェノキシ樹脂。(以下において同じ。)
 2PHZ:四国化成工業株式会社製、2-フェニル-4,5-ジヒドロキシメチルイミダゾール。
[フラックス]
・有機ホスフィン類
 DPPST(登録商標):北興化学工業株式会社製、ジフェニルホスフィノスチレン。
・亜リン酸有機エステル
 JP-351:城北化学工業株式会社製、トリスノニルフェニルホスファイト。
・テトラエチレングリコール:東京化成工業株式会社製
・アビエチン酸:東京化成工業株式会社製
[ダイシングテープ]
・乾燥後の粘着剤組成物の厚さが5μmとなるように、支持基材上に粘着剤組成物を塗工し、120℃で3分間乾燥させて得た。
 粘着剤組成物:n-オクチルアクリレート(大阪有機化学工業株式会社製)、2-ヒドロキシエチルアクリレート(大阪有機化学工業株式会社製)、メタクリル酸(東京化成工業株式会社製)および重合開始剤としてベンゾイルペルオキシド(東京化成工業株式会社製)を、質量比200:10:5:2で混合した混合物を、適量のトルエン中に分散し、反応温度および反応時間を調整し、官能基を持つアクリル樹脂の溶液を得た。次に、このアクリル樹脂溶液100質量部に対し、ポリイソシアネートとしてコロネートL(東ソー株式会社製)を2質量部追加し、さらに追加溶媒として適量のトルエンを加えて攪拌し、粘着剤組成物を得た。
 支持基材:低密度ポリエチレンよりなる樹脂ビーズ(日本ポリエチレン株式会社製 ノバテックLL)を140℃で溶融し、押し出し機を用いて、厚さ100μmの長尺フィルム状に成形して得た。
<導電性接着フィルムの作製>
(実施例1)
 実施例1では、上記材料のうち表1に示す材料を、金属粒子(Q)86質量%、樹脂(M)9質量%およびフラックス5質量%の比率となるように混合物を調製し、これに溶剤としてトルエンを加えてスラリー化し、プラネタリーミキサーにて撹拌後、離型処理されたPETフィルム上に薄く塗布して、120℃で2分間乾燥し、厚さ40μmの導電性接着フィルムを得た。なお、ここで用いた金属粒子(Q)は、第1金属粒子(Q1)としてのデンドリック状銅粉のみからなる。
(実施例2)
 実施例2では、上記材料のうち表1に示す材料を、金属粒子(Q)89質量%、樹脂(M)7.5質量%、およびフラックス3.5質量%の比率となるように混合物を調製した以外は、実施例1と同様の方法にて、導電性接着フィルムを得た。
(実施例3)
 実施例3では、樹脂(M)としてマレイミド樹脂3を用い、金属粒子(Q)100質量%中に、第1金属粒子(Q1)としてデンドリック状銅粉が20質量%、第2金属粒子(Q2)として球状銅粉が40質量%および球状スズ粉が40質量%の比率となるように、金属粒子(Q)を調整した以外は、実施例2と同様の方法にて、導電性接着フィルムを得た。
(実施例4)
 実施例4では、フラックスとして亜リン酸有機エステルを用いた以外は、実施例3と同様の方法にて、導電性接着フィルムを得た。
(実施例5)
 実施例5では、樹脂(M)100質量%中に、マレイミド樹脂3が95質量%およびフェノールノボラック樹脂が5質量%の比率となるように、樹脂(M)を調製した以外は、実施例4と同様の方法にて、導電性接着フィルムを得た。
(比較例1および2)
 比較例1および2では、上記材料のうち表1に示す材料を、金属粒子(Q)85質量%、樹脂(M)8質量%、およびフラックス7質量%の比率となるように混合物を調製した以外は、実施例1と同様の方法にて、導電性接着フィルムを得た。
(比較例3)
 比較例3では、金属粒子(Q)としてデンドリック状銅粉を用い、樹脂(M)としてマレイミド樹脂2を用いた以外は、比較例1と同様の方法にて、導電性接着フィルムを得た。
(比較例4)
 比較例4では、樹脂(M)としてマレイミド樹脂3を用い、金属粒子(Q)100質量%中に、第1金属粒子(Q1)としてデンドリック状銅粉が20質量%、第2金属粒子(Q2)として球状銅粉が40質量%および球状スズ粉が40質量%の比率となるように、金属粒子(Q)を調整した以外は、比較例3と同様の方法にて、導電性接着フィルムを得た。
<ダイシング・ダイボンディングフィルムの作製>
 上記のようにして得られた、上記実施例および比較例に係る導電性接着フィルムを、ダイシングテープと貼り合わせて、ダイシング・ダイボンディングフィルム(導電性接着フィルム/粘着剤組成物/支持基材)を得た。
<評価>
 上記のようにして得られた、上記実施例および比較例に係る、導電性接着フィルムおよびダイシング・ダイボンディングフィルムを用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。結果を表1に示す。
[体積抵抗率(導電性)]
 上記本実施例および比較例に係る導電性接着フィルムをテフロン(登録商標)シート上に載せて、230℃で3時間焼結し、測定用サンプルを得た。次に、この測定用サンプルについて、JIS-K7194―1994に準拠して、四探針法により抵抗値を測定し、体積抵抗率を算出した。抵抗値の測定には、株式会社三菱化学アナリテック製ロレスターGXを用いた。なお、体積抵抗率は、その逆数が導電率であり、体積抵抗率は小さいほど導電性に優れていることを意味している。本実施例では、体積抵抗率が、1000μΩ・cm以下を合格ラインとした。
[tanδ(柔軟性)]
 上記120℃、2分間の乾燥工程により、Bステージ状態まで半硬化している本実施例および比較例に係る導電性接着フィルムを、厚さ1mmまで熱圧着して積層し、プレート径8mmΦの測定用サンプルを得た。次に、この測定用サンプルについて、動的粘弾性測定装置ARES(レオロジカ社製)を用いて、周波数1Hz、ひずみ量0.3%のせん断条件で、60℃における損失正接(tanδ)を測定した。
[PKG剥離の有無(耐吸湿性)]
 上記本実施例および比較例に係るダイシング・ダイボンディングフィルムを、裏面がAuメッキされたSiウェハの表面に100℃で貼合した後、5mm角にダイシングして、個片化したチップ(Auメッキ/Siウエハ/導電性接着フィルム)を得た。このチップを、Agメッキされた金属リードフレーム上に、140℃でダイボンディングした後、230℃で3時間焼結し、チップを覆うようにエポキシ系のモールド樹脂(京セラケミカル株式会社製、KE-G300)にて封止して、測定用サンプルを得た。
 得られた測定用サンプルについて、JEDEC J-STD-020D1に定める吸湿後リフロー試験(鉛フリーはんだ準拠)のMSL-Lv1および2を下記の条件で、それぞれ行った。その後、超音波画像装置(株式会社日立パワーソリューション製、FineSAT)にて内部に剥離が生じていないかを観察した。本実施例では、少なくともMSL-Lv2でPKG剥離がない場合を合格とした。
(吸湿条件)
・MSL-Lv1は、85℃、85%RHにて168時間である。
・MSL-Lv2は、85℃、60%RHにて168時間である。
(リフロー 等級温度)
・MSL-Lv1および2は、いずれも260℃である。
[せん断接着力(接着性・耐熱性)]
 上記本実施例および比較例に係るダイシング・ダイボンディングフィルムを、裏面がAuメッキされたSiウェハの表面に100℃で貼合した後、5mm角にダイシングして、個片化したチップ(Auメッキ/Siウエハ/導電性接着フィルム)を得た。このチップを、Agメッキされた金属リードフレーム上に、140℃でダイボンディングした後、230℃で3時間焼結して、測定用サンプルを得た。
 得られた測定用サンプルについて、冷熱衝撃試験(以下、「TCT」という。)の前後における、導電性接着フィルムのせん断接着力を測定した。
(TCT前の接着力)
 得られた測定サンプルについて、ダイシェアー測定機(ノードソン・アドバンスト・テクノロジー株式会社製 万能型ボンドテスタ シリーズ4000)を用い、ボンドテスタの引っ掻きツールを上記測定サンプルの半導体チップの側面に100μm/sで衝突させて、チップ/リードフレーム接合が破壊した際の応力を、260℃におけるせん断接着力として測定した。本実施例では、TCT前のせん断接着力は、3MPa以上を合格レベルとした。
(TCT後の接着力)
 次に、冷熱衝撃試験(TCT)として、得られた測定用サンプルを、-40~+150℃の温度範囲で200サイクル処理し、この処理後のサンプルについて、上記TCT前の接着力と同様の方法でせん断接着力を測定した。本実施例では、TCT後のせん断接着力は、1MPa以上を合格レベルとした。
Figure JPOXMLDOC01-appb-T000008
 上記結果から、実施例1~5に係る導電性接着フィルムは、金属粒子(Q)と、樹脂(M)と、所定の有機リン化合物と(A)を含み、樹脂(M)が熱硬化性樹脂(M1)を含み、金属粒子(Q)が、平均粒子径(d50)が20μm以下であり、かつ1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である第1の金属粒子(Q1)を10質量%以上含むため、特に導電性に優れ、接合・焼結後の耐熱性と実装信頼性を併せ持つ、従来技術にない顕著な効果を奏することが確認された。
 一方、比較例1および2に係る導電性接着フィルムは、特に、本発明で特定する所定の有機リン化合物(A)を含んでおらず、かつ金属粒子(Q)が、1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である第1の金属粒子(Q1)を含んでいないため、本発明に係る実施例1~5と比較して、導電性、耐熱性および実装信頼性のいずれもが劣っていた。具体的には、比較例1および2では、体積抵抗率が著しく高く、耐吸湿試験では、MSL-Lv2でもPKG剥離が生じており、耐吸湿性が劣ることが確認された。また、接着力は、TCT前もあまり高くはないが、TCT後のせん断接着力は0であり、耐熱衝撃性にも劣ることが確認された。
 また、比較例3および4に係る導電性接着フィルムは、特に、本発明で特定する所定の有機リン化合物(A)を含んでいないため、本発明に係る実施例1~5と比較して、耐熱性および実装信頼性が劣っていた。具体的には、比較例3および4では、耐吸湿試験では、MSL-Lv2でもPKG剥離が生じており、耐吸湿性が劣ることが確認された。また、接着力は、TCT前もあまり高くはないが、TCT後はさらに悪化しており、耐熱衝撃性にも劣ることが確認された。
1:半導体ウェハ
1a:裏面Auメッキ層
2:半導体チップ
4:金属リードフレーム
4a:Agメッキ層
5:モールド樹脂
6:Alワイヤ
10:ダイシング・ダイボンディングフィルム
11:剥離処理PETフィルム
12:ダイシングテープ
12a:支持基材
12b:粘着剤層
13:導電性接着フィルム
20:リングフレーム
21:ダイシングブレード
22:吸着ステージ
30:テープ突き上げリング
31:突き上げピン
32:吸着コレット

Claims (12)

  1.  金属粒子(Q)と、樹脂(M)と、下記一般式(1)で示される有機リン化合物(A)とを含み、
     前記樹脂(M)は、熱硬化性樹脂(M1)を含み、
     前記金属粒子(Q)は、平均粒子径(d50)が20μm以下であり、
     前記金属粒子(Q)は、1次粒子の状態にて投影図で見たときのフラクタル次元が1.1以上である第1の金属粒子(Q1)を10質量%以上含む、導電性接着フィルム。
    Figure JPOXMLDOC01-appb-C000001
     ただし、上記一般式(1)においてRは、それぞれ独立して、有機基を示し、Rは互いに同一であっても異なっていてもよい。また、xおよびyは、ともに0~3の整数であり、かつ、xおよびyの和(x+y)は、3である。
  2.  前記第1の金属粒子(Q1)は、デンドリック状金属粉である、請求項1に記載の導電性接着フィルム。
  3.  前記有機リン化合物(A)は、アルキルホスフィン、アリールホスフィンおよび亜リン酸有機エステルから選択される少なくとも1種の化合物である、請求項1または2に記載の導電性接着フィルム。
  4.  前記一般式(1)においてRは、それぞれ独立して、その一部にビニル基、アクリル基、メタクリル基、マレイン酸エステル基、マレイン酸アミド基、マレイン酸イミド基、1級アミノ基、2級アミノ基、チオール基、ヒドロシリル基、ヒドロホウ素基、フェノール性水酸基およびエポキシ基から選択されるいずれか1種以上を有する、請求項1~3のいずれか1項に記載の導電性接着フィルム。
  5.  前記金属粒子(Q)は、球状金属粉からなる第2の金属粒子(Q2)をさらに含む、請求項1~4のいずれか1項に記載の導電性接着フィルム。
  6.  前記第2の金属粒子(Q2)は、平均粒子径(d50)が7μm未満である、請求項5に記載の導電性接着フィルム。
  7.  前記第2の金属粒子(Q2)は、スズまたはスズを含有する合金からなる金属粒子を含む、請求項5または6に記載の導電性接着フィルム。
  8.  Bステージ状態において、60℃で1Hzにおける損失弾性率(G’’)と貯蔵弾性率(G’)との比(G’’/G’)で定義される損失正接(tanδ)が、1.4以上である、請求項1~7のいずれか1項に記載の導電性接着フィルム。
  9.  前記熱硬化性樹脂(M1)は、イミド基を1分子中に2単位以上有するマレイン酸イミド化合物を含む、請求項1~8のいずれか1項に記載の導電性接着フィルム。
  10.  前記マレイン酸イミド化合物が、炭素数10以上の脂肪族アミンに由来する骨格を含む、請求項9に記載の導電性接着フィルム。
  11.  前記熱硬化性樹脂(M1)が、フェノールノボラック樹脂をさらに含む、請求項9または10に記載の導電性接着フィルム。
  12.  請求項1~11のいずれか1項に記載の導電性接着フィルムと、ダイシングテープとを貼り合せてなる、ダイシング・ダイボンディングフィルム。
PCT/JP2016/087660 2016-02-10 2016-12-16 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム WO2017138254A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16889955.7A EP3415578B1 (en) 2016-02-10 2016-12-16 Electrically conductive adhesive film and dicing-die bonding film using same
SG11201806325YA SG11201806325YA (en) 2016-02-10 2016-12-16 Electrically conductive adhesive film and dicing-die bonding film using the same
KR1020187022055A KR102190151B1 (ko) 2016-02-10 2016-12-16 도전성 접착 필름 및 이를 이용한 다이싱·다이본딩 필름
MYPI2018702803A MY197274A (en) 2016-02-10 2016-12-16 Electrically conductive adhesive film and dicing-die bonding film using the same
CN201680076981.5A CN108431159B (zh) 2016-02-10 2016-12-16 导电性粘接膜及使用其的切割芯片接合膜
PH12018501617A PH12018501617A1 (en) 2016-02-10 2018-07-31 Electrically conductive adhesive film and dicing-die bonding film using the same
US16/056,896 US11193047B2 (en) 2016-02-10 2018-08-07 Electrically conductive adhesive film and dicing-die bonding film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-023612 2016-02-10
JP2016023612A JP5972489B1 (ja) 2016-02-10 2016-02-10 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/056,896 Continuation US11193047B2 (en) 2016-02-10 2018-08-07 Electrically conductive adhesive film and dicing-die bonding film using the same

Publications (1)

Publication Number Publication Date
WO2017138254A1 true WO2017138254A1 (ja) 2017-08-17

Family

ID=56701616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087660 WO2017138254A1 (ja) 2016-02-10 2016-12-16 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム

Country Status (10)

Country Link
US (1) US11193047B2 (ja)
EP (1) EP3415578B1 (ja)
JP (1) JP5972489B1 (ja)
KR (1) KR102190151B1 (ja)
CN (1) CN108431159B (ja)
HU (1) HUE060012T2 (ja)
MY (1) MY197274A (ja)
PH (1) PH12018501617A1 (ja)
SG (1) SG11201806325YA (ja)
WO (1) WO2017138254A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005313B1 (ja) 2016-02-10 2016-10-12 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5972490B1 (ja) * 2016-02-10 2016-08-17 古河電気工業株式会社 導電性接着剤組成物ならびにこれを用いた導電性接着フィルムおよびダイシング・ダイボンディングフィルム
JP6005312B1 (ja) 2016-02-10 2016-10-12 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5972489B1 (ja) 2016-02-10 2016-08-17 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5989928B1 (ja) 2016-02-10 2016-09-07 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP6815133B2 (ja) * 2016-08-31 2021-01-20 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート
CN112210321A (zh) * 2019-07-12 2021-01-12 臻鼎科技股份有限公司 导电粘着剂以及使用其的电磁波屏蔽膜和电路板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371391A (ja) * 1991-06-19 1992-12-24 Katsuta Kako Kk はんだ付け用フラックス
JPH0788687A (ja) * 1993-09-27 1995-04-04 Tamura Kaken Kk はんだ付用フラックス
JP2003045229A (ja) * 2001-07-27 2003-02-14 Toppan Forms Co Ltd 導電性接着剤およびそれを用いたicチップの実装方法
JP2005276925A (ja) * 2004-03-23 2005-10-06 Sumitomo Bakelite Co Ltd 導電性接着フィルムおよびこれを用いた半導体装置
WO2013047796A1 (ja) * 2011-09-29 2013-04-04 独立行政法人産業技術総合研究所 カーボンナノチューブ複合材料
JP2015516499A (ja) * 2012-05-17 2015-06-11 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 導電性ダイ取付けフィルムの接着を改善するための鎖延長されたエポキシ
JP2015193725A (ja) * 2014-03-31 2015-11-05 株式会社タムラ製作所 異方性導電性接着剤およびそれを用いたプリント配線基板

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055861A (en) * 1958-02-19 1962-09-25 Union Carbide Corp Stabilized acrylonitrile vinyl or vinylidene copolymer solutions
US3152104A (en) 1961-03-09 1964-10-06 American Cyanamid Co Novel phosphine and process of preparation
US3244662A (en) 1963-09-10 1966-04-05 Nat Polychemicals Inc Polymers stabilized by a combination of organic phosphites and organic borates
DE2623985A1 (de) * 1976-05-28 1977-12-08 Hoechst Ag Neue organische phosphite und ihre verwendung als stabilisatoren
JPS60115622A (ja) 1983-11-29 1985-06-22 Toshiba Corp エポキシ樹脂系組成物
JP2508390B2 (ja) 1989-09-11 1996-06-19 信越化学工業株式会社 熱硬化性樹脂組成物
JPH05179211A (ja) * 1991-12-30 1993-07-20 Nitto Denko Corp ダイシング・ダイボンドフイルム
JPH10261319A (ja) 1997-03-18 1998-09-29 Sumitomo Bakelite Co Ltd 導電性銅ペースト組成物
KR100568491B1 (ko) 1997-07-04 2006-04-07 제온 코포레이션 반도체부품 접착제
TWI245034B (en) 2000-07-24 2005-12-11 Matsushita Electric Ind Co Ltd Capacitor
JP2002263880A (ja) 2001-03-06 2002-09-17 Hitachi Cable Ltd Pbフリー半田、およびこれを使用した接続用リード線ならびに電気部品
JP2003211289A (ja) * 2002-01-21 2003-07-29 Fujitsu Ltd 導電性接合材料、それを用いた接合方法及び電子機器
US20030221748A1 (en) 2002-05-30 2003-12-04 Fry's Metals, Inc. Solder paste flux system
JP2004124160A (ja) * 2002-10-01 2004-04-22 Yukio Kodama 不定形な形状の銀粒子からなる銀粉、該銀粉を選択的に製造する方法及び該銀粉を用いた機能材料
JP3730209B2 (ja) 2002-11-14 2005-12-21 株式会社東郷製作所 通電接着剤
US7108806B2 (en) 2003-02-28 2006-09-19 National Starch And Chemical Investment Holding Corporation Conductive materials with electrical stability and good impact resistance for use in electronics devices
KR101179815B1 (ko) 2003-05-05 2012-09-04 디자이너 몰레큘스 인코퍼레이티드 이미드-연결된 말레이미드 및 폴리말레이미드 화합물
US7384900B2 (en) 2003-08-27 2008-06-10 Lg Display Co., Ltd. Composition and method for removing copper-compatible resist
MY138566A (en) 2004-03-15 2009-06-30 Hitachi Chemical Co Ltd Dicing/die bonding sheet
JP2005350647A (ja) 2004-05-11 2005-12-22 Nitto Denko Corp 液状エポキシ樹脂組成物
JP4145287B2 (ja) 2004-06-17 2008-09-03 株式会社ルネサステクノロジ 半導体装置および半導体装置の製造方法
US20060147683A1 (en) 2004-12-30 2006-07-06 Harima Chemicals, Inc. Flux for soldering and circuit board
WO2007018120A1 (ja) 2005-08-05 2007-02-15 Hitachi Chemical Co., Ltd. 接着フィルム及びこれを用いた半導体装置
JP4425246B2 (ja) 2005-08-31 2010-03-03 三洋電機株式会社 光起電力装置および光起電力装置の製造方法
JP4609296B2 (ja) 2005-12-05 2011-01-12 株式会社日立製作所 高温半田及び高温半田ペースト材、及びそれを用いたパワー半導体装置
JP2008144141A (ja) 2006-11-15 2008-06-26 Shin Etsu Chem Co Ltd 接着シート
JP5266719B2 (ja) 2007-10-29 2013-08-21 住友ベークライト株式会社 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP5098851B2 (ja) 2007-12-25 2012-12-12 日立化成工業株式会社 積層型封止用フィルム
JP2010221260A (ja) 2009-03-24 2010-10-07 Mitsubishi Materials Corp はんだ粉末及び該粉末を用いたはんだペースト
JP5533876B2 (ja) 2009-09-03 2014-06-25 株式会社村田製作所 ソルダペースト、それを用いた接合方法、および接合構造
JP5397944B2 (ja) 2009-11-11 2014-01-22 日東電工株式会社 蛍光体含有複合シート
EP2431438B1 (en) 2010-09-20 2012-11-28 Henkel AG & Co. KGaA Electrically conductive adhesives
KR101846474B1 (ko) * 2011-05-31 2018-04-06 토요잉크Sc홀딩스주식회사 도전성 시트 및 그 제조 방법, 및 전자 부품
WO2013015439A1 (en) * 2011-07-27 2013-01-31 Canon Kabushiki Kaisha Magenta toner and method for producing the same
JP2013152867A (ja) 2012-01-25 2013-08-08 Sekisui Chem Co Ltd 導電性粒子、異方性導電材料及び接続構造体
DE102012207462A1 (de) * 2012-05-04 2013-11-07 Tesa Se Dreidimensional elektrisch leitfähige Klebstofffolie
US9583453B2 (en) 2012-05-30 2017-02-28 Ormet Circuits, Inc. Semiconductor packaging containing sintering die-attach material
US20140120356A1 (en) 2012-06-18 2014-05-01 Ormet Circuits, Inc. Conductive film adhesive
JP2014152198A (ja) * 2013-02-05 2014-08-25 Soken Chem & Eng Co Ltd 粘着シート
KR101552527B1 (ko) 2013-12-18 2015-09-14 한화첨단소재 주식회사 전도성 접착제 필름 제조방법
JP6322026B2 (ja) 2014-03-31 2018-05-09 日東電工株式会社 ダイボンドフィルム、ダイシングシート付きダイボンドフィルム、半導体装置、及び、半導体装置の製造方法
EP3128540B1 (en) 2014-04-04 2019-06-12 KYOCERA Corporation Thermosetting resin composition, semiconductor device and electrical/electronic component
JP6542526B2 (ja) * 2014-11-12 2019-07-10 デクセリアルズ株式会社 熱硬化性接着組成物、及び熱硬化性接着シート
EP3333856A4 (en) 2015-08-03 2018-12-26 Furukawa Electric Co., Ltd. Conductive composition
CN108291122B (zh) 2015-08-08 2021-01-05 设计分子有限公司 阴离子可固化组合物
JP5972490B1 (ja) 2016-02-10 2016-08-17 古河電気工業株式会社 導電性接着剤組成物ならびにこれを用いた導電性接着フィルムおよびダイシング・ダイボンディングフィルム
JP6005312B1 (ja) 2016-02-10 2016-10-12 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP6005313B1 (ja) 2016-02-10 2016-10-12 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5972489B1 (ja) 2016-02-10 2016-08-17 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5989928B1 (ja) 2016-02-10 2016-09-07 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP6346389B1 (ja) 2016-08-03 2018-06-20 古河電気工業株式会社 金属粒子含有組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371391A (ja) * 1991-06-19 1992-12-24 Katsuta Kako Kk はんだ付け用フラックス
JPH0788687A (ja) * 1993-09-27 1995-04-04 Tamura Kaken Kk はんだ付用フラックス
JP2003045229A (ja) * 2001-07-27 2003-02-14 Toppan Forms Co Ltd 導電性接着剤およびそれを用いたicチップの実装方法
JP2005276925A (ja) * 2004-03-23 2005-10-06 Sumitomo Bakelite Co Ltd 導電性接着フィルムおよびこれを用いた半導体装置
WO2013047796A1 (ja) * 2011-09-29 2013-04-04 独立行政法人産業技術総合研究所 カーボンナノチューブ複合材料
JP2015516499A (ja) * 2012-05-17 2015-06-11 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 導電性ダイ取付けフィルムの接着を改善するための鎖延長されたエポキシ
JP2015193725A (ja) * 2014-03-31 2015-11-05 株式会社タムラ製作所 異方性導電性接着剤およびそれを用いたプリント配線基板

Also Published As

Publication number Publication date
EP3415578B1 (en) 2022-07-27
KR20180105660A (ko) 2018-09-28
HUE060012T2 (hu) 2023-01-28
KR102190151B1 (ko) 2020-12-11
SG11201806325YA (en) 2018-08-30
JP2017141365A (ja) 2017-08-17
JP5972489B1 (ja) 2016-08-17
CN108431159B (zh) 2020-11-20
PH12018501617A1 (en) 2019-04-08
US20190016929A1 (en) 2019-01-17
EP3415578A4 (en) 2019-09-25
EP3415578A1 (en) 2018-12-19
US11193047B2 (en) 2021-12-07
CN108431159A (zh) 2018-08-21
MY197274A (en) 2023-06-08

Similar Documents

Publication Publication Date Title
JP5989928B1 (ja) 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP6005312B1 (ja) 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP6005313B1 (ja) 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5972489B1 (ja) 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5972490B1 (ja) 導電性接着剤組成物ならびにこれを用いた導電性接着フィルムおよびダイシング・ダイボンディングフィルム
TWI744820B (zh) 含有金屬粒子之組合物及導電性接著膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889955

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201806325Y

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187022055

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12018501617

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016889955

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889955

Country of ref document: EP

Effective date: 20180910