WO2017138194A1 - 変速機構の制御方法及び制御装置 - Google Patents
変速機構の制御方法及び制御装置 Download PDFInfo
- Publication number
- WO2017138194A1 WO2017138194A1 PCT/JP2016/081679 JP2016081679W WO2017138194A1 WO 2017138194 A1 WO2017138194 A1 WO 2017138194A1 JP 2016081679 W JP2016081679 W JP 2016081679W WO 2017138194 A1 WO2017138194 A1 WO 2017138194A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- engagement
- accelerator
- lock
- lockup
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/14—Control of torque converter lock-up clutches
- F16H61/143—Control of torque converter lock-up clutches using electric control means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/30—Control strategies involving selection of transmission gear ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/02—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/02—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
- F16H61/0202—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
- F16H61/0204—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
- F16H61/0213—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/14—Control of torque converter lock-up clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/16—Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
- F16H61/662—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
- F16H61/66254—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
- F16H61/66259—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/14—Inputs being a function of torque or torque demand
- F16H2059/144—Inputs being a function of torque or torque demand characterised by change between positive and negative drive line torque, e.g. torque changes when switching between coasting and acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/02—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
- F16H61/0202—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
- F16H61/0204—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
- F16H61/0213—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
- F16H2061/0227—Shift map selection, i.e. methods for controlling selection between different shift maps, e.g. to initiate switch to a map for up-hill driving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/36—Inputs being a function of speed
- F16H59/38—Inputs being a function of speed of gearing elements
- F16H59/40—Output shaft speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/40—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
- F16H63/50—Signals to an engine or motor
- F16H63/502—Signals to an engine or motor for smoothing gear shifts
Definitions
- the present invention relates to a control method and a control device for a speed change mechanism in a traveling scene that requires simultaneous lock-up engagement and upshifting.
- a lockup control method is known in which the vehicle is started with the lockup clutch released and enters the lockup region from the converter region (see, for example, Patent Document 1).
- the accelerator pedal is stepped on again after being released from the accelerator pedal in the converter area where the lock-up clutch is released.
- lock-up engagement control is started according to the prior art, and at the same time, if the accelerator opening after the accelerator is depressed is the low accelerator opening, the accelerator depressing operation is performed. Upshift control by is started.
- the present invention has been made paying attention to the above problem, and in a traveling scene where simultaneous lockup engagement and upshift are required, a speed change mechanism control method that shortens the time required to complete lockup engagement and An object is to provide a control device.
- a transmission mechanism to which the present invention is applied includes a torque converter with a lock-up clutch.
- the speed change mechanism control method when the lockup engagement of the lockup clutch according to the accelerator depressing operation is started, the start of the upshift control by the speed change mechanism is locked when the upshift of the speed change mechanism is required. Delay up to the lockup engagement completion area in the lockup engagement control of the up clutch.
- FIG. 1 is an overall system diagram showing an overall configuration of an engine vehicle equipped with a continuously variable transmission including a torque converter with a lockup clutch to which a control method and a control device of Embodiment 1 are applied. It is a D range shift map showing an example of a shift map in which a shift line for determining a target primary rotational speed of a continuously variable transmission is determined by an operating point. It is a D range LU schedule showing an example of an LU schedule in which a smooth LU engagement line and a smooth LU release line of a lockup clutch are drawn.
- FIG. 1 is an overall system diagram showing an overall configuration of an engine vehicle equipped with a continuously variable transmission including a torque converter with a lockup clutch to which a control method and a control device of Embodiment 1 are applied. It is a D range shift map showing an example of a shift map in which a shift line for determining a target primary rotational speed of a continuously variable transmission is determined by an operating point. It is a D range LU schedule showing an
- Axel opening APO, engine speed Ne, turbine speed Nt, engine torque Te when the independent control of the comparative example is executed in the reacceleration scene by the accelerator depressing operation from coast running with the lock-up released state -It is a time chart which shows each characteristic of LU instruction
- FIG. 6 is a flowchart showing a flow of cooperative control processing of lock-up engagement control and up-shift control executed in the CVT control unit of the second embodiment in a reacceleration scene by an accelerator stepping operation from an accelerator foot-off coast running in a lock-up engagement state. is there.
- Axel opening APO, engine speed Ne, turbine speed Nt, engine torque Te when independent control of the comparative example is executed in the reacceleration scene by the accelerator depressing operation from the coast running with lock-up engagement state -It is a time chart which shows each characteristic of LU instruction
- Axel opening APO, engine speed Ne, turbine speed Nt, engine torque when cooperative control of the second embodiment is executed in the reacceleration scene by the accelerator depressing operation from coasting with the accelerator released in the lockup engagement state It is a time chart which shows each characteristic of Te * LU instruction
- control method and the control device in the first embodiment are applied to an engine vehicle equipped with a continuously variable transmission including a torque converter with a lock-up clutch as a transmission mechanism.
- configuration of the control device for the speed change mechanism in the first embodiment will be described by being divided into “the overall system configuration” and “the cooperative control processing configuration of the lockup fastening control and the upshift control”.
- FIG. 1 shows the overall configuration of an engine vehicle equipped with a continuously variable transmission including a torque converter with a lock-up clutch to which the control method and control device of the first embodiment are applied
- FIG. 2 shows the D range of the continuously variable transmission
- FIG. 3 shows a D range LU map.
- the overall system configuration will be described below with reference to FIGS. Note that the description “LU” is an abbreviation for “lock-up”.
- the vehicle drive system includes an engine 1, an engine output shaft 2, a lockup clutch 3, a torque converter 4, a transmission input shaft 5, and a continuously variable transmission 6 (transmission mechanism).
- the drive shaft 7 and the drive wheel 8 are provided.
- the lock-up clutch 3 is built in the torque converter 4 and connects the engine 1 and the continuously variable transmission 6 via the torque converter 4 when the clutch is released, and directly connects the engine output shaft 2 and the transmission input shaft 5 when the clutch is engaged. To do.
- the lockup clutch 3 is controlled to be engaged / slip engaged / released by the LU differential pressure adjusted based on the line pressure as the original pressure.
- the line pressure is generated by regulating the discharge oil from an oil pump (not shown) that is rotationally driven by the engine 1 using a line pressure solenoid valve.
- the torque converter 4 includes a pump impeller 41, a turbine runner 42 disposed opposite to the pump impeller 41, and a stator 43 disposed between the pump impeller 41 and the turbine runner 42.
- the torque converter 4 is a fluid coupling that transmits torque by circulating hydraulic oil filled therein through the blades of the pump impeller 41, the turbine runner 42, and the stator 43.
- the pump impeller 41 is connected to the engine output shaft 2 via a converter cover 44 whose inner surface is a fastening surface of the lockup clutch 3.
- the turbine runner 42 is connected to the transmission input shaft 5.
- the stator 43 is provided on a stationary member (transmission case or the like) via a one-way clutch 45.
- the continuously variable transmission 6 is a belt-type continuously variable transmission that continuously changes the gear ratio by changing the belt contact diameter to the primary pulley and the secondary pulley. To the drive wheel 8 via
- the vehicle control system includes an engine control unit 11 (ECU), a CVT control unit 12 (CVTCU), and a CAN communication line 13 as shown in FIG.
- an accelerator opening sensor 17, a secondary rotation speed sensor 18, a primary rotation speed sensor 19, a CVT oil temperature sensor 20, a brake switch 21, a front / rear G sensor 22, and the like are provided.
- the engine control unit 11 performs fuel cut control when the accelerator is released and coasting, idle stop control when the vehicle is stopped, and the like. Then, cooperative control with the CVT control unit 12 is performed via the CAN communication line 13. For example, when a torque down signal for requesting the start of engine torque down control is received from the CVT control unit 12 via the CAN communication line 13, the fuel injection amount to the engine 1 is obtained so as to obtain a torque down value based on the accelerator opening APO. Decrease. When the torque down signal received from the CVT control unit 12 via the CAN communication line 13 is stopped during the engine torque down control, the fuel injection control returns to the normal fuel injection control according to the driver request.
- the CVT control unit 12 performs shift control for controlling the transmission ratio of the continuously variable transmission 6, line pressure control, lockup control for controlling engagement / slip engagement / release of the lockup clutch 3, and the like.
- the continuously variable transmission 6 is shift-controlled using an operating point (VSP, APO) and a D-range shift map shown in FIG. That is, the operating point (VSP, APO) when moves, D-range shift map target primary rotation speed is calculated based on Npri * is changed from the movement before the primary rotation speed Npri, shift request an upshift or downshift Is output.
- the speed change control is executed to change the speed ratio steplessly by feedback control for matching the primary rotational speed Npri of the continuously variable transmission 6 to the new target primary rotational speed Npri *. .
- the “D-range shift map” is a shift for each accelerator opening APO that determines the target primary rotational speed Npri * based on the operating point (VSP, APO) based on the vehicle speed VSP and the accelerator opening APO.
- the shift line when the accelerator foot is in the coasted state is called the “coast shift line”
- the accelerator depression drive state is called the “drive shift line”.
- the coast shift line when the accelerator opening APO is 0/8 opening the accelerator opening APO that is the low accelerator opening is 1/8 opening.
- the target primary rotational speed Npri * is set at a higher position than the drive shift line.
- the coast speed change ratio by the coast shift line with the accelerator opening APO of 0/8 opening is set to be higher than the drive speed ratio by the drive shift line with the accelerator opening APO of 1/8 opening. It is set to the low gear ratio side.
- the primary rotational speed Npri for the vehicle speed VSP is determined in consideration of fuel efficiency.
- the coast shift line with an accelerator opening APO of 0/8 is lower than the drive shift line with an accelerator opening APO of 1/8 when considering only fuel consumption. Problems arise.
- the coast lockup control is performed in accordance with the fuel cut of the engine 1.
- the primary rotation speed Npri is set to a relatively high rotation side so that the lock-up can be released in time.
- Smooth lock-up control of the lock-up clutch 3 basically uses the operating point (VSP, APO) and the smooth LU schedule shown in Fig. 3, and LU is engaged by the operating point (VSP, APO) on the smooth LU schedule. ⁇ This is done by deciding to release the LU.
- the smooth LU schedule has a smooth LU fastening line (solid line: for example, about 20 km / h) and a smooth LU release line (broken line: for example, about 10 km / h).
- the coast lockup control in the coasting state where the accelerator is released is exceptionally performed without using the smooth LU schedule shown in FIG. That is, when the fuel is cut to cut off the fuel supply to the engine 1 due to the coasting state where the accelerator is released, an LU engagement command for fastening the lockup clutch 3 is output based on the fuel cut. . On the other hand, an LU release command for releasing the lockup clutch 3 is output when the coast lockup condition is not satisfied, such as when the accelerator is released and the fuel cut is not performed.
- FIG. 4 shows a flow of cooperative control processing of lockup engagement control and upshift control executed in the CVT control unit 12 of the first embodiment in a reacceleration scene by accelerator depression operation from coasting with the accelerator released in the LU release state. Indicates.
- FIG. 4 representing the cooperative control processing configuration of the lockup engagement control and the upshift control will be described. This process is performed when the accelerator is released and the coast lock-up condition is not satisfied, and the lock-up clutch 3 is in the released state, and both the lock-up OFF condition and the accelerator OFF condition are satisfied. Be started.
- step S1 it is determined whether or not the driving point (VSP, APO) has entered the LU area from the non-LU area by performing an accelerator depression operation with the intention of reacceleration during coasting in the non-LU area. If YES (accelerator OFF ⁇ ON enters LU area), the process proceeds to step S3. If NO (accelerator OFF ⁇ ON other than LU area enters), the process proceeds to step S2. That is, in step S1, when the operating point (VSP, APO) exists in the non-LU region, the accelerator depression operation is performed, and it is determined YES when the operating point (VSP, APO) moves from the non-LU region to the LU region.
- step S1 when the operating point (VSP, APO) exists in the non-LU region, the accelerator depression operation is performed, and it is determined YES when the operating point (VSP, APO) moves from the non-LU region to the LU region.
- the accelerator depression operation has been performed, for example, when the accelerator opening APO from the accelerator opening sensor 17 is higher than the 0/8 opening from the 0/8 opening (accelerator release state). Judgment by having shifted to every degree. Also, the operating point (VSP, APO) entered the LU area from the non-LU area means that the operating point (VSP, APO) was smooth by the accelerator depressing operation using the smooth LU fastening line in the smooth LU schedule shown in FIG. Judged by crossing the LU fastening line.
- step S2 following the determination that the accelerator area is OFF ⁇ ON in step S1 and the vehicle is not in the LU area, it is determined whether or not an accelerator depression operation has been performed with the intention of reacceleration during coasting in the LU area. . If YES (accelerator OFF ⁇ ON in LU area), the process proceeds to step S3. If NO (accelerator OFF ⁇ ON other than LU area), the process proceeds to the end. That is, in step S2, it is determined YES when the accelerator depression operation is performed while the operating point (VSP, APO) remains in the LU region.
- VSP operating point
- step S3 following the determination that the accelerator area is OFF ⁇ ON in step S1 and the LU area is entered, or the accelerator area is OFF ⁇ ON in step S2, the accelerator is depressed after the accelerator is released.
- step S5 To determine whether there is an upshift request. If YES (accelerator OFF ⁇ ON causes an upshift request), the process proceeds to step S5. If NO (accelerator OFF ⁇ ON causes a downshift request), the process proceeds to step S4.
- step S3 it is determined YES in step S3.
- the accelerator depression APO is operated from 0/8 to 1/8, and the operating point (VSP, APO) ) Moves from point A (non-LU region) in FIG. 2 to point B (LU region) in FIG. 2.
- the accelerator depression operation is performed from 0/8 to 1/8, and the operating point (VSP, APO) ) Is a reaccelerated scene in which the point C (LU region) in FIG. 2 moves to the point D (LU region). It is.
- an upshift request for reducing the target primary rotation speed Npri * is output.
- step S3 NO is determined in step S3 because the accelerator depression operation is performed when the accelerator opening APO is 0/8 to 2/8 to 8/8 (a), ( This is a re-acceleration scene other than b).
- a downshift request for increasing the target primary rotational speed Npri * is output.
- step S4 following the determination that there is a downshift request due to accelerator OFF ⁇ ON in step S3, LU engagement control is performed according to the engagement request of the lockup clutch 3, and at the same time, continuously variable transmission is performed according to the downshift request.
- the downshift control of the machine 6 is performed and the process proceeds to the end.
- step S5 following the determination that there is an upshift request due to accelerator OFF ⁇ ON in step S4, or the determination that LU engagement is not completed in step S6, LU engagement is performed according to the engagement request of the lockup clutch 3. Although the control is performed, the gear ratio of the continuously variable transmission 6 is kept fixed while the LU is engaged, and the process proceeds to step S6.
- execution of LU fastening control is performed by raising the LU command pressure to the initial command pressure and boosting it from the initial command pressure with a ramp command pressure having a predetermined ramp gradient angle.
- Changing the transmission ratio of the continuously variable transmission 6 is performed by delaying the control start timing so as to delay the start of the upshift control while the LU is engaged while the upshift request is output.
- step S6 following the LU engagement control and the gear ratio fixing in step S5, it is determined whether or not LU engagement is completed. If YES (LU engagement is complete), the process proceeds to step S7. If NO (LU engagement is not completed), the process returns to step S5.
- step S7 following the determination that LU engagement has been completed in step S6, the upshift control of the continuously variable transmission 6 that has fixed the gear ratio is started, and the upshift according to the upshift request is performed. Go to the end.
- the control mechanism of the speed change mechanism in the first embodiment includes “cooperative control processing operation of lock-up engagement control and upshift control”, “cooperative control operation in re-acceleration scene from LU released state”, “characteristic operation in cooperative control”. This will be explained separately.
- step S1 In a re-acceleration scene from coasting where an accelerator depression operation with an accelerator opening APO of 2/8 or more is performed, the process proceeds from step S1 to step S3 to step S4 to end in the flowchart of FIG. Or it progresses to step S1-> step S2-> step S3-> step S4-> end.
- step S4 LU engagement control is performed according to the LU engagement request of the lockup clutch 3, and at the same time, downshift control of the continuously variable transmission 6 is performed according to the downshift request.
- step S1 when the accelerator depression operation is performed until the accelerator opening APO reaches 1/8, the process proceeds from step S1 to step S3 to step S5 to step S6 in the flowchart of FIG. Then, while it is determined in step S6 that LU engagement is not completed, the flow from step S5 to step S6 is repeated. Thereafter, when it is determined in step S6 that the LU engagement has been completed, the process proceeds from step S6 to step S7 to the end.
- step S1 step S2, step S3, step S5, and step S6 in the flowchart of FIG. Proceed with Then, while it is determined in step S6 that LU engagement is not completed, the flow from step S5 to step S6 is repeated. Thereafter, when it is determined in step S6 that the LU engagement has been completed, the process proceeds from step S6 to step S7 to the end.
- step S5 the accelerator depression operation is performed until the accelerator opening APO reaches 1/8. It is determined that there is a shift request.
- step S5 LU engagement control is performed in accordance with the engagement request of the lockup clutch 3, but the gear ratio of the continuously variable transmission 6 is kept fixed while the LU is engaged.
- step S7 the upshift control of the continuously variable transmission 6 that has fixed the gear ratio is started, and the upshift according to the upshift request is performed.
- the turbine rotational speed Nt higher than the engine rotational speed Ne by being rotated by the drive wheels 8 in the coasting state up to time t1 is as shown by an arrow E in FIG. 5 by the start of upshift control from time t1.
- it decreases from time t1 to time t4. Therefore, from time t1 to time t2, turbine rotational speed Nt> engine rotational speed Ne is satisfied, but from time t2 the engine rotational speed Ne> turbine rotational speed Nt is switched.
- the LU engagement occurs when there is an upshift request for the continuously variable transmission 6 simultaneously with the lockup clutch 3 engagement request due to the accelerator depressing operation during coasting in the LU released state.
- Control and upshift control are coordinated.
- the cooperative control action in the first embodiment will be described based on the time chart shown in FIG.
- LU fastening control starts at time t1 in response to the LU fastening request and upshift request at time t1.
- Upshift control is awaited for start until time t4 when it is determined that LU engagement is complete. Therefore, the engine speed Ne, which is the idle speed in the coasting state up to time t1, increases from time t1 to time t3 according to the accelerator depression operation. Then, the engine speed Ne from time t3 decreases toward time t4 in response to a clutch load due to an increase in LU capacity due to LU engagement control of the lockup clutch 3.
- the turbine rotational speed Nt higher than the engine rotational speed Ne by being rotated by the drive wheels 8 in the coasting state up to time t1 is fixed to the gear ratio from time t1, as shown by an arrow F in FIG.
- the accelerator opening APO that does not take fuel efficiency into account is delayed in shifting from the 0/8 opening operating point to the 1/8 opening operating point.
- the overall fuel consumption is worse than when lock-up engagement and upshifting are performed simultaneously. It can be suppressed.
- the LU engagement control is started when there is an upshift request of the continuously variable transmission 6 simultaneously with the engagement request of the lockup clutch 3 due to the accelerator depression operation during the coast running in the LU release state. While the LU is engaged, the gear ratio of the continuously variable transmission 6 is fixed, and when the LU engagement is completed, upshift control by the continuously variable transmission 6 is started. In other words, if there is an accelerator depression operation in which an LU engagement request and an upshift request are output simultaneously, LU engagement control is immediately started, and the LU transmission 6 is kept on standby while the gear ratio of the continuously variable transmission 6 is fixed during LU engagement. .
- the turbine rotation speed Nt is maintained as it is when the accelerator is depressed, so that the turbine rotation speed Nt does not increase the differential rotation speed, and the LU engagement is completed in a short time. Therefore, in the reacceleration scene in which the accelerator is depressed during coasting in the LU released state, the time required from the accelerator operation to the completion of the LU engagement is shortened.
- a speed change mechanism including a torque converter 4 with a lock-up clutch 3
- the transmission mechanism (the continuously variable transmission 6) is requested to perform the upshift of the transmission mechanism (the continuously variable transmission 6).
- the start of the upshift control is delayed to the lockup engagement completion area in the lockup engagement control (LU engagement control) of the lockup clutch 3 (FIG. 4). For this reason, it is possible to provide a control method for the transmission mechanism that shortens the time required to complete the lockup engagement in a traveling scene that requires simultaneous lockup engagement and upshifting.
- the transmission mechanism (continuously variable transmission 6) changes the gear ratio to stepless
- Shift control is performed using the shift map (D-range shift map in FIG. 2) set to the higher number Npri (FIG. 2).
- the lockup clutch 3 completes the engagement when the accelerator is depressed during the coasting while preventing the engine from stalling when there is a sudden braking during the coasting. The time required for the process can be shortened.
- a controller (CVT control unit 12) is provided for performing cooperative control between lockup control for controlling engagement / release of the lockup clutch 3 and shift control for the speed change mechanism (the continuously variable transmission 6).
- the controller (CVT control unit 12) is requested to simultaneously perform an upshift of the speed change mechanism (the continuously variable transmission 6) at the start of lockup engagement of the lockup clutch 3 according to the accelerator depression operation
- a cooperative control process for delaying the start of the upshift control by the mechanism (the continuously variable transmission 6) to the lockup engagement completion area in the lockup engagement control (LU engagement control) of the lockup clutch 3 is performed (FIG. 4). For this reason, it is possible to provide a control device for a speed change mechanism that shortens the time required to complete lock-up engagement in a traveling scene that requires simultaneous lock-up engagement and upshift.
- the speed change mechanism is a continuously variable transmission 6 that changes the speed ratio to a stepless state.
- the lock-up clutch 3 completes the engagement when the accelerator is depressed during the coasting while preventing the engine from stalling when there is a sudden braking during the coasting. The time required for the process can be shortened.
- the second embodiment is an example of a reacceleration scene in which the accelerator depressing operation is performed during coast traveling in the LU release state, whereas the second embodiment is a reacceleration in which the accelerator depressing operation is performed during coast traveling in the LU engaged state. It is an example of a scene.
- the control method and the control device in the second embodiment are applied to an engine vehicle equipped with a continuously variable transmission including a torque converter with a lock-up clutch.
- a continuously variable transmission including a torque converter with a lock-up clutch.
- the “cooperative control processing configuration of lockup fastening control and upshift control” in the second embodiment will be described.
- the “whole system configuration” of the second embodiment is the same as that of FIG. 1 to FIG. 3 of the first embodiment, and therefore illustration and description thereof are omitted.
- FIG. 7 shows a flow of cooperative control processing of lockup fastening control and upshift control executed in the CVT control unit 12 of the second embodiment in the reacceleration scene by the accelerator stepping operation from the coasting with the accelerator released in the LU fastening state. Indicates.
- FIG. 7 showing the cooperative control processing configuration of the lockup engagement control and the upshift control will be described. This process is started when the lock-up clutch 3 is in the engaged state due to the establishment of the coast lock-up condition in the coast state where the accelerator is released, and both the lock-up ON condition and the accelerator OFF condition are satisfied.
- step S21 it is determined whether or not an accelerator depression operation has been performed with the intention of reacceleration in the coast LU state. If YES (accelerator OFF ⁇ ON in coast LU state), the process proceeds to step S22. If NO (other than accelerator OFF ⁇ ON in coast LU state), the process proceeds to the end. That is, in step S21, it is determined as YES when the accelerator depression operation is performed in the accelerator release coasting LU state in which the accelerator opening APO is 0/8 and the lockup clutch 3 is engaged.
- step S22 following the determination that the accelerator is OFF ⁇ ON in the coast LU state in step S21, it is determined whether or not there is an upshift request due to the accelerator depressing operation after the accelerator is released. If YES (accelerator OFF ⁇ ON causes an upshift request), the process proceeds to step S24. If NO (accelerator OFF ⁇ ON causes a downshift request), the process proceeds to step S23.
- step S23 following the determination that there is a downshift request due to accelerator OFF ⁇ ON in step S22, the lockup clutch 3 is temporarily released to increase the slip rotation speed (clutch differential rotation speed), and then the LU Re-engagement control is performed. Simultaneously with the start of this LU temporary release, the downshift control of the continuously variable transmission 6 is started according to the downshift request, and the process proceeds to the end.
- step S24 following the determination that there is an upshift request due to accelerator OFF ⁇ ON in step S22, the lockup clutch 3 is temporarily released to increase the slip rotation speed (clutch differential rotation speed). During the cancellation, the gear ratio of the continuously variable transmission 6 is kept fixed, and the process proceeds to step S25.
- LU temporary release is performed by lowering the LU command pressure stepwise to zero command pressure and raising the LU command pressure to the initial command pressure after a short predetermined time has elapsed.
- the reason for temporarily releasing the lock-up clutch 3 will be described.
- the lock-up clutch 3 is engaged at the time when the accelerator is depressed. For this reason, if the clutch engagement is maintained as it is, the engine torque that greatly varies due to the fuel injection from the fuel cut by the accelerator depression operation is transmitted via the lockup clutch 3. This is because it is necessary to temporarily release the engaged lock-up clutch 3 and absorb the shock by the converter in order to avoid the occurrence of shock due to the transmission of the fluctuation torque to the drive wheels.
- the reason for this temporary LU release is the same for step S23.
- step 25 following the increase in slip rotation speed due to the temporary release of LU in step S24 or the determination that LU re-engagement has not been completed in step S26, Engagement control is performed, but during LU re-engagement, the gear ratio of the continuously variable transmission 6 is kept fixed, and the process proceeds to step S26.
- execution of LU re-engagement control is performed by raising the LU command pressure to the initial command pressure and boosting it from the initial command pressure with a ramp command pressure having a predetermined ramp gradient angle.
- Changing the transmission ratio of the continuously variable transmission 6 is a delay at the control start timing so as to delay the start of the upshift control during the temporary release of the LU and the re-engagement of the LU while the upshift request is output. Do it by calling.
- step S26 following the LU re-engagement control and the gear ratio fixing in step S25, it is determined whether or not LU re-engagement is completed. If YES (LU re-engagement complete), the process proceeds to step S27. If NO (LU re-engagement is not complete), the process returns to step S25.
- the completion determination of LU re-engagement is made, the LU instruction pressure is raised to the complete engagement instruction pressure.
- step S27 following the determination that LU re-engagement is completed in step S26, upshift control of the continuously variable transmission 6 that has fixed the gear ratio is started, and an upshift is performed in response to the upshift request. And go to the end.
- control action of the speed change mechanism in the second embodiment is “cooperative control processing action of lock-up engagement control and upshift control”, “cooperative control action in re-acceleration scene from LU engagement state”, “characteristic action in cooperative control” This will be explained separately.
- the target scene of the cooperative control process in the second embodiment is the following reacceleration scene.
- (c) During coasting with the lock-up clutch 3 engaged by coast lock-up control, the accelerator is depressed (0/8 to 1/8), followed by temporary LU release. Re-acceleration scene where an LU re-engagement request is output.
- step S23 after the lockup clutch 3 is temporarily released to increase the slip rotation speed, LU re-engagement control is performed. Simultaneously with the start of the LU release, the downshift control of the continuously variable transmission 6 is started in accordance with the downshift request.
- step S21 ⁇ step S22 ⁇ step S24 ⁇ step S25 ⁇ step S26 in the flowchart of FIG. Proceed with That is, in step S22, it is determined that there is an upshift request due to accelerator OFF ⁇ ON.
- step S24 the lockup clutch 3 is temporarily released while the gear ratio of the continuously variable transmission 6 is fixed, and the slip rotation speed (clutch differential rotation speed) is increased.
- step S25 LU re-engagement control is performed with the transmission ratio of the continuously variable transmission 6 fixed.
- step S26 While it is determined in step S26 that LU re-engagement has not been completed, the flow from step S25 to step S26 is repeated. Thereafter, when it is determined in step S26 that LU re-engagement is completed, the process proceeds from step S26 to step S27 ⁇ end. That is, in step S27, when it is determined that the LU re-engagement is completed, the upshift control of the continuously variable transmission 6 with the fixed gear ratio is started, and the upshift according to the upshift request is performed. .
- the LU temporary release and LU reengagement control and the upshift are performed. Control is coordinated.
- the cooperative control action in the second embodiment will be described based on the time chart shown in FIG.
- the LU temporary release request and LU re-engagement control are performed in response to the LU temporary release request and upshift request at time t1.
- the start of the upshift control is awaited until the time t4 when the completion of the LU re-engagement is determined. Therefore, the engine speed Ne, which is the idle speed in the coasting state up to time t1, increases from time t1 to time t3 according to the accelerator depression operation. Then, the engine speed Ne from time t3 decreases toward time t4 in response to a clutch load due to an increase in LU capacity due to LU engagement control of the lockup clutch 3.
- the LU temporary release control and the LU re-engagement control are started from the time t1 in response to the LU temporary release request and the upshift request at time t1, but the upshift control has been completed for LU re-engagement.
- the control unit waits with the transmission ratio of the continuously variable transmission 6 fixed. This temporary release of LU avoids a shock when the accelerator is depressed.
- the turbine rotational speed Nt is maintained as it is during the accelerator depression operation, so that the turbine rotational speed Nt does not increase the differential rotational speed, and the LU rotational speed is reduced in a short time. Re-engagement is complete. Therefore, in the re-acceleration scene in which the accelerator is depressed during coasting with the LU engaged, the time required from the accelerator operation to the completion of the LU re-engagement is reduced while avoiding a shock when the accelerator is depressed. .
- the upshift control when the completion of the lockup engagement is determined, the upshift control is started.
- the upshift control when the completion of the lockup re-engagement is determined, the upshift control is started.
- the upshift control may be started in a fastening completion region slightly before the completion of lockup fastening completion or lockup re-fastening completion. That is, even if the upshift control is started when the completion of the engagement is determined, there is a hydraulic response delay until the upshift at which the change of the actual gear ratio starts with respect to the upshift command value. Therefore, an example in which the hydraulic response delay time is predicted and the upshift control is started at a timing before the hydraulic pressure response delay time from the completion of the engagement is possible.
- the lockup engagement control is started.
- An example of re-acceleration scene is shown.
- the upshift request of the continuously variable transmission 6 is made due to the accelerator depressing operation during the coasting of the accelerator release with the LU engaged, the temporary release of the lockup clutch 3 is started.
- An example of re-acceleration scene that performs LU re-engagement control is shown. However, it can also be applied to a vehicle in which start slip control is employed, and where there is an upshift request for a continuously variable transmission simultaneously with a lockup clutch engagement request due to an accelerator depression operation in an LU released state. .
- An example is shown in which the shift control is performed using the D-range shift map of FIG.
- the present invention can also be applied to a case where an upshift request is issued due to a further depression of the accelerator when the coasting acceleration running state on a downhill where the lockup clutch is released.
- Embodiments 1 and 2 show an example in which the transmission mechanism control method and control apparatus of the present invention are applied to an engine vehicle equipped with a continuously variable transmission including a torque converter with a lock-up clutch.
- the control method and control apparatus of the present invention can be applied to a hybrid vehicle in which an engine and a motor are mounted on a drive source and an electric vehicle in which a motor is mounted on a drive source.
- the present invention can be applied to any vehicle equipped with a speed change mechanism including a torque converter with a lock-up clutch.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Control Of Transmission Device (AREA)
- Control Of Fluid Gearings (AREA)
Abstract
Description
変速機構の制御方法において、アクセル踏み込み操作に応じたロックアップクラッチのロックアップ締結の開始時に、変速機構のアップシフトの同時実施が要求される際に、変速機構によるアップシフト制御の開始を、ロックアップクラッチのロックアップ締結制御におけるロックアップ締結完了域までディレーさせる。
すなわち、アクセル踏み込み操作により駆動源回転数が上昇するのに対して、アップシフトがディレーされることにより、タービン回転数(=変速機構の入力回転数)が低下することがない。このため、ロックアップ締結制御中にロックアップクラッチの差回転数が増大してしまうことが抑えられ、ロックアップ締結完了までに要する時間が長くなってしまうことが防止される。
この結果、ロックアップ締結とアップシフトの同時実施が要求される走行シーンのとき、ロックアップ締結完了までに要する時間を短縮することができる。
実施例1における制御方法及び制御装置は、変速機構としてロックアップクラッチ付きトルクコンバータを備える無段変速機を搭載したエンジン車に適用したものである。以下、実施例1における変速機構の制御装置の構成を、「全体システム構成」、「ロックアップ締結制御とアップシフト制御の協調制御処理構成」に分けて説明する。
図1は実施例1の制御方法及び制御装置が適用されるロックアップクラッチ付きトルクコンバータを備える無段変速機が搭載されたエンジン車の全体構成を示し、図2は無段変速機のDレンジ変速マップを示し、図3はDレンジLUマップを示す。以下、図1~図3に基づき、全体システム構成を説明する。なお、「LU」という記述は、「ロックアップ」の略称である。
図4は、LU解放状態でのアクセル足離しコースト走行からのアクセル踏み込み操作による再加速シーンにおいて実施例1のCVTコントロールユニット12において実行されるロックアップ締結制御とアップシフト制御の協調制御処理の流れを示す。以下、ロックアップ締結制御とアップシフト制御の協調制御処理構成をあらわす図4の各ステップについて説明する。なお、この処理は、アクセル足離しコースト状態であるがコーストロックアップ条件が成立しないことでロックアップクラッチ3が解放状態であり、ロックアップOFF条件とアクセルOFF条件とが共に成立しているときに開始される。
すなわち、ステップS1では、運転点(VSP,APO)が非LU領域に存在するときにアクセル踏み込み操作が行われ、運転点(VSP,APO)が非LU領域からLU領域へ移動するとYESと判断される。
すなわち、ステップS2では、運転点(VSP,APO)がLU領域に存在したままで、アクセル踏み込み操作が行われるとYESと判断される。
(a) 運転点(VSP,APO)が非LU領域に存在するとき、アクセル開度APOが0/8開度から1/8開度までのアクセル踏み込み操作が行われ、運転点(VSP,APO)が図2のA点(非LU領域)から図2のB点(LU領域)へ移動する再加速シーン。
(b) 運転点(VSP,APO)がLU領域に存在したままで、アクセル開度APOが0/8開度から1/8開度までのアクセル踏み込み操作が行われ、運転点(VSP,APO)が図2のC点(LU領域)からD点(LU領域)へ移動する再加速シーン。
である。そして、(a),(b)の再加速シーンでは、図2から明らかなように、目標プライマリ回転数Npri*を低下させるアップシフト要求が出力される。
実施例1における変速機構の制御作用を、「ロックアップ締結制御とアップシフト制御の協調制御処理作用」、「LU解放状態からの再加速シーンにおける協調制御作用」、「協調制御での特徴作用」に分けて説明する。
協調制御処理の対象のシーンとしては、下記の2つの再加速シーンがある。
(a) 発進直後のアクセル足離し操作により非LU領域でのコースト走行中、再度のアクセル踏み込み操作(0/8開度→1/8開度)によって車速VSPが上昇し、それによってLU領域に入ってLU締結要求が出力される再加速シーン(図2のA点→B点の矢印)。
(b) 走行中のアクセル足離し操作によりロックアップクラッチ3が解放され、LU領域であるが非LU状態でのコースト走行中、再度のアクセル踏み込み操作(0/8開度→1/8開度)によってLU締結要求が出力される再加速シーン(図2のC点→D点の矢印)。
ここで、(b)の対象シーンを詳しく述べる。LU領域での走行中、アクセルが踏み込まれ、一時的にLUを解除してトルクコンバータ4でのトルク増幅により加速を行う。加速後、ロックアップクラッチ3を再締結するに際して、再締結される直前にアクセルペダルから足が離され、エンジン回転数が低下し、差回転が大きくなる。そのまま差回転が大きい状態でLU締結されることによるショックの発生を抑えるため、再締結を中止し、ロックアップクラッチ3を完全解放する制御を行う。そして、再度、アクセルペダルが踏み込まれるまでLU完全解放を維持する。この状態でのアクセルペダルの踏み込み(0/8開度→1/8開度)によって、LU締結が開始されるシーンである。
一方、コースト走行状態からアクセル開度APOが1/8開度までのアクセル踏み込み操作が行われる再加速シーン(a),(b)では、アップシフト要求が出力されると、協調制御によりアップシフト制御の開始タイミングがディレーされる。
LU解放状態でのコースト走行中にアクセル踏み込み操作に起因し、ロックアップクラッチの締結要求と同時に無段変速機のアップシフト要求があったとき、LU締結制御とアップシフト制御を独立制御するものを比較例とする。以下、比較例における独立制御作用を、図5に示すタイムチャートに基づき説明する。
実施例1では、アクセル踏み込み操作に起因してロックアップ締結とアップシフトの同時実施が要求される際に、無段変速機6によるアップシフト制御の開始を、ロックアップクラッチ3のLU締結制御におけるロックアップ締結完了域までディレーする。
すなわち、コースト走行中に急ブレーキがあったとき、ロックアップ解除が間に合い、エンジン回転が停止するエンジンストールに至るのを防止することができる。しかし、コースト走行中のアクセル踏み込み操作を行ったとき、アップシフト要求が出力される頻度が高まる。
従って、コースト走行中に急ブレーキがあったときにエンジンストールを防止しつつ、コースト走行中にアクセル踏み込み操作があったときにロックアップクラッチ3が締結を完了するまでに要する時間が短縮される。
すなわち、LU締結要求とアップシフト要求が同時に出力されるアクセル踏み込み操作があると、即座にLU締結制御が開始され、LU締結中は無段変速機6の変速比を固定したままで待機される。これにより、タービン回転数Ntが、アクセル踏み込み操作時のまま維持されることで、タービン回転数Ntが差回転数を増大させることが無く、短時間にてLU締結が完了する。
従って、LU解放状態でのコースト走行中にアクセル踏み込み操作を行う再加速シーンにおいて、アクセル操作からLU締結が完了するまでに要する時間が短縮される。
実施例1における変速機構の制御方法及び制御装置にあっては、下記に列挙する効果が得られる。
アクセル踏み込み操作に応じたロックアップクラッチ3のロックアップ締結の開始時に、変速機構(無段変速機6)のアップシフトの同時実施が要求される際に、変速機構(無段変速機6)によるアップシフト制御の開始を、ロックアップクラッチ3のロックアップ締結制御(LU締結制御)におけるロックアップ締結完了域までディレーさせる(図4)。
このため、ロックアップ締結とアップシフトの同時実施が要求される走行シーンのとき、ロックアップ締結完了までに要する時間を短縮する変速機構の制御方法を提供することができる。
変速機構(無段変速機6)は、アクセル足離し状態(APO=0/8)でのコースト変速線を、低アクセル開度状態(APO=1/8)でのドライブ変速線よりもプライマリ回転数Npriが高い側に設定した変速マップ(図2のDレンジ変速マップ)を用いて変速制御を行う(図2)。
このため、(1)の効果に加え、コースト走行中に急ブレーキがあったときにエンジンストールを防止しつつ、コースト走行中にアクセル踏み込み操作があったときにロックアップクラッチ3が締結を完了するまでに要する時間を短縮することができる。
このため、(2)の効果に加え、ロックアップ解放状態(LU解放状態)でのコースト走行中にアクセル踏み込み操作を行う再加速シーンにおいて、アクセル操作からロックアップ締結(LU締結)が完了するまでに要する時間を短縮することができる。
ロックアップクラッチ3の締結/解放を制御するロックアップ制御と、変速機構(無段変速機6)の変速制御との協調制御を行うコントローラ(CVTコントロールユニット12)を設け、
コントローラ(CVTコントロールユニット12)は、アクセル踏み込み操作に応じたロックアップクラッチ3のロックアップ締結の開始時に、変速機構(無段変速機6)のアップシフトの同時実施が要求される際に、変速機構(無段変速機6)によるアップシフト制御の開始を、ロックアップクラッチ3のロックアップ締結制御(LU締結制御)におけるロックアップ締結完了域までディレーさせる協調制御処理を行う(図4)。
このため、ロックアップ締結とアップシフトの同時実施が要求される走行シーンのとき、ロックアップ締結完了までに要する時間を短縮する変速機構の制御装置を提供することができる。
コントローラ(CVTコントロールユニット12)は、無段変速機6の変速制御を行う際、アクセル踏み込み時(APO=1/8)に所定車速で設定する最低のプライマリ回転数Npriより、アクセル足離し状態の時(APO=0/8)に所定車速で設定するプライマリ回転数Npriを高くする(図2)。
このため、(4)の効果に加え、コースト走行中に急ブレーキがあったときにエンジンストールを防止しつつ、コースト走行中にアクセル踏み込み操作があったときにロックアップクラッチ3が締結を完了するまでに要する時間を短縮することができる。
実施例2における制御方法及び制御装置は、実施例1と同様に、ロックアップクラッチ付きトルクコンバータを備える無段変速機を搭載したエンジン車に適用したものである。以下、実施例2における「ロックアップ締結制御とアップシフト制御の協調制御処理構成」を説明する。なお、実施例2の「全体システム構成」については、実施例1の図1~図3と同様であるので、図示、並びに、説明を省略する。
図7は、LU締結状態でのアクセル足離しコースト走行からのアクセル踏み込み操作による再加速シーンにおいて実施例2のCVTコントロールユニット12において実行されるロックアップ締結制御とアップシフト制御の協調制御処理の流れを示す。以下、ロックアップ締結制御とアップシフト制御の協調制御処理構成をあらわす図7の各ステップについて説明する。なお、この処理は、アクセル足離しコースト状態のとき、コーストロックアップ条件の成立によりロックアップクラッチ3が締結状態であり、ロックアップON条件とアクセルOFF条件とが共に成立しているときに開始される。
すなわち、ステップS21では、アクセル開度APOが0/8開度でロックアップクラッチ3が締結されているアクセル足離しコーストLU状態で、アクセル踏み込み操作が行われたとき、YESと判断される。
ロックアップクラッチ3を一時的に解除する理由を説明すると、アクセル踏み込み操作時点でロックアップクラッチ3が締結されている。このため、クラッチ締結をそのまま維持すると、アクセル踏み込み操作により燃料カットからの燃料噴射により大きく変動するエンジントルクがロックアップクラッチ3を介して伝達される。この変動トルクが駆動輪へ伝達されることによるショックの発生を回避するため、締結されているロックアップクラッチ3を一時的に解除し、コンバータによりショックを吸収する必要があることによる。この一時的なLU解除理由は、ステップS23についても同様である。
実施例2における変速機構の制御作用を、「ロックアップ締結制御とアップシフト制御の協調制御処理作用」、「LU締結状態からの再加速シーンにおける協調制御作用」、「協調制御での特徴作用」に分けて説明する。
実施例2での協調制御処理の対象シーンは、下記の再加速シーンである。
(c) コーストロックアップ制御によりロックアップクラッチ3が締結状態でのコースト走行中、アクセル踏み込み操作(0/8開度→1/8開度)が行われることによって、一時的なLU解除に続いてLU再締結要求が出力される再加速シーン。
一方、コーストLU状態からアクセル開度APOが1/8開度までのアクセル踏み込み操作が行われる再加速シーン(c)では、アップシフト要求が出力されると、協調制御によりアップシフト制御の開始タイミングがディレーされる。
LU締結状態でのコースト走行中にアクセル踏み込み操作に起因し、無段変速機のアップシフト要求があったとき、LU一時解除からのLU再締結制御とアップシフト制御を独立制御するものを比較例とする。以下、比較例における独立制御作用を、図8に示すタイムチャートに基づき説明する。
実施例2では、LU締結状態でのアクセル足離しコースト走行中、アクセル踏み込み操作に起因して無段変速機6のアップシフト要求があると、ロックアップクラッチ3の一時解除の開始に続いてLU再締結制御を実施する。LU一時解除中及びLU再締結中は無段変速機6の変速比を固定し、LU再締結が完了すると、無段変速機6によるアップシフト制御を開始する。
すなわち、LU締結状態でアップシフト要求が出力されるアクセル踏み込み操作があると、即座にLU一時解除制御が開始され、続いてLU再締結制御が行われる。そして、LU一時解除及びLU締結中は無段変速機6の変速比を固定したままで待機される。このLU一時解除により、アクセル踏み込み際のショックが回避される。そして、LU一時解除中及びLU再締結中はタービン回転数Ntが、アクセル踏み込み操作時のまま維持されることで、タービン回転数Ntが差回転数を増大させることが無く、短時間にてLU再締結が完了する。
従って、LU締結状態でのコースト走行中にアクセル踏み込み操作を行う再加速シーンにおいて、アクセル踏み込み操作の際にショックを回避しつつ、アクセル操作からLU再締結が完了するまでに要する時間が短縮される。
実施例2における変速機構の制御方法及び制御装置にあっては、実施例1の(1),(2),(4),(5)の効果に加え、下記の効果が得られる。
このため、ロックアップ締結状態(LU締結状態)でのコースト走行中にアクセル踏み込み操作を行う再加速シーンにおいて、アクセル踏み込み操作の際にショックを回避しつつ、アクセル操作からロックアップ再締結(LU再締結)が完了するまでに要する時間を短縮することができる。
Claims (6)
- ロックアップクラッチ付きトルクコンバータを備える変速機構の制御方法において、
アクセル踏み込み操作に応じた前記ロックアップクラッチのロックアップ締結の開始時に、前記変速機構のアップシフトの同時実施が要求される際に、前記変速機構によるアップシフト制御の開始を、前記ロックアップクラッチのロックアップ締結制御におけるロックアップ締結完了域までディレーさせる
ことを特徴とする変速機構の制御方法。 - 請求項1に記載された変速機構の制御方法において、
前記変速機構は、変速比を無段階に変更し、
前記変速機構は、アクセル足離し状態でのコースト変速線を、低アクセル開度状態でのドライブ変速線よりもプライマリ回転数が高い側に設定した変速マップを用いて変速制御を行う
ことを特徴とする変速機構の制御方法。 - 請求項2に記載された変速機構の制御方法において、
ロックアップ解放状態でのアクセル足離しコースト走行中、アクセル踏み込み操作に起因して前記ロックアップクラッチの締結要求と同時に前記変速機構のアップシフト要求があると、前記ロックアップ締結制御を開始し、ロックアップ締結中は前記変速機構の変速比を固定し、ロックアップ締結が完了すると、前記変速機構によるアップシフト制御を開始する
ことを特徴とする変速機構の制御方法。 - 請求項2に記載された変速機構の制御方法において、
ロックアップ締結状態でのアクセル足離しコースト走行中、アクセル踏み込み操作に起因して前記変速機構のアップシフト要求があると、前記ロックアップクラッチの一時解除の開始に続いてロックアップ再締結制御を実施し、ロックアップ一時解除中及びロックアップ再締結中は前記変速機構の変速比を固定し、ロックアップ再締結が完了すると、前記変速機構によるアップシフト制御を開始する
ことを特徴とする変速機構の制御方法。 - ロックアップクラッチ付きトルクコンバータを備える変速機構の制御装置において、
前記ロックアップクラッチの締結/解放を制御するロックアップ制御と、前記変速機構の変速制御との協調制御を行うコントローラを設け、
前記コントローラは、アクセル踏み込み操作に応じた前記ロックアップクラッチのロックアップ締結の開始時に、前記変速機構のアップシフトの同時実施が要求される際に、前記変速機構によるアップシフト制御の開始を、前記ロックアップクラッチのロックアップ締結制御におけるロックアップ締結完了域までディレーさせる協調制御処理を行う
ことを特徴とする変速機構の制御装置。 - 請求項5に記載された変速機構の制御装置において、
前記変速機構は、変速比を無段階に変更する無段変速機であり、
前記コントローラは、前記無段変速機の変速制御を行う際、アクセル踏み込み時に所定車速で設定する最低のプライマリ回転数より、アクセル足離し状態の時に前記所定車速で設定するプライマリ回転数を高くする
ことを特徴とする変速機構の制御装置。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/067,636 US10443717B2 (en) | 2016-02-10 | 2016-10-26 | Control method and control device for transmission mechanism |
BR112018016258-2A BR112018016258B1 (pt) | 2016-02-10 | 2016-10-26 | Dispositivo de controle para um mecanismo de transmissão |
CN201680081658.7A CN108700191B (zh) | 2016-02-10 | 2016-10-26 | 变速机构的控制方法和控制装置 |
KR1020187025688A KR20180105238A (ko) | 2016-02-10 | 2016-10-26 | 변속 기구의 제어 방법 및 제어 장치 |
EP16889895.5A EP3415794B1 (en) | 2016-02-10 | 2016-10-26 | Control method and control device for gear change mechanism |
JP2017566509A JP6504272B2 (ja) | 2016-02-10 | 2016-10-26 | 変速機構の制御方法及び制御装置 |
MYPI2018702762A MY189093A (en) | 2016-02-10 | 2016-10-26 | Control method and control device for gear change mechanism |
RU2018132018A RU2719102C2 (ru) | 2016-02-10 | 2016-10-26 | Способ управления и устройство управления для трансмиссионного механизма |
MX2018009595A MX2018009595A (es) | 2016-02-10 | 2016-10-26 | Metodo de control y dispositivo de control para mecanismo de transmision. |
CA3014161A CA3014161C (en) | 2016-02-10 | 2016-10-26 | Control method and control device for transmission mechanism |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-023503 | 2016-02-10 | ||
JP2016023503 | 2016-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017138194A1 true WO2017138194A1 (ja) | 2017-08-17 |
Family
ID=59563247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/081679 WO2017138194A1 (ja) | 2016-02-10 | 2016-10-26 | 変速機構の制御方法及び制御装置 |
Country Status (10)
Country | Link |
---|---|
US (1) | US10443717B2 (ja) |
EP (1) | EP3415794B1 (ja) |
JP (1) | JP6504272B2 (ja) |
KR (1) | KR20180105238A (ja) |
CN (1) | CN108700191B (ja) |
CA (1) | CA3014161C (ja) |
MX (1) | MX2018009595A (ja) |
MY (1) | MY189093A (ja) |
RU (1) | RU2719102C2 (ja) |
WO (1) | WO2017138194A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020121742A1 (ja) * | 2018-12-14 | 2020-06-18 | ジヤトコ株式会社 | 車両の制御装置及び車両の制御方法 |
CN114198478A (zh) * | 2021-12-14 | 2022-03-18 | 三一专用汽车有限责任公司 | 一种差速锁控制方法及其控制器以及工程车辆 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6921993B2 (ja) * | 2017-12-28 | 2021-08-18 | ジヤトコ株式会社 | 無段変速機の制御装置および制御方法 |
US20200101961A1 (en) * | 2018-10-02 | 2020-04-02 | GM Global Technology Operations LLC | System and method for inhibiting harsh engagement of a one-way clutch in a vehicle |
US11920676B2 (en) | 2020-05-25 | 2024-03-05 | Zhejiang Liankong Technologies Co., Ltd | Method and device for controlling state switching of fluid torque converter, and storage medium |
JP7505647B2 (ja) * | 2021-06-03 | 2024-06-25 | 日産自動車株式会社 | 車両の制御方法及び車両の制御装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005098314A (ja) * | 2003-09-22 | 2005-04-14 | Honda Motor Co Ltd | 自動変速機を備えた車両の制御装置 |
JP2010143361A (ja) * | 2008-12-18 | 2010-07-01 | Nissan Motor Co Ltd | 電動車両用自動変速機の回生制動時変速制御装置 |
JP2010209982A (ja) * | 2009-03-09 | 2010-09-24 | Nissan Motor Co Ltd | 車両用自動変速機の変速速度制御装置 |
JP2012062921A (ja) * | 2010-09-14 | 2012-03-29 | Toyota Motor Corp | 車両の制御装置 |
JP2012197075A (ja) * | 2012-04-05 | 2012-10-18 | Nissan Motor Co Ltd | 電動車両用自動変速機の回生制動時変速制御装置 |
JP2014088895A (ja) * | 2012-10-30 | 2014-05-15 | Daihatsu Motor Co Ltd | 車両用制御装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54132064A (en) * | 1978-04-04 | 1979-10-13 | Nissan Motor Co Ltd | Lock-up controlling apparatus for lock-up torque converter |
JPS63303258A (ja) * | 1987-06-02 | 1988-12-09 | Fuji Heavy Ind Ltd | ロックアップトルコン付無段変速機の制御装置 |
JP3384157B2 (ja) * | 1994-12-27 | 2003-03-10 | 日産自動車株式会社 | トルクコンバータのロックアップ制御装置 |
JP3317197B2 (ja) | 1997-07-08 | 2002-08-26 | 日産自動車株式会社 | 自動変速機の変速制御装置 |
JP3890464B2 (ja) | 2001-09-19 | 2007-03-07 | 日産自動車株式会社 | 自動変速機の制御装置 |
RU2442047C2 (ru) * | 2007-06-08 | 2012-02-10 | Вольво Ластвагнар Аб | Способ регулировки предельной частоты вращения, автоматически выбранной при переключении передач транспортного средства |
JP2009228763A (ja) * | 2008-03-21 | 2009-10-08 | Toyota Motor Corp | 車両の制御装置 |
KR101601577B1 (ko) * | 2011-11-18 | 2016-03-08 | 쟈트코 가부시키가이샤 | 자동 변속기의 제어 장치 |
-
2016
- 2016-10-26 KR KR1020187025688A patent/KR20180105238A/ko not_active IP Right Cessation
- 2016-10-26 WO PCT/JP2016/081679 patent/WO2017138194A1/ja active Application Filing
- 2016-10-26 JP JP2017566509A patent/JP6504272B2/ja active Active
- 2016-10-26 CA CA3014161A patent/CA3014161C/en active Active
- 2016-10-26 CN CN201680081658.7A patent/CN108700191B/zh active Active
- 2016-10-26 RU RU2018132018A patent/RU2719102C2/ru active
- 2016-10-26 EP EP16889895.5A patent/EP3415794B1/en active Active
- 2016-10-26 MY MYPI2018702762A patent/MY189093A/en unknown
- 2016-10-26 US US16/067,636 patent/US10443717B2/en active Active
- 2016-10-26 MX MX2018009595A patent/MX2018009595A/es unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005098314A (ja) * | 2003-09-22 | 2005-04-14 | Honda Motor Co Ltd | 自動変速機を備えた車両の制御装置 |
JP2010143361A (ja) * | 2008-12-18 | 2010-07-01 | Nissan Motor Co Ltd | 電動車両用自動変速機の回生制動時変速制御装置 |
JP2010209982A (ja) * | 2009-03-09 | 2010-09-24 | Nissan Motor Co Ltd | 車両用自動変速機の変速速度制御装置 |
JP2012062921A (ja) * | 2010-09-14 | 2012-03-29 | Toyota Motor Corp | 車両の制御装置 |
JP2012197075A (ja) * | 2012-04-05 | 2012-10-18 | Nissan Motor Co Ltd | 電動車両用自動変速機の回生制動時変速制御装置 |
JP2014088895A (ja) * | 2012-10-30 | 2014-05-15 | Daihatsu Motor Co Ltd | 車両用制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3415794A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020121742A1 (ja) * | 2018-12-14 | 2020-06-18 | ジヤトコ株式会社 | 車両の制御装置及び車両の制御方法 |
CN114198478A (zh) * | 2021-12-14 | 2022-03-18 | 三一专用汽车有限责任公司 | 一种差速锁控制方法及其控制器以及工程车辆 |
CN114198478B (zh) * | 2021-12-14 | 2023-09-22 | 三一专用汽车有限责任公司 | 一种差速锁控制方法及其控制器以及工程车辆 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017138194A1 (ja) | 2018-08-09 |
RU2719102C2 (ru) | 2020-04-17 |
CA3014161A1 (en) | 2017-08-17 |
CN108700191A (zh) | 2018-10-23 |
EP3415794B1 (en) | 2021-04-14 |
US10443717B2 (en) | 2019-10-15 |
US20190017594A1 (en) | 2019-01-17 |
RU2018132018A (ru) | 2020-03-10 |
CN108700191B (zh) | 2020-02-21 |
EP3415794A4 (en) | 2019-02-13 |
MY189093A (en) | 2022-01-25 |
CA3014161C (en) | 2023-03-28 |
KR20180105238A (ko) | 2018-09-27 |
EP3415794A1 (en) | 2018-12-19 |
JP6504272B2 (ja) | 2019-05-08 |
BR112018016258A2 (ja) | 2018-12-18 |
RU2018132018A3 (ja) | 2020-03-10 |
MX2018009595A (es) | 2018-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017138194A1 (ja) | 変速機構の制御方法及び制御装置 | |
KR101331349B1 (ko) | 코스트 스톱 차량 및 코스트 스톱 차량의 제어 방법 | |
JP5728422B2 (ja) | ベルト式無段変速機の変速制御装置 | |
JP2018132196A (ja) | 車両用無段変速機の制御装置 | |
JP6498321B2 (ja) | 車両のセーリングストップ制御方法及び制御装置 | |
JP2012197904A (ja) | 無段変速機搭載車の制御装置 | |
JP5790670B2 (ja) | 車両の制御装置 | |
WO2017069071A1 (ja) | 車両のセーリングストップ制御方法及び制御装置 | |
WO2017051678A1 (ja) | 車両のセーリングストップ制御方法及び制御装置 | |
JP6311848B2 (ja) | 車両のロックアップ制御方法及び制御装置 | |
JP6714701B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP2019093909A (ja) | 車両の制御装置及び車両の制御方法 | |
WO2017043459A1 (ja) | 車両用無段変速機の油圧制御装置および油圧制御方法 | |
JP6288279B2 (ja) | 車両のロックアップクラッチ制御装置 | |
JP5948623B2 (ja) | 無段変速機の制御装置 | |
JP6084155B2 (ja) | 車両用変速機の制御装置 | |
JP5533556B2 (ja) | 車両の制御装置 | |
JP2017137945A (ja) | 車両の制御装置、及び車両の制御方法 | |
WO2014021118A1 (ja) | 車両用の自動変速機 | |
JP2016047677A (ja) | 車両のロックアップクラッチ制御装置 | |
JP6752506B2 (ja) | 車両用無段変速機構の制御装置 | |
JP4774715B2 (ja) | 無段変速機を搭載した車両の制御装置 | |
JP6598712B2 (ja) | 車両のセーリングストップ制御方法及び制御装置 | |
BR112018016258B1 (pt) | Dispositivo de controle para um mecanismo de transmissão | |
JP2016048086A (ja) | 車両のロックアップクラッチ制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16889895 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017566509 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/009595 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3014161 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018016258 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20187025688 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187025688 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016889895 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016889895 Country of ref document: EP Effective date: 20180910 |
|
ENP | Entry into the national phase |
Ref document number: 112018016258 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180809 |