WO2017135582A2 - 내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물 - Google Patents

내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물 Download PDF

Info

Publication number
WO2017135582A2
WO2017135582A2 PCT/KR2017/000135 KR2017000135W WO2017135582A2 WO 2017135582 A2 WO2017135582 A2 WO 2017135582A2 KR 2017000135 W KR2017000135 W KR 2017000135W WO 2017135582 A2 WO2017135582 A2 WO 2017135582A2
Authority
WO
WIPO (PCT)
Prior art keywords
tricyclo
polyester resin
decane
diol
acid
Prior art date
Application number
PCT/KR2017/000135
Other languages
English (en)
French (fr)
Other versions
WO2017135582A3 (ko
Inventor
심종기
김순기
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Priority to SG11201804740YA priority Critical patent/SG11201804740YA/en
Priority to CN201780006392.4A priority patent/CN108463480A/zh
Priority to US16/063,387 priority patent/US11401372B2/en
Priority to CN202310978066.7A priority patent/CN116987254A/zh
Priority to EP17747627.2A priority patent/EP3412697B1/en
Priority to JP2018538105A priority patent/JP6957480B2/ja
Publication of WO2017135582A2 publication Critical patent/WO2017135582A2/ko
Publication of WO2017135582A3 publication Critical patent/WO2017135582A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C09D167/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a polyester resin having excellent heat resistance and solvent solubility, and a coating composition capable of forming a coating film having excellent heat resistance, hardness, chemical resistance, fouling resistance and hydrolysis resistance by containing the same.
  • the coating composition containing the polyester resin is considered to have good workability at the time of forming the coating film, and to replace binders such as alkyd resin, vinyl resin, silicone resin, and the like.
  • a polyester resin having a linear linear structure has excellent workability but has a problem in that its use can be limited due to low heat resistance (low Tg range), coating film hardness, and the like.
  • a polyester resin copolymerized with a monomer having a cyclic molecular structure having a hard molecular structure such as isosorbide has been studied.
  • Another object of the present invention is to provide a coating composition including the polyester resin, which is capable of forming a coating film having excellent heat resistance and solvent solubility and excellent hardness.
  • the present invention to achieve the above object is (a) a divalent acid component; And (b) a repeating unit formed by copolymerizing a diol component including an isosorbide and an alicyclic diol, and having a glass transition temperature of 80 ° C. or more.
  • the present invention is a polyester resin as described above; And an organic solvent.
  • the present invention it is possible to produce a polyester resin including isosorbide, high heat resistance of 80 ° C. or higher, and excellent solubility in a general-purpose solvent used industrially.
  • the present invention provides a coating composition with improved solvent solubility, which has been a problem of conventional polyester resins including isosorbide by including the polyester resin, the coating composition cans, home appliances, building exterior materials and films It can be usefully used for coating applications, and adhesion purposes.
  • the polyester resin of this invention is a (a) divalent acid component; And (b) a repeating unit formed by copolymerizing a diol component including an isosorbide and an alicyclic diol, wherein the glass transition temperature is 80 ° C. or higher.
  • the diol component includes isosorbide, which has a hard molecular structure and exhibits high heat resistance, and includes an alicyclic diol in order to improve heat resistance and solvent solubility of the resin.
  • the diol component may include 1 to 50 mol% isosorbide and 1 to 80 mol% alicyclic diol based on the total moles of diol component.
  • the diol component may include 10 to 50 mol% isosorbide and 10 to 50 mol% alicyclic diol based on the total moles of the diol component. More specifically, the diol component may include 20 to 45 mol% isosorbide and 20 to 30 mol% alicyclic diol based on the total moles of the diol component.
  • the cycloaliphatic diol is cycloalkyl least one tree, C 7 - 14 may be a diol derivative of the alkane, e.g., tricyclo octane, tricyclo nonane, tricyclo decane, tri cycle Pacific decane, tricyclo FIG decane, tricyclo Diol derivatives of a compound selected from the group consisting of heptane, tricyclotridecane and tricyclotedecane or mixtures thereof.
  • C 7 - 14 may be a diol derivative of the alkane, e.g., tricyclo octane, tricyclo nonane, tricyclo decane, tri cycle Pacific decane, tricyclo FIG decane, tricyclo Diol derivatives of a compound selected from the group consisting of heptane, tricyclotridecane and tricyclotedecane or mixtures thereof.
  • the alicyclic diol is tricyclo [3.2.1.0 2,6] octane (tricyclo [3.2.1.0 2,6] octane) , tricyclo [4.2.1.0 2,6] nonane (tricyclo [4.2.1.0 2 , 6] nonane), tricyclo [5.2.1.0 2,6] decane (tricyclo [5.2.1.0 2,6] decane) , tricyclo [6.2.1.0 2,6] undecane (tricyclo [6.2.1.0 2, 6] undecane), tricyclo [7.2.1.0 2,6] dodecane (tricyclo [7.2.1.0 2,6] dodecane) , tricyclo [4.2.1.1 2,5] decane (tricyclo [4.2.1.1 2,5 ] decane), tricyclo [4.3.1.1 2,5] decane (tricyclo [4.3.1.1 2,5] decane) , tricyclo [4.4.1.1 2,5] decane (tricyclo [4.4.1.1 2,5] decane (tricycl
  • the cycloaliphatic diols are tricyclo [7.2.1.0 2,6 ] dodecane, tricyclo [4.2.2.2 2,5 ] dodecane, tricyclo [4.4.1.1 1,5 ] dodecane and tricyclo [6.2.2.0 2,7 ] dimethanol derivatives of a compound selected from the group consisting of dodecane or mixtures thereof.
  • the diol component is ethylene glycol, diethylene glycol, triethylene glycol, propanediol, 1,4-butanediol, pentanediol, hexanediol, neopentyl glycol, 1,2-cyclohexanediol, 1,4-cyclohexane
  • the at least one compound selected from the group consisting of diol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol and tetramethylcyclobutanediol may be selected from the group consisting of
  • the remaining amount excluding diol may be further included, for example, in an amount of 19 to 80 mol% based on the total moles of the diol component.
  • the propanediol may be 1,2-propanediol or 1,3-propanediol.
  • the hexanediol may be 1,6-hexanediol.
  • the diol component may further include neopentyl glycol, and the molar ratio of isosorbide and alicyclic diol and neopentyl glycol in the diol component may be 0.5 to 2.5: 1. More specifically, the mole ratio of the sum of isosorbide and alicyclic diol and neopentyl glycol may be 0.5 to 1.8: 1, 0.5 to 1.5: 1, or 0.5 to 1.3: 1.
  • the divalent acid component may comprise one or more C 8 -C 14 aromatic dicarboxylic acids, for example terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, derivatives thereof And mixtures thereof.
  • aromatic dicarboxylic acids for example terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, derivatives thereof And mixtures thereof.
  • an aliphatic dicarboxylic acid other than the aromatic dicarboxylic acid as described above is used as the divalent acid component, the glass transition temperature decreases, making it difficult to prepare a high heat resistant polyester resin.
  • the naphthalene dicarboxylic acid may be 2,6-naphthalenedicarboxylic acid.
  • the divalent acid component is 1 to 100 mol%, 50 to 100 mol%, 70 to 100 mol%, based on the total number of moles of divalent acid component, a compound selected from the group consisting of terephthalic acid, isophthalic acid, and mixtures thereof, It may be included in the content of 70 to 99 mol% or 70 to 95 mol%.
  • the glass transition temperature of the produced polyester resin may be prevented from becoming too low (Tg 80 ° C. or higher) to prevent the hardness from dropping after coating. have.
  • the divalent acid component may include remaining amounts of other aromatic or aliphatic dicarboxylic acids except terephthalic acid and isophthalic acid.
  • terephthalic acid refers to terephthalic acid, alkyl esters thereof (lower alkyl esters of C 1 to C 4 such as monomethyl, monoethyl, dimethyl, diethyl or dibutyl ester) and acid anhydrides thereof. It is used by the meaning containing the ester forming derivative component, such as these.
  • the terephthalic acid reacts with the diol component to form a terephthaloyl moiety.
  • the divalent acid moiety and the diol moiety mean a residue in which the divalent acid component and the diol component are left in a conventional polyester polymerization reaction where the hydrogen, hydroxy group or alkoxy group is removed. do.
  • the molar ratio of the divalent acid component and diol component may be 1: 1.05 to 3.0.
  • the molar ratio of the divalent acid component and the diol component is within the above range, the unreacted divalent acid component is reacted without remaining during the polymerization reaction, thereby improving the transparency of the resin, and the polymerization reaction rate is not slowed down so that the productivity of the resin does not occur There is an advantage.
  • the polyester resin of the present invention may be prepared by further copolymerizing a trivalent acid and / or a trihydric alcohol component in addition to the divalent acid component and the diol component, if necessary, and the addition amount thereof may be, for example, the total reaction component. It may be from 0 to 10 mol%, specifically 0.1 to 10 mol% relative to the total number of moles of.
  • the polyester resin may have a number average molecular weight of 2,000 to 20,000, a hydroxyl value of 2 to 60 mgKOH / g, and an acid value of 0.1 to 20 mgKOH / g. Specifically, the polyester resin may have a number average molecular weight of 5,000 to 15,000, a hydroxyl value of 5 to 50 mgKOH / g, and an acid value of 1 to 5 mgKOH / g.
  • the number average molecular weight of the said polyester resin exists in the said range, the physical property fall of a coating film can be prevented.
  • the hydroxyl value and the acid value of the polyester resin is within the above range, it is possible to prevent the rapid curing by heat treatment to prevent appearance defects and popping (popping) phenomenon.
  • the polyester resin has a glass transition temperature of 80 °C or more.
  • the polyester resin may have a glass transition temperature of 80 to 150 °C, 80 to 130 °C or 80 to 120 °C.
  • the glass transition temperature of the polyester resin is within the above range, the chemical resistance and hydrolysis resistance of the coating film may be improved, and the coating film hardness may not be reduced.
  • the polyester resin may be prepared by a production method known in the art using the components as described above. For example, esterification or transesterification of a polymerization reactant comprising (i) a diol component comprising (a) a divalent acid component and (b) an isosorbide and an alicyclic diol; And (ii) polycondensation of the esterification reaction product or transesterification reaction product to produce the polyester resin (binder) of the present invention.
  • the final attained vacuum degree of the polycondensation reaction is less than 2.0 mmHg
  • the esterification reaction and the polycondensation reaction may be carried out under an inert gas atmosphere.
  • the polycondensation reaction can be carried out for the required time until the desired intrinsic viscosity is reached.
  • the step (i) may be carried out for an average residence time of 100 to 600 minutes at a pressure of 0.1 to 3.0 kgf / cm2 and a temperature of 200 to 300 °C. Specifically, the step (i) may be carried out for a mean residence time of 120 to 500 minutes at a pressure of 0.2 to 2.0 kgf / cm2 and a temperature of 240 to 270 °C.
  • the reaction conditions of step (i) may vary depending on the molar ratio of the divalent acid component and diol component used.
  • steps (i) and (ii) may further use an appropriate catalyst for each step to shorten the reaction time.
  • a polycondensation catalyst for example, one or more of titanium, germanium, antimony, aluminum, tin-based compound and the like can be appropriately selected and used.
  • the germanium compound when used as the polycondensation catalyst, there is an advantage in that the color and reactivity of the polyester resin are excellent.
  • Step (ii) can be carried out for the required time until the desired intrinsic viscosity is reached at a reduced pressure of 0.1 to 2.0 mmHg and a temperature of 240 to 300 ° C., for example for an average residence time of 1 to 10 hours. . Specifically, step (ii) may be carried out for an average residence time of 1 to 10 hours at reduced pressure conditions of 0.1 to 2.0 mmHg, and at a temperature of 250 to 290 ° C or 260 to 270 ° C.
  • the reduced pressure condition is for removing the diol component which is a by-product of the polycondensation reaction.
  • the present invention is a polyester resin as described above; And a solvent-based coating composition comprising an organic solvent.
  • the coating composition includes an organic solvent in consideration of handleability, coating workability, and the like, and the organic solvent may be used without limitation as long as it can disperse the polyester resin and other components and can be easily removed.
  • the organic solvent may be selected from the group consisting of aromatic hydrocarbons, glycol esters, glycol ethers, ketones, alcohols, and mixtures thereof.
  • the aromatic hydrocarbon solvent examples include toluene, xylene, and Cosol (product name: # 100 or # 150) of SK Energy Corporation.
  • the glycol ester solvent is, for example, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl acetate, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, ethylene glycol monobutyl ether, ethylene Glycol monoethyl ether, 3-methoxybutyl acetate, and the like.
  • glycol ether solvent examples include methyl cellosolve, ethyl cellosolve, ethylene glycol butyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, and the like.
  • ketone solvent acetone, acetonitrile, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc. are mentioned, for example.
  • the alcohol solvent examples include ethanol, isopropanol, n-butanol, amyl alcohol, cyclohexanol and the like.
  • chloroform cresol, hexane, tetrahydrofuran, isophorone, dibasic ester, or the like may be used as the organic solvent.
  • the coating composition may include 10 to 40% by weight, specifically 20 to 40% by weight of polyester resin, based on the total weight of the coating composition.
  • the coating composition may further include a component selected from the group consisting of crosslinking agents, curing catalysts, slip additives, leveling agents, antifoaming agents, pigments, leveling agents and mixtures thereof.
  • the crosslinking agent may be added together with the polyester resin to form a coating film (coating film), and any crosslinking agent may be used without limitation.
  • any crosslinking agent may be used without limitation.
  • melamine type, isocyanate type, carbodiimide type, epoxy type, phenol type crosslinking agent, etc. can be used.
  • the melamine resin containing an amino group or butoxy group, and a methoxy melamine resin can be mixed and used in a weight ratio of 0.3-0.5: 1. If the mixing weight ratio is within the above range, there is an advantage that the decrease in processability and surface hardness of the coating film is prevented and the viscosity does not increase excessively upon storage of the composition.
  • methoxy melamine resin examples include CYMEL303, CYMEL 301 from CYTEC, BE 3747, BE 3745 from BIP, RESIMENE 745 from Monsanto, and the like.
  • melamine resins include Cytec (CYTEC) CYMEL 325, CYMEL327, BIP (BIP) BE3748, BE 3040, Monsanto (MONSANTO) RESIMENE 717 and the like.
  • the amount of the crosslinking agent added may be 3 to 13 wt% based on the total weight of the coating composition. If the addition amount of a crosslinking agent is in the said range, the fall of coating-film physical properties, such as solvent resistance and hardness, can be prevented.
  • the coating composition may include methoxy melamine resin (methylether melamine resin) in an amount of 2 to 8% by weight, and a melamine resin having an amino group or butoxy group in an amount of 1 to 5% by weight.
  • the curing catalyst may be added to promote curing of the coating film, and can be used without limitation as long as it is a conventional curing catalyst.
  • sulfonic acid based, amine based or tin based curing catalysts can be used, and specifically, p-toluene sulfonic acid (p-TSA), dinonylnaphthalene sulfonic acid (DNNSA), dinonylnaphthalene disulfonic acid (DNNDSA), fluorine
  • p-TSA p-toluene sulfonic acid
  • DNNSA dinonylnaphthalene sulfonic acid
  • DNNDSA dinonylnaphthalene disulfonic acid
  • fluorine p-toluene sulfonic acid
  • DNNSA dinonylnaphthalene sulfonic acid
  • DNNDSA dinonylnaphthalene disulfonic acid
  • fluorine The
  • p-toluene sulfonic acid may include NACURE2500, NACURE2510, NACURE 2530, etc. of King (KING), DNNSA includes NACURE1323, NACURE1419, NACURE1557, NACURE1953, etc., DNNDSA is NACURE3525, NACURE3327
  • the fluoro sulfonic acid is FC520 of 3M (3M) company, etc. are mentioned.
  • the curing catalyst may further include p-toluene sulfonic acid, dinonylnaphthalene sulfonic acid (DNNSA), etc. neutralized with a tertiary amine.
  • the amine or epoxy is added to mask the reaction of the curing catalyst, and the amine includes, for example, primary amine, secondary amine, tertiary amine and the like.
  • the amine includes, for example, primary amine, secondary amine, tertiary amine and the like.
  • it is preferable to use a secondary amine because the primary amine causes a color change such as yellowing in the coating film, and the tertiary amine causes shrinkage of the surface of the coating film when used in excess.
  • the secondary amines are, for example, diethylamine, diisopropylamine, diisopropanolamine, di-n-propylamine, di-n-butylamine, diisobutylamine, di-secondary-butylamine, Diallylamine, diamylamine, N-ethyl-1,2-dimethylpropylamine, N-methylhexylamine, di-n-octylamine, piperidine, 2-pipecoline, 3-pipecoline, 4-pipe Choline, morpholine, etc. are mentioned.
  • by adding these effective amounts to the coating composition by mixing with the curing catalyst it is possible to increase the stain resistance of the coating film.
  • the curing catalyst may be added in an amount of 0.1 to 2.5% by weight relative to the total weight of the coating composition. Specifically, the curing catalyst may be added in an amount of 0.5 to 2.3% by weight based on the total weight of the coating composition. If the addition amount of a curing catalyst is in the said range, the coating film of sufficient hardness can be manufactured.
  • the slip additive may be added to prevent scratches caused by scratches by a worker or nails of a home appliance user during molding, and may be used without limitation as long as it is a conventional slip additive.
  • a conventional slip additive for example, polyethylene (PE) wax, polytetrafluoroethylene (PTFE) wax, PTFE / PE mixed wax (wax in which PTFE and PE are mixed), etc. are mentioned.
  • the silicone oils are added as slip additives, the surface tension of the silicone oils is so low that the continuous roll coating workability is poor, which is not preferable.
  • PTFE / PE blended wax is preferred because PE wax has good surface orientation but less slip effect, and PTFE wax has good slip effect but problems in surface orientation. This is because excellent physical properties can be combined.
  • These PTFE / PE mixed waxes must be made with a high speed disperser to obtain a product in which PTFE wax is attached around a low density PE wax, ie, a product in which PTFE wax is electrostatically combined around a PE wax with a large particle size. .
  • the coating film using such PTFE / PE mixed wax can obtain sufficient slip property while being excellent in hardness.
  • the average particle diameter of the PTFE / PE mixed wax may be 3 ⁇ m or less, and when the average particle diameter exceeds 3 ⁇ m, the appearance of the coating may be poor.
  • Addition amount of the slip additive may be 0.3 to 10% by weight based on the total weight of the coating composition. If it is in the said range, sufficient slipperiness
  • lubricacy can be provided to a coating film, preventing the glossiness of a coating film.
  • an additive such as clay, amide wax, fumed silica, and the like may be further added, and the amount may be 0.1 to 1 wt% based on the total weight of the coating composition.
  • the smoothing agent serves to adjust the surface defects of the coating film such as crater phenomenon, pinholes, coating marks, and commercially available products include, for example, BYK-350, BYK-354, BYK-355.
  • the leveling agent may be added in an amount of 0.1 to 1.0% by weight based on the total weight of the coating composition.
  • Leveling agents and / or antifoaming agents may be added to maintain the coating film smoothness of the coating composition and to improve the antifoaming properties in the painting operation.
  • the leveling agent may be a conventional acrylic, vinyl or silicone leveling agent.
  • Commercial examples of the leveling agent include Disparon L-1980, Disparon L-1984, Disparon AP-30 and the like of Kusumoto Chemical Co., Ltd. BYK356 and BYK410, etc. Can be.
  • the leveling agent may be added in an amount of 0.5 to 1.0% by weight based on the total weight of the coating composition.
  • the antifoaming agent may be added in an amount of 0.5 to 1.0% by weight based on the total weight of the coating composition.
  • the coating composition of the present invention may be a transparent coating composition containing no pigment, but may also be a color coating composition containing a pigment.
  • the pigment is not particularly limited as long as it is any pigment usable in the field of coating compositions, and examples thereof include organic pigments such as cyanine blue and cyanine green; Inorganic pigments such as titanium oxide, iron oxide, carbon black, chrome yellow and various calcined pigments; And extender pigments such as talc, clay, silica, mica, alumina and the like.
  • the pigment may be added in an amount of 0 to 40% by weight relative to the total weight of the coating composition.
  • the coating composition may further include a metal or nonmetal filler.
  • TPA is terephthalic acid
  • IPA isophthalic acid
  • ISB isosorbide (1,4: 3,6-dianhydroglucitol)
  • EG is ethylene glycol ( ethyleneglycol)
  • NPG means neopentylglycol
  • TCDDM means tricyclo [5.2.1.0 2,6 ] decane-4,8-dimethanol.
  • the polycondensation reaction proceeded at 1.0 mmHg under reduced pressure and 270 ° C, and the polymerization was terminated when a certain viscosity (intrinsic viscosity 0.36 dl / g) was reached to obtain the desired polyester resin.
  • a polyester resin was prepared in the same manner as in Example 1, except that the components and contents shown in Table 1 were used.
  • the performance evaluation method of the polyester resin manufactured by the said Example and the comparative example is as follows.
  • Composition (component ratio of (TCDDM + ISB) / NPG)
  • the Tg temperature (° C) during the second scan was measured at a heating rate of 10 ° C / min.
  • Solvent solubility is represented by four representative solvents, Cocosol-100 (K-100), cyclohexanone, toluene, methylethylketone; MEK) was selected to dissolve the polyester resin in a concentration of 40% by weight in the solvent composition of Table 2, and to observe whether or not the resin was completely dissolved.
  • the case where the resin is completely dissolved and transparent is indicated by O, and when the undissolved resin remains or is opaque and delamination occurs over time, it is indicated by X.
  • the polyester resins of Examples 1 to 5 all had a high glass transition temperature of 80 ° C. or more, compared to Comparative Examples 1 and 2, which did not use TCDDM, which is an alicyclic diol. It can be seen that the solubility is also excellent.
  • Examples 2 and 5 were dissolved in the mixed solvent of toluene and MEK as compared to Comparative Example 1 having a similar glass transition temperature, showing an improved solvent solubility.
  • Comparative Example 3 having a (TCDDM + ISB) / NPG component ratio (molar ratio) of less than 0.5 had a low heat resistance with a glass transition temperature of less than 80 ° C. Furthermore, in the case of 2.5 or more, the reaction time is increased rapidly, which makes it difficult to synthesize the polymer or increases the price and lowers the solubility (result not described).
  • the cyclohexanone / solvent naphtha 100 (manufactured by Solvent Naphtha 100: SK Energy, product name: Kocosol-100) was mixed with each of the polyester resins of Examples 1 to 5 and Comparative Examples 1 to 3 in a mixed solvent (50/50 weight ratio).
  • a resin solution was prepared by dissolving at a concentration of wt%.
  • a dispersion base (mill base) was prepared by mixing 208 g of the resin solution, 100 g of TiO 2 (rutile type) and 1.5 g of a humectant (manufacturer: BYK, product name: BYK-110).
  • a coating composition was coated on a 0.5 mm thick galvanized steel sheet, and dried at 230 ° C. for 5 minutes with a hot air drier to prepare a coated steel sheet having a thickness of 20 ⁇ m.
  • the 60 ° surface gloss of the coated steel sheet was measured using a glossmeter of BYK.
  • Pendulum hardness was measured using the same pendulum hardness tester Konig measurement method and ISO 1522 (2005) of the same coated steel plate as used in the above (6). Specifically, lift the weight (weight: 200 g) on the surface of the coated steel sheet and refer to the additional stop state as 0 °, pull up the weight and start the pendulum motion from 6 ° to 3 °. Measured twice.
  • the scratch hardness of the coating film was measured with the Mitsubishi pencil. Pencils of various hardness were placed obliquely on a test sample at a 45 degree angle and scraped under a load of 750 g to measure the hardness of the coating film according to the degree of surface damage. When the surface was scratched under the above conditions with a pencil of a certain hardness, the maximum hardness without scratching the surface was recorded.
  • the coating composition of the present invention forms a coating film excellent in hardness, gloss and scratch resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유함으로써 내열성, 경도, 내화학성, 내오염성, 내가수분해성이 우수한 도막을 형성할 수 있는 코팅 조성물에 관한 것이다.

Description

내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물
본 발명은 내열성 및 용제 용해성이 우수한 폴리에스테르 수지, 및 이를 함유함으로써 내열성, 경도, 내화학성, 내오염성 및 내가수분해성이 우수한 도막을 형성할 수 있는 코팅 조성물에 관한 것이다.
폴리에스테르 수지를 포함하는 코팅 조성물은 도막 형성시 가공성이 좋아 알키드 수지, 비닐 수지, 실리콘 수지 등의 바인더를 대체하여 사용하는 것이 고려되고 있다. 그러나, 직쇄형 선형구조를 가지는 폴리에스테르 수지는 가공성이 우수하나 내열성(낮은 Tg 범위), 도막 경도 등이 낮아 사용 가능한 용도가 제한적인 문제가 있었다. 이를 개선하기 위하여 아이소소바이드(isosorbide)와 같이 분자구조가 단단한 고리형 분자구조의 단량체를 공중합한 폴리에스테르 수지가 연구되고 있다.
대한민국 등록특허 제 10-1058974 호는 아이소소바이드 균질 수용액을 이용하여 폴리에스테르를 제조하는 방법을 개시하고 있으며, 상기 폴리에스테르의 제조방법은 아이소소바이드 균질 수용액을 사용함으로써 아이소소바이드를 용이하게 취급할 수 있는 효과를 제공한다.
그러나, 아이소소바이드와 같은 단량체를 공중합한 폴리에스테르 수지 바인더의 경우, 고분자 구조가 단단해져 용제 용해도가 저하되는 문제가 있었으며, 이로 인해 산업적 응용이 제한되는 문제가 있었다.
따라서, 본 발명의 목적은 유리전이 온도 80 ℃ 이상의 고내열성 및 산업적으로 사용하는 범용 용제에 대한 용해성이 우수한 폴리에스테르 수지를 제공하는 것이다.
본 발명의 다른 목적은 상기 폴리에스테르 수지를 포함하여 내열성 및 용제 용해성이 우수하고, 경도가 우수한 도막을 형성할 수 있는 코팅 조성물을 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은 (a) 2가 산 성분; 및 (b) 아이소소바이드 및 지환족 디올을 포함하는 디올 성분이 공중합되어 형성된 반복단위를 갖고, 유리전이 온도가 80 ℃ 이상인, 폴리에스테르 수지를 제공한다.
또한, 본 발명은 상술한 바와 같은 폴리에스테르 수지; 및 유기 용매를 포함하는, 코팅 조성물을 제공한다.
본 발명에 따르면, 아이소소바이드를 포함하여 유리전이 온도 80 ℃ 이상의 고내열성을 가지며, 산업적으로 사용하는 범용 용제에 대한 용해성이 우수한 폴리에스테르 수지를 제조할 수 있다. 또한, 본 발명은 상기 폴리에스테르 수지를 포함함으로써 종래의 아이소소바이드를 포함하는 폴리에스테르 수지의 문제였던 낮은 용제 용해성이 향상된 코팅 조성물을 제공하고, 상기 코팅 조성물은 캔, 가전제품, 건축용 외장재 및 필름의 코팅 용도, 및 접착용도로 유용하게 사용될 수 있다.
본 발명의 폴리에스테르 수지는 (a) 2가 산 성분; 및 (b) 아이소소바이드 및 지환족 디올을 포함하는 디올 성분이 공중합되어 형성된 반복단위를 갖고, 유리전이 온도가 80 ℃ 이상인 것을 특징으로 한다.
상기 디올 성분은 분자구조가 단단하여 고내열성을 나타내는 아이소소바이드를 포함하고, 수지의 내열성 및 용제 용해도를 향상시키기 위해 지환족 디올을 포함한다. 예를 들면, 상기 디올 성분은 디올 성분 총 몰수에 대하여 1 내지 50 몰%의 아이소소바이드 및 1 내지 80 몰%의 지환족 디올을 포함할 수 있다. 구체적으로, 상기 디올 성분은 디올 성분 총 몰수에 대하여 10 내지 50 몰%의 아이소소바이드 및 10 내지 50 몰%의 지환족 디올을 포함할 수 있다. 더 구체적으로, 상기 디올 성분은 디올 성분 총 몰수에 대하여 20 내지 45 몰%의 아이소소바이드 및 20 내지 30 몰%의 지환족 디올을 포함할 수 있다.
상기 지환족 디올은 1종 이상의 트리사이클로C7 - 14알칸의 디올 유도체일 수 있고, 예를 들면, 트리사이클로옥탄, 트리사이클로노난, 트리사이클로데칸, 트리사이클로운데칸, 트리사이클로도데칸, 트리사이클로헵탄, 트리사이클로트리데칸 및 트리사이클로테트라데칸으로 이루어진 군으로부터 선택된 화합물의 디올 유도체 또는 이들의 혼합물일 수 있다.
구체적으로, 상기 지환족 디올은 트리사이클로[3.2.1.02,6]옥탄(tricyclo[3.2.1.02,6]octane), 트리사이클로[4.2.1.02,6]노난(tricyclo[4.2.1.02,6]nonane), 트리사이클로[5.2.1.02,6]데칸(tricyclo[5.2.1.02,6]decane), 트리사이클로[6.2.1.02,6]운데칸(tricyclo[6.2.1.02,6]undecane), 트리사이클로[7.2.1.02,6]도데칸(tricyclo[7.2.1.02,6]dodecane), 트리사이클로[4.2.1.12,5]데칸(tricyclo[4.2.1.12,5]decane), 트리사이클로[4.3.1.12,5]데칸(tricyclo[4.3.1.12,5]decane), 트리사이클로[4.4.1.12,5]데칸(tricyclo[4.4.1.12,5]decane), 트리사이클로[2.2.1.02,6]헵탄(tricyclo[2.2.1.02,6]heptane), 트리사이클로[2.2.2.02,6]옥탄(tricyclo[2.2.2.02,6]octane), 트리사이클로[3.2.2.02,6]노난(tricyclo[3.2.2.02,6]nonane), 트리사이클로[3.3.1.13,6]데칸(tricyclo[3.3.1.13,6]decane), 트리사이클로[3.2.1.13,7]노난(tricyclo[3.2.1.13,7]nonane), 트리사이클로[4.2.2.22,5]도데칸(tricyclo[4.2.2.22,5]dodecane), 트리사이클로[4.3.2.22,5]트리데칸(tricyclo[4.3.2.22,5]tridecane), 트리사이클로[4.4.2.22,5]테트라데칸(tricyclo[4.4.2.22,5]tetradecane), 트리사이클로[4.2.1.03,7]노난(tricyclo[4.2.1.03,7]nonane), 트리사이클로[4.4.1.11,5]도데칸(tricyclo[4.4.1.11,5]dodecane), 트리사이클로[6.2.1.02,7]운데칸(tricyclo[6.2.1.02,7]undecane), 트리사이클로[5.2.2.02,6]운데칸(tricyclo[5.2.2.02,6]undecane), 트리사이클로[6.2.2.02,7]도데칸(tricyclo[6.2.2.02,7]dodecane), 트리사이클로[4.3.2.02,5]운데칸(tricyclo[4.3.2.02,5]undecane), 트리사이클로[4.2.2.02,5]데칸(tricyclo[4.2.2.02,5]decane) 및 트리사이클로[5.5.1.03,11]트리데칸(tricyclo[5.5.1.03,11]tridecane)으로 이루어진 군으로부터 선택된 화합물의 디올 유도체 또는 이들의 혼합물일 수 있다. 더욱 구체적으로, 상기 지환족 디올은 트리사이클로[7.2.1.02,6]도데칸, 트리사이클로[4.2.2.22,5]도데칸, 트리사이클로[4.4.1.11,5]도데칸 및 트리사이클로[6.2.2.02,7]도데칸으로 이루어진 군으로부터 선택된 화합물의 디메탄올 유도체 또는 이들의 혼합물일 수 있다.
또한, 상기 디올 성분은 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로판디올, 1,4-부탄디올, 펜탄디올, 헥산디올, 네오펜틸글리콜, 1,2-사이클로헥산디올, 1,4-사이클로헥산디올, 1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올, 1,4-사이클로헥산디메탄올 및 테트라메틸사이클로부탄디올로 이루어진 군으로부터 선택된 1종 이상의 화합물을 상기 아이소소바이드 및 지환족 디올을 제외한 나머지 량으로, 예컨대 디올 성분 총 몰수에 대하여 19 내지 80 몰%의 양으로 추가로 포함할 수 있다. 예를 들어, 상기 프로판디올은 1,2-프로판디올 또는 1,3-프로판디올일 수 있다. 또한, 상기 헥산디올은 1,6-헥산디올일 수 있다. 구체적으로, 상기 디올 성분은 네오펜틸글리콜을 추가로 포함하고, 상기 디올 성분 중 아이소소바이드 및 지환족 디올의 합과 네오펜틸글리콜의 몰비가 0.5 내지 2.5 : 1일 수 있다. 보다 구체적으로, 상기 디올 성분은 아이소소바이드 및 지환족 디올의 합과 네오펜틸글리콜의 몰비가 0.5 내지 1.8 : 1, 0.5 내지 1.5 : 1, 또는 0.5 내지 1.3 : 1일 수 있다.
상기 2가 산 성분은 1종 이상의 C8-C14의 방향족 디카르복실산을 포함할 수 있고, 예를 들어 테레프탈산, 이소프탈산, 나프탈렌 디카르복실산, 디페닐 디카르복실산, 이들의 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택된 화합물을 포함할 수 있다. 상기 2가 산 성분으로 상술한 바와 같은 방향족 디카르복실산이 아닌 지방족 디카르복실산을 사용할 경우, 유리전이 온도가 감소하여 고내열성의 폴리에스테르 수지를 제조하기 힘들다. 예를 들어, 상기 나프탈렌 디카르복실산은 2,6-나프탈렌디카르복실산일 수 있다. 구체적으로, 상기 2가 산 성분은 2가 산 성분 총 몰수에 대하여 테레프탈산, 이소프탈산 및 이들의 혼합물로 이루어진 군으로부터 선택된 화합물을 1 내지 100 몰%, 50 내지 100 몰%, 70 내지 100 몰%, 70 내지 99 몰% 또는 70 내지 95 몰%의 함량으로 포함할 수 있다. 상기 2가 산 성분 중 테레프탈산 및/또는 이소프탈산의 함량이 상기 범위 내이면 제조된 폴리에스테르 수지의 유리전이 온도가 너무 낮아지는 것을 막아(Tg 80 ℃이상) 코팅 후 경도가 저하되는 것을 방지할 수 있다.
상기 2가 산 성분은 테레프탈산 및 이소프탈산을 제외한 다른 방향족 또는 지방족 디카르복실산을 잔량으로 포함할 수 있다. 본 명세서에서, "테레프탈산"이라는 용어는 테레프탈산, 이의 알킬 에스테르(모노메틸, 모노에틸, 디메틸, 디에틸 또는 디부틸 에스테르 등 C1 내지 C4의 저급 알킬 에스테르) 및 이들의 산무수물(acid anhydride) 등의 에스테르 형성성 유도체 성분을 포함하는 의미로 사용된다. 또한, 상기 테레프탈산은 디올 성분과 반응하여 테레프탈로일 부분(terephthaloyl moiety)을 형성한다.
또한, 본 명세서에서, 2가 산 부분(moiety)과 디올 부분(moiety)은 2가 산 성분 및 디올 성분이 통상적인 폴리에스테르 중합 반응되어 수소, 히드록시기 또는 알콕시기가 제거되고 남은 잔기(residue)를 의미한다.
상기 2가 산 성분과 디올 성분의 몰비는 1: 1.05 내지 3.0일 수 있다. 2가 산 성분과 디올 성분의 몰비가 상기 범위 내일 경우, 중합반응시 미반응 2가 산 성분이 남지 않고 반응하여 수지의 투명성이 향상되고, 중합반응 속도가 느려지지 않아 수지의 생산성 저하가 일어나지 않는 장점이 있다.
본 발명의 폴리에스테르 수지는, 필요에 따라, 2가 산 성분 및 디올 성분 외에 3가 산 및/또는 3가 알코올 성분을 추가로 공중합하여 제조될 수 있으며, 그 첨가량은 예를 들어, 전체 반응 성분의 총 몰수에 대하여 0 내지 10 몰%, 구체적으로 0.1 내지 10 몰%일 수 있다.
상기 폴리에스테르 수지는 수평균분자량이 2,000 내지 20,000이고, 수산기값(hydroxyl value)이 2 내지 60 ㎎KOH/g이며, 산가(acid value)가 0.1 내지 20 ㎎KOH/g일 수 있다. 구체적으로, 상기 폴리에스테르 수지는 수평균분자량이 5,000 내지 15,000이고, 수산기값이 5 내지 50 ㎎KOH/g이며, 산가가 1 내지 5 ㎎KOH/g일 수 있다. 상기 폴리에스테르 수지의 수평균분자량이 상기 범위 내일 경우, 도막의 물성 저하를 방지할 수 있다. 또한, 상기 폴리에스테르 수지의 수산기값 및 산가가 상기 범위 내일 경우, 열처리에 의한 급격한 경화가 방지되어 외관 불량 및 파핑(popping) 현상이 방지될 수 있다.
또한, 상기 폴리에스테르 수지는 유리전이 온도가 80 ℃ 이상이다. 구체적으로, 상기 폴리에스테르 수지는 유리전이 온도가 80 내지 150 ℃, 80 내지 130 ℃ 또는 80 내지 120 ℃일 수 있다. 상기 폴리에스테르 수지의 유리전이 온도가 상기 범위 내일 경우 도막의 내화학성 및 내가수분해성이 향상되고, 도막 경도가 저하되지 않을 수 있다.
상기 폴리에스테르 수지는 오르토클로로페놀(OCP)에 1.2 g/㎗의 농도로 용해시킨 후 35 ℃에서 측정시 0.15 ㎗/g 이상, 구체적으로 0.3 ㎗/g 이상의 고유 점도를 가질 수 있다.
상기 폴리에스테르 수지는 상술한 바와 같은 성분을 사용하여 당 분야에 공지된 제조방법에 의해서 제조될 수 있다. 예를 들어, (i) (a) 2가 산 성분 및 (b) 아이소소바이드 및 지환족 디올을 포함하는 디올 성분을 포함하는 중합 반응물을 에스테르화 반응 또는 에스테르 교환 반응시키는 단계; 및 (ii) 상기 에스테르화 반응 생성물 또는 에스테르 교환 반응 생성물을 중축합 반응시키는 단계를 포함하는 제조방법으로 본 발명의 폴리에스테르 수지(바인더)를 제조할 수 있다. 구체적으로, 상기 중축합 반응의 최종 도달 진공도는 2.0 ㎜Hg 미만이고, 상기 에스테르화 반응 및 중축합 반응은 불활성 기체 분위기 하에서 수행될 수 있다. 또한, 상기 중축합 반응은 목적하는 고유 점도에 도달할 때까지 필요한 시간 동안 수행할 수 있다.
상기 단계 (i)은 0.1 내지 3.0 kgf/㎠ 의 가압 압력 및 200 내지 300 ℃의 온도에서 100 내지 600 분의 평균 체류시간 동안 수행할 수 있다. 구체적으로, 상기 단계 (i)은 0.2 내지 2.0 kgf/㎠ 의 가압 압력 및 240 내지 270 ℃의 온도에서 120 내지 500 분의 평균 체류시간 동안 수행할 수 있다. 단계 (i)의 반응 조건은 사용한 2가 산 성분과 디올 성분의 몰비에 따라 달라질 수 있다.
또한, 상기 단계 (i) 및 (ii)는 반응시간 단축을 위해 각 단계에 적절한 촉매를 추가로 사용할 수 있다.
나아가, 상기 단계 (ii)의 중축합 반응 개시 전에, 단계 (i)의 반응 생성물에 중축합 촉매, 안정제, 정색제 등을 첨가할 수 있다. 상기 중축합 촉매로는 예를 들어, 티타늄, 게르마늄, 안티몬, 알루미늄, 주석계 화합물 등을 1종 이상 적절히 선택하여 사용할 수 있다. 이 중, 게르마늄계 화합물을 중축합 촉매로 사용하면, 폴리에스테르 수지의 색상(color) 및 반응성이 우수해지는 장점이 있다. 또한, 상기 안정제로는 예를 들어, 인산, 트리메틸포스페이트, 트리에틸포스페이트 등의 인계 화합물을 사용할 수 있으며, 그 첨가량은 인 원소량을 기준으로 최종 폴리에스테르 수지 중량 대비 10 내지 200 ppm일 수 있다. 상기 안정제의 첨가량이 상기 범위 내일 때, 반응 생성물의 안정화 효과가 우수하여 폴리에스테르 수지의 색상이 노랗게 변하는 것을 방지할 수 있으며, 목적하는 고중합도의 폴리에스테르 수지를 얻을 수 있다. 또한, 상기 정색제는 폴리에스테르 수지의 색상을 향상시키기 위해 첨가될 수 있으며, 예를 들어, 코발트 아세테이트를 사용할 수 있다.
상기 단계 (ii)는 0.1 내지 2.0 ㎜Hg의 감압 조건 및 240 내지 300 ℃의 온도에서 원하는 고유 점도에 도달할 때까지 필요한 시간 동안, 예를 들면 1 내지 10 시간의 평균 체류시간 동안 수행될 수 있다. 구체적으로, 상기 단계 (ii)는 0.1 내지 2.0 ㎜Hg의 감압 조건, 및 250 내지 290 ℃ 또는 260 내지 270 ℃의 온도에서 1 내지 10 시간의 평균 체류시간 동안 수행될 수 있다. 상기 감압 조건은 중축합 반응의 부산물인 디올 성분을 제거하기 위한 것이다.
본 발명은 상술한 바와 같은 폴리에스테르 수지; 및 유기 용매를 포함하는, 용매 기반(solvent-based) 코팅 조성물을 제공한다.
상기 코팅 조성물은 취급성, 피복 작업성 등을 고려하여 유기 용매를 포함하며, 상기 유기 용매는 폴리에스테르 수지 및 기타 성분을 분산시킬 수 있고 쉽게 제거되는 것이라면 제한없이 사용할 수 있다. 구체적으로, 상기 유기 용매는 방향족 탄화수소계, 글리콜 에스테르계, 글리콜 에테르계, 케톤계, 알코올계 용매 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 방향족 탄화수소계 용매는, 예를 들어, 톨루엔, 자일렌, SK에너지 주식회사의 코코졸(제품명: #100 또는 #150) 등을 들 수 있다. 상기 글리콜 에스테르계 용매는, 예를 들어, 에틸 아세테이트, 부틸 아세테이트, 셀로솔브 아세테이트, 프로필렌글리콜 모노메틸아세테이트, 에틸렌글리콜 디아세테이트, 에틸렌글리콜 디에틸에테르, 에틸렌글리콜 디메틸에테르, 에틸렌글리콜 모노부틸에테르, 에틸렌글리콜 모노에틸에테르, 3-메톡시부틸 아세테이트 등을 들 수 있다. 상기 글리콜 에테르계 용매는, 예를 들어, 메틸 셀로솔브, 에틸 셀로솔브, 에틸렌글리콜 부틸에테르, 디에틸렌글리콜 메틸에테르, 디에틸렌글리콜 에틸에테르, 디에틸렌글리콜 부틸에테르 등을 들 수 있다. 상기 케톤계 용매는, 예를 들어, 아세톤, 아세토나이트릴, 메틸에틸케톤, 메틸이소부틸케톤, 사이클로헥사논 등을 들 수 있다. 상기 알코올계 용매는, 예를 들어, 에탄올, 이소프로판올, n-부탄올, 아밀알콜, 사이클로 헥산올 등을 들 수 있다.
또한, 상기 유기 용매로서 클로로포름, 크레졸, 헥산, 테트라하이드로퓨란, 이소포론, 디베이직 에스테르(dibasic ester) 등도 사용할 수 있다.
상기 용매는 코팅 조성물 총 중량에 대하여 60 내지 90 중량%, 구체적으로 60 내지 80 중량%로 포함될 수 있다. 용매의 함량이 상기 범위 내이면, 형성된 도막의 부착성이 우수하고, 도막 형성시 건조 시간이 단축되는 장점이 있다.
상기 코팅 조성물은 코팅 조성물 총 중량에 대하여 10 내지 40 중량%, 구체적으로 20 내지 40 중량%의 폴리에스테르 수지를 포함할 수 있다.
또한, 상기 코팅 조성물은 가교제, 경화 촉매, 슬립성 첨가제, 레벨링제, 소포제, 안료, 평활제(leveling agent) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 성분을 추가로 포함할 수 있다.
상기 가교제는 폴리에스테르 수지와 함께 코팅막(도막)을 형성하기 위해 첨가될 수 있으며, 통상의 가교제라면 제한 없이 사용할 수 있다. 예를 들어, 멜라민계, 이소시아네이트계, 카보디이미드계, 에폭시계, 페놀계 가교제 등을 사용할 수 있다.
상기 멜라민계 가교제는, 예를 들어, 아미노기 또는 부톡시기를 함유하는 멜라민 수지와 메톡시기를 함유하는 멜라민 수지(하기 '메톡시 멜라민 수지'로 기재)를 들 수 있다. 상기 아미노기 또는 부톡시기를 함유하는 멜라민 수지는 도막의 경도 증가에 유리하나, 산 촉매를 사용할 경우, 메톡시 멜라민 수지에 비해 고온 소부(열처리에 의한 경화) 시 반응 속도가 다소 느리며, 가공성이 저하되는 단점이 있을 수 있다. 반면, 메톡시 멜라민 수지는 산 촉매와 함께 사용할 경우, 경화 반응 속도가 빠르고 도막의 가공성이 우수하지만, 도막의 경도가 상대적으로 불량할 수 있다. 따라서, 본 발명에서는 도막의 경도와 가공성의 균형을 유지하기 위해, 상기 아미노기 또는 부톡시기를 함유하는 멜라민 수지와 메톡시 멜라민 수지를 0.3 내지 0.5 : 1의 중량비로 혼합하여 사용할 수 있다. 혼합 중량비가 상기 범위 내면, 도막의 가공성 및 표면 경도의 저하가 방지되고 조성물의 저장시 점도가 과도하게 증가하지 않는 장점이 있다.
또한, 예를 들어, 메톡시 멜라민 수지는, 사이텍(CYTEC)사의 CYMEL303, CYMEL 301, 빕(BIP)사의 BE 3747, BE 3745, 몬산토(MONSANTO)사의 RESIMENE 745 등을 들 수 있고, 아미노기 또는 부톡시기를 포함하는 멜라민 수지는 사이텍(CYTEC)사의 CYMEL 325, CYMEL327, 빕(BIP)사의 BE3748, BE 3040, 몬산토(MONSANTO)사의 RESIMENE 717 등을 들 수 있다.
상기 가교제의 첨가량은 코팅 조성물 총 중량에 대하여 3 내지 13 중량%일 수 있다. 가교제의 첨가량이 상기 범위 내이면, 내용제성, 경도 등의 도막 물성의 저하를 방지할 수 있다. 구체적으로, 코팅 조성물은 메톡시 멜라민 수지(메틸에테르화 멜라민 수지)를 2 내지 8 중량%의 양으로, 그리고 아미노기 또는 부톡시기를 갖는 멜라민 수지를 1 내지 5 중량%의 양으로 포함할 수 있다.
상기 경화 촉매는 코팅막의 경화를 촉진하기 위해 첨가할 수 있으며, 통상의 경화 촉매라면 제한 없이 사용할 수 있다. 예를 들어, 술폰산계, 아민계 또는 주석계 경화 촉매를 사용할 수 있고, 구체적으로, p-톨루엔 술폰산(p-TSA), 디노닐나프탈렌 술폰산(DNNSA), 디노닐나프탈렌 디술폰산(DNNDSA), 플루오로 술폰산 등의 술폰산을 아민 또는 에폭시로 중화시킨 것일 수 있다. 아민 또는 에폭시로 중화시킨 경화 촉매를 사용할 경우, 코팅 조성물의 저장시 점도 증가 및 도막의 물성 저하를 방지할 수 있다. 상기 경화 촉매의 시판되는 예로, p-톨루엔 술폰산은 킹(KING)사의 NACURE2500, NACURE2510, NACURE 2530 등을 들 수 있으며, DNNSA는 NACURE1323, NACURE1419, NACURE1557, NACURE1953 등을 들 수 있고, DNNDSA는 NACURE3525, NACURE3327 등을 들 수 있으며, 플루오로 술폰산은 쓰리엠(3M)사의 FC520 등을 들 수 있다. 상기 경화 촉매는 보조 경화 촉매로, 3차 아민으로 중화된 p-톨루엔 술폰산, 디노닐나프탈렌 술폰산(DNNSA) 등을 추가로 포함할 수도 있다.
상기 아민 또는 에폭시는 경화 촉매의 반응을 차폐시키기 위해 첨가되며, 상기 아민은, 예를 들어 1차 아민, 2차 아민, 3차 아민 등을 들 수 있다. 통상적으로, 1차 아민은 도막에 황변 등 색상 변화를 일으키고, 3차 아민은 과량 사용시 도막 표면의 수축을 발생시키므로, 2차 아민을 사용하는 것이 바람직하다. 상기 2차 아민은, 예를 들어, 디에틸아민, 디이소프로필아민, 디이소프로판올아민, 디-n-프로필아민, 디-n-부틸아민, 디이소부틸아민, 디-2차-부틸아민, 디알릴아민, 디아밀아민, N-에틸-1,2-디메틸프로필아민, N-메틸헥실아민, 디-n-옥틸아민, 피페리딘, 2-피페콜린, 3-피페콜린, 4-피페콜린, 몰폴린 등을 들 수 있다. 또한, 이들의 유효량을 경화 촉매와 혼합하여 코팅 조성물에 첨가함으로써, 도막의 내오염성을 증가시킬 수 있다.
상기 경화 촉매는 코팅 조성물 총 중량에 대하여 0.1 내지 2.5 중량%의 양으로 첨가될 수 있다. 구체적으로, 상기 경화 촉매는 코팅 조성물 총 중량에 대하여 0.5 내지 2.3 중량%의 양으로 첨가될 수 있다. 경화 촉매의 첨가량이 상기 범위 내이면, 충분한 경도의 도막을 제조할 수 있다.
상기 슬립(slip)성 첨가제는 성형시 작업자에 의한 스크래치나 가전제품 사용자의 손톱 등에 의하여 스크래치가 발생하는 것을 방지하기 위해 첨가될 수 있으며, 통상의 슬립성 첨가제라면 제한 없이 사용할 수 있다. 예를 들어, 폴리에틸렌(PE)계 왁스, 폴리테트라플루오로에틸렌(PTFE)계 왁스, PTFE/PE 혼합 왁스(PTFE와 PE가 혼재된 왁스) 등을 들 수 있다. 한편, 실리콘 오일류를 슬립성 첨가제로 첨가할 경우, 실리콘 오일류의 표면장력이 너무 낮아 연속 롤코팅 작업성이 불량해지므로 바람직하지 못하다.
PTFE/PE 혼합 왁스가 바람직한데, 그 이유는 PE 왁스는 표면 배향은 우수하나 슬립 효과가 떨어지고, PTFE 왁스는 슬립 효과는 우수하나 표면 배향에 문제점이 있어, PTFE/PE 혼합 왁스를 사용할 경우 각각의 우수한 물성의 결합이 가능하기 때문이다. 이러한 PTFE/PE 혼합 왁스는 고속 분산기로 제조되어야 하며, 이는 밀도가 낮은 PE 왁스 주위에 PTFE 왁스가 붙은 형태, 즉 입자 크기가 큰 PE 왁스 주위에 PTFE 왁스가 정전기적인 힘으로 합쳐진 제품을 얻기 위한 것이다. 이러한 PTFE/PE 혼합 왁스를 사용한 도막은 경도가 우수하면서도 충분한 슬립성을 얻을 수 있다. 상기 PTFE/PE 혼합 왁스의 평균 입경은 3 ㎛ 이하일 수 있으며, 평균 입경이 3 ㎛를 초과하면 도막의 외관이 불량해질 수 있다.
상기 슬립성 첨가제의 첨가량은, 코팅 조성물 총 중량에 대하여 0.3 내지 10 중량%일 수 있다. 상기 범위 내이면, 도막의 광택 저하를 방지하면서 도막에 충분한 슬립성을 부여할 수 있다.
상기 슬립성 첨가제의 시판되는 제품으로는, 마이크로 파우더(Micro Powder)사의 MPI-31, F-600XF, 비와이케이(BYK) 사의 세라플로어(Ceraflour) 995, 996, 다니엘 프로덕트사의 SL-524, SL-409 등을 들 수 있다.
또한, 코팅 조성물의 작업성 향상을 위하여, 클레이, 아마이드 왁스, 흄드(fumed) 실리카 등의 첨가제를 추가로 첨가할 수 있으며, 그 첨가량은 코팅 조성물 총 중량에 대하여 0.1 내지 1 중량%일 수 있다.
상기 평활제는 분화구현상, 핀홀, 코팅 자국과 같은 도막의 표면 결함을 조정하는 역할을 하며, 시판되는 제품으로 예를 들어, BYK-350, BYK-354, BYK-355 등을 들 수 있다. 또한, 상기 평활제는 코팅 조성물 총 중량에 대하여 0.1 내지 1.0 중량%의 양으로 첨가될 수 있다.
코팅 조성물의 도막 평활성을 유지하고 도장 작업시 소포성 향상을 위하여, 레벨링제 및/또는 소포제를 첨가할 수 있다. 상기 레벨링제는 통상의 아크릴계, 비닐계 또는 실리콘계 레벨링제일 수 있다. 상기 레벨링제의 시판되는 예로는, 쿠수모토 케미칼사의 디스파론 L-1980, 디스파론 L-1984, 디스파론 AP-30 등을, 소포제의 시판되는 예로는 BYK사의 BYK356, BYK410 등을 들 수 있다.
상기 레벨링제는 코팅 조성물 총 중량에 대하여 0.5 내지 1.0 중량%의 양으로 첨가될 수 있다. 또한, 상기 소포제는 코팅 조성물 총 중량에 대하여 0.5 내지 1.0 중량%의 양으로 첨가될 수 있다.
한편, 본 발명의 코팅 조성물은 안료를 함유하지 않는 투명 도료 조성물일 수 있으나, 안료를 함유하는 칼라 도료 조성물일 수도 있다. 상기 안료는 피복 조성물 분야에서 사용 가능한 임의의 안료라면 특별히 제한하지 않으며, 예를 들어 시아닌 블루, 시아닌 그린 등의 유기 안료; 티타늄 옥사이드, 산화철, 카본 블랙, 크롬옐로우 및 다양한 소성 안료 등의 무기 안료; 및 활석, 점토, 실리카, 운모, 알루미나 등과 같은 체질 안료를 들 수 있다. 또한, 상기 안료는 코팅 조성물 총 중량에 대하여 0 내지 40 중량%의 양으로 첨가될 수 있다.
상기 코팅 조성물은 금속 또는 비금속 충진제 등을 추가적으로 포함할 수 있다.
본 발명은 아이소소바이드 및 지환족 디올을 포함하여 유리전이 온도 80 ℃ 이상의 고내열성을 가지며, 산업적으로 사용하는 범용 용제에 대한 용해성이 우수한 폴리에스테르 수지를 제조할 수 있다. 또한, 본 발명은 상기 폴리에스테르 수지를 포함함으로써 종래의 아이소소바이드를 포함하는 폴리에스테르 수지의 문제였던 낮은 용제 용해성이 향상된 코팅 조성물을 제공하고, 상기 코팅 조성물은 캔, 가전제품, 건축용 외장재 및 필름의 코팅 용도, 및 접착용도로 유용하게 사용될 수 있다.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
하기 실시예 및 비교예에 있어서, TPA는 테레프탈산(terephthalic acid), IPA는 이소프탈산(isophthalic acid), ISB는 아이소소바이드(isosorbide, 1,4:3,6-dianhydroglucitol), EG는 에틸렌글리콜(ethyleneglycol), NPG는 네오펜틸글리콜(neopentylglycol), TCDDM은 트리사이클로[5.2.1.02,6]데칸-4,8-디메탄올을 의미한다.
실시예 1: 폴리에스테르 수지의 제조
2가 산 성분으로서 TPA 157 g 및 IPA 157 g, 디올 성분으로서 NPG 59 g, EG 9 g, TCDDM 82 g 및 ISB 194 g을 1 ℓ 3구 플라스크에 넣고, 여기에 아세트산 아연0.10 g을 투입하고, 1 kgf/㎠의 가압조건 및 260 ℃에서 240 분 동안 에스테르화 반응을 수행하였다. 에스테르화 반응이 진행됨에 따라 부산물인 물이 계외로 110 g 유출되었을 때, 상압 조건에서 이산화 게르마늄(germanium dioxide) 촉매 및 트리에틸 포스포노아세테이트(triethyl phosphonoacetate) 안정제를 각각 0.2 g 및 0.05 g을 투입하고 중축합 반응을 수행하였다. 중축합 반응은 1.0 mmHg의 감압 조건 및 270 ℃에서 진행하였으며, 일정 점도(고유 점도 0.36 ㎗/g)에 도달하였을 때 중합을 종료하여 목적하는 폴리에스테르 수지를 수득하였다.
실시예 2 내지 5 및 비교예 1 내지 3
하기 표 1에 기재된 성분 및 함량을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리에스테르 수지를 제조하였다.
원료명 2가 산 성분(g) 디올 성분(g)
TPA IPA NPG EG TCDDM ISB
실시예 1 157 157 59 9 82 194
실시예 2 157 157 61 12 91 175
실시예 3 159 159 116 14 93 98
실시예 4 166 166 141 14 48 112
실시예 5 141 141 - 17 265 87
비교예 1 174 174 68 32 - 226
비교예 2 172 172 118 27 - 165
비교예 3 170 170 150 33 52 78
실험예 1: 폴리에스테르 수지의 성능 평가
상기 실시예 및 비교예에서 제조한 폴리에스테르 수지의 성능 평가 방법은 다음과 같다.
(1) 조성((TCDDM+ISB)/NPG의 성분비)
핵자기공명(NMR 600 ㎒) 분석법을 이용하였고, 폴리에스테르 수지를 클로로포름-디(chloroform-D)에 녹이고 proton NMR을 측정하여 (TCDDM+ISB) 몰%/NPG 몰%의 성분비(몰비)를 확인하였다.
(2) 고유 점도(Ⅳ)
150 ℃의 오르토클로로페놀에 1.2 g/㎗ 농도로 폴리에스테르 수지를 용해시킨 후, 35 ℃의 항온조에서 우벨로드형 점도계를 사용하여 고유 점도(㎗/g)를 측정하였다.
(3) 내열성: 유리전이 온도(Tg)
유리전이 온도(Glass-rubber transition temperature; Tg)로서, 승온 속도 10 ℃/분에서 2차 스캔(scan)시의 Tg 온도(℃)를 측정하였다.
(4) 수평균분자량(Mn)
겔투과크로마토그래피를 이용하고, 폴리스티렌을 표준으로 사용하였으며, 폴리에스테르 수지를 테트라하이드로퓨란에 녹여서 측정하였다.
(5) 용제 용해도
용제 용해도는 산업적으로 범용되는 용제 중 비점에 따라 대표적인 4종의 용제인 코코졸-100(Kocosol-100; K-100), 사이클로헥사논(cyclohexanone), 톨루엔(toluene), 메틸에틸케톤(methylethylketone; MEK)을 선택하여 하기 표 2의 용제 조성에 폴리에스테르 수지를 40 중량%의 농도로 녹여서, 수지가 완전히 용해되는지 여부를 관찰하였다. 수지가 완전히 용해되어 투명한 경우를 O로 표시하고, 미용해된 수지가 남아 있거나 불투명하고 시간이 지나 층분리가 일어나는 경우는 X로 표시하였다.
상기 물성측정의 결과를 하기 표 2에 나타냈다.
IV(㎗/g) Tg(℃) Mn (TCDDM+ISB)/NPG 성분비(몰비) 용제 용해도
사이클로헥사논:K-100 = 50:50 부피비 톨루엔:MEK = 50:50 부피비 MEK
실시예 1 0.36 120 12,000 2.2 O O X
실시예 2 0.39 112 14,000 1.9 O O X
실시예 3 0.44 93 16,000 0.8 O O O
실시예 4 0.41 87 15,000 0.5 O O O
실시예 5 0.37 111 13,000 - O O X
비교예 1 0.38 112 13,000 1.7 O X X
비교예 2 0.48 98 17,000 0.7 O O X
비교예 3 0.52 79 20,000 0.3 0 0 0
표 2에서 보는 바와 같이, 지환족 디올인 TCDDM을 사용하지 않은 비교예 1 및 2와 비교하여, 실시예 1 내지 5의 폴리에스테르 수지는 모두 80 ℃ 이상의 높은 유리전이 온도를 가졌으며, 다양한 용제에 대해서 용해도 또한 우수함을 알 수 있다. 나아가, 실시예 2 및 5는 유사한 유리전이 온도를 가지는 비교예 1와 비교하여, 톨루엔과 MEK의 혼합용제에도 용해되어 향상된 용제 용해도를 보였다.
또한, (TCDDM+ISB)/NPG 성분비(몰비)가 0.5 미만인 비교예 3은 유리전이 온도가 80 ℃ 미만으로 내열성이 낮았다. 나아가, 2.5 이상인 경우, 반응시간이 급격히 증가하여 고분자 합성이 어렵거나 가격 상승, 용해도 저하 등의 단점이 있었다(결과 미기재).
실시예 6 내지 10 및 비교예 4 내지 6: 코팅 조성물의 제조
사이클로헥사논/솔벤트나프타 100(솔벤트나프타 100의 제조사: SK 에너지, 제품명: Kocosol-100) 혼합 용매(50/50 중량비)에 실시예 1 내지 5 및 비교예 1 내지 3의 폴리에스테르 수지 각각을 40 중량%의 농도로 용해시켜 수지 용액을 제조하였다. 상기 수지 용액 208 g, TiO2(루타일형, rutile type) 100 g 및 습윤제(제조사: BYK사, 제품명: BYK-110) 1.5 g을 혼합하여 분산 배합액(mill base)를 제조하였다.
상기 수지 용액 0.6 g, 상기 분산 배합액 30 g, 가교제(제조사: 사이텍(CYTEC)사, 제품명: CYMEL-303) 1.4 g, 경화 촉매(제조사: King industries, 제품명: Nacure1953) 0.8 g, 상기 혼합 용매 3 g 및 평활제(제조사: BYK사, 제품명: BYK-355) 0.2 g을 혼합하여 코팅 조성물을 제조하였다.
실험예 2: 코팅 조성물의 물성 평가
상기 실시예 6 내지 10 및 비교예 4 내지 6에서 제조한 코팅 조성물의 성능 평가 방법은 다음과 같다.
(6) 광택
0.5 mm 두께의 아연 도금 강판에 코팅 조성물을 코팅하고, 열풍 건조기로 230 ℃에서 5분 동안 건조하여 도막 두께 20 ㎛의 도장 강판을 제조하였다. 상기 도장 강판의 60° 표면 광택을 BYK사의 광택계(glossmeter)를 이용하여 측정하였다.
(7) MEK 러빙(rubbing)
상기 (6)에서 사용한 것과 동일한 도장 강판에 대하여, 내화학성 측정을 위하여 MEK를 충분히 적신 거즈를 문지르고 문지른 횟수를 측정하였다.
(8) 진자 경도
상기 (6)에서 사용된 것과 동일한 도장 강판에 대하여, T.Q.C 사의 진자경도계 Konig 측정법 및 ISO 1522(2005)를 이용하여 진자 경도를 측정하였다. 구체적으로, 도장 강판 표면에 추(무게: 200 g)를 올리고 추가 멈춰있는 상태를 0 °로 기준하고, 추를 끌어올려 각도가 6 °에서 진자운동을 시작해 3 °가 될 때까지의 시간을 3회 측정하였다.
(9) 연필 경도
상기 (6)에서 사용된 것과 동일한 도장 강판에 대하여, 미쓰비시 연필로 도막의 scratch hardness를 측정하였다. 다양한 경도의 연필을 테스트 샘플 위에 45 도 각도로 비스듬히 올려놓고 750 g의 하중으로 긁어서 표면의 손상 정도에 따라 도막의 경도를 측정하였다. 특정 경도의 연필로 상기 조건에서 표면을 긁었을 때 표면에 scratch가 생기지 않는 최대 경도를 기록하였다.
상기 물성측정의 결과를 하기 표 3에 나타냈다.
광택(60°) MEK rubbing(횟수) 진자 경도(초, 3회 평균) 연필 경도
실시예 6 90 >100 188 H
실시예 7 87 >100 187 H
실시예 8 91 >100 190 H
실시예 9 91 >100 193 H
실시예 10 96 >100 190 H
비교예 4 61 >100 179 H
비교예 5 90 >100 200 H
비교예 6 92 >100 195 F-
표 3에서 보는 바와 같이, 본 발명의 코팅 조성물은 경도, 광택 및 내 스크래치성 등이 모두 우수한 도막을 형성함을 알 수 있다.

Claims (15)

  1. (a) 2가 산 성분; 및
    (b) 아이소소바이드 및 지환족 디올을 포함하는 디올 성분이 공중합되어 형성된 반복단위를 갖고,
    유리전이 온도가 80 ℃ 이상인, 폴리에스테르 수지.
  2. 제1항에 있어서,
    상기 디올 성분이 디올 성분 총 몰수에 대하여 1 내지 50 몰%의 아이소소바이드 및 1 내지 80 몰%의 지환족 디올을 포함하는, 폴리에스테르 수지.
  3. 제1항에 있어서,
    상기 지환족 디올이 1종 이상의 트리사이클로C7 - 14알칸의 디올 유도체인, 폴리에스테르 수지.
  4. 제3항에 있어서,
    상기 지환족 디올이 트리사이클로[3.2.1.02,6]옥탄(tricyclo[3.2.1.02,6]octane), 트리사이클로[4.2.1.02,6]노난(tricyclo[4.2.1.02,6]nonane), 트리사이클로[5.2.1.02,6]데칸(tricyclo[5.2.1.02,6]decane), 트리사이클로[6.2.1.02,6]운데칸(tricyclo[6.2.1.02,6]undecane), 트리사이클로[7.2.1.02,6]도데칸(tricyclo[7.2.1.02,6]dodecane), 트리사이클로[4.2.1.12,5]데칸(tricyclo[4.2.1.12,5]decane), 트리사이클로[4.3.1.12,5]데칸(tricyclo[4.3.1.12,5]decane), 트리사이클로[4.4.1.12,5]데칸(tricyclo[4.4.1.12,5]decane), 트리사이클로[2.2.1.02,6]헵탄(tricyclo[2.2.1.02,6]heptane), 트리사이클로[2.2.2.02,6]옥탄(tricyclo[2.2.2.02,6]octane), 트리사이클로[3.2.2.02,6]노난(tricyclo[3.2.2.02,6]nonane), 트리사이클로[3.3.1.13,6]데칸(tricyclo[3.3.1.13,6]decane), 트리사이클로[3.2.1.13,7]노난(tricyclo[3.2.1.13,7]nonane), 트리사이클로[4.2.2.22,5]도데칸(tricyclo[4.2.2.22,5]dodecane), 트리사이클로[4.3.2.22,5]트리데칸(tricyclo[4.3.2.22,5]tridecane), 트리사이클로[4.4.2.22,5]테트라데칸(tricyclo[4.4.2.22,5]tetradecane), 트리사이클로[4.2.1.03,7]노난(tricyclo[4.2.1.03,7]nonane), 트리사이클로[4.4.1.11,5]도데칸(tricyclo[4.4.1.11,5]dodecane), 트리사이클로[6.2.1.02,7]운데칸(tricyclo[6.2.1.02,7]undecane), 트리사이클로[5.2.2.02,6]운데칸(tricyclo[5.2.2.02,6]undecane), 트리사이클로[6.2.2.02,7]도데칸(tricyclo[6.2.2.02,7]dodecane), 트리사이클로[4.3.2.02,5]운데칸(tricyclo[4.3.2.02,5]undecane), 트리사이클로[4.2.2.02,5]데칸(tricyclo[4.2.2.02,5]decane) 및 트리사이클로[5.5.1.03,11]트리데칸(tricyclo[5.5.1.03,11]tridecane)으로 이루어진 군으로부터 선택된 화합물의 디올 유도체 또는 이들의 혼합물인, 폴리에스테르 수지.
  5. 제1항에 있어서,
    상기 디올 성분이 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로판디올, 1,4-부탄디올, 펜탄디올, 헥산디올, 네오펜틸글리콜, 1,2-사이클로헥산디올, 1,4-사이클로헥산디올, 1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올, 1,4-사이클로헥산디메탄올 및 테트라메틸사이클로부탄디올로 이루어진 군으로부터 선택된 1종 이상의 화합물을 디올 성분 총 몰수에 대하여 19 내지 80 몰%의 양으로 추가로 포함하는, 폴리에스테르 수지.
  6. 제5항에 있어서,
    상기 디올 성분이 네오펜틸글리콜을 추가로 포함하고,
    상기 디올 성분 중 아이소소바이드 및 지환족 디올의 합과 네오펜틸글리콜의 몰비가 0.5 내지 2.5 : 1인, 폴리에스테르 수지.
  7. 제1항에 있어서,
    상기 2가 산 성분이 1종 이상의 C8-C14의 방향족 디카르복실산인, 폴리에스테르 수지.
  8. 제1항에 있어서,
    상기 2가 산 성분이 테레프탈산, 이소프탈산, 나프탈렌 디카르복실산, 디페닐 디카르복실산, 이들의 유도체 및 이들의 혼합물로 이루어진 군으로부터 선택된 화합물을 포함하는, 폴리에스테르 수지.
  9. 제8항에 있어서,
    상기 2가 산 성분이 2가 산 성분 총 몰수에 대하여 테레프탈산, 이소프탈산 또는 이들의 혼합물을 1 내지 100 몰%의 양으로 포함하는, 폴리에스테르 수지.
  10. 제1항에 있어서,
    상기 폴리에스테르 수지는 수평균분자량이 2,000 내지 20,000이고, 수산기값이 2 내지 60 ㎎KOH/g이며, 산가가 0.1 내지 20 ㎎KOH/g인, 폴리에스테르 수지.
  11. 제1항에 있어서,
    상기 폴리에스테르 수지는 유리전이 온도가 80 내지 150 ℃인, 폴리에스테르 수지.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 폴리에스테르 수지; 및
    유기 용매를 포함하는, 코팅 조성물.
  13. 제12항에 있어서,
    상기 유기 용매가 방향족 탄화수소계, 글리콜 에스테르계, 글리콜 에테르계, 케톤계, 알코올계 용매 및 이들의 혼합물로 이루어진 군으로부터 선택되는, 코팅 조성물.
  14. 제12항에 있어서,
    상기 코팅 조성물이 10 내지 40 중량%의 폴리에스테르 수지 및 60 내지 90 중량%의 유기 용매를 포함하는, 코팅 조성물.
  15. 제12항에 있어서,
    상기 코팅 조성물이 가교제, 경화 촉매, 슬립성 첨가제, 레벨링제, 소포제, 안료, 평활제(leveling agent) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 성분을 추가로 포함하는, 코팅 조성물.
PCT/KR2017/000135 2016-02-04 2017-01-05 내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물 WO2017135582A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201804740YA SG11201804740YA (en) 2016-02-04 2017-01-05 Polyester resin having excellent heat resistance and solubility in solvents, and coating composition containing same
CN201780006392.4A CN108463480A (zh) 2016-02-04 2017-01-05 具有优异的耐热性和溶剂溶解性的聚酯树脂以及含有其的涂料组合物
US16/063,387 US11401372B2 (en) 2016-02-04 2017-01-05 Polyester resin having excellent heat resistance and solubility in solvents, and coating composition containing same
CN202310978066.7A CN116987254A (zh) 2016-02-04 2017-01-05 具有优异的耐热性和溶剂溶解性的聚酯树脂以及含有其的涂料组合物
EP17747627.2A EP3412697B1 (en) 2016-02-04 2017-01-05 Polyester resin having excellent heat resistance and solubility in solvents, and coating composition containing same
JP2018538105A JP6957480B2 (ja) 2016-02-04 2017-01-05 優れた耐熱性および溶媒への溶解性を有するポリエステル樹脂、ならびにこれを含有するコーティング組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0014425 2016-02-04
KR1020160014425A KR102670942B1 (ko) 2016-02-04 2016-02-04 내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물

Publications (2)

Publication Number Publication Date
WO2017135582A2 true WO2017135582A2 (ko) 2017-08-10
WO2017135582A3 WO2017135582A3 (ko) 2018-08-02

Family

ID=59500806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000135 WO2017135582A2 (ko) 2016-02-04 2017-01-05 내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물

Country Status (8)

Country Link
US (1) US11401372B2 (ko)
EP (1) EP3412697B1 (ko)
JP (2) JP6957480B2 (ko)
KR (1) KR102670942B1 (ko)
CN (2) CN108463480A (ko)
SG (1) SG11201804740YA (ko)
TW (1) TWI654220B (ko)
WO (1) WO2017135582A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111683988A (zh) * 2018-02-07 2020-09-18 Sk化学公司 共聚的饱和聚酯树脂和包含其的涂覆组合物
CN111683989A (zh) * 2018-02-07 2020-09-18 Sk化学公司 共聚的饱和聚酯树脂和包含其的涂覆组合物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396043B (zh) * 2019-02-05 2024-02-27 伊士曼化工公司 用于涂料的降低雾度的组合物
KR102318120B1 (ko) * 2020-04-03 2021-10-26 도레이첨단소재 주식회사 유기용매 가용성 공중합 폴리에스테르 및 이를 포함하는 수처리막의 지지층 형성용 코팅액
TWI795003B (zh) * 2021-09-30 2023-03-01 長春人造樹脂廠股份有限公司 聚酯與成形品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058974B1 (ko) 2002-11-13 2011-08-23 이스트만 케미칼 컴파니 아이소솔바이드를 함유하는 폴리에스터의 제조방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119259A (ja) * 2001-10-12 2003-04-23 Nippon Ester Co Ltd ポリエステル樹脂
KR20100024304A (ko) 2008-08-25 2010-03-05 에스케이씨 주식회사 편광판용 폴리에스터 보호필름 및 이를 포함하는 적층체
JP5370994B2 (ja) 2008-09-17 2013-12-18 ユニチカ株式会社 可溶性共重合ポリエステル樹脂
KR20110028696A (ko) 2009-09-14 2011-03-22 에스케이케미칼주식회사 아이소소바이드와 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지 및 그 제조방법
KR101639629B1 (ko) 2009-11-13 2016-07-14 에스케이케미칼주식회사 공중합 폴리에스테르 열 수축 필름
JP2011190349A (ja) * 2010-03-15 2011-09-29 Unitika Ltd 可溶性共重合ポリエステル樹脂
KR101796764B1 (ko) * 2011-01-31 2017-11-10 에스케이케미칼주식회사 공중합 폴리에스테르 수지 조성물 및 그 제조방법
JP5717520B2 (ja) 2011-04-15 2015-05-13 三菱樹脂株式会社 ポリエステル系樹脂組成物及び樹脂成形体
JP5979919B2 (ja) 2012-03-13 2016-08-31 ユニチカ株式会社 コーティング剤、塗膜および積層体
JP6260092B2 (ja) 2012-03-29 2018-01-17 三菱ケミカル株式会社 眼鏡レンズ
TWI583718B (zh) 2012-04-18 2017-05-21 Teijin Ltd Copolycarbonate
EP2915849B1 (en) 2012-11-05 2018-03-28 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article
JP2014205335A (ja) 2013-04-16 2014-10-30 帝人株式会社 三次元構造を有するポリカーボネート樹脂成形品の製造方法およびその成形品
JP5916963B2 (ja) 2013-12-17 2016-05-11 ユニチカ株式会社 ポリエステル樹脂組成物およびそれを用いて得られる成形体
JP6604201B2 (ja) 2014-04-25 2019-11-13 三菱ケミカル株式会社 ポリエステル樹脂、ポリエステル樹脂の製造方法及びポリエステル樹脂を含む塗料組成物
FR3044665A1 (fr) 2015-12-02 2017-06-09 Roquette Freres Copolyesters thermoplastiques aromatiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diols cycliques

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058974B1 (ko) 2002-11-13 2011-08-23 이스트만 케미칼 컴파니 아이소솔바이드를 함유하는 폴리에스터의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111683988A (zh) * 2018-02-07 2020-09-18 Sk化学公司 共聚的饱和聚酯树脂和包含其的涂覆组合物
CN111683989A (zh) * 2018-02-07 2020-09-18 Sk化学公司 共聚的饱和聚酯树脂和包含其的涂覆组合物
US11401371B2 (en) 2018-02-07 2022-08-02 Sk Chemicals Co., Ltd. Copolymerized saturated polyester resin and coating composition containing same
CN111683989B (zh) * 2018-02-07 2023-01-06 Sk化学公司 共聚的饱和聚酯树脂和包含其的涂覆组合物

Also Published As

Publication number Publication date
KR102670942B1 (ko) 2024-05-31
EP3412697A4 (en) 2019-07-03
KR20170093011A (ko) 2017-08-14
CN108463480A (zh) 2018-08-28
SG11201804740YA (en) 2018-07-30
TWI654220B (zh) 2019-03-21
EP3412697A2 (en) 2018-12-12
JP2021185229A (ja) 2021-12-09
CN116987254A (zh) 2023-11-03
JP6957480B2 (ja) 2021-11-02
WO2017135582A3 (ko) 2018-08-02
US20190077908A1 (en) 2019-03-14
EP3412697B1 (en) 2022-09-07
TW201728611A (zh) 2017-08-16
US11401372B2 (en) 2022-08-02
JP7408602B2 (ja) 2024-01-05
JP2019510093A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2017135582A2 (ko) 내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물
KR100219354B1 (ko) 열경화성폴리에스테르수지
WO2012138145A2 (ko) 코팅용 폴리에스테르 바인더 수지 및 이를 함유하는 코팅 조성물
US4107148A (en) Powder coating composition comprising a mixture of a polyester and plural silicone compounds
WO2018056637A1 (ko) 수성 도료 조성물
WO2016104875A1 (ko) 고탄성 폴리에스터 변성 우레탄 수지 및 이를 포함하는 클리어코트 조성물
KR101514991B1 (ko) 변성 실리콘 폴리에스테르 수지를 포함하는 분체 도료용 조성물의 제조방법
WO2019088551A1 (ko) 도료 조성물
WO2020184792A1 (ko) Pcm 칼라강판용 불연성 도료 조성물
KR101467324B1 (ko) 이소비드를 포함하는 폴리에스테르 수지 및 이를 포함하는도료
WO2020122486A2 (ko) 수용성 베이스 코트 조성물
JP3522376B2 (ja) 耐汚染性に優れた塗膜を形成できる塗料組成物
JPH10130576A (ja) 塗料組成物
WO2011090322A2 (ko) 피씨엠 이면 코팅용 하이브리드 수지, 이의 제조방법 및 이를 포함하는 피씨엠 이면용 하이브리드 타입 도료 조성물
WO2014133298A1 (en) Polyalkylene carbonate diol paint composition
KR20150055835A (ko) 폴리에스테르 수지를 포함하는 분체 도료용 조성물의 제조방법
KR100417087B1 (ko) 자체경화형실리콘변성폴리에스테르수지의제조방법및이를함유하는내열성도료
WO2019132180A1 (ko) 도료 조성물
WO2023211031A1 (ko) 현무암무늬 컬러강판 제조용 도료 조성물 및 이에 의해 제조된 컬러강판
WO2017126941A1 (ko) 내장부품용 하이그로시 도료 조성물
KR20180027092A (ko) 피씨엠용 폴리에스테르 도료 조성물
WO2022235028A1 (ko) 클리어 코트 조성물
WO2023182627A1 (ko) 도료 조성물
WO2024054023A1 (ko) 수용성 베이스 코트 조성물
WO2020251153A1 (ko) 하도 도료 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747627

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 11201804740Y

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2018538105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747627

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747627

Country of ref document: EP

Effective date: 20180904