WO2017135256A1 - 蛍光体とその製造方法 - Google Patents
蛍光体とその製造方法 Download PDFInfo
- Publication number
- WO2017135256A1 WO2017135256A1 PCT/JP2017/003438 JP2017003438W WO2017135256A1 WO 2017135256 A1 WO2017135256 A1 WO 2017135256A1 JP 2017003438 W JP2017003438 W JP 2017003438W WO 2017135256 A1 WO2017135256 A1 WO 2017135256A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- firing
- fired product
- hydrogen sulfide
- filled
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/7784—Chalcogenides
- C09K11/7787—Oxides
- C09K11/7789—Oxysulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/30—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7701—Chalogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
- C09K11/7769—Oxides
- C09K11/7771—Oxysulfides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/7784—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- Embodiments of the present invention relate to a phosphor and a manufacturing method thereof.
- Sodium rare earth sulfide phosphors are known.
- One method for producing such a phosphor includes a method of reacting sulfides of respective metal elements. The method using sulfide has the advantage that it is easy to manufacture because it contains less oxygen as an impurity. However, it is generally difficult to obtain a high-purity sulfide raw material, and it is difficult to improve the light emission intensity based on the mixing of impurities.
- the NaGdS 2 phosphor can also be manufactured by using an oxide-based material from which a relatively high-purity material is easily available, and calcining it in hydrogen sulfide.
- the manufacturing method using an oxide-based material is suitable for a small amount of trial production, but it is difficult to control the residual amount of oxygen derived from the oxide-based material when producing a large amount of phosphor. A large amount of oxygen tends to remain, and grain growth tends to be insufficient based on this. These cause a decrease in emission intensity. Because of this, it is possible to manufacture sodium rare earth sulfide phosphors with improved controllability of the residual amount of oxygen and the like to improve emission intensity, and such phosphors relatively easily and in large quantities. There is a need for a manufacturing method.
- the problem to be solved by the present invention is to provide a sodium rare earth sulfide phosphor having improved emission intensity and a method for producing the same.
- the phosphor of the embodiment is Composition formula: Na x RM y S z O a (Wherein R represents at least one element selected from the group consisting of Y, La, Gd, and Lu, M represents at least one element selected from the group consisting of Bi, Ce, Eu, and Pr, and x represents An atomic ratio satisfying 0.93 ⁇ x ⁇ 1.07, y is an atomic ratio satisfying 0.00002 ⁇ y ⁇ 0.01, z is an atomic ratio satisfying 1.9 ⁇ z ⁇ 2.1, a Is an atomic ratio satisfying 0.001 ⁇ a ⁇ 0.05.) It has the composition represented by these.
- the manufacturing method of the embodiment is the manufacturing method of the phosphor of the embodiment, and includes at least one first compound selected from the group consisting of sodium oxide, oxyacid salt, and halide, and the element R And at least one second compound selected from the group consisting of oxides, oxyacid salts, and halides, and at least one second compound selected from the group consisting of oxides, oxyacid salts, and halides of the element M 3 to prepare a raw material mixture by mixing the compound of No. 3 in a desired ratio so as to obtain the phosphor having the composition represented by the composition formula, and filling the raw material mixture into a boron nitride container Firing in a hydrogen sulfide atmosphere at a temperature of 1000 ° C.
- the phosphor of the embodiment is Composition formula: Na x RM y S z O a (1) (Wherein R represents at least one element selected from the group consisting of Y, La, Gd, and Lu, M represents at least one element selected from the group consisting of Bi, Ce, Eu, and Pr, and x represents An atomic ratio satisfying 0.93 ⁇ x ⁇ 1.07, y is an atomic ratio satisfying 0.00002 ⁇ y ⁇ 0.01, z is an atomic ratio satisfying 1.9 ⁇ z ⁇ 2.1, a Is an atomic ratio satisfying 0.001 ⁇ a ⁇ 0.05.) It has the composition represented by these.
- the phosphor according to the embodiment is a phosphor in which a basic substance of NaRS 2 contains a trace amount of the activation element M (NaRS 2 : M y ), and the oxygen content a is controlled and specified. It is.
- Na and the element R are elements constituting the phosphor matrix.
- the element R is at least one element selected from the group consisting of yttrium (Y), lanthanum (La), gadolinium (Gd), and lutetium (Lu). By using such a rare earth element R, the emission intensity is increased.
- An excellent phosphor matrix can be formed.
- the element R preferably contains at least gadolinium. In such a case, the emission intensity of the phosphor can be increased. More preferably, the element R is gadolinium.
- the element M is an activation element (activation element) and is at least one element selected from the group consisting of bismuth (Bi), cerium (Ce), europium (Eu), and praseodymium (Pr).
- the composition of the phosphor matrix is not limited to NaRS 2 .
- a slight deviation from the stoichiometric composition ratio can easily occur.
- the deviation of the ratio of each element from the stoichiometric composition ratio becomes too large, the characteristics as a phosphor deteriorate.
- the composition formula (1) when the atomic ratio of the element R is 1, the atomic ratio x of sodium is in the range of 0.93 ⁇ x ⁇ 1.07, and the ratio z of sulfur (S) is 1.9 ⁇ z. A range of ⁇ 2.1 is preferable. According to the phosphor containing such amounts of sodium and sulfur, good emission intensity can be obtained.
- the atomic ratio y of the activation element M is preferably in the range of 0.00002 ⁇ y ⁇ 0.01.
- the sodium rare earth sulfide-based phosphor contains such an amount of the activation element M, good emission intensity can be obtained. Even if the atomic ratio y of the activation element M is 0.00002 or less or 0.01 or more, the emission intensity of the phosphor is lowered.
- the activation element M may be any of bismuth (Bi), cerium (Ce), europium (Eu), and praseodymium (Pr), and may contain two or more elements.
- the activation element M is preferably selected according to the characteristics of the target phosphor.
- the phosphor of the embodiment contains a trace amount of oxygen (O).
- O oxygen
- the oxygen atomic ratio a is preferably in the range of 0.001 ⁇ a ⁇ 0.05.
- the particle growth of the phosphor can be promoted, and the emission intensity of the phosphor can be increased.
- the phosphor of the embodiment contains oxygen corresponding to an amount in which the atomic ratio a exceeds 0.001.
- the emission luminance of the phosphor can be increased even in a manufacturing process on a commercial mass production basis.
- the phosphor manufacturing method of the embodiment includes a raw material preparation step for preparing a raw material mixture, a first firing step for firing the raw material mixture to obtain a first fired product, and a first firing product by firing the first fired product. And a second firing step for obtaining a fired product.
- the phosphor of the embodiment can be manufactured by a manufacturing method described in detail below.
- the raw material preparation step first, at least one first compound selected from the group consisting of sodium oxide, oxyacid salt, and halide, and element R oxide, oxyacid salt, and halide are included. And at least one second compound selected from the group and at least one third compound selected from the group consisting of an oxide, an oxyacid salt, and a halide of the element M, and these compounds are represented by the composition formula (
- a raw material mixture is prepared by mixing at a desired ratio so that a phosphor having the composition represented by 1) is obtained.
- the mixing ratio of the respective raw materials (first to third compounds) may be set by slightly increasing / decreasing the composition ratio represented by the composition formula (1) in consideration of volatilization of elements in the firing step.
- the sodium raw material at least one first compound selected from the group consisting of sodium oxide, oxyacid salt, and halide is used.
- the raw materials for sodium, carbonates, sulfates, nitrates and the like can be mentioned as oxyacid salts, but sodium carbonate (Na 2 CO 3 ) should be used because it is stable as a compound and the amount of impurities mixed can be reduced. Is preferred.
- the halide include fluoride, chloride, bromide, and iodide.
- Sodium fluoride (NaF) is preferably used in order to improve reactivity and the like.
- As a sodium raw material it is preferable to use at least one of sodium carbonate and sodium fluoride, and it is more preferable to use both sodium carbonate and sodium fluoride as described later.
- a raw material for the element R at least one second compound selected from the group consisting of an oxide of the element R, an oxyacid salt, and a halide is used.
- the raw material for the element M at least one third compound selected from the group consisting of an oxide of the element M, an oxyacid salt, and a halide is used.
- the oxyacid salt include carbonates, sulfates, nitrates, and the like.
- the halide include fluoride, chloride, bromide, and iodide.
- an oxide of the element R such as gadolinium oxide (Gd 2 O 3 ) is preferably used.
- the raw material mixture preferably contains at least one selected from the group consisting of a halide of sodium such as sodium oxide, a halide of the element R, and a halide of the element M.
- a halide such as fluoride
- crystal growth of the phosphor particles can be promoted.
- One raw material of sodium, element R, or element M may be only a halide, but an oxide or an oxyacid salt and a halide are used in combination, in other words, a halide is used as a part of the raw material. Is preferred. Thereby, crystal growth of the phosphor particles can be promoted.
- the halide used as a raw material is preferably a sodium halide. That is, the sodium raw material preferably contains an oxyacid salt such as sodium carbonate and a sodium halide such as sodium fluoride. Thereby, the crystal growth of the phosphor particles can be promoted similarly to the above.
- the first firing step is a step of obtaining a first fired product by firing at a temperature of 1000 ° C. or less in a hydrogen sulfide atmosphere in a state where the above-described raw material mixture is filled in a boron nitride container.
- the amount of residual oxygen in the first fired product can be reduced. For example, when an alumina container often used as a firing container is filled and fired, the amount of residual oxygen in the first fired product increases, and the amount of residual oxygen is reduced even when the second firing process is applied. It cannot be reduced sufficiently.
- the container When a non-oxide container such as carbon is used, the container may be corroded by oxygen generated from the raw material, which causes contamination of the fired product.
- a quartz glass container for example, the container may react with the halide-based material, and the container may be damaged.
- the container made of boron nitride it is possible to eliminate the disadvantages caused by the container made of these other materials and to stably obtain the first fired product with a small amount of residual oxygen.
- the first firing step is performed at a temperature of 1000 ° C. or lower in a hydrogen sulfide atmosphere.
- the firing temperature is more preferably 950 ° C. or lower.
- the firing temperature is preferably 800 ° C. or higher.
- the firing temperature is more preferably 850 ° C. or higher.
- the first firing step is preferably carried out by firing the raw material mixture for 1 hour or more at a temperature of 1000 ° C.
- the firing time is less than 1 hour, the sulfurization reaction of the raw material mixture may not proceed sufficiently.
- the firing time is more preferably 3 hours or more.
- the upper limit of the firing time is not particularly limited, but it is preferably 24 hours or less in consideration of the efficiency of the firing process.
- the first fired product described above is fired at a temperature of 900 ° C. or higher in a hydrogen sulfide atmosphere in a state where the quartz glass container is filled, and the second fired product is obtained as a target phosphor. It is the process of obtaining.
- oxygen remaining in the first fired product can be further removed. That is, the amount of residual oxygen in the second fired product as the phosphor can be further reduced.
- the second firing step is preferably performed at a higher temperature than the first firing step. Specifically, it is performed at a temperature of 900 ° C. or higher.
- the reaction of the halogenated raw material in the raw material mixture proceeds, for example, in the first firing step, so that the reaction of the container or the like is not caused.
- a quartz glass container it is possible to further reduce the amount of residual oxygen in the second fired product as a phosphor, compared to the case of using a container made of another material.
- the second firing step is performed at a temperature of 900 ° C. or higher in a hydrogen sulfide atmosphere.
- the firing temperature is less than 900 ° C., the effect of reducing residual oxygen is lowered and the crystal growth of the phosphor cannot be promoted.
- the first fired product is fired in a hydrogen sulfide atmosphere at a temperature of 900 ° C. or higher, a part of sodium reacts with hydrogen sulfide to form sodium sulfide, which is melted at a temperature of 900 ° C. or higher and flux. Therefore, the crystal growth of the phosphor can be promoted.
- the firing temperature is more preferably 950 ° C. or higher.
- the firing temperature is preferably 1100 ° C. or lower.
- the firing temperature is more preferably 1050 ° C. or lower.
- the second firing step is preferably performed by firing the first fired product for 1 hour or more at a temperature of 900 ° C. or higher in a hydrogen sulfide atmosphere.
- the firing time is less than 1 hour, the first fired product is not sufficiently fired, and sufficient light emission intensity may not be obtained.
- the firing time is more preferably 3 hours or more.
- the upper limit of the firing time is not particularly limited, but it is preferably 24 hours or less in consideration of the efficiency of the firing process.
- the target phosphor can be obtained as the second fired product.
- raw materials for each element (Na, R, M) used in the manufacturing process oxide-based raw materials (oxides or oxyacid salts) and halide-based raw materials for which it is relatively easy to obtain relatively high-purity raw materials are used. Therefore, it is possible to suppress a decrease in light emission intensity due to the mixing of impurities.
- the phosphor (second The amount of residual oxygen in the fired product) can be sufficiently reduced and the crystal growth of the phosphor can be promoted. Accordingly, it is possible to provide a sodium rare earth sulfide-based (Na x RS z O a : M y ) phosphor containing the element M as an activation element with improved emission intensity.
- Comparative Example 1 Na 2 CO 3 , Gd 2 O 3 and Eu 2 O 3 were mixed at a molar ratio of 1.05: 1.00: 0.0001, filled in a boron nitride crucible, and placed in a quartz reaction tube. .
- the phosphor of Comparative Example 1 was produced by placing in a firing furnace and firing at 900 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Comparative Example 2 Na 2 CO 3 , NaF, Gd 2 O 3 , Eu 2 O 3 were mixed in a molar ratio of 0.84: 0.42: 1.00: 0.0001 and charged into a boron nitride crucible, It was installed in a quartz reaction tube. In this state, the phosphor of Comparative Example 2 was produced by placing in a firing furnace and firing at 900 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Comparative Example 3 The phosphor of Comparative Example 1 was filled in a quartz glass boat and installed in a quartz reaction tube. In this state, the phosphor of Comparative Example 3 was produced by placing in a firing furnace and firing at 900 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Comparative Example 4 The phosphor of Comparative Example 2 was filled in a quartz glass boat and installed in a quartz reaction tube. In this state, the phosphor of Comparative Example 4 was produced by placing in a firing furnace and firing at 900 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Example 1 The phosphor of Comparative Example 1 was filled in a quartz glass boat and installed in a quartz reaction tube. In this state, the phosphor of Example 1 was prepared by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Example 2 The phosphor of Comparative Example 2 was filled in a quartz glass boat and installed in a quartz reaction tube. In this state, the phosphor of Example 2 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Example 3 The phosphor of Comparative Example 2 was filled in a quartz glass boat and installed in a quartz reaction tube. In this state, the phosphor of Example 3 was produced by placing in a firing furnace and firing for 3 hours at a temperature of 1100 ° C. in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Example 4 Na 2 CO 3 , NaF, Gd 2 O 3 , Eu 2 O 3 are mixed at a molar ratio of 0.76: 0.38: 1.00: 0.0001, filled in a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 4 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 5 Na 2 CO 3 , NaF, Gd 2 O 3 , Eu 2 O 3 are mixed at a molar ratio of 0.80: 0.40: 1.00: 0.0001, filled in a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 5 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 6 Na 2 CO 3 , NaF, Gd 2 O 3 , Eu 2 O 3 are mixed at a molar ratio of 0.88: 0.44: 1.00: 0.0001, filled in a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 6 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 7 Na 2 CO 3 , NaF, Gd 2 O 3 , Eu 2 O 3 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.00003, filled into a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 7 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 8 Na 2 CO 3 , NaF, Gd 2 O 3 , Eu 2 O 3 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.001, filled into a boron nitride crucible, and filled with quartz. Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 8 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 9 Na 2 CO 3 , NaF, Gd 2 O 3 , Eu 2 O 3 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.009, filled into a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 9 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- the composition of the phosphor of each example was analyzed and measured. Gd, S, Eu, Bi, Ce, and Pr were measured by ICP emission spectroscopy (manufactured by Hitachi High-Tech Science Co., Ltd., using SPS-3520UV). Na was measured by ICP emission spectroscopy (manufactured by Thermo Fisher Scientific, using IRIS Advantage). O was measured by an inert gas melting-infrared absorption method (manufactured by LECO, using TC-600). The results are shown in Table 1. The composition of the phosphor of each example is shown as the molar ratio of each element to the element R (Gd).
- the phosphor of each example was excited by X-rays generated from a tungsten target X-ray tube under the conditions of a tube voltage of 120 kV and a tube current of 150 mA, and the emission energy was measured.
- the measurement results are shown in Table 1 as relative values when the emission energy when the Gd 2 O 2 S: Pr phosphor is excited under the same conditions is 100% for comparison.
- the phosphors of Examples 1 to 3 in which the oxygen content is within the range of the present invention are compared with each other in which the oxygen content is larger than the range of the present invention. It can be seen that the emission intensity is superior to the phosphors of Examples 1 to 4. Further, the phosphors of Examples 1 to 3 in which the Na content is within the range of the present invention are superior in emission intensity as compared with the phosphor of Comparative Example 5 in which the Na content is less than the range of the present invention. I understand.
- the phosphors of Examples 1 to 6 in which the Na content is within the range of the present invention are superior in emission intensity as compared with the phosphors of Comparative Examples 6 to 7 in which the Na content is greater than the range of the present invention.
- the phosphors of Examples 7 to 9 in which the content of Eu as the activation element M is within the scope of the present invention are compared to the phosphor of Comparative Example 8 in which the content of Eu is larger than the scope of the present invention. It can be seen that the emission intensity is excellent.
- Example 10 Na 2 CO 3 , NaF, Gd 2 O 3 , Bi 2 O 3 were mixed at a molar ratio of 0.84: 0.42: 1.00: 0.0003, filled in a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 10 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 11 Na 2 CO 3 , NaF, Gd 2 O 3 , Bi 2 O 3 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.001, filled into a boron nitride crucible, and filled with quartz. Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 11 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 12 Na 2 CO 3 , NaF, Gd 2 O 3 , Bi 2 O 3 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.003, filled into a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 12 was prepared by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- the composition of the phosphor of each example was measured in the same manner as in Example 1. The results are shown in Table 2. The composition of the phosphor of each example is shown as the molar ratio of each element to the element R (Gd). Next, the emission energy of the phosphors of each example was measured under the same conditions as in Example 1. Similar to Example 1, the measurement results are shown in Table 2 as relative values when the emission energy when the Gd 2 O 2 S: Pr phosphor is excited under the same conditions is 100% for comparison.
- the activation element M is Bi
- the phosphors of Examples 10 to 12 in which the Bi content is within the scope of the present invention the Bi content is larger than the scope of the present invention. It can be seen that the emission intensity is superior to the phosphor of Example 9.
- Example 13 Na 2 CO 3 , NaF, Gd 2 O 3 , and CeO 2 were mixed at a molar ratio of 0.84: 0.42: 1.00: 0.0006, filled into a boron nitride crucible, and placed in a quartz reaction tube. Installed.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 13 was prepared by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 14 Na 2 CO 3 , NaF, Gd 2 O 3 , and CeO 2 were mixed at a molar ratio of 0.84: 0.42: 1.00: 0.002, filled into a boron nitride crucible, and placed in a quartz reaction tube. Installed. In this state, the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours. The first fired product was filled in a quartz glass boat and installed in a quartz reaction tube. In this state, the phosphor of Example 14 was prepared by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Example 15 Na 2 CO 3 , NaF, Gd 2 O 3 , and CeO 2 were mixed at a molar ratio of 0.84: 0.42: 1.00: 0.003, filled into a boron nitride crucible, and placed in a quartz reaction tube. Installed. In this state, it was placed in a firing furnace and fired at 900 ° C. for 3 hours in a hydrogen sulfide atmosphere to obtain a first fired product. The first fired product was filled in a quartz glass boat and installed in a quartz reaction tube. In this state, the phosphor of Example 15 was prepared by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- Example 16 Na 2 CO 3 , NaF, Gd 2 O 3 , and CeO 2 were mixed at a molar ratio of 0.84: 0.42: 1.00: 0.01, filled into a boron nitride crucible, and placed in a quartz reaction tube. Installed. In this state, the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours. The first fired product was filled in a quartz glass boat and installed in a quartz reaction tube. In this state, the phosphor of Example 16 was prepared by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere. The obtained phosphor was subjected to the characteristic evaluation described later.
- the composition of the phosphor of each example was measured in the same manner as in Example 1. The results are shown in Table 3. The composition of the phosphor of each example is shown as the molar ratio of each element to the element R (Gd). Next, the emission energy of the phosphors of each example was measured under the same conditions as in Example 1. Similar to Example 1, the measurement results are shown in Table 3 as relative values when the emission energy when the Gd 2 O 2 S: Pr phosphor is excited under the same conditions is 100% for comparison.
- the phosphors of Examples 13 to 16 in which the Ce content is within the scope of the present invention are compared with the Ce content exceeding the scope of the present invention. It can be seen that the emission intensity is superior to the phosphor of Example 10.
- Example 17 Na 2 CO 3 , NaF, Gd 2 O 3 , Pr 6 O 11 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.00018, filled into a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 17 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 18 Na 2 CO 3 , NaF, Gd 2 O 3 , Pr 6 O 11 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.00055, filled in a boron nitride crucible, and filled with quartz. Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 18 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 19 Na 2 CO 3 , NaF, Gd 2 O 3 , Pr 6 O 11 are mixed in a molar ratio of 0.84: 0.42: 1.00: 0.0018, filled in a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 19 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 20 Na 2 CO 3 , NaF, Gd 2 O 3 , Pr 6 O 11 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.0028, filled into a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 20 was prepared by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 21 Na 2 CO 3 , NaF, Gd 2 O 3 , Pr 6 O 11 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.0064, filled in a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 21 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 22 Na 2 CO 3 , NaF, Gd 2 O 3 , Pr 6 O 11 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.0092, filled into a boron nitride crucible, and filled with quartz. Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 22 was prepared by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- Example 23 Na 2 CO 3 , NaF, Gd 2 O 3 , Pr 6 O 11 are mixed at a molar ratio of 0.84: 0.42: 1.00: 0.016, filled in a boron nitride crucible, and quartz Installed in the reaction tube.
- the first fired product was obtained by placing in a firing furnace and firing in a hydrogen sulfide atmosphere at a temperature of 900 ° C. for 3 hours.
- the first fired product was filled in a quartz glass boat and installed in a quartz reaction tube.
- the phosphor of Example 23 was produced by placing in a firing furnace and firing at 1000 ° C. for 3 hours in a hydrogen sulfide atmosphere.
- the obtained phosphor was subjected to the characteristic evaluation described later.
- the composition of the phosphor of each example was measured in the same manner as in Example 1. The results are shown in Table 4. The composition of the phosphor of each example is shown as the molar ratio of each element to the element R (Gd). Next, the emission energy of the phosphors of each example was measured under the same conditions as in Example 1. The measurement results are shown in Table 4 as relative values when the emission energy when the Gd 2 O 2 S: Pr phosphor is excited under the same conditions is 100%, as in Example 1, for comparison.
- the phosphors of Examples 17 to 23 in which the Pr content is within the scope of the present invention are compared with the Pr content larger than the scope of the present invention. It can be seen that the emission intensity is superior to the phosphor of Example 11.
- the particle diameters of the phosphors of the respective examples described above were measured by a laser diffraction method, it was confirmed that all of the phosphors had good particle diameters.
- the phosphor in which the element R is Gd is shown.
- the emission intensity is increased. Can be improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
組成式:NaxRMySzOa
(式中、RはY、La、Gd、およびLuからなる群より選ばれる少なくとも1つの元素、MはBi、Ce、Eu、およびPrからなる群より選ばれる少なくとも1つの元素を示し、xは0.93<x<1.07を満足する原子比、yは0.00002<y<0.01を満足する原子比、zは1.9<z<2.1を満足する原子比、aは0.001<a<0.05を満足する原子比である。)
で表される組成を有する。
実施形態の蛍光体は、
組成式:NaxRMySzOa…(1)
(式中、RはY、La、Gd、およびLuからなる群より選ばれる少なくとも1つの元素、MはBi、Ce、Eu、およびPrからなる群より選ばれる少なくとも1つの元素を示し、xは0.93<x<1.07を満足する原子比、yは0.00002<y<0.01を満足する原子比、zは1.9<z<2.1を満足する原子比、aは0.001<a<0.05を満足する原子比である。)
で表される組成を有する。
実施形態の蛍光体の製造方法は、原料混合物を調製する原料調製工程と、原料混合物を焼成して第1の焼成物を得る第1の焼成工程と、第1の焼成物を焼成して第2の焼成物を得る第2の焼成工程とを具備する。実施形態の蛍光体は、以下に詳述する製造方法により製造することができる。
Na2CO3、Gd2O3、Eu2O3を、1.05:1.00:0.0001のモル比で混合し、窒化ホウ素製のるつぼに充填して、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、比較例1の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.84:0.42:1.00:0.0001のモル比で混合し、窒化ホウ素製のるつぼに充填して、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中で900℃の温度で3時間焼成を行うことで、比較例2の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
比較例1の蛍光体を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間の焼成を行うことで、比較例3の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
比較例2の蛍光体を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間の焼成を行うことによって、比較例4の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
比較例1の蛍光体を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例1の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
比較例2の蛍光体を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例2の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
比較例2の蛍光体を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1100℃の温度で3時間焼成を行うことによって、実施例3の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.72:0.36:1.00:0.0001のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、比較例5の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.76:0.38:1.00:0.0001のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例4の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.80:0.40:1.00:0.0001のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例5の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.88:0.44:1.00:0.0001のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例6の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.92:0.46:1.00:0.0001のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、比較例6の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.96:0.48:1.00:0.0001のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、比較例7の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.84:0.42:1.00:0.00003のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例7の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.84:0.42:1.00:0.001のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例8の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.84:0.42:1.00:0.009のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例9の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Eu2O3を、0.84:0.42:1.00:0.02のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、比較例8の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Bi2O3を、0.84:0.42:1.00:0.0003のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例10の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Bi2O3を、0.84:0.42:1.00:0.001のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例11の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Bi2O3を、0.84:0.42:1.00:0.003のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例12の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Bi2O3を、0.84:0.42:1.00:0.02のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、比較例9の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、CeO2を、0.84:0.42:1.00:0.0006のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例13の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、CeO2を、0.84:0.42:1.00:0.002のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例14の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、CeO2を、0.84:0.42:1.00:0.003のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間の焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例15の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、CeO2を、0.84:0.42:1.00:0.01のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例16の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、CeO2を、0.84:0.42:1.00:0.03のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行う方法ことによって、比較例10の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Pr6O11を、0.84:0.42:1.00:0.00018のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例17の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Pr6O11を、0.84:0.42:1.00:0.00055のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例18の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Pr6O11を、0.84:0.42:1.00:0.0018のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例19の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Pr6O11を、0.84:0.42:1.00:0.0028のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例20の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Pr6O11を、0.84:0.42:1.00:0.0064のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例21の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Pr6O11を、0.84:0.42:1.00:0.0092のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例22の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Pr6O11を、0.84:0.42:1.00:0.016のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、実施例23の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Na2CO3、NaF、Gd2O3、Pr6O11を、0.84:0.42:1.00:0.028のモル比で混合し、窒化ホウ素製のるつぼに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて900℃の温度で3時間焼成を行うことによって、第1の焼成物を得た。第1の焼成物を石英ガラス製のボートに充填し、石英反応管内に設置した。この状態で焼成炉内に配置し、硫化水素雰囲気中にて1000℃の温度で3時間焼成を行うことによって、比較例11の蛍光体を作製した。得られた蛍光体を後述する特性評価に供した。
Claims (11)
- 組成式:NaxRMySzOa
(式中、RはY、La、Gd、およびLuからなる群より選ばれる少なくとも1つの元素、MはBi、Ce、Eu、およびPrからなる群より選ばれる少なくとも1つの元素を示し、xは0.93<x<1.07を満足する原子比、yは0.00002<y<0.01を満足する原子比、zは1.9<z<2.1を満足する原子比、aは0.001<a<0.05を満足する原子比である。)
で表される組成を有する蛍光体。 - 前記組成式の元素RはGdを含む、請求項1に記載の蛍光体。
- 前記組成式の元素MはEuを含む、請求項1または請求項2に記載の蛍光体。
- 請求項1に記載の蛍光体の製造方法であって、
ナトリウムの酸化物、酸素酸塩、およびハロゲン化物からなる群より選ばれる少なくとも1つの第1の化合物と、前記元素Rの酸化物、酸素酸塩、およびハロゲン化物からなる群より選ばれる少なくとも1つの第2の化合物と、前記元素Mの酸化物、酸素酸塩、およびハロゲン化物からなる群より選ばれる少なくとも1つの第3の化合物とを、前記組成式で表される組成を有する前記蛍光体が得られるように、所望の比率で混合して原料混合物を調製する工程と、
前記原料混合物を窒化ホウ素製容器に充填した状態で硫化水素雰囲気中にて1000℃以下の温度で焼成し、第1の焼成物を得る工程と、
前記第1の焼成物を石英ガラス製容器に充填した状態で硫化水素雰囲気中にて900℃以上でかつ前記第1の焼成工程の焼成温度より高い温度で焼成し、前記蛍光体として第2の焼成物を得る工程と
を具備する蛍光体の製造方法。 - 前記原料混合物は、前記ナトリウムのハロゲン化物、前記元素Rのハロゲン化物、および前記元素Mのハロゲン化物からなる群より選ばれる少なくとも1つを含む、請求項4に記載の蛍光体の製造方法。
- 前記第1の化合物、前記第2の化合物、および前記第3の化合物から選ばれる少なくとも1つは、前記酸化物または酸素酸塩と前記ハロゲン化物とを含む、請求項4に記載の蛍光体の製造方法。
- 前記原料混合物は、前記ナトリウムの酸素酸塩、前記ナトリウムのハロゲン化物、前記元素Rの酸化物、および前記元素Mの酸化物または酸素酸塩を含む、請求項4に記載の蛍光体の製造方法。
- 前記前記ナトリウムの酸素酸塩は炭酸ナトリウムであり、前記ナトリウムのハロゲン化物はフッ化ナトリウムである、請求項7に記載の蛍光体の製造方法。
- 前記原料混合物は800℃以上1000℃以下の温度で焼成される、請求項4ないし請求項8のいずれか1項に記載の蛍光体の製造方法。
- 前記第1の焼成物は900℃以上1100℃以下の温度で焼成される、請求項4ないし請求項9のいずれか1項に記載の蛍光体の製造方法。
- 前記原料混合物の焼成時間は1時間以上であり、前記第1の焼成物の焼成時間は1時間以上である、請求項4ないし請求項10のいずれか1項に記載の蛍光体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17747412.9A EP3412753B1 (en) | 2016-02-02 | 2017-01-31 | Method for producing a phosphor |
CN201780008808.6A CN108603114B (zh) | 2016-02-02 | 2017-01-31 | 荧光体和其制造方法 |
JP2017565563A JP6847870B2 (ja) | 2016-02-02 | 2017-01-31 | 蛍光体とその製造方法 |
US16/025,188 US10858583B2 (en) | 2016-02-02 | 2018-07-02 | Phosphor and method of producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016017977 | 2016-02-02 | ||
JP2016-017977 | 2016-02-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/025,188 Continuation US10858583B2 (en) | 2016-02-02 | 2018-07-02 | Phosphor and method of producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017135256A1 true WO2017135256A1 (ja) | 2017-08-10 |
Family
ID=59500450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/003438 WO2017135256A1 (ja) | 2016-02-02 | 2017-01-31 | 蛍光体とその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10858583B2 (ja) |
EP (1) | EP3412753B1 (ja) |
JP (1) | JP6847870B2 (ja) |
CN (1) | CN108603114B (ja) |
WO (1) | WO2017135256A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116536046B (zh) * | 2023-05-08 | 2024-03-12 | 大连民族大学 | 一种宽带短波红外发光材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005028591A1 (ja) * | 2003-09-24 | 2005-03-31 | Kabushiki Kaisha Toshiba | セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置 |
CN101104746A (zh) * | 2007-08-07 | 2008-01-16 | 中国科学院长春应用化学研究所 | 红色稀土硫化镧铈颜料及其制备方法 |
JP2008208328A (ja) * | 2007-01-30 | 2008-09-11 | Toshiba Corp | 発光材料、この発光材料を含むシンチレータ、このシンチレータを備えたx線検出素子、このx線検出素子を備えたx線検出器、この発光材料を用いた画像表示装置、およびこの発光材料を用いた光源 |
JP2010059429A (ja) * | 2009-10-26 | 2010-03-18 | Mitsubishi Chemicals Corp | 蛍光体、それを用いた発光装置、画像表示装置及び照明装置 |
JP2011052156A (ja) * | 2009-09-03 | 2011-03-17 | Toshiba Corp | 蛍光体およびこれを用いた画像表示装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981819A (en) * | 1974-12-23 | 1976-09-21 | Rca Corporation | Luminescent sulfides of monovalent and trivalent cations |
GB1522368A (en) * | 1976-10-22 | 1978-08-23 | Secr Defence | Phosphor materials |
US7221473B2 (en) * | 2001-08-03 | 2007-05-22 | Hewlett-Packard Development Company, L.P. | Printing system for updating printing characteristics with a printing consumable |
US7888650B2 (en) * | 2007-01-30 | 2011-02-15 | Kabushiki Kaisha Toshiba | Light-emitting material, scintillator containing the light-emitting material, x-ray detector equipped with the scintillator, image display device using the light-emitting material, and light source using the light-emitting material |
-
2017
- 2017-01-31 WO PCT/JP2017/003438 patent/WO2017135256A1/ja active Application Filing
- 2017-01-31 JP JP2017565563A patent/JP6847870B2/ja active Active
- 2017-01-31 CN CN201780008808.6A patent/CN108603114B/zh active Active
- 2017-01-31 EP EP17747412.9A patent/EP3412753B1/en active Active
-
2018
- 2018-07-02 US US16/025,188 patent/US10858583B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005028591A1 (ja) * | 2003-09-24 | 2005-03-31 | Kabushiki Kaisha Toshiba | セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置 |
JP2008208328A (ja) * | 2007-01-30 | 2008-09-11 | Toshiba Corp | 発光材料、この発光材料を含むシンチレータ、このシンチレータを備えたx線検出素子、このx線検出素子を備えたx線検出器、この発光材料を用いた画像表示装置、およびこの発光材料を用いた光源 |
CN101104746A (zh) * | 2007-08-07 | 2008-01-16 | 中国科学院长春应用化学研究所 | 红色稀土硫化镧铈颜料及其制备方法 |
JP2011052156A (ja) * | 2009-09-03 | 2011-03-17 | Toshiba Corp | 蛍光体およびこれを用いた画像表示装置 |
JP2010059429A (ja) * | 2009-10-26 | 2010-03-18 | Mitsubishi Chemicals Corp | 蛍光体、それを用いた発光装置、画像表示装置及び照明装置 |
Non-Patent Citations (1)
Title |
---|
YI DING ET AL.: "Chemoaffinity-mediated Synthesis of NaRES2-Based Nanocrystals as Versatile Nano-Building Blocks and Durable Nano-Pigments", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 134, no. 6, 16 January 2012 (2012-01-16), pages 3255 - 3264, XP055405465 * |
Also Published As
Publication number | Publication date |
---|---|
EP3412753A4 (en) | 2019-09-25 |
CN108603114A (zh) | 2018-09-28 |
EP3412753B1 (en) | 2020-11-25 |
US20180305615A1 (en) | 2018-10-25 |
US10858583B2 (en) | 2020-12-08 |
CN108603114B (zh) | 2021-04-09 |
EP3412753A1 (en) | 2018-12-12 |
JP6847870B2 (ja) | 2021-03-24 |
JPWO2017135256A1 (ja) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5224439B2 (ja) | 蛍光体、およびそれを用いた発光器具 | |
WO2016186057A1 (ja) | 蛍光体、その製造方法、照明器具および画像表示装置 | |
US4093890A (en) | Terbium-activated luminescent garnet material and mercury vapor discharge lamp containing the same | |
KR20150118198A (ko) | 나이트라이드계 레드 형광체들 | |
JP5704457B2 (ja) | 深赤色蛍光体、照明用光源および深赤色蛍光体の製造方法 | |
US8883116B2 (en) | Alumina, luminophores and mixed compounds, and associated preparation processes | |
US8932486B2 (en) | Persistent phosphors of alkaline earths modified by halides and 3d ions | |
WO2016186058A1 (ja) | 発光器具および画像表示装置 | |
EP0125731B1 (en) | Luminescent screen | |
JP2016216711A (ja) | 蛍光体、その製造方法、照明器具および画像表示装置 | |
JP2001172627A (ja) | 希土類燐酸塩、その製造方法及び希土類燐酸塩蛍光体 | |
US10858583B2 (en) | Phosphor and method of producing the same | |
JP5881176B2 (ja) | 蛍光体、照明器具および画像表示装置 | |
JP4956732B2 (ja) | 電子線励起用の蛍光体およびカラー表示装置 | |
CN101298561B (zh) | 一种蓝光激发的红光荧光体及其制备方法 | |
KR102552651B1 (ko) | 페로브스카이트 유사 구조를 가지고 청색 발광을 나타내는 조성물 및 이의 제조 방법 | |
KR102005613B1 (ko) | 형광체 | |
JP7400378B2 (ja) | 発光装置、照明装置、画像表示装置および窒化物蛍光体 | |
JP5735014B2 (ja) | 蛍光体の製造方法 | |
KR101565910B1 (ko) | 장잔광 특성이 우수한 스트론튬 알루미네이트계 형광체의 제조방법 | |
JP6959601B2 (ja) | 蛍光体の製造方法 | |
JP2007070388A (ja) | ユーロピウム付活酸化イットリウム蛍光体の製造方法およびユーロピウム付活酸化イットリウム蛍光体 | |
JP6099126B2 (ja) | 蛍光体、その製造方法及び発光装置 | |
JPH0674418B2 (ja) | 希土類アルミン酸塩螢光体 | |
KR840000648B1 (ko) | 붕산염 형광체 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17747412 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017565563 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017747412 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017747412 Country of ref document: EP Effective date: 20180903 |