WO2005028591A1 - セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置 - Google Patents

セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置 Download PDF

Info

Publication number
WO2005028591A1
WO2005028591A1 PCT/JP2004/013888 JP2004013888W WO2005028591A1 WO 2005028591 A1 WO2005028591 A1 WO 2005028591A1 JP 2004013888 W JP2004013888 W JP 2004013888W WO 2005028591 A1 WO2005028591 A1 WO 2005028591A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic scintillator
ppm
scintillator
oxysulfide phosphor
sintered body
Prior art date
Application number
PCT/JP2004/013888
Other languages
English (en)
French (fr)
Inventor
Yukihiro Fukuta
Hiroyasu Oota
Masaaki Tamatani
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd. filed Critical Kabushiki Kaisha Toshiba
Priority to JP2005514114A priority Critical patent/JP5022600B2/ja
Priority to EP04788047A priority patent/EP1666566B1/en
Priority to DE602004030263T priority patent/DE602004030263D1/de
Priority to US10/547,314 priority patent/US7230248B2/en
Publication of WO2005028591A1 publication Critical patent/WO2005028591A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/7771Oxysulfides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/203Measuring radiation intensity with scintillation detectors the detector being made of plastics
    • G01T1/2033Selection of materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/727Phosphorus or phosphorus compound content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Definitions

  • the present invention relates to a ceramic scintillator for converting radiation into visible light, a radiation detector using the scintillator, and a radiation inspection apparatus.
  • a radiological inspection apparatus such as an X-ray tomography apparatus (hereinafter, referred to as an X-ray CT apparatus) are performed.
  • the X-ray CT system irradiates the test object with X-ray tube beam fan beam X-rays, collects the X-ray absorption data transmitted through the test object with an X-ray detector, and uses this X-ray absorption data. Is analyzed by a computer to reproduce a tomographic image of the inspected object.
  • a solid scintillator that emits visible light or the like by X-ray stimulation is used.
  • Such solid scintillators include rare earth oxysulfides such as gadolinium oxysulfide, lanthanum oxysulfide, and lutetium oxysulfide activated by praseodymium (Pr), terbium (Tb), europium (Eu), and the like.
  • Pr praseodymium
  • Tb terbium
  • Eu europium
  • Application of a ceramic scintillator, which is a sintered body has been studied (see Patent Documents 1-3).
  • gadolinium oxysulfide phosphors Gadolinium oxysulfide phosphors (GdOS: Pr, etc.) have excellent luminous efficiency and short afterglow of luminescence.
  • the X-ray CT apparatus has a higher resolution.
  • the X-ray detecting element has been further downsized, and the ceramic scintillator has to be reduced to a minute shape. For this reason, a situation occurs in which the X-ray absorption is not always sufficient in the oxysulfide gadolinium phosphor. If the X-ray absorption by the scintillator is insufficient, X-ray photon noise will be generated and the image quality of the X-ray CT image will be greatly reduced.
  • Lutetium oxysulfide phosphor has been attempted to be produced by a flux method in the same manner as gadolinium oxysulfide phosphor.
  • lutetium oxysulfide phosphors are inferior in crystal growth, and therefore have a higher flux (APO and ACO (
  • A It is necessary to add a crystal growth agent such as an alkali metal element).
  • Lutetium oxysulfide phosphor produced using a relatively large amount of flux is considered to be suitable as a material for forming a ceramic scintillator because of its excellent crystallinity and relatively uniform particle size.
  • the lutetium oxysulfide phosphor powder to which a large amount of flux is applied while applying force is applied to a ceramic scintillator (sintering of lutetium oxysulfide phosphor by hot pressing or hot isostatic pressing, for example).
  • the body is manufactured, it is colored and the translucency is liable to be impaired.
  • Patent Document 2 discloses that the PO content of a ceramic scintillator, which is a rare earth oxysulfide phosphor, is reduced to 50 ppm or less so that the sintered body of the rare earth oxysulfide phosphor has a high density.
  • Patent Document 3 discloses a rare earth acid phosphor ((R RE) OS phosphor (R: Y, R) containing at least one selected from Cs and Rb in the range of 0.2 to 50 ppm. Gd, La, Lu,
  • Patent document 1 JP-A-7-238281
  • Patent Document 2 JP-A-9-202880
  • Patent Document 3 JP 2001-131546 A
  • An object of the present invention is to provide a ceramic scintillator that makes full use of the inherent properties of a lutetium oxysulfide phosphor and that can obtain good X-ray detection sensitivity even when the size is reduced. It is in.
  • Another object of the present invention is to provide a radiation detector capable of further improving resolution and the like by applying such a ceramic scintillator, and a radiation inspection apparatus using such a radiation detector.
  • a ceramic scintillator of the present invention is a ceramic scintillator comprising a sintered body of a lutetium oxysulfide phosphor containing at least one element selected from Pr, Tb and Eu as an activator, wherein The sintered body of the lutetium sulfide phosphor is characterized by containing an alkali metal element in a range of 5 ppm or more and 15 ppm or less and phosphorus in a range of 5 ppm or more and 40 ppm or less.
  • a radiation detector of the present invention includes the above-described ceramic scintillator of the present invention, and emits fluorescence from the ceramic scintillator in response to incident radiation, and receives light from the fluorescence generating means. Photoelectric conversion means for converting the output of the light into an electrical output. Further, a radiation inspection apparatus according to the present invention includes a radiation source that irradiates a subject with radiation, and a radiation detector according to the present invention that detects radiation transmitted through the subject. I have.
  • FIG. 1 is a perspective view showing a configuration of a ceramic scintillator according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of an X-ray detector according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing a schematic configuration of an X-ray CT apparatus as one embodiment of the radiation inspection apparatus of the present invention.
  • FIG. 1 is a perspective view showing a configuration of a ceramic scintillator according to one embodiment of the present invention.
  • the ceramic scintillator 1 shown in Fig. 1 is composed of praseodymium (Pr), terbium (Tb), and europium (Eu) as activators Lutetium oxysulfide (Lu OS) phosphor containing at least one element selected from the group Of a sintered body.
  • Figure 1 shows the ceramic
  • a scintillator chip which is an example of a scintillator is shown!
  • the ceramic scintillator of the present invention is not limited to such a chip-shaped one, but various shapes can be applied according to an X-ray detector or the like.
  • the lutetium oxysulfide phosphor that is a constituent material of the ceramic scintillator 1 is
  • M represents at least one element selected from Pr, Tb, and Eu, and a is a number satisfying 0.0001 ⁇ a ⁇ 0.2.
  • Lutetium oxysulfide phosphor activated with at least one M element selected from Pr, Tb and Eu has a larger X-ray absorption coefficient per unit area than a conventional gadolinium oxysulfide phosphor. It has excellent light output. That is, X-ray detection sensitivity and the like by the ceramic scintillator 1 can be improved. Therefore, it is particularly effective as a fluorescent light generating means such as an X-ray detector used in an X-ray CT apparatus with high resolution.
  • a lutetium oxysulfide phosphor at least one element selected from Pr, Tb and Eu is used as an activator.
  • the activator may be any of Pr, Tb, and Eu.
  • a lutetium oxysulfide phosphor activated with Pr is suitable for an X-ray CT detector.
  • the content of the activator (at least one type of M element selected from Pr, Tb and Eu) is preferably in the range of 0.0001-0.2 as the value of a in the above formula (1).
  • Activator content When the value of a shown below is less than 0.0001, the function as an activator as a luminescence center cannot be sufficiently exhibited, and the luminous efficiency of the lutetium oxysulfide phosphor decreases. On the other hand, the luminous efficiency is reduced even when the value of a is exceeded.
  • the lutetium oxysulfide phosphor may contain a small amount of another rare earth element such as Ce as a coactivator in addition to the above activator.
  • the compounding amount of the coactivator is preferably, for example, 50 ppm or less so as to maintain a state in which light emission by Pr, Tb, and Eu is dominant.
  • Ceramic scintillator 1 which is a sintered body of lutetium oxysulfide phosphor, contains an alkali metal element in a mass ratio of 515 ppm and phosphorus in a range of 5-40 ppm.
  • Alkali metal elements are not particularly limited, such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs). In particular, it is preferable that at least one of the Li, Na and K forces is also selected.
  • the contents of these alkali metal elements and phosphorus define the abundance of the lutetium oxysulfide phosphor in the sintered body.
  • the lutetium oxysulfide phosphor powder used as the raw material of the ceramic scintillator 1 usually uses alkali metal phosphate, carbonate, or the like as a crystal growth agent in order to enhance crystallinity and adjust the particle size distribution of the powder. It is produced by applying the used flux method.
  • a rare earth oxide powder such as lutetium oxide or praseodymium oxide is prepared as a starting material for each rare earth element such as Lu or Pr.
  • a sulfurizing agent such as sulfur (S) powder and a flux such as APO or ACO (A: alkali metal element) are added to these rare earth oxide powders.
  • the mixed powder is calcined at 1100-1300 ° C for 5-10 hours and then washed with acid and water to obtain lutetium oxysulfide phosphor powder.
  • Alkali metal elements and phosphate ions are inevitably mixed in the lutetium oxysulfide phosphor powder produced by applying the flux method.
  • a ceramic scintillator 1 (Lutetium oxysulfide phosphor) prepared using such lutetium oxysulfide phosphor powder as a raw material powder Phosphorous in the form of an alkali metal element and phosphate ions.
  • the lutetium oxysulfide phosphor is inferior in crystal growth property to the conventional gadolinium oxysulfide phosphor, so that a relatively large amount of flux needs to be added.
  • the specific amount of flux for producing the lutetium oxysulfide phosphor needs to be about twice as large as that in the production process of the gadmium oxysulfide phosphor. Therefore, the residual alkali metal element and phosphorus greatly affect the characteristics of the ceramic scintillator 1. If a large amount of metallic elements or phosphorus remains, the sintered body of the lutetium oxysulfide phosphor is colored brown due to these residual elements, and this is the light (such as X-rays) in the ceramic scintillator 1. Absorption of light emitted by the irradiation).
  • the alkali metal element and phosphorus remaining in the lutetium oxysulfide phosphor act as a sintering aid to promote the sintering of the phosphor powder in an appropriate amount. It becomes. Therefore, the amount of the alkali metal element in the ceramic scintillator 1 is set in the range of 5 to 15 ppm, and the amount of phosphorus is controlled in the range of 5 to 40 ppm. By controlling the residual amount of the alkali metal element and the phosphorus in the lutetium oxysulfide phosphor powder so that such amounts of the alkali metal element and the phosphorus are present in the sintered body, high purity and high density can be obtained.
  • the amount of the alkali metal element in the ceramic scintillator 1 is in the range of 6 to 10 ppm, and the amount of the phosphorus is more preferably in the range of 10 to 30 ppm! / ,.
  • the amount of the alkali metal element is less than 5 ppm.
  • a different phase for example, unreacted rare earth oxide
  • lutetium oxysulfide is generated in the sintered body, or sintering of the lutetium oxysulfide phosphor is performed.
  • pores, voids, and the like are generated based on the decrease in the property. Since these different phases and pores cause light scattering in the sintered body, the detection sensitivity of the ceramic scintillator 1 is reduced.
  • the volume ratio of the hetero phase or pores in the sintered body is preferably 0.5% or less, and more preferably 0.1% or less.
  • the color of the sintered body is not necessarily required to be colorless and transparent as long as the body color can maintain transparency.
  • a sintered body of lutetium oxysulfide phosphor having excellent translucency can be obtained with good reproducibility. According to such a sintered body of lutetium oxysulfide phosphor, high purity, high density and excellent transparency! Based on its characteristics (transparency), lutetium oxysulfide phosphor is By making full use of the inherent high luminous efficiency characteristics of the present invention, it is possible to achieve high light output and high sensitivity of the ceramic scintillator 1.
  • the ceramic scintillator 1 of this embodiment is used for an X-ray detecting element or the like in an X-ray detector of an X-ray CT apparatus as described later.
  • it is suitable for an X-ray CT apparatus in which the X-ray detection element is further downsized in order to realize high resolution. That is, in order to increase the resolution of the X-ray CT device, it is necessary to make the scintillator finer and increase the number of channels. In order to obtain high sensitivity characteristics with a scintillator processed into a fine shape, it is important to increase the X-ray absorption rate or luminous efficiency per unit area.
  • the ceramic scintillator 1 of this embodiment is a lutetium oxysulfide phosphor that can provide a sufficient light output even when subjected to fine processing with a large X-ray absorption coefficient.
  • a sintered body is applied.
  • the sintered body of the lutetium oxysulfide phosphor has high purity, high density, and excellent transparency, it can be provided with a characteristic. Therefore, as shown in FIG. 1, it is suitable for the ceramic scintillator 1 in which the irradiation surface la of the X-ray 2 is miniaturized. By using such a ceramic scintillator 1, it is possible to realize a high-resolution X-ray CT apparatus or the like.
  • the above-described ceramic scintillator 1 has, for example, a shape of the X-ray irradiation surface la with a width W0.1— 1.0mm X length L0.1-3.0mm! In other words, by applying the sintered body of the lutetium oxysulfide phosphor of this embodiment, it is possible to obtain a sufficient light output even with the ceramic scintillator 1 having the above-mentioned small shape. .
  • the thickness t of the ceramic scintillator 1 is appropriately set according to the irradiation amount and irradiation intensity of the X-rays 2.
  • the thickness t is preferably in the range of, for example, 1.0 to 2.0 mm.
  • the ceramic scintillator 1 of this embodiment is manufactured, for example, as follows. That is, the above-mentioned lutetium oxysulfide phosphor powder in which the amount of the alkali metal element and the amount of phosphorus are controlled is sintered to produce a sintered body of the lutetium oxysulfide phosphor to be the ceramic scintillator 1.
  • the amount of the alkali metal element and the amount of phosphorus in the lutetium oxysulfide phosphor powder can be controlled by the washing conditions after firing (the number of times of acid washing and water washing, etc.).
  • a known sintering method such as hot pressing or HIP can be applied.
  • HIP hot pressing
  • the sintering step by applying the HIP method.
  • the sintering process using the HIP method is performed by first forming a lutetium oxysulfide phosphor powder into an appropriate shape by a rubber press, and then filling and encapsulating it in a metal container or the like and performing HIP treatment.
  • the HIP temperature be in a range of 1400 to 1600 ° C.
  • the HIP pressure is 98 MPa or more and the HIP time is 110 hours.
  • a sintered body of a lutetium oxysulfide phosphor having a relative density (ratio to the theoretical density) of 99.5% or more, or even 99.8% or more can be reproduced with good reproducibility. Obtainable. If the relative density of the sintered body is less than 99.5%, characteristics such as light transmittance and light output required for the ceramic scintillator 1 cannot be satisfied. The relative density of the sintered body indicates a value measured by the Archimedes method.
  • the sintered body of the lutetium oxysulfide phosphor is processed into a desired shape with a blade saw or a wire saw if necessary, and then used as the ceramic scintillator 1.
  • FIG. 2 is a diagram showing a schematic configuration of an X-ray detector as one embodiment of the radiation detector of the present invention.
  • the X-ray detector 3 shown in the figure is made of the ceramic scintillator 1 of the embodiment described above, that is, the sintered body of the lutetium oxysulfide phosphor.
  • Ceramic scintillator (scintillator chip) 1 as a fluorescence generating means.
  • the ceramic scintillator 1 is not limited to a rectangular bar-shaped scintillator chip, but may be, for example, a scintillator block or the like in which a plurality of segments are vertically and horizontally integrated.
  • the rectangular bar-shaped ceramic scintillator 1 is covered with a reflective film 4 except for one surface. Then, a photoelectric conversion element such as a silicon photodiode 6 is attached via an adhesive layer 5 to a surface of the ceramic scintillator 1 that is not covered with the reflection film 4.
  • a scintillator block in which a large number of segments are integrated is used as the ceramic scintillator 1, a silicon photodiode or the like is arranged corresponding to each segment.
  • the ceramic scintillator 1 In the X-ray detector 3 described above, X-rays are incident on the ceramic scintillator 1, and the ceramic scintillator 1 emits light in accordance with the incident X-ray dose. Light emitted from the ceramic scintillator 1 is detected by the photodiode 6. That is, the output of the light emitted based on the incident X-ray dose is output from the output terminal 7 after being converted into an electrical output by the photodiode 6.
  • FIG. 3 is a view showing a schematic configuration of an X-ray CT apparatus as one embodiment of the radiation inspection apparatus of the present invention.
  • An X-ray CT apparatus 10 shown in FIG. 1 has an X-ray detector 3 based on the detector structure of the above-described embodiment.
  • the X-ray detector 3 shown in FIG. 3 has a plurality of ceramic scintillators 1 arranged along the inner wall of a cylinder on which the imaging position of the subject 11 is placed.
  • the photodiodes not shown are connected to the plurality of ceramic scintillators 1, respectively.
  • An X-ray tube 12 that emits X-rays is arranged substantially at the center of the arc where the X-ray detector 3 having the plurality of ceramic scintillators 1 is arranged.
  • a fixed subject 11 is arranged between the X-ray detector 3 and the X-ray tube 12.
  • the X-ray detector 3 and the X-ray tube 12 are configured to rotate around the fixed subject 11 while performing X-ray imaging. In this way, angular forces with different image information of the subject 11 are collected three-dimensionally.
  • the signal obtained by the X-ray imaging (electrical signal converted by the photodiode) is processed by the computer 13 and displayed on the display 14 as the subject image 15.
  • the subject image 15 is, for example, a tomographic image of the subject 11.
  • the X-ray CT apparatus 10 is used as the ceramic scintillator 1 of the X-ray detector 3 when it is miniaturized.
  • a high purity, high density, high transparency sintered body of lutetium oxysulfide phosphor that provides sufficient light output Therefore, it is possible to cope with an increase in the number of channels for higher resolution without lowering the X-ray detection sensitivity. That is, it is possible to realize the X-ray CT apparatus 10 with higher resolution while maintaining the quality and accuracy of the X-ray image. As a result, the medical diagnostic capability of the X-ray CT apparatus 10 is greatly improved.
  • the radiation inspection apparatus of the present invention is not limited to an X-ray inspection apparatus for medical diagnosis, and is applicable to an X-ray non-destructive inspection apparatus for industrial use.
  • the present invention also contributes to the improvement of inspection accuracy by the X-ray non-destructive inspection device.
  • lutetium oxysulfide phosphor powder having an average particle diameter of 15 ⁇ m was prepared as a raw material for a ceramic scintillator.
  • This lutetium oxysulfide phosphor powder is (Lu Pr) O
  • This lutetium oxysulfide phosphor powder was formed by cold isostatic pressing (CIP). The content of phosphorus and alkali metal elements in the lutetium oxysulfide phosphor powder was controlled by the washing conditions after firing the lutetium oxysulfide phosphor as described above. The same applies to the following examples and comparative examples.
  • the ceramic scintillator As a raw material of the ceramic scintillator, it has a composition of (Lu Pr) OS and has a mass
  • the ceramic scintillator As a raw material of the ceramic scintillator, it has a composition of (Lu Pr) OS and has a mass
  • a lutetium oxysulfide phosphor powder containing 45 ppm of P by weight and 15 ppm of Li as an alkali metal element was prepared. Except for using this lutetium oxysulfide phosphor powder, a scintillator chip made of a sintered body of lutetium oxysulfide phosphor was produced by molding and HIP treatment under the same conditions as in Example 1 described above. The P content of this scintillator chip was 16 ppm, the Li content was 13 ppm, and the relative density was 99.8%. Such a ceramic scintillator was subjected to characteristic evaluation described later.
  • the ceramic scintillator As a raw material of the ceramic scintillator, it has a composition of (Lu Pr) OS and has a mass
  • a lutetium oxysulfide phosphor powder containing 21 ppm of P at a ratio and 8 ppm of Na as an alkali metal element was prepared. Except for using this lutetium oxysulfide phosphor powder, a scintillator chip made of a sintered body of lutetium oxysulfide phosphor was produced by molding and HIP treatment under the same conditions as in Example 1 described above. The scintillator chip had a P content of 6 ppm, a Na content of 6 ppm, and a relative density of 99.8%. Such a ceramic scintillator was subjected to characteristic evaluation described later.
  • the ceramic scintillator As a raw material of the ceramic scintillator, it has a composition of (Lu Pr) OS and has a mass
  • a lutetium oxysulfide phosphor powder containing 85 ppm of P in a ratio and 12 ppm of Na as an alkali metal element was prepared. Except for using this lutetium oxysulfide phosphor powder, a scintillator chip made of a sintered body of lutetium oxysulfide phosphor was produced by molding and HIP treatment under the same conditions as in Example 1 described above. The P content of this scintillator chip was 37 ppm, the Na content was 11 ppm, and the relative density was 99.8%. Such ceramic The scintillator was subjected to characteristics evaluation described below.
  • lutetium oxysulfide phosphor powder containing 45 ppm of P and 12 ppm of Na as an alkali metal element was prepared. Except for using the lutetium oxysulfide phosphor powder, a scintillator chip, which is a sintered body of the lutetium oxysulfide phosphor, was produced by molding and HIP treatment under the same conditions as in Example 1 described above. The P content of this scintillator chip was 16 ppm, the Na content was 11 ppm, and the relative density was 99.8%. Such a ceramic scintillator was subjected to characteristic evaluation described later.
  • the ceramic scintillator As a raw material of the ceramic scintillator, it has the composition of (Lu Tb) OS and the mass ratio
  • lutetium oxysulfide phosphor powder containing 45 ppm of P and 12 ppm of Na as an alkali metal element was prepared. Except for using the lutetium oxysulfide phosphor powder, a scintillator chip, which is a sintered body of the lutetium oxysulfide phosphor, was produced by molding and HIP treatment under the same conditions as in Example 1 described above. The P content of this scintillator chip was 16 ppm, the Na content was 11 ppm, and the relative density was 99.8%. Such a ceramic scintillator was subjected to characteristic evaluation described later.
  • the ceramic scintillator As a raw material of the ceramic scintillator, it has a composition of (Lu Pr) OS and has a mass
  • a lutetium oxysulfide phosphor powder containing 105 ppm of P in a ratio and 12 ppm of Na as an alkali metal element was prepared. Except for using this lutetium oxysulfide phosphor powder, a scintillator chip made of a sintered body of lutetium oxysulfide phosphor was produced by molding and HIP treatment under the same conditions as in Example 1 described above. This scintillator chip had a P content of 49 ppm, a Na content of ll ppm, and a relative density of 99.8%. Such a ceramic scintillator was subjected to characteristic evaluation described later.
  • the ceramic scintillator As a raw material of the ceramic scintillator, it has a composition of (Lu Pr) OS and has a mass
  • the ceramic scintillator As a raw material of the ceramic scintillator, it has a composition of (Lu Pr) OS and has a mass
  • Lutetium oxysulfide phosphor powder containing 5 ppm of P in a ratio and 3 ppm of Na as an alkali metal element was prepared. Except for using the lutetium oxysulfide phosphor powder, a scintillator chip, which is a sintered body of the lutetium oxysulfide phosphor, was produced by molding and HIP treatment under the same conditions as in Example 1 described above. The P content of this scintillator chip was 3 ppm, the Na content was 2 ppm, and the relative density was 99.2%. Such a ceramic scintillator was subjected to characteristic evaluation described later.
  • a lutetium oxysulfide phosphor powder containing 45 ppm of P and 69 ppm of Na as an alkali metal element was prepared. Except for using the lutetium oxysulfide phosphor powder, a scintillator chip, which is a sintered body of the lutetium oxysulfide phosphor, was produced by molding and HIP treatment under the same conditions as in Example 1 described above. The P content of this scintillator chip was 16 ppm, the Na content was 54 ppm, and the relative density was 99.6%. Such a ceramic scintillator was subjected to characteristic evaluation described later.
  • the X-ray detector 3 shown in FIG. 2 was configured using each of the ceramic scintillators according to Example 117 and Comparative Example 114 described above. Then, the X-ray detection sensitivity (light output) when irradiating X-rays with a tube voltage of 120 kVp was measured. X-ray detection sensitivity is (Gd Pr)
  • a scintillator chip was used as a comparative sample, and the relative output was determined assuming that the optical output of this comparative sample was 100.
  • Table 1 shows the X-ray detection sensitivity (light output).
  • the ceramic scintillator made of oxidized lutetium having a content of phosphorus and an alkali metal element less than the range of the present invention (Comparative Example 3) also has inferior light output. This is due to the fact that the density of the sintered body of the ilhirtium oxide phosphor was low and light was scattered inside the sintered body.
  • the sintered bodies of the (LuEu) OS phosphor having the Eu yarn composition, the P content, and the alkali element content shown in Table 3 were produced in the same manner as in Example 1.
  • the P content and the alkali element content in the sintered body were controlled based on the P content and the alkali element content in the raw material powder.
  • Table 3 shows the relative densities of these sintered bodies.
  • a scintillator chip having the same shape as in Example 1 was fabricated, and the X-ray detection sensitivity (light output Z The relative value when the light output of the comparative sample was set to 100) was measured. Table 3 also shows the results of these measurements.
  • Example 15 0.3 16 11 27 180 Example 16 0.3 16-13 29 99.8 176 Example 17 0.3 16-5 31 175 Example 18 0.3 16 4 4 4 2 ⁇ 175 Example 19 3 16 11 ⁇ -27 170 Example 20 3 16-13-29 170 Example 21 3 16-15 31 99.8 169 Example 22 5 16-13-29 162 Example 23 5 16-15 31 99 * 8 160 Example 24 5 6 6--12 170 Example 25 5 37 11-one 48 150
  • Sintered (Lu Tb) OS phosphors having the Tb composition, P content, and alkali element content shown in Table 4 were produced in the same manner as in Example 1.
  • the P content and the alkali element content in the sintered body were controlled based on the P content and the alkali element content in the raw material powder.
  • Table 4 shows the relative densities of these sintered bodies.
  • a scintillator chip (having the same shape as in Example 1) was fabricated using such a sintered body of oxysulfuric acid phosphor, and the X-ray detection sensitivity (light output power) was determined in the same manner as in Example 1. The relative value when the light output of the Z comparative sample was set to 100) was measured. Table 4 also shows these measurement results.
  • the sintered body of the lutetium oxysulfide phosphor contains an appropriate amount of an alkali metal element and phosphorus
  • a ceramic scintillator having high purity, high density and excellent transparency is obtained.
  • the ceramic scintillator of the present invention makes it possible to sufficiently exhibit characteristics such as high luminous efficiency inherent in the lutetium oxysulfide phosphor, and thus, even when the size is reduced, the light output and therefore the X-ray intensity are reduced.
  • the line detection sensitivity can be improved.
  • Radiation detectors and radiation detectors using such ceramic scintillators are intended to achieve higher resolution of radiation inspection images, etc., thereby improving the accuracy of medical diagnostics and industrial non-destructive inspection, for example. Etc. greatly contributed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 セラミックシンチレータは、Pr、TbおよびEuから選ばれる少なくとも1種の元素を付活剤として含有する酸硫化ルテチウム蛍光体の焼結体を具備する。酸硫化ルテチウム蛍光体の焼結体は5~15ppmの範囲のアルカリ金属元素と5~40ppmの範囲のリンとを含有する。このようなセラミックシンチレータによれば、酸硫化ルテチウム蛍光体が本来有する特性を十分に生かし、小型化した場合においても良好なX線検出感度を得ることができる。

Description

明 細 書
セラミックシンチレータとそれを用いた放射線検出器および放射線検査装 置
技術分野
[0001] 本発明は、放射線を可視光線に変換するセラミックシンチレータとそれを用いた放 射線検出器および放射線検査装置に関する。
背景技術
[0002] 医療診断や工業用非破壊検査等の分野においては、 X線断層写真撮影装置 (以 下、 X線 CT装置と記す)等の放射線検査装置を用いた検査が行われている。 X線 C T装置は、被検査体に対して X線管カゝらファンビーム X線を照射し、被検体を透過し た X線吸収データを X線検出器で収集し、この X線吸収データをコンピュータで解析 することによって、被検査体の断層像を再生するものである。
[0003] X線 CT装置の X線検出器では、 X線の刺激により可視光線等を放射する固体シン チレータが用いられている。このような固体シンチレータには、プラセオジム(Pr)、テ ルビゥム (Tb)、ユーロピウム (Eu)等で付活した酸硫ィ匕ガドリニウム、酸硫化ランタン 、酸硫化ルテチウム等の希土類酸硫ィ匕物蛍光体の焼結体力 なるセラミックシンチレ ータを適用することが検討されている(特許文献 1一 3等参照)。特に、酸硫化ガドリ- ゥム蛍光体 (Gd O S : Pr等)は、発光効率に優れると共に、発光の残光が短い等の
2 2
特性を有することから、 X線検出器用シンチレータ材料として実用化されている。
[0004] ところで、 X線 CT装置にはより一層の高解像度化が望まれている。例えば、従来の X線 CT装置では不可能であって肺胞の画像ィ匕等が求められるようになってきている 。このような X線 CT装置の高解像度化に対応するために、 X線検出素子をより一層 小型化する傾向にあり、セラミックシンチレータは微小形状にカ卩ェする必要が生じて いる。このため、酸硫ィ匕ガドリニウム蛍光体では X線吸収が必ずしも十分とは言えな V、状況が生じて 、る。シンチレータによる X線吸収が不十分であると X線フォトンノィ ズを発生させ、 X線 CT画像の画質を大きく低下させることになる。
[0005] このようなことから、次世代の X線 CT装置用のセラミックシンチレータ材料として、 X 線吸収係数が大きぐ微細加工した場合においても十分な発光効率が得られる酸硫 ィ匕ルテチウム蛍光体(Lu O S: Pr、 Lu O S: Tb、 Lu O S: Eu等)が注目されて!/、る
2 2 2 2 2 2
。酸硫化ルテチウム蛍光体は酸硫ィ匕ガドリニウム蛍光体等と同様にフラックス法で作 製することが試みられている。しかし、酸硫化ルテチウム蛍光体は結晶成長性に劣る ことから、酸硫ィ匕ガドリニウム蛍光体等に比べて多量のフラックス (A POや A CO (
3 4 2 3
A:アルカリ金属元素)等の結晶成長剤)を添加する必要がある。
[0006] 比較的多量のフラックスを使用して作製した酸硫化ルテチウム蛍光体は、結晶性に 優れ、また粒径も比較的揃っていることから、セラミックシンチレータの形成材料に適 していると考えられている。し力しながら、多量のフラックスを適用した酸硫化ルテチウ ム蛍光体粉末は、例えばホットプレス法や HIP (熱間静水圧プレス)法等を適用して セラミックシンチレータ (酸硫化ルテチウム蛍光体の焼結体)を作製した際に着色し、 透光性が損なわれやす 、と 、う欠点を有して 、る。
[0007] セラミックシンチレータの着色およびそれに基づく透光性の低下は、発光出力の低 下要因となることから、酸硫化ルテチウム蛍光体本来の大きな X線吸収係数に基づく 高発光率特性等が損なわれてしまう。このように、従来のセラミックシンチレータでは、 酸硫化ルテチウム蛍光体が本来有する大きな X線吸収係数に基づく高発光効率等 の特性が十分に生力されて 、な 、のが現状である。
[0008] なお、特許文献 2には希土類酸硫ィ匕物蛍光体力 なるセラミックシンチレータの PO 含有量を 50ppm以下とすることによって、希土類酸硫化物蛍光体の焼結体の高密度
4
化を促進することが記載されている。しかし、希土類酸硫化物蛍光体の焼結体((R Pr Ce ) O S蛍光体の焼結体 (R:Y, Gd, La, Lu) )中のリン酸量を単に低減し
1-x-y X y 2 2
ただけでは、酸硫化ルテチウム蛍光体を適用したセラミックシンチレータの発光効率 を再現性よく高めることはできない。
[0009] 一方、特許文献 3には Csおよび Rbから選ばれる少なくとも 1種を 0.2— 50ppmの範 囲で含有する希土類酸硫ィ匕物蛍光体((R RE ) O S蛍光体 (R:Y, Gd, La, Lu、
1-x x 2 2
RE :Tb, Eu, Tm, Pr) )が記載されている。これは Csや Rbで希土類酸硫ィ匕物蛍光 体粉末の粒子形状を改良することによって、放射線像変換シートを作製する際の蛍 光体粒子の充填密度を高めるものであり、セラミックシンチレータ (希土類酸硫化物 蛍光体の焼結体)の透光性の向上等は意図して 、な 、。
特許文献 1:特開平 7-238281号公報
特許文献 2:特開平 9-202880号公報
特許文献 3:特開 2001-131546号公報
発明の開示
[0010] 本発明の目的は、酸硫化ルテチウム蛍光体が本来有する特性を十分に生かし、小 型化した場合においても良好な X線検出感度を得ることを可能にしたセラミックシン チレータを提供することにある。本発明の他の目的は、そのようなセラミックシンチレ ータを適用することによって、解像度等をより一層高めることを可能にした放射線検 出器、およびそのような放射線検出器を使用した放射線検査装置を提供すること〖こ ある。
[0011] 本発明のセラミックシンチレータは、 Pr、 Tbおよび Eu力 選ばれる少なくとも 1種の 元素を付活剤として含有する酸硫化ルテチウム蛍光体の焼結体を具備するセラミック シンチレータであって、前記酸硫化ルテチウム蛍光体の焼結体は 5ppm以上 15ppm以 下の範囲のアルカリ金属元素と 5ppm以上 40ppm以下の範囲のリンとを含有することを 特徴としている。
[0012] 本発明の放射線検出器は、上記した本発明のセラミックシンチレータを具備し、入 射した放射線に応じて前記セラミックシンチレータを発光させる蛍光発生手段と、前 記蛍光発生手段からの光を受けて、前記光の出力を電気的出力に変換する光電変 換手段とを具備することを特徴としている。また、本発明の放射線検査装置は、被検 体に向けて放射線を照射する放射線源と、前記被検体を透過した放射線を検出す る、本発明の放射線検出器とを具備することを特徴としている。
図面の簡単な説明
[0013] [図 1]図 1は本発明の一実施形態によるセラミックシンチレータの構成を示す斜視図 である。
[0014] [図 2]図 2は本発明の一実施形態による X線検出器の概略構成を示す図である。
[0015] [図 3]図 3は本発明の放射線検査装置の一実施形態としての X線 CT装置の概略構 成を示す図である。 発明を実施するための形態
[0016] 以下、本発明を実施するための形態について、図面を参照して説明する。なお、以 下では本発明の実施形態を図面に基づいて説明するが、それらの図面は図解のた めに提供されるものであり、本発明はそれらの図面に限定されるものではない。
[0017] 図 1は本発明の一実施形態によるセラミックシンチレータの構成を示す斜視図であ る。図 1に示すセラミックスシンチレータ 1は、付活剤としてプラセオジム (Pr)、テルビ ゥム (Tb)、およびユーロピウム (Eu)力 選ばれる少なくとも 1種の元素を含有する酸 硫化ルテチウム (Lu O S)蛍光体の焼結体により構成されている。なお、図 1はセラミ
2 2
ックシンチレータの一例であるシンチレータチップを示して!/ヽる。本発明のセラミツクシ ンチレータはこのようなチップ形状のものに限られるものではなぐ X線検出器等に応 じて各種の形状を適用することが可能である。
[0018] セラミックシンチレータ 1の構成材料である酸硫化ルテチウム蛍光体は、
一般式:(Lu M ) O S - --(1)
1-a a 2 2
(式中、 Mは Pr、 Tbおよび Euから選ばれる少なくとも 1種の元素を示し、 aは 0.0001≤ a≤ 0.2を満足する数である)
で実質的に表される組成を有することが好ましい。なお、 Luの一部は他の希土類 元素 (Y、 Laおよび Gdから選ばれる少なくとも 1種の元素等)で置換してもよいが、そ の際の置換量は 30mol%以下とすることが好ましい。
[0019] Pr、 Tbおよび Euから選ばれる少なくとも 1種の M元素で付活した酸硫化ルテチウム 蛍光体は、従来の酸硫化ガドリニウム蛍光体と比べて X線吸収係数が大きぐ単位面 積当りの光出力に優れるものである。すなわち、セラミックシンチレータ 1による X線検 出感度等を向上させることができる。従って、特に高解像度化を図った X線 CT装置 に用いる X線検出器等の蛍光発生手段として有効である。このような酸硫化ルテチウ ム蛍光体において、付活剤としては Pr、 Tbおよび Euから選ばれる少なくとも 1種の元 素が用いられる。付活剤は Pr、 Tb、 Euのいずれであってもよいが、特に Prで付活し た酸硫化ルテチウム蛍光体は X線 CT用検出器に好適である。
[0020] 付活剤(Pr、 Tbおよび Euから選ばれる少なくとも 1種の M元素)の含有量は、上記 した (1)式の aの値として 0.0001— 0.2の範囲とすることが好ましい。付活剤の含有量を 示す aの値が 0.0001未満の場合には、発光中心となる付活剤としての機能を十分に 発揮させることができず、酸硫化ルテチウム蛍光体の発光効率が低下する。一方、 a の値力 を超えても発光効率が低下する。なお、酸硫化ルテチウム蛍光体には上 記した付活剤に加えて、 Ce等の他の希土類元素を共付活剤として微量配合してもよ い。共付活剤の配合量は Pr、 Tb、 Euによる発光が支配的な状態を維持することがで きればよぐ例えば 50ppm以下とすることが好ましい。
[0021] 酸硫化ルテチウム蛍光体の焼結体力 なるセラミックシンチレータ 1は、質量比で 5 一 15ppmの範囲のアルカリ金属元素と 5— 40ppmの範囲のリンとを含有している。アル カリ金属元素は特に限定されるものではなぐリチウム (Li)、ナトリウム (Na)、カリウム (K)、ルビジウム(Rb)、セシウム(Cs)の!、ずれであってもよ!/、が、特に Li、 Naおよび K力も選ばれる少なくとも 1種であることが好ましい。なお、これらアルカリ金属元素お よびリンの含有量は、酸硫化ルテチウム蛍光体の焼結体中の存在量を規定したもの である。
[0022] 上述したような量のアルカリ金属元素とリンを含有する酸硫化ルテチウム蛍光体の 焼結体を適用することによって、セラミックシンチレータ 1の高純度 '高密度化、並び に透光性の向上を再現性よく実現することが可能となる。すなわち、セラミックシンチ レータ 1の原料となる酸硫化ルテチウム蛍光体粉末は、通常、結晶性を高めると共に 粉体の粒度分布を整えるために、アルカリ金属のリン酸塩や炭酸塩等を結晶成長剤 として用いたフラックス法を適用して作製される。
[0023] 具体的には、 Luや Pr等の各希土類元素の出発原料として、酸化ルテチウムや酸 化プラセオジム等の希土類酸ィ匕物粉末を用意する。次いで、これら希土類酸化物粉 末に硫黄 (S)粉末等の硫化剤と A POや A CO (A:アルカリ金属元素)等のフラック
3 4 2 3
スを配合して十分に混合する。このような混合粉末を 1100— 1300°Cの温度で 5— 10 時間焼成した後、酸および水で洗浄することによって、酸硫化ルテチウム蛍光体粉 末を得る。
[0024] フラックス法を適用して作製した酸硫化ルテチウム蛍光体粉末中には、必然的にァ ルカリ金属元素やリン酸イオンが混入する。このような酸硫化ルテチウム蛍光体粉末 を原料粉末として用いて作製したセラミックシンチレータ 1 (酸硫化ルテチウム蛍光体 の焼結体)中にも、アルカリ金属元素およびリン酸イオンの形でリンが残留する。特に 、酸硫化ルテチウム蛍光体は従来の酸硫ィ匕ガドリニウム蛍光体に比べて結晶成長性 に劣ることから、比較的多量のフラックスを添加する必要がある。
[0025] 酸硫化ルテチウム蛍光体を作製する際の具体的なフラックス量は、酸硫化ガドリ- ゥム蛍光体の作製工程に比べて倍量程度とする必要がある。従って、アルカリ金属 元素やリンの残留がセラミックシンチレータ 1の特性に大きく影響する。そして、アル力 リ金属元素やリンが多量に残留すると、これら残留元素に起因して酸硫化ルテチウム 蛍光体の焼結体が茶色に着色し、これがセラミックシンチレータ 1内での光 (X線等の 照射により発光した光)の吸収を招くことになる。
[0026] このような着色を防ぐためには、酸硫化ルテチウム蛍光体粉末中に残留するアル力 リ金属元素やリンの量を低減することが有効である。し力しながら、アルカリ金属元素 やリンの含有量を削減しすぎると焼結性が低下し、酸硫化ルテチウム蛍光体の焼結 体中に異相や気孔等が多数発生する。焼結体中に異相や気孔等が発生すると、セ ラミックシンチレータ 1内で光の散乱が生じる。上述した着色や異相、気孔等の発生 は、いずれもセラミックシンチレータ 1の光出力の低下要因となる。
[0027] 酸硫化ルテチウム蛍光体中に残留するアルカリ金属元素やリンは、適量であれば 蛍光体粉末の焼結を促進する焼結助剤として働くものの、多量に残留すると焼結体 の着色原因となる。そこで、セラミックシンチレータ 1中のアルカリ金属元素量を 5— 15ppmの範囲とすると共に、リン量を 5— 40ppmの範囲に制御している。このような量の アルカリ金属元素およびリンが焼結体中に存在するように、酸硫化ルテチウム蛍光体 粉末中のアルカリ金属元素やリンの残留量を制御することで、高純度'高密度でかつ 透明性に優れるセラミックシンチレータ 1を得ることが可能となる。セラミックシンチレ一 タ 1中のアルカリ金属元素量は 6— lOppmの範囲とすることがより好ましぐまたリン量 は 10— 30ppmの範囲とすることがより好まし!/、。
[0028] セラミックシンチレータ 1を構成する酸硫化ルテチウム蛍光体の焼結体中のアル力リ 金属元素量が 15ppmを超えても、またリン量が 40ppmを超えても、いずれの場合にお いてもセラミックシンチレータ 1の着色が顕著になる。これによつて、発光した光が吸 収されて検出感度が低下する。一方、アルカリ金属元素量が 5ppm未満であっても、 またリン量力 ppm未満であっても、 V、ずれの場合も焼結体中に酸硫化ルテチウム以 外の異相(例えば未反応の希土類酸化物)が生じたり、また酸硫化ルテチウム蛍光 体の焼結性の低下に基づいて気孔や空隙等が生じる結果となる。これら異相や気孔 等は焼結体内での光の散乱原因となることから、セラミックシンチレータ 1の検出感度 を低下させる。
[0029] 異相や気孔等の焼結体内での体積比率は 0.5%以下とすることが好ましぐさらに は 0.1%以下とすることが望ましい。また、焼結体の体色は透明性を維持し得る範囲 であればよぐ必ずしも無色透明である必要はない。アルカリ金属元素量およびリン 量を上記した範囲内に制御することによって、優れた透光性を有する酸硫化ルテチ ゥム蛍光体の焼結体を再現性よく得ることができる。そして、このような酸硫化ルテチ ゥム蛍光体の焼結体によれば、高純度 ·高密度でかつ透明性に優れると!、う特性 (透 光性)に基づいて、酸硫化ルテチウム蛍光体が本来有する高発光率特性を十分に 生かして、セラミックシンチレータ 1の高光出力化並びに高感度化を図ることが可能と なる。
[0030] この実施形態のセラミックシンチレータ 1は、後述するような X線 CT装置の X線検出 器における X線検出素子等に使用されるものである。特に、高解像度化を実現する ために X線検出素子をより一層小型化した X線 CT装置に好適である。すなわち、 X 線 CT装置の解像度を高めるためには、シンチレータを微細化してチャンネル数を増 カロさせる必要がある。そして、微細形状に加工したシンチレータで高感度特性を得る ためには、単位面積当りの X線吸収率もしくは発光効率を高めることが重要となる。
[0031] 上記したような特性が求められるシンチレータに対して、この実施形態のセラミック シンチレータ 1は X線吸収係数が大きぐ微細加工した場合においても十分な光出力 が得られる酸硫化ルテチウム蛍光体の焼結体を適用している。さらに、酸硫化ルテチ ゥム蛍光体の焼結体に高純度 ·高密度で透明性に優れると 、う特性を付与して 、る。 従って、図 1に示したように、 X線 2の照射面 laを微細化したセラミックシンチレータ 1 に好適である。このようなセラミックシンチレータ 1を使用することによって、高解像度 化した X線 CT装置等を実現することが可能となる。
[0032] 上述したセラミックシンチレータ 1は、例えば X線照射面 laの形状を、幅 W0.1— 1.0mm X長さ L0.1— 3.0mmと!、うような微小形状とする場合に好適である。言 、換え ると、この実施形態の酸硫化ルテチウム蛍光体の焼結体を適用することによって、上 記したような微小形状のセラミックシンチレータ 1であっても、十分な光出力を得ること ができる。なお、セラミックシンチレータ 1の厚さ tは X線 2の照射量や照射強度等に応 じて適宜に設定される。厚さ tは例えば 1.0— 2.0mmの範囲とすることが好ましい。
[0033] この実施形態のセラミックシンチレータ 1は、例えば以下のようにして作製される。す なわち、前述したアルカリ金属元素量およびリン量を制御した酸硫化ルテチウム蛍光 体粉末を焼結して、セラミックシンチレータ 1となる酸硫化ルテチウム蛍光体の焼結体 を作製する。酸硫化ルテチウム蛍光体粉末中のアルカリ金属元素量およびリン量は 、焼成後の洗浄条件 (酸洗浄や水洗の処理回数等)により制御することができる。
[0034] 酸硫化ルテチウム蛍光体粉末を焼結するにあたっては、ホットプレスや HIP等の公 知の焼結法を適用することができる。特に、高密度の焼結体を容易に得ることが可能 であることから、 HIP法を適用して焼結工程を実施することが好ましい。 HIP法を適用 した焼結工程は、まず酸硫化ルテチウム蛍光体粉末をラバープレスで適当な形に成 形した後、金属容器等に充填封入して HIP処理を施すことにより実施する。この際の HIP条件については、 HIP温度は 1400— 1600°Cの範囲とすることが好ましい。また、 HIP圧力は 98MPa以上、 HIP時間は 1一 10時間とすることが好ましい。
[0035] このような条件下で HIP処理を実施することによって、例えば相対密度 (理論密度 に対する比率)が 99.5%以上、さらには 99.8%以上の酸硫化ルテチウム蛍光体の焼 結体を再現性よく得ることができる。焼結体の相対密度が 99.5%未満であると、セラミ ックシンチレータ 1に求められる透光性や光出力等の特性を満足させることができな い。なお、焼結体の相対密度はアルキメデス法により測定した値を示すものとする。 酸硫化ルテチウム蛍光体の焼結体は、必要に応じてブレードソーやワイヤーソ一等 で所望形状に加工した後、セラミックシンチレータ 1として使用される。
[0036] 次に、本発明の放射線検出器および放射線検査装置の実施形態について、図 2 および図 3を参照して説明する。図 2は本発明の放射線検出器の一実施形態として の X線検出器の概略構成を示す図である。同図に示す X線検出器 3は、前述した実 施形態のセラミックシンチレータ 1、すなわち酸硫化ルテチウム蛍光体の焼結体から なるセラミックシンチレータ (シンチレータチップ) 1を蛍光発生手段として有して 、る。 なお、前述したようにセラミックシンチレータ 1は矩形棒状のシンチレータチップに限 られるものでなぐ例えば複数のセグメントを縦横方向に多数集積したシンチレータ ブロック等であってもよ ヽ。
[0037] 矩形棒状のセラミックシンチレータ 1は、一面を除!、て反射膜 4で覆われて 、る。そ して、セラミックシンチレータ 1の反射膜 4で覆われていない面に、接着層 5を介してシ リコンフォトダイオード 6のような光電変換素子が取り付けられている。なお、セラミック シンチレータ 1として、複数のセグメントを多数集積したシンチレ一タブロックを用いる 場合には、各セグメントに対応させてシリコンフォトダイオード等が配置される。
[0038] 上述した X線検出器 3においては、セラミックシンチレータ 1に X線が入射し、この入 射した X線量に応じてセラミックシンチレータ 1が発光する。セラミックシンチレータ 1か ら放射された光はフォトダイオード 6で検出される。すなわち、入射した X線量に基づ いて発光する光の出力は、フォトダイオード 6により電気的出力に変換された後、出 力端子 7から出力される。
[0039] 図 3は本発明の放射線検査装置の一実施形態としての X線 CT装置の概略構成を 示す図である。同図に示す X線 CT装置 10は、上述した実施形態の検出器構造を基 本とする X線検出器 3を有している。図 3に示す X線検出器 3は、被検者 11の撮像部 位を安置する円筒の内壁に沿って配置された複数のセラミックシンチレータ 1を有し ている。図示を省略したフォトダイオードは、複数のセラミックシンチレータ 1に対して それぞれ接続されている。複数のセラミックシンチレータ 1を有する X線検出器 3が配 置された円弧の略中心には、 X線を出射する X線管 12が配置されている。
[0040] X線検出器 3と X線管 12との間には、固定された被検者 11が配置される。 X線検出 器 3と X線管 12は、固定された被検者 11を中心にして、 X線による撮影を行いながら 回転するように構成されている。このようにして、被検者 11の画像情報が異なる角度 力も立体的に集められる。 X線撮影により得られた信号 (フォトダイオードにより変換さ れた電気信号)はコンピュータ 13で処理され、ディスプレイ 14上に被検者画像 15と して表示される。被検者画像 15は例えば被検者 11の断層像である。
[0041] X線 CT装置 10は、 X線検出器 3のセラミックシンチレータ 1として、微細化した場合 でも十分な光出力が得られる酸硫化ルテチウム蛍光体の高純度,高密度で透明性に 優れた焼結体を適用している。このため、 X線検出感度を低下させることなぐ高解像 度化のためのチャンネル数の増加に対応することができる。すなわち、 X線画像の画 質や精度等を維持しつつ、より一層の高解像度化を図った X線 CT装置 10を実現す ることが可能となる。これらによって、 X線 CT装置 10による医療診断能等は大幅に向 上する。
[0042] なお、本発明の放射線検査装置は、医療診断用の X線検査装置に限らず、工業用 途の X線非破壊検査装置等に対しても適用可能である。本発明は X線非破壊検査 装置による検査精度の向上等に対しても寄与するものである。
[0043] 次に、本発明の具体的な実施例およびその評価結果について述べる。
[0044] 実施例 1
まず、セラミックシンチレータの原料として、平均粒子径が 15 μ mの酸硫化ルテチウ ム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末は、 (Lu Pr ) O
0.999 0.001 2 2
Sの組成を有し、かつ質量比で 45ppmの Pを含むと共に、アルカリ金属元素として 12ppmの Naを含むものである。この酸硫化ルテチウム蛍光体粉末を冷間静水圧プレ ス (CIP)により成形した。なお、酸硫化ルテチウム蛍光体粉末のリンおよびアルカリ 金属元素の含有量は、前述したように酸硫化ルテチウム蛍光体の焼成後の洗浄条 件により制御した。以下の実施例および比較例も同様である。
[0045] 上記した成形体を Ta製カプセル中に密封した後、これを HIP処理装置にセットした 。 HIP処理装置に Arガスを加圧媒体として封入し、温度 1600°C、圧力 200MPa、処理 時間 3hrの条件下で HIP処理を行った。 HIP焼結体の相対密度は 99.8%であった。 このような HIP焼結体を長さ 3mm X幅 lmm X厚さ 1.5mmの形状に加工して、 目的とす るセラミックシンチレータ(シンチレータチップ)を作製した。シンチレータチップの P含 有量と Na含有量を測定したところ、それぞれ 16ppm、 llppmであった。このようなセラ ミックシンチレータを後述する特性評価に供した。
[0046] 実施例 2
セラミックシンチレータの原料として、(Lu Pr ) O Sの組成を有し、かつ質量
0.999 0.001 2 2
比で 45ppmの Pを含むと共に、アルカリ金属元素として 16ppmの Kを含む酸硫化ルテ チウム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、 上記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍 光体の焼結体からなるシンチレータチップを作製した。このシンチレータチップの P含 有量は 16ppm、 K含有量は 13ppm、相対密度は 99.8%であった。このようなセラミック シンチレータを後述する特性評価に供した。
[0047] 実施例 3
セラミックシンチレータの原料として、(Lu Pr ) O Sの組成を有し、かつ質量
0.999 0.001 2 2
比で 45ppmの Pを含むと共に、アルカリ金属元素として 15ppmの Liを含む酸硫化ルテ チウム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、 上記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍 光体の焼結体からなるシンチレータチップを作製した。このシンチレータチップの P含 有量は 16ppm、 Li含有量は 13ppm、相対密度は 99.8%であった。このようなセラミック シンチレータを後述する特性評価に供した。
[0048] 実施例 4
セラミックシンチレータの原料として、(Lu Pr ) O Sの組成を有し、かつ質量
0.999 0.001 2 2
比で 21ppmの Pを含むと共に、アルカリ金属元素として 8ppmの Naを含む酸硫化ルテ チウム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、 上記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍 光体の焼結体からなるシンチレータチップを作製した。このシンチレータチップの P含 有量は 6ppm、 Na含有量は 6ppm、相対密度は 99.8%であった。このようなセラミツクシ ンチレータを後述する特性評価に供した。
[0049] 実施例 5
セラミックシンチレータの原料として、(Lu Pr ) O Sの組成を有し、かつ質量
0.999 0.001 2 2
比で 85ppmの Pを含むと共に、アルカリ金属元素として 12ppmの Naを含む酸硫化ルテ チウム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、 上記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍 光体の焼結体からなるシンチレータチップを作製した。このシンチレータチップの P含 有量は 37ppm、 Na含有量は llppm、相対密度は 99.8%であった。このようなセラミック シンチレータを後述する特性評価に供した。
[0050] 実施例 6
セラミックシンチレータの原料として、(Lu Eu ) O Sの組成を有し、かつ質量比
0.95 0.05 2 2
で 45ppmの Pを含むと共に、アルカリ金属元素として 12ppmの Naを含む酸硫化ルテチ ゥム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、上 記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍光 体の焼結体力 なるシンチレータチップを作製した。このシンチレータチップの P含有 量は 16ppm、 Na含有量は llppm、相対密度は 99.8%であった。このようなセラミツクシ ンチレータを後述する特性評価に供した。
[0051] 実施例 7
セラミックシンチレータの原料として、(Lu Tb ) O Sの組成を有し、かつ質量比
0.99 0.01 2 2
で 45ppmの Pを含むと共に、アルカリ金属元素として 12ppmの Naを含む酸硫化ルテチ ゥム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、上 記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍光 体の焼結体力 なるシンチレータチップを作製した。このシンチレータチップの P含有 量は 16ppm、 Na含有量は llppm、相対密度は 99.8%であった。このようなセラミツクシ ンチレータを後述する特性評価に供した。
[0052] 比較例 1
セラミックシンチレータの原料として、(Lu Pr ) O Sの組成を有し、かつ質量
0.999 0.001 2 2
比で 105ppmの Pを含むと共に、アルカリ金属元素として 12ppmの Naを含む酸硫化ル テチウム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は 、上記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム 蛍光体の焼結体からなるシンチレータチップを作製した。このシンチレータチップの P 含有量は 49ppm、 Na含有量は llppm、相対密度は 99.8%であった。このようなセラミ ックシンチレータを後述する特性評価に供した。
[0053] 比較例 2
セラミックシンチレータの原料として、(Lu Pr ) O Sの組成を有し、かつ質量
0.999 0.001 2 2
比で 45ppmの Pを含むと共に、アルカリ金属元素として 69ppmの Naを含む酸硫化ルテ チウム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、 上記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍 光体の焼結体からなるシンチレータチップを作製した。このシンチレータチップの P含 有量は 16ppm、 Na含有量は 54ppm、相対密度は 99.8%であった。このようなセラミック シンチレータを後述する特性評価に供した。
[0054] 比較例 3
セラミックシンチレータの原料として、(Lu Pr ) O Sの組成を有し、かつ質量
0.999 0.001 2 2
比で 5ppmの Pを含むと共に、アルカリ金属元素として 3ppmの Naを含む酸硫化ルテチ ゥム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、上 記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍光 体の焼結体力 なるシンチレータチップを作製した。このシンチレータチップの P含有 量は 3ppm、 Na含有量は 2ppm、相対密度は 99.2%であった。このようなセラミックシン チレータを後述する特性評価に供した。
[0055] 比較例 4
セラミックシンチレータの原料として、(Lu Eu ) O Sの組成を有し、かつ質量比
0.95 0.05 2 2
で 45ppmの Pを含むと共に、アルカリ金属元素として 69ppmの Naを含む酸硫化ルテチ ゥム蛍光体粉末を用意した。この酸硫化ルテチウム蛍光体粉末を用いる以外は、上 記した実施例 1と同一条件の成形および HIP処理によって、酸硫化ルテチウム蛍光 体の焼結体力 なるシンチレータチップを作製した。このシンチレータチップの P含有 量は 16ppm、 Na含有量は 54ppm、相対密度は 99.6%であった。このようなセラミツクシ ンチレータを後述する特性評価に供した。
[0056] 上記した実施例 1一 7および比較例 1一 4による各セラミックシンチレータを用いて、 図 2に示した X線検出器 3をそれぞれ構成した。そして、管電圧が 120kVpの X線を照 射した際の X線検出感度 (光出力)を測定した。 X線の検出感度は、 (Gd Pr )
0.999 0.001 2
O S糸且成を有し、かつ形状が長さ 3mm X幅 lmm X厚さ 2mmのセラミックシンチレ一タ(
2
シンチレータチップ)を比較試料として用い、この比較試料の光出力を 100とした場合 の相対値として求めた。 X線の検出感度 (光出力)を表 1に示す。
[0057] [表 1]
Figure imgf000015_0001
* :括弧内の数値は原料粉末の Pおよびアル力リ元素の含有量である。
[0058] 表 1から明らかなように、実施例 1一 7による酸化ルテチウム製セラミックシンチレ一 タは、いずれも従来の酸ィ匕ガドリニウム製セラミックシンチレータに比べて光出力に優 れていることが分かる。一方、リンおよびアルカリ金属元素の少なくとも一方の含有量 が本発明の範囲を超える酸ィ匕ルテチウム製セラミックシンチレータ (比較例 1、 2、 4) は、いずれも光出力が劣っている。これは酸ィ匕ルテチウム蛍光体の焼結体が茶色に 着色していたためである。また、リンおよびアルカリ金属元素の含有量が本発明の範 囲未満の酸ィ匕ルテチウム製セラミックシンチレータ (比較例 3)も光出力が劣っている 。これは酸ィヒルテチウム蛍光体の焼結体の密度が低ぐこれにより焼結体内部で光 が散乱したためである。
[0059] 実施例 8— 14
表 2に示す Pr組成、 P含有量、アルカリ元素含有量を有する(Lu Pr ) O S蛍光体
1-a a 2 2 の焼結体を、それぞれ実施例 1と同様にして作製した。焼結体中の P含有量およびァ ルカリ元素含有量は、原料粉末中の P量やアルカリ元素量等に基づいて制御した。 これら各焼結体の相対密度は表 2に示す通りである。このような酸硫化ルテチウム蛍 光体の焼結体を用いてシンチレータチップ (実施例 1と同一形状)を作製し、それぞ れ実施例 1と同様にして X線の検出感度(光出力 Z比較試料の光出力を 100とした場 合の相対値)を測定した。これらの測定結果を表 2に併せて示す。
[0060] [表 2]
Figure imgf000016_0001
[0061] 実施例 15— 25
表 3に示す Eu糸且成、 P含有量、アルカリ元素含有量を有する(Lu Eu ) O S蛍光 体の焼結体を、それぞれ実施例 1と同様にして作製した。焼結体中の P含有量およ びアルカリ元素含有量は、原料粉末中の P量やアルカリ元素量等に基づいて制御し た。これら各焼結体の相対密度は表 3に示す通りである。このような酸硫化ルテチウ ム蛍光体の焼結体を用いてシンチレータチップ (実施例 1と同一形状)を作製し、そ れぞれ実施例 1と同様にして X線の検出感度 (光出力 Z比較試料の光出力を 100とし た場合の相対値)を測定した。これらの測定結果を表 3に併せて示す。
[0062] [表 3]
Eu P含有量 アル力リ¾ ^有量 光出力
(原子%) (ppm) (%,相対値)
Na K Li
実施例 15 0.3 16 11 27 180 実施例 16 0.3 16 - 13 29 99.8 176 実施例 17 0.3 16 - 5 31 175 実施例 18 0.3 16 4 4 4 2Θ 175 実施例 19 3 16 11 ― - 27 170 実施例 20 3 16 - 13 - 29 170 実施例 21 3 16 - 15 31 99.8 169 実施例 22 5 16 - 13 - 29 162 実施例 23 5 16 - 15 31 99*8 160 実施例 24 5 6 6 - - 12 170 実施例 25 5 37 11 - 一 48 150
[0063] 実施例 26— 36
表 4に示す Tb組成、 P含有量、アルカリ元素含有量を有する(Lu Tb ) O S蛍光 体の焼結体を、それぞれ実施例 1と同様にして作製した。焼結体中の P含有量およ びアルカリ元素含有量は、原料粉末中の P量やアルカリ元素量等に基づいて制御し た。これら各焼結体の相対密度は表 4に示す通りである。この 1ような酸硫ィヒルテチウ ム蛍光体の焼結体を用いてシンチレータチップ (実施例 1と同一形状)を作製し、そ れぞれ実施例 1と同様にして X線の検出感度 (光出力 Z比較試料の光出力を 100とし た場合の相対値)を測定した。これらの測定結果を表 4に併せて示す。
[0064] [表 4]
Figure imgf000017_0001
産業上の利用可能性 本発明によれば、酸硫化ルテチウム蛍光体の焼結体が適量のアルカリ金属元素お よびリンを含有して 、ることに基づ 、て、高純度 ·高密度で透明性に優れたセラミック シンチレータを提供することができる。本発明のセラミックシンチレータは、酸硫化ル テチウム蛍光体が本来有する高発光効率等の特性を十分に発揮させることを可能に したものであり、これによつて小型化した場合においても光出力ひいては X線検出感 度を向上させることができる。このようなセラミックシンチレータを用いた放射線検出器 および放射線検出装置は、放射線検査画像のより一層の高解像度化等を実現する ものであり、これにより例えば医療診断や工業用非破壊検査の高精度化等に大きく 寄与する。

Claims

請求の範囲
[1] Pr、 Tbおよび Euから選ばれる少なくとも 1種の元素を付活剤として含有する酸硫ィ匕 ルテチウム蛍光体の焼結体を具備するセラミックシンチレータであって、
前記酸硫化ルテチウム蛍光体の焼結体は 5ppm以上 15ppm以下の範囲のアルカリ 金属元素と 5ppm以上 40ppm以下の範囲のリンとを含有することを特徴とするセラミック シンチレータ。
[2] 請求項 1記載のセラミックシンチレータにおいて、
前記酸硫化ルテチウム蛍光体は、
一般式: (Lu M ) O S
1-a a 2 2
(式中、 Mは Pr、 Tbおよび Euから選ばれる少なくとも 1種の元素を示し、 aは 0.0001≤ a≤ 0.2を満足する数である)
で実質的に表される組成を有することを特徴とするセラミックシンチレータ。
[3] 請求項 1記載のセラミックシンチレータにおいて、
前記酸硫化ルテチウム蛍光体の焼結体は Li、 Kおよび Naから選ばれる少なくとも 1 種のアルカリ金属元素を含有することを特徴とするセラミックシンチレータ。
[4] 請求項 1記載のセラミックシンチレータにおいて、
前記酸硫化ルテチウム蛍光体の焼結体は 99.5%以上の相対密度を有することを特 徴とするセラミックシンチレータ。
[5] 請求項 1記載のセラミックシンチレータにおいて、
放射線の照射面の形状が幅 0.1— 1.0mm X長さ 0.1— 3.0mmであることを特徴とする セラミックシンチレータ。
[6] 請求項 1記載のセラミックシンチレータを具備し、入射した放射線に応じて前記セラ ミックシンチレータを発光させる蛍光発生手段と、
前記蛍光発生手段からの光を受けて、前記光の出力を電気的出力に変換する光 電変換手段と
を具備することを特徴とする放射線検出器。
[7] 被検体に向けて放射線を照射する放射線源と、
前記被查体を透過した放射線を検出する、請求項 6記載の放射線検出器と を具備することを特徴とする放射線検査装置。
請求項 7記載の放射線検査装置において、
X線 CT装置であることを特徴とする放射線検査装置。
PCT/JP2004/013888 2003-09-24 2004-09-24 セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置 WO2005028591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005514114A JP5022600B2 (ja) 2003-09-24 2004-09-24 セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置
EP04788047A EP1666566B1 (en) 2003-09-24 2004-09-24 Ceramic scintillator, and radiation detector and radiographic examination apparatus using same
DE602004030263T DE602004030263D1 (de) 2003-09-24 2004-09-24 Szintillatorkeramik sowie strahlendetektor und radiographisches untersuchungsgerät, die diese enthalten
US10/547,314 US7230248B2 (en) 2003-09-24 2004-09-24 Ceramic scintillator, and radiation detector and radiographic examination apparatus using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-331489 2003-09-24
JP2003331489 2003-09-24

Publications (1)

Publication Number Publication Date
WO2005028591A1 true WO2005028591A1 (ja) 2005-03-31

Family

ID=34373043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013888 WO2005028591A1 (ja) 2003-09-24 2004-09-24 セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置

Country Status (5)

Country Link
US (1) US7230248B2 (ja)
EP (1) EP1666566B1 (ja)
JP (1) JP5022600B2 (ja)
DE (1) DE602004030263D1 (ja)
WO (1) WO2005028591A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015862A1 (en) * 2005-07-25 2007-02-08 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
WO2011033882A1 (ja) 2009-09-18 2011-03-24 三井金属鉱業株式会社 シンチレータ用蛍光体
JPWO2012026585A1 (ja) * 2010-08-27 2013-10-28 株式会社トクヤマ フッ化物結晶、放射線検出用シンチレーター及び放射線検出器
US8872119B2 (en) 2008-12-30 2014-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US8877093B2 (en) 2008-12-30 2014-11-04 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9175216B2 (en) 2008-12-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9183962B2 (en) 2008-12-30 2015-11-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
JPWO2016047139A1 (ja) * 2014-09-25 2017-07-27 株式会社東芝 シンチレータ、シンチレータアレイ、放射線検出器、および放射線検査装置
WO2017135256A1 (ja) * 2016-02-02 2017-08-10 株式会社 東芝 蛍光体とその製造方法
JPWO2017078051A1 (ja) * 2015-11-02 2018-09-20 株式会社東芝 シンチレータ、シンチレータアレイ、放射線検出器、および放射線検査装置
JP2022031767A (ja) * 2016-12-06 2022-02-22 株式会社東芝 シンチレータアレイ、シンチレータアレイを製造する方法、放射線検出器、および放射線検査装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1550885B1 (en) * 2002-09-26 2014-07-16 Kabushiki Kaisha Toshiba Phosphor sheet for radiation detector, radiation detector employing it and equipment for detecting radiation
US20040262536A1 (en) * 2003-06-30 2004-12-30 Van Den Bergh Rudy Rare earth activated rare earth oxysulfide phosphor for direct X-ray detection
RU2519131C2 (ru) * 2008-08-07 2014-06-10 Конинклейке Филипс Электроникс Н.В. Сцинтилляционный материал и соответствующий спектральный фильтр
US9638807B2 (en) 2008-08-07 2017-05-02 Koninklijke Philips N.V. Scintillating material and related spectral filter
WO2012034220A1 (en) 2010-09-14 2012-03-22 Abdelmounaime Faouzi Zerrouk Depth-of-interaction scintillation detectors
JP2015518070A (ja) * 2012-04-13 2015-06-25 ゼコテック フォトニクス インコーポレイテッドZecotek Photonics Inc. 向上した耐放射線性を有する多重ドープルテチウム系オキシオルトシリケートシンチレータ
EP4080522A4 (en) * 2019-12-19 2023-08-16 Kabushiki Kaisha Toshiba FLUORINE PLATE, X-RAY DETECTOR AND X-RAY INSPECTION DEVICE
CN113805218A (zh) * 2020-06-11 2021-12-17 上海大学 X射线成像探测器用倍半氧化物透明陶瓷闪烁屏及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188655A (ja) * 1993-12-27 1995-07-25 Toshiba Corp 蛍光体およびその製造方法とこの蛍光体を用いた放射線検出器およびx線断層写真撮影装置
JPH07252476A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 蛍光体およびセラミックスの製造方法
JP2001089762A (ja) * 1999-07-16 2001-04-03 Toshiba Corp セラミックシンチレータ材料とその製造方法、およびそれを用いた放射線検出器と放射線検査装置
JP2004204053A (ja) * 2002-12-25 2004-07-22 Toshiba Corp セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA952706A (en) * 1965-03-24 1974-08-13 Perry N. Yocom Phosphor and method of preparation thereof
JP2625000B2 (ja) * 1988-06-24 1997-06-25 株式会社日立メディコ 蛍光体の製造方法
JPH03243686A (ja) * 1990-02-21 1991-10-30 Toshiba Corp セラミックシンチレータ
JP3454904B2 (ja) * 1994-02-25 2003-10-06 株式会社東芝 セラミックシンチレ―タおよびx線検出器
JP3524300B2 (ja) 1995-11-21 2004-05-10 株式会社東芝 セラミックスシンチレータ、それを用いた放射線検出器および放射線検査装置
US5783106A (en) * 1997-09-23 1998-07-21 Osram Sylvania Inc. Lithium doped terbium activated gadolinium oxysulfide phosphor
US6504156B1 (en) 1999-07-16 2003-01-07 Kabushiki Kaisha Toshiba Ceramic scintillator material and manufacturing method thereof, and radiation detector therewith and radiation inspection apparatus therewith
JP2001131546A (ja) 1999-10-29 2001-05-15 Kasei Optonix Co Ltd 希土類酸硫化物蛍光体および該蛍光体を用いた放射線像変換スクリーン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188655A (ja) * 1993-12-27 1995-07-25 Toshiba Corp 蛍光体およびその製造方法とこの蛍光体を用いた放射線検出器およびx線断層写真撮影装置
JPH07252476A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 蛍光体およびセラミックスの製造方法
JP2001089762A (ja) * 1999-07-16 2001-04-03 Toshiba Corp セラミックシンチレータ材料とその製造方法、およびそれを用いた放射線検出器と放射線検査装置
JP2004204053A (ja) * 2002-12-25 2004-07-22 Toshiba Corp セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1666566A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531109B2 (en) 2005-07-25 2009-05-12 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
CN101253128B (zh) * 2005-07-25 2011-09-14 圣戈本陶瓷及塑料股份有限公司 稀土氧硫化物闪烁体及其生产方法
WO2007015862A1 (en) * 2005-07-25 2007-02-08 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US8460578B2 (en) 2005-07-25 2013-06-11 Saint-Gobain Ceramics & Plastics, Inc. Rare earth oxysulfide scintillator and methods for producing same
US8877093B2 (en) 2008-12-30 2014-11-04 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9183962B2 (en) 2008-12-30 2015-11-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9175216B2 (en) 2008-12-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US8872119B2 (en) 2008-12-30 2014-10-28 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US8323530B2 (en) 2009-09-18 2012-12-04 Mitsui Mining & Smelting Co., Ltd. Phosphor for scintillator
WO2011033882A1 (ja) 2009-09-18 2011-03-24 三井金属鉱業株式会社 シンチレータ用蛍光体
JPWO2012026585A1 (ja) * 2010-08-27 2013-10-28 株式会社トクヤマ フッ化物結晶、放射線検出用シンチレーター及び放射線検出器
JPWO2016047139A1 (ja) * 2014-09-25 2017-07-27 株式会社東芝 シンチレータ、シンチレータアレイ、放射線検出器、および放射線検査装置
JPWO2017078051A1 (ja) * 2015-11-02 2018-09-20 株式会社東芝 シンチレータ、シンチレータアレイ、放射線検出器、および放射線検査装置
JP7179462B2 (ja) 2015-11-02 2022-11-29 株式会社東芝 シンチレータ、シンチレータアレイ、放射線検出器、および放射線検査装置
WO2017135256A1 (ja) * 2016-02-02 2017-08-10 株式会社 東芝 蛍光体とその製造方法
JPWO2017135256A1 (ja) * 2016-02-02 2018-11-22 株式会社東芝 蛍光体とその製造方法
US10858583B2 (en) 2016-02-02 2020-12-08 Kabushiki Kaisha Toshiba Phosphor and method of producing the same
JP2022031767A (ja) * 2016-12-06 2022-02-22 株式会社東芝 シンチレータアレイ、シンチレータアレイを製造する方法、放射線検出器、および放射線検査装置

Also Published As

Publication number Publication date
US7230248B2 (en) 2007-06-12
EP1666566A1 (en) 2006-06-07
EP1666566A4 (en) 2008-05-07
JPWO2005028591A1 (ja) 2006-11-30
US20060145085A1 (en) 2006-07-06
DE602004030263D1 (de) 2011-01-05
EP1666566B1 (en) 2010-11-24
JP5022600B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5022600B2 (ja) セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置
US8431042B2 (en) Solid state scintillator material, solid state scintillator, radiation detector, and radiation inspection apparatus
JP6911178B2 (ja) シンチレータ、シンチレータアレイ、放射線検出器、および放射線検査装置
JP5675339B2 (ja) 固体シンチレータ、放射線検出器およびx線断層写真撮影装置
EP1043383A1 (en) Phosphors, and radiation detectors and x-ray ct unit made by using the same
JP7179462B2 (ja) シンチレータ、シンチレータアレイ、放射線検出器、および放射線検査装置
CA2771063A1 (en) Multi-element x-ray detector, its rear-earth luminescent materials, production of multi-element scintillator and detector in general
JP4683719B2 (ja) 酸化物蛍光体及びそれを用いた放射線検出器、並びにx線ct装置
JP6103042B2 (ja) 蛍光材料、シンチレータ、並びに放射線変換パネル
JP3194828B2 (ja) 焼結蛍光体およびその製造方法とこの焼結蛍光体を用いた放射線検出器およびx線断層写真撮影装置
JP5937287B1 (ja) 混合酸化物材料
JP4087093B2 (ja) 蛍光体素子、それを用いた放射線検出器及び医用画像診断装置
JP4429444B2 (ja) シンチレータ、それを用いた放射線検出器及びx線ct装置
JP4886151B2 (ja) セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置
JP5241979B2 (ja) セラミックシンチレータ材料とその製造方法、およびそれを用いた放射線検出器と放射線検査装置
JPH03243686A (ja) セラミックシンチレータ
JP3741302B2 (ja) シンチレータ
JP2012072330A (ja) 固体シンチレータ用材料、固体シンチレータ、およびそれを用いた放射線検出器並びに放射線検査装置
JPH11310777A (ja) 蛍光体セラミックスと、それを用いた放射線検出器および放射線検査装置
JP2004238583A (ja) シンチレータおよびそれを用いた放射線検査装置
David et al. Luminescence efficiency of Lu2SiO5: Ce (LSO) powder scintillator for X-ray medical radiography applications
JPH108048A (ja) 希土類酸硫化物蛍光体及びこれを用いたx線検出器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514114

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004788047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006145085

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10547314

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004788047

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10547314

Country of ref document: US