WO2011033882A1 - シンチレータ用蛍光体 - Google Patents

シンチレータ用蛍光体 Download PDF

Info

Publication number
WO2011033882A1
WO2011033882A1 PCT/JP2010/063464 JP2010063464W WO2011033882A1 WO 2011033882 A1 WO2011033882 A1 WO 2011033882A1 JP 2010063464 W JP2010063464 W JP 2010063464W WO 2011033882 A1 WO2011033882 A1 WO 2011033882A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
scintillator
radiation
emission
fluorescence decay
Prior art date
Application number
PCT/JP2010/063464
Other languages
English (en)
French (fr)
Inventor
高橋 司
素之 田中
俊一 畑元
彦睦 渡邉
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2011531852A priority Critical patent/JP5342648B2/ja
Priority to US13/496,254 priority patent/US8323530B2/en
Priority to EP10816995.4A priority patent/EP2479239A4/en
Publication of WO2011033882A1 publication Critical patent/WO2011033882A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7713Sulfates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials

Definitions

  • the present invention relates to a phosphor useful as a constituent material of a scintillator used for a radiation detector or the like.
  • a scintillator is a substance that absorbs radiation such as ⁇ -rays and X-rays and emits visible light or electromagnetic waves having a wavelength close to that of visible light. As its application, it is used in medical PET (Positron Emission Tomography), TOF-PET (Time of Flight Positron Emission Tomography), X-ray CT (Computer Tomography), and airports.
  • Various radiation detectors such as personal belongings inspection equipment.
  • PET Pulsitron Emission Tomography
  • a drug labeled with a positron emitting nuclide that generates annihilation radiation of 511 KeV uses a tomographic image to detect physiological functions such as metabolism and blood flow. It is a vessel.
  • This type of radiation detector generally includes a scintillator unit that receives radiation and converts it into visible light, and a photomultiplier tube (hereinafter referred to as an electrical signal) that detects visible light converted and transmitted by the scintillator unit. And a photodetection unit such as a photodiode.
  • oxysulfides such as Gd 2 O 2 S: Pr (Patent Document 3) and Lu 2 O 2 S: Pr (Patent Document 4) are disclosed as scintillator materials containing sulfur.
  • JP 2001-72968 A Japanese Patent No. 2852944 JP 61-17082 A WO2005 / 028591
  • PET positron emission tomography
  • the PET apparatus has a problem of low spatial resolution and long inspection time. If the light emission life of the scintillator used for PET, that is, the fluorescence decay time can be shortened, the inspection time can be shortened. In addition, the use of TOF (Time of Flight) information can be expected to improve the spatial resolution of the PET apparatus. In applications other than PET, if the fluorescence decay time can be shortened while maintaining output (brightness), the detection efficiency of various detection devices can be increased.
  • TOF Time of Flight
  • the present invention intends to provide a new phosphor for scintillator that has the feature that the fluorescence decay time is short as well as being able to absorb radiation and convert it into visible light.
  • the present invention proposes a scintillator phosphor containing a host crystal containing lutetium sulfide and an activator ion.
  • the phosphor proposed by the present invention is characterized in that it not only absorbs radiation and can be converted into visible light, but also has a short fluorescence decay time. Therefore, it is particularly useful as a scintillator material used for a radiation detector such as PET.
  • FIG. 3 is an XRD pattern of the phosphor powder synthesized in Example 1.
  • FIG. 2 is a PL emission spectrum of the phosphor powder synthesized in Example 1.
  • 7 is a PL emission spectrum of the phosphor powder synthesized in Example 5.
  • FIG. 3 is a diagram showing XRD patterns of the phosphor powders synthesized in Examples 1-4 and 10 side by side.
  • the phosphor according to this embodiment (hereinafter referred to as “the present phosphor”) is a phosphor containing a host crystal containing lutetium sulfide and an ion of an activator.
  • the phosphor is preferably a phosphor containing a crystal represented by the general formula (Lu 1-x M x ) 2 S 3 (wherein M represents an activator element).
  • x in the formula is preferably 0.001 to 0.1. If x is in such a range, the light emission amount can be maintained. Therefore, from such a viewpoint, x is more preferably 0.1 or less, particularly preferably 0.0025 or more or 0.05 or less, and most preferably 0.004 or more and 0.015 or less. is there.
  • the phosphor is preferably a phosphor containing a composition represented by the general formula (Lu 1-x Pr x ) 2 S 3 or the general formula (Lu 1-x Ce x ) 2 S 3. .
  • Lu 2 S 3-phase may contain such Lu 2 O 2 S phases.
  • Lu 2 S 3 is used, desired strong light emission can be obtained, and if a large amount of Lu 2 O 2 S phase is included, light emission near 500 nm tends to continue for several ⁇ seconds after irradiation with excitation light. From the viewpoint of avoiding inconvenience, it is preferable that there are many Lu 2 S 3 phases. From such a viewpoint, it is particularly preferable to contain the Lu 2 S 3 phase in an amount of 20% or more, particularly 85% or more, and more preferably 95% or more (including 100%).
  • the phosphor activator ions that is, the emission centers (emission ions) include Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Cr, Bi, and Tl. Though conceivable, among these, Pr 3+ or Ce 3+ or both are preferred. Among these, Pr 3+ is particularly excellent from the viewpoint of emitting visible light and having a short fluorescence decay time.
  • the present phosphor may contain other components within the range where the effects of the present invention can be obtained.
  • a monovalent cation metal such as an alkali metal element, or a halogen ion such as Cl ⁇ , F ⁇ or I ⁇ may be added to the raw material as a charge compensator.
  • the amount of addition be such that a charge compensation effect can be obtained.
  • This phosphor is obtained, for example, by weighing and mixing a Lu raw material, an activator raw material (for example, Pr raw material), and other additive raw materials, and firing at 700 to 1500 ° C. in an atmosphere of hydrogen sulfide or carbon disulfide. Can do.
  • Lu raw material examples include Lu oxides, double oxides, carbonates, and the like.
  • activator raw material such as Pr include fluorides, carbonates, sulfides and the like in addition to oxides such as Pr.
  • the raw materials may be performed either dry or wet.
  • the mixing method is not particularly limited.
  • zirconia balls may be used as a medium, mixed with a paint shaker or a ball mill, and dried as necessary to obtain a raw material mixture.
  • wet mixing the raw material is in a suspension state, and after mixing with a paint shaker or a ball mill using zirconia balls as the medium, the medium is separated with a sieve, and dried under reduced pressure, vacuum dried, or sprayed.
  • the dry raw material mixture may be obtained by removing the solvent from the suspension by an appropriate drying method such as drying.
  • the raw material mixture obtained as described above may be pulverized, classified and dried as necessary. However, crushing, classification, and drying are not necessarily performed.
  • Baking is more preferably performed at 700 ° C. or higher.
  • firing is preferably performed in an atmosphere containing sulfur such as hydrogen sulfide and carbon disulfide.
  • an atmosphere containing sulfur such as hydrogen sulfide and carbon disulfide.
  • firing from the start of heating (at room temperature) in an atmosphere containing sulfur is preferable from the viewpoint of increasing the purity of the target substance Lu 2 S 3 .
  • the firing temperature is 700 ° C. or higher, sufficient and uniform firing can be performed.
  • hydrogen sulfide it is preferable to set it as 1000 degreeC or more.
  • the upper limit of the firing temperature is not particularly limited, but is considered to be about 1400 to 1500 ° C. in view of the durability of the firing furnace.
  • the firing time is related to the firing temperature, but it is preferably about 2 to 100 hours, and preferably 10 hours or longer when hydrogen sulfide is used.
  • the present phosphor can achieve a fluorescence decay time of 32 nsec or less, and in a particularly preferred embodiment, 5 nsec or less, high-speed light emission can be realized.
  • Table 1 shows the emission wavelengths and fluorescence decay times of various phosphors. It can be understood that the fluorescence decay time is 32 nsec or less, particularly 5 nsec or less. However, the emission wavelength and the fluorescence decay time shown in Table 1 are examples of representative values shown for comparison, and are not limited to these values.
  • the fluorescence decay time of the scintillator used in the PET apparatus can be shortened, not only the inspection time can be shortened, but also an improvement in spatial resolution can be expected by using TOF (Time of Flight) information.
  • TOF Time of Flight
  • the fluorescence decay time can be shortened while maintaining output (brightness)
  • the detection efficiency of various detection apparatuses can be increased.
  • this phosphor is mainly composed of Lu with a large atomic number, it has excellent radiation absorption capability, and even a thinner scintillator material can sufficiently absorb radiation, and the radiation detector as a whole. The size can be reduced (thickness can be reduced) while maintaining the function.
  • this phosphor can be used for medical PET (Positron Emission Tomography), TOF-PET (Time of Flight Positron Emission Tomography), X-ray CT (Computer Tomography), and airports. It can be suitably used as a material for scintillators of various radiation detectors such as a belongings inspection device to be used, and various radiation detectors can be configured using this. More specifically, a single crystal is produced from this phosphor, processed into a single crystal material for a scintillator to form a scintillator, and a radiation detector is configured by combining this scintillator with a photodetector such as a photomultiplier or a photodiode. can do.
  • a photodetector such as a photomultiplier or a photodiode.
  • the phosphor can be fired to produce a transparent ceramic body for use in various applications.
  • the phosphor can be mixed with a resin and used as a plastic body for emitting light for various purposes.
  • the phosphor is added to a liquid thermosetting resin (for example, a silicone resin or an epoxy resin) to prepare a phosphor-containing resin composition, and the phosphor-containing resin composition is kneaded and then molded. (Potting) and then heating to cure the resin.
  • a liquid thermosetting resin for example, a silicone resin or an epoxy resin
  • the “phosphor” means a powder that absorbs energy such as an electron beam, X-rays, ultraviolet rays, and an electric field and efficiently emits (emits) a part of this energy as visible light.
  • the “scintillator” means that it absorbs radiation such as ⁇ -rays and X-rays and has a wavelength close to visible light or visible light (the wavelength range of light may extend from near ultraviolet to near infrared). ) And a component of a radiation detector having such a function.
  • X to Y (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “preferably greater than Y” with the meaning of “X to Y” unless otherwise specified. The meaning of “small” is also included. Further, when “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), the intention of “preferably larger than X” or “preferably smaller than Y” Is included.
  • Example 1 Using 4N (99.99%) Lu 2 O 3 and 4N (99.99%) Pr 6 O 11 as starting materials, each starting material is weighed and blended, mixed in a mortar, The obtained mixture was fired at 1100 ° C. for 48 hours in a hydrogen sulfide atmosphere to obtain a phosphor powder composed of crystals represented by (Lu 0.995 Pr 0.005 ) 2 S 3 .
  • the generation rate of the Lu 2 S 3 phase (Lu 2 S 3 phase / (Lu 2 S 3 phase + Lu 2 O 2 S phase)) was determined to be 91.94%. Lu 2 O 2 S phase was included.
  • FIG. 2 shows an emission spectrum measured every 2 nsec by exciting the phosphor powder synthesized in Example 1 with an ArF excimer laser LPF230 (Lambda Physik, wavelength 193 nm).
  • LPF230 ArF excimer laser LPF230
  • strong luminescence was confirmed at 388 nm.
  • Example 2-4 Example 10
  • Example 1 Example 1: 48 hours
  • Example 2 4 hours
  • Example 3 8 hours
  • Example 4 40 hours
  • Example 10 32 hours
  • a phosphor powder was obtained in the same manner as in Example 1.
  • Example 1 firing at 1100 ° C. for 48 hours means that the time for maintaining 1100 ° C. was 48 hours. In other Examples 2-4 and 10, firing time was It means the holding time of the firing temperature.
  • Example 1-4 was initially heated in an argon atmosphere and heated to 500 ° C. and then switched to a hydrogen sulfide atmosphere, whereas Example 10 was initially fired in a hydrogen sulfide atmosphere. Went.
  • the Lu 2 S 3 phase is particularly preferably 20% or more, particularly 85% or more, and more preferably 95% or more. it can.
  • Example 5 Using 4N (99.99%) Lu 2 O 3 and 4N (99.99%) Ce 2 S 3 as starting materials, each starting material is weighed and blended, mixed in a mortar, The obtained mixture was baked at 1100 ° C. in a hydrogen sulfide atmosphere for 40 hours to obtain a phosphor powder composed of crystals represented by (Lu 0.995 Ce 0.005 ) 2 S 3 .
  • the phosphor containing Pr 3+ as the activator ion is superior, but the phosphor containing Ce 3+ as the activator ion is better. Even in such a case, it was confirmed that it was sufficiently short and useful because it emitted intense light in the visible light region.
  • Example 2 (Comparative Example 1 / Example 6-9) In Example 2, except that the amount of 4N (99.99%) Pr 6 O 11 was changed, the fluorescence consisting of the crystal represented by (Lu 1-x Pr x ) 2 S 3 was the same as Example 2. A body powder was obtained.
  • Example 1 0.005
  • the PL (photoluminescence) intensity (PL Intensity (au)) at 388 nm was determined.
  • the addition amount (x) of the activator element (M) If it is 0.001 or more, a PL intensity of 2000 (au) or more can be obtained, and the upper limit value is probably about 0.1. Therefore, it is considered that 0.001 to 0.1 is preferable. . If x is 0.0025 or more, a PL intensity of 2500 (au) or more can be obtained, and it can be estimated that there is an optimum value in the vicinity of 0.004 to 0.015.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

 放射線を吸収して可視光に変換できることはもちろん、蛍光減衰時間が短いという特徴を有する、新たなシンチレータ用蛍光体を提供する。 硫化ルテチウムを含有する母体結晶と、賦活剤のイオンとを含有するシンチレータ用蛍光体、例えば一般式(Lu1-xPrx23、或いは、(Lu1-xCex23で示される組成からなる蛍光体を提案する。

Description

シンチレータ用蛍光体
 本発明は、放射線検出器などに用いるシンチレータの構成材料として有用な蛍光体に関する。
 シンチレータとは、γ線やX線などの放射線を吸収し、可視光線又は可視光線に近い波長の電磁波を放射する物質である。その用途としては、医療用のPET(陽電子放射断層撮影装置)やTOF-PET(タイム・オブ・フライト陽電子放射断層撮影装置)、X線CT(コンピュータ断層撮影装置)、さらには空港などで使用される所持品検査装置など、各種放射線検出器を挙げることができる。
 中でもPET(;Positron Emission Tomography、ポジトロン断層撮影法)は、511KeVの消滅放射線を発生させる陽電子放出核種で標識された薬剤を用いて、代謝や血流量などの生理学的機能を断層像で得る放射線検出器である。この種の放射線検出器は、一般に放射線を受光して可視光に変換するシンチレータ部と、このシンチレータ部で変換され透過してくる可視光を検知して電気信号に変換するホトマルチプライヤチューブ(以下「ホトマル」という)やホトダイオードなどの光検出部とから構成されている。
 この種の用途に用いるシンチレータ材料としては、従来、Lu3Al512:Pr(特許文献1)やLu2SiO5:Ce(特許文献2)などが開示されている。
 また、硫黄を含むシンチレータ材料として、Gd22S:Pr(特許文献3)や、Lu22S:Pr(特許文献4)などの酸硫化物が開示されている。
特開2001-72968号公報 特許第2852944号公報 特開昭61-17082号公報 WO2005/028591号公報
 シンチレータの重要な用途として、陽電子断層撮影(PET)装置が挙げられるが、PET装置は、空間分解能が低いことや、検査時間が長いことが課題とされている。仮にPETに用いるシンチレータの発光寿命、すなわち蛍光減衰時間を短縮化することができれば、検査時間の短縮が可能となる。また、TOF(タイム・オブ・フライト)情報の利用による、PET装置の空間分解能の向上も期待できる。PET以外の用途においても、出力(明るさ)を維持しつつ蛍光減衰時間の短縮化を図ることができれば、各種検出装置の検出効率を高めることができる。
 そこで本発明は、放射線を吸収して可視光に変換できることはもちろん、蛍光減衰時間が短いという特徴を有する、新たなシンチレータ用蛍光体を提供せんとするものである。
 本発明は、硫化ルテチウムを含有する母体結晶と、賦活剤のイオンとを含有するシンチレータ用蛍光体を提案する。 
 本発明が提案する蛍光体は、放射線を吸収して可視光に変換できるばかりか、蛍光減衰時間が短いという特徴を有している。よって、PETなどの放射線検出器に用いるシンチレータ材料として特に有用である。
実施例1で合成した蛍光体粉末のXRDパターンである。 実施例1で合成した蛍光体粉末のPL発光スペクトルである。 実施例5で合成した蛍光体粉末のPL発光スペクトルである。 横軸:Pr添加量(x)、縦軸:PL強度(PLIntensity(a.u.))からなる座標中に、実施例1(x=0.005)、実施例6-9及び比較例1(x=0)で得られた蛍光体粉末の測定結果を示したグラフである。 実施例1-4及び10で合成した蛍光体粉末のXRDパターンを並べて示した図である。
 以下に本発明の実施形態について詳細に述べるが、本発明の範囲が以下に説明する実施形態に限定されるものではない。
 本実施形態に係る蛍光体(以下「本蛍光体」という)は、硫化ルテチウムを含有する母体結晶と、賦活剤のイオンとを含有する蛍光体である。
 本蛍光体は、一般式(Lu1-xx23(式中、Mは賦活剤元素を示す。)で示される結晶を含む蛍光体であるのが好ましい。
 この際、式中のxは0.001~0.1であるのが好ましい。xがこのような範囲内であれば発光量を維持することができる。よって、このような観点から、xは0.1以下であるのがより好ましく、特に0.0025以上或いは0.05以下であるのがさらに好ましく、最も好ましくは0.004以上0.015以下である。
 また、本蛍光体は、一般式(Lu1-xPrx23、或いは、一般式(Lu1-xCex23で示される組成物を含む蛍光体であるのが好ましい。
 この際、Lu23相のほかにLu22S相などを含んでいてもよい。但し、Lu23であれば所望の強い発光が得られるほか、Lu22S相を多く含むと励起光照射後数μ秒にわたって500nm付近の発光が続く傾向があるため、このような不都合を回避する観点からも、Lu23相が多い方が好ましい。このような観点から、Lu23相を20%以上、中でも85%以上、その中でも95%以上(100%含む)含有するのが特に好ましい。
 本蛍光体の賦活剤のイオン、すなわち発光中心(発光イオン)としては、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb、Cr、Bi及びTlなどのイオンが考えられるが、中でもPr3+又はCe3+又はこれらの両方であるのが好ましい。その中でも、可視光を発光し、かつ蛍光減衰時間が短いという観点から、Pr3+が特に優れている。
 本蛍光体は、母体結晶及び賦活剤以外に、本発明の効果を得られる範囲内で、他の成分を含有してもよい。例えば、アルカリ金属元素等の1価の陽イオン金属、Cl-、F-、I-等のハロゲンイオンを電荷補償剤として原料に添加するようにしてもよい。但し、その添加量は、電荷補償効果を得られる程度とするのが好ましい。
(製造方法)
 次に、本蛍光体の好ましい製造方法の一例について説明する。但し、下記に説明する製造方法に限定されるものではない。
 本蛍光体は、例えばLu原料、賦活剤原料(例えばPr原料)及びその他の添加原料をそれぞれ秤量して混合し、硫化水素若しくは二硫化炭素の雰囲気中、700~1500℃で焼成して得ることができる。
 上記のLu原料としては、Luの酸化物の他、複酸化物、炭酸塩等を挙げることができる。
 Prなどの賦活剤原料としては、Pr等の酸化物の他、フッ化物、炭酸塩、硫化物等を挙げることができる。
 原料の混合は、乾式、湿式いずれで行なってもよい。
 乾式混合する場合、その混合方法を特に限定するものではなく、例えばジルコニアボールをメディアに用いてペイントシェーカーやボールミル等で混合し、必要に応じて乾燥させて、原料混合物を得るようにすればよい。
 湿式混合する場合は、原料を懸濁液の状態とし、上記同様にジルコニアボールをメディアに用いてペイントシェーカーやボールミル等で混合した後、篩等でメディアを分離し、減圧乾燥や真空乾燥、スプレードライなどの適宜乾燥法によって懸濁液から溶媒を除去して乾燥原料混合物を得るようにすればよい。
 焼成する前に、必要に応じて、上記如く得られた原料混合物を粉砕、分級、乾燥を施すようにしてもよい。但し、必ずしも粉砕、分級、乾燥を施さなくてもよい。
 焼成は、700℃以上で焼成するのがより好ましい。
 この際の焼成雰囲気としては、硫化水素、二硫化炭素といった硫黄を含む雰囲気中で焼成するのが望ましい。特に加熱開始時(常温時)から、硫黄を含む雰囲気で焼成することが、目的物質であるLu23の純度を高める観点から好ましい。
 焼成温度が700℃以上であれば、十分かつ均一な焼成を行うことできる。尚、硫化水素を用いる場合には1000℃以上とするのが好ましい。焼成温度の上限は、特に限定されないが、焼成炉の耐久性などを考慮すると1400~1500℃程度と考えられる。
 また、焼成時間は、焼成温度と関連するが、2時間~100時間程度が好ましく、硫化水素を用いる場合は10時間以上とするのが好ましい。
(本蛍光体の特徴)
 本蛍光体は、蛍光減衰時間32nsec以下、特に好ましい態様では5nsec以下を達成可能であるから、高速発光を実現することができる。下記表1は、各種蛍光体の発光波長と蛍光減衰時間を示すものであるが、32nsec以下、特に5nsec以下という蛍光減衰時間が格別に短いことが理解できる。但し、表1に示した発光波長と蛍光減衰時間は、比較のために示した代表値の一例であり、決してこの数値に限定されるものではない。
Figure JPOXMLDOC01-appb-T000001
 前述したように、PET装置に用いるシンチレータの蛍光減衰時間が短縮化できれば、検査時間の短縮が可能となるばかりか、TOF(タイム・オブ・フライト)情報の利用による空間分解能の向上も期待できる。また、PET装置以外の用途においても、出力(明るさ)を維持しつつ蛍光減衰時間の短縮化を図ることができれば、各種検出装置の検出効率を高めることができる。
 さらに本蛍光体は、原子番号の大きなLuを主成分とするため、放射線の吸収能力に優れ、より薄いシンチレータ材料であっても十分に放射線を吸収することができるようになり、放射線検出器全体で見ると、機能を維持しつつ小型化(厚さを薄くする)することができる。
 よって、本蛍光体は、医療用のPET(陽電子放射断層撮影装置)やTOF-PET(タイム・オブ・フライト陽電子放射断層撮影装置)、X線CT(コンピュータ断層撮影装置)のほか、空港などで使用される所持品検査装置など、各種放射線検出器のシンチレータ用材料として好適に使用することができ、これを用いて各種放射線検出器を構成することができる。
 より具体的には、本蛍光体から単結晶を作製し、これをシンチレータ用単結晶材料に加工してシンチレータとし、このシンチレータとホトマルやホトダイオードなどの光検出部とを組み合わせて放射線検出器を構成することができる。
 また、本蛍光体を焼成して透明なセラミックス体を作製して各種用途に利用することもできる。
 さらにまた、本蛍光体を樹脂と混合して、発光するプラスチック体として各種用途に利用することもできる。例えば液状の熱硬化性樹脂(例えばシリコーン樹脂やエポキシ樹脂など)に本蛍光体を添加して蛍光体含有樹脂組成物を調製し、この蛍光体含有樹脂組成物を混練した上で、これを型に注入(ポッティング)し、その後、加熱して樹脂を硬化させればよい。
(用語の解説)
 本発明において「蛍光体」とは、電子線、X線、紫外線、電界などのエネルギーを吸収し、このエネルギーの一部を効率良く可視光線として放出(発光)する粉体の意味である。
 また、本発明において「シンチレータ」とは、γ線やX線などの放射線を吸収し、可視光線又は可視光線に近い波長(光の波長域は近紫外~近赤外にまで広がっていてもよい)の電磁波を放射する物質、並びに、そのような機能を備えた放射線検出器の構成部材を意味する。
 本発明において「X~Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」或いは「Yより小さいことが好ましい」旨の意図を包含する。
 以下、実施例に基づいて本発明を説明する。但し、本発明はこれらに限定されて解釈されるものではない。
<XRD測定>
 RINT-TTRIII(リガク社製)を用い、線源にはCuターゲットを用いて、2θが5~80°の範囲でXRDパターンを得た(下記条件参照)。
 (管球)CuKα線
 (管電圧)40kV
 (管電流)150mA
 (サンプリング間隔)0.02°
 (スキャンスピード)4.0°/min
 (開始角度)5°
 (終了角度)80°
<フォトルミネッセンス測定>
 実施例及び比較例で得られた蛍光体粉末について、励起光としてArFエキシマレーザLPF205(Lambda Physik・波長193nm)を用い、分光器SpectraPro2300i(Princeton Instruments)、CCD検出器PI-MAX1024(Princeton Instruments)を用いて分析した。
 蛍光減衰時間は、以下の式に従ってフィッティングした。
 I=A0+Aexp(-T/τ)
 I:発光強度、T:時間、τ:蛍光減衰時間、
(実施例1)
 出発原料として、4N(99.99%)のLu23と、4N(99.99%)のPr611とを用い、それぞれの出発原料を秤量して配合し、乳鉢で混合し、得られた混合物を、硫化水素雰囲気中1100℃で48時間焼成し、(Lu0.995Pr0.00523で示される結晶からなる蛍光体粉末を得た。
 実施例1で合成した蛍光体粉末のXRDパターンの回折強度比、すなわち図1のピークAのピーク高さとピークBのピーク高さの比から、Lu23相及びLu2S相の生成率を求めたところ、Lu23相の生成率(Lu23相/(Lu23相+Lu2S相))を求めたところ91.94%であり、僅かにLu2S相を含んでいた。
 また、実施例1で合成した蛍光体粉末を、ArFエキシマレーザLPF230(Lambda Physik・波長193nm)で励起させて、2nsec毎に測定した発光スペクトルを図2に示す。この結果、388nmに強い発光を確認した。
 さらに、上記発光スペクトルから388nmにおける発光の減衰曲線を抽出し、上記式から蛍光減衰時間(τ)を求めたところ、τ=5nsecであった。
(実施例2-4、実施例10)
 実施例1において、焼成時間(実施例1:48時間、実施例2:4時間、実施例3:8時間、実施例4:40時間、実施例10:32時間)を変化させた以外は、実施例1と同様に蛍光体粉末を得た。
 なお、上記の実施例1において1100℃で48時間焼成したとは、1100℃を保持した時間が48時間であったという意味であり、他の実施例2-4及び10においても、焼成時間は焼成温度の保持時間を意味するものである。
 また、上記の実施例1-4は、最初はアルゴン雰囲気で加熱し、500℃まで昇温してから硫化水素雰囲気に切り替えたのに対し、実施例10は、最初から硫化水素雰囲気中で焼成を行った。
 実施例1-4及び10で合成された蛍光体粉末のXRDパターン(図5)の回折強度比、すなわち図1に示したピークAの高さとピークBの高さの比から、実施例1-4及び10で得られた蛍光体粉末のLu23相及びLu2S相の生成率を求め、388nmにおけるPL (フォトルミネッセンス)強度(PL Intensity (a.u.))と共に、表2に示した。
 なお、実施例10で得られた蛍光体粉末は、Lu2S相を含んでいなかったため、発光はLu23によるものと考えることができる。
Figure JPOXMLDOC01-appb-T000002
 この結果、Lu23相の占める割合が高いほど強い発光が得られるため、Lu23相を20%以上、中でも85%以上、その中でも95%以上含むのが特に好ましいと考えることができる。
(実施例5)
 出発原料として、4N(99.99%)のLu23と、4N(99.99%)のCe23とを用い、それぞれの出発原料を秤量して配合し、乳鉢で混合し、得られた混合物を、硫化水素雰囲気中1100℃で40時間焼成し、(Lu0.995Ce0.00523で示される結晶からなる蛍光体粉末を得た。
 実施例5で合成した蛍光体粉末を、ArFエキシマレーザLPF230(Lambda Physik・波長193nm)で励起させて、5nsec毎に測定した発光スペクトルを図3に示す。この結果、580nmに強く発光を確認した。
 また、上記発光スペクトルから580nmにおける発光の減衰曲線を抽出し、上記式から蛍光減衰時間(τ)を求めたところ、τ=32nsecであった。
 これより、蛍光減衰時間(τ)の短さの観点では、賦活剤のイオンとしてPr3+を含む蛍光体の方がより優れているが、賦活剤のイオンとしてCe3+を含む蛍光体であっても、十分に短く、かつ可視光領域での強く発光し有用であることが確認できた。
(比較例1・実施例6-9)
 実施例2において、4N(99.99%)のPr611の添加量を変えること以外は実施例2と同様に、(Lu1-xPrx23で示される結晶からなる蛍光体粉末を得た。
 実施例1(x=0.005)、実施例6-9及び比較例1(x=0)で得られた蛍光体粉末について、388nmにおけるPL (フォトルミネッセンス)強度(PL Intensity (a.u.))を図4に示す。
 これより、一般式(Lu1-xx2S(式中、Mは賦活剤元素を示す。)で示される結晶を含む蛍光体において、賦活剤元素(M)の添加量(x)が0.001以上であれば2000(a.u.)以上のPL強度を得ることができ、上限値はおそらく0.1程度と考えられるため、0.001~0.1であるのが好ましいと考えられる。また、xが0.0025以上であれば2500(a.u.)以上のPL強度を得ることができ、0.004~0.015付近に最適値があると推定することができる。
(考察)
 硫化ルテチウムを含有する母体結晶と、賦活剤のイオンとしてPr3+又はCe3+を含む蛍光体粉末は、蛍光減衰時間が格別に短いことが分かった。 中でも、硫化ルテチウムを含有する母体結晶と、賦活剤のイオンとしてPr3+を含む蛍光体粉末は、可視光を発光し、かつ光減衰時間が格別に短いことが分かった。 よって、硫化ルテチウムを含有する母体結晶と、賦活剤のイオンとしてPr3+を含む蛍光体粉末はPET装置などの各種検出装置に用いる新たなシンチレータ用蛍光体として特に有用であると考えられる。

Claims (2)

  1.  硫化ルテチウムを含有する母体結晶と、賦活剤のイオンとを含有するシンチレータ用蛍光体。
  2.  賦活剤のイオンとして、Pr3+又はCe3+又はこれらの両方を含むことを特徴とする請求項1に記載のシンチレータ用蛍光体。
     

     
PCT/JP2010/063464 2009-09-18 2010-08-09 シンチレータ用蛍光体 WO2011033882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011531852A JP5342648B2 (ja) 2009-09-18 2010-08-09 シンチレータ用蛍光体
US13/496,254 US8323530B2 (en) 2009-09-18 2010-08-09 Phosphor for scintillator
EP10816995.4A EP2479239A4 (en) 2009-09-18 2010-08-09 PHOSPHORUS FOR SCINTILLATORS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-216906 2009-09-18
JP2009216906 2009-09-18

Publications (1)

Publication Number Publication Date
WO2011033882A1 true WO2011033882A1 (ja) 2011-03-24

Family

ID=43758495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063464 WO2011033882A1 (ja) 2009-09-18 2010-08-09 シンチレータ用蛍光体

Country Status (4)

Country Link
US (1) US8323530B2 (ja)
EP (1) EP2479239A4 (ja)
JP (1) JP5342648B2 (ja)
WO (1) WO2011033882A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117082A (ja) 1984-07-03 1986-01-25 Toshiba Corp 放射線検出器
JP2001072968A (ja) 1999-05-06 2001-03-21 General Electric Co <Ge> 透明な固体シンチレータ材料
WO2005028591A1 (ja) 2003-09-24 2005-03-31 Kabushiki Kaisha Toshiba セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791844A (en) * 1972-05-02 1974-02-12 Radium Corp Phosphors for multi-color displays
US4958080A (en) 1988-10-06 1990-09-18 Schlumberger Technology Corporation Lutetium orthosilicate single crystal scintillator detector
JPH06100678B2 (ja) * 1988-10-27 1994-12-12 化成オプトニクス株式会社 放射線増感紙
DE10238398A1 (de) * 2002-08-22 2004-02-26 Philips Intellectual Property & Standards Gmbh Vorrichtung zur Erzeugung von Bildern und/oder Projektionen
DE102007005646A1 (de) * 2007-01-31 2008-08-07 Henkel Ag & Co. Kgaa Färbemittel, enthaltend durch sichtbares Licht anregbare Lumineszenzpigmente

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117082A (ja) 1984-07-03 1986-01-25 Toshiba Corp 放射線検出器
JP2001072968A (ja) 1999-05-06 2001-03-21 General Electric Co <Ge> 透明な固体シンチレータ材料
WO2005028591A1 (ja) 2003-09-24 2005-03-31 Kabushiki Kaisha Toshiba セラミックシンチレータとそれを用いた放射線検出器および放射線検査装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2479239A4
VAN EIJK, C. W. E.: "Inorganic-scintillator development", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A, vol. 460, no. 1, 11 March 2001 (2001-03-11), pages 1 - 14, XP004230586 *
VAN'T SPIJKER, J. C.: "LU2S3:Ce3+, A new red luminescing scintillator", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION B, vol. 134, no. 2, February 1998 (1998-02-01), pages 304 - 309, XP004114088 *

Also Published As

Publication number Publication date
JPWO2011033882A1 (ja) 2013-02-14
US20120168678A1 (en) 2012-07-05
US8323530B2 (en) 2012-12-04
EP2479239A4 (en) 2014-03-05
EP2479239A1 (en) 2012-07-25
JP5342648B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5212115B2 (ja) 蛍光材料およびそれを用いたシンチレータ並びに放射線検出器
JP5521412B2 (ja) 蛍光材料およびそれを用いたシンチレータ並びに放射線検出器
WO2018207703A1 (ja) 発光装置、および蛍光体
US8815122B2 (en) Polycrystalline scintillator for detecting soft X-rays
EP2826835B1 (en) Solid scintillator, radiation detector and radiographic examination device
EP3431569B1 (en) Fluorescent substance
Ji et al. La2Hf2O7: Ti4+ ceramic scintillator for x-ray imaging
JP5505782B2 (ja) 蛍光材料およびそれを用いたシンチレータ並びに放射線検出器
JP6103042B2 (ja) 蛍光材料、シンチレータ、並びに放射線変換パネル
US8083968B2 (en) Solid scintillator, radiation detector, and X-ray tomographic imaging apparatus
WO2010095737A1 (ja) 固体シンチレータ、放射線検出器およびx線断層写真撮影装置
WO2015037395A1 (ja) シンチレータ材料、放射線検出器及び放射線検査装置
EP3266849B1 (en) Fluorophore
JP2001303048A (ja) 蛍光体及びそれを用いた放射線検出器及びx線ct装置
Wang et al. Fabrication of Gd2O2S: Pr, Ce, F scintillation ceramics by pressureless sintering in nitrogen atmosphere
JP5342648B2 (ja) シンチレータ用蛍光体
WO2015053033A1 (ja) セラミックスシンチレータ及びその製造方法、並びにシンチレータアレイ及び放射線検出器
Xu et al. Co-precipitation synthesis of La 2 O 2 SO 4: Tb 3+ phosphor and its conversion to La 2 O 2 S: Tb 3+ ceramic scintillator via pressureless sintering in hydrogen
Dubey et al. Effect of Various Cerium Ion Percentages on Photoluminescence and Thermoluminescence Study of ${{CaY}} _ {2}{{O}} _ {4} $ Phosphor
JP2009235181A (ja) 蛍光材料の製造方法
RU2787472C1 (ru) Сложный танталат редкоземельных элементов в наноаморфном состоянии
Kim et al. After-Glow Extinction of Nano Phosphors Synthesized by Different Sintering Methods for Radiography
Soni et al. Upconversion luminescence in BaMoO4: Pr3+ phosphor for display devices
JP2018087278A (ja) 蛍光体、その製造方法、その発光器具およびその紫外線利用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531852

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010816995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010816995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13496254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE