WO2015053033A1 - セラミックスシンチレータ及びその製造方法、並びにシンチレータアレイ及び放射線検出器 - Google Patents

セラミックスシンチレータ及びその製造方法、並びにシンチレータアレイ及び放射線検出器 Download PDF

Info

Publication number
WO2015053033A1
WO2015053033A1 PCT/JP2014/073915 JP2014073915W WO2015053033A1 WO 2015053033 A1 WO2015053033 A1 WO 2015053033A1 JP 2014073915 W JP2014073915 W JP 2014073915W WO 2015053033 A1 WO2015053033 A1 WO 2015053033A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
ceramic scintillator
powder
producing
ceramic
Prior art date
Application number
PCT/JP2014/073915
Other languages
English (en)
French (fr)
Inventor
慎祐 寺澤
英雄 新田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US15/027,796 priority Critical patent/US10207957B2/en
Priority to JP2015541491A priority patent/JPWO2015053033A1/ja
Priority to CN201480055626.0A priority patent/CN105637062B/zh
Priority to EP14852205.5A priority patent/EP3056555B1/en
Publication of WO2015053033A1 publication Critical patent/WO2015053033A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/288Sulfides
    • C01F17/294Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5156Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/7771Oxysulfides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a ceramic scintillator suitable for a radiation detector such as an X-ray CT apparatus, a manufacturing method thereof, and a scintillator array and a radiation detector using the ceramic scintillator.
  • CT apparatus computed tomography apparatus
  • This CT apparatus is composed of an X-ray tube that generates a fan-shaped fan beam X-ray and an X-ray detector in which a large number of X-ray detection elements are arranged around the subject.
  • the fan beam X-ray emitted from the X-ray tube is irradiated on the subject, the size of the X-ray transmitted through the subject is measured by an X-ray detector, and the data is analyzed by a computer, thereby analyzing the data within the tomographic plane. It has a function to display the status of.
  • the X-ray absorption rate at each position on the tomographic plane irradiated with X-rays is calculated in the computer and an image corresponding to the absorption rate is visualized.
  • a radiation detector for detecting ionizing radiation such as X-rays, rare earth oxy such as Gd 2 O 2 S, Y 2 O 2 S, Lu 2 O 2 S etc. using Pr, Ce, Eu, Tb, etc. as luminescent elements
  • a radiation detector using a radiation detection element in which a ceramic scintillator sintered with sulfide powder and a silicon photodiode are combined has been developed and put into practical use.
  • the radiation detection element can be reduced in size and the number of channels can be easily increased, so that an image with high resolution can be obtained.
  • JP 2000-313619 discloses a method for producing a rare earth oxysulfide powder for use in a scintillator by suspending at least one rare earth oxide in water, 1 mol of sulfuric acid per 1 mol of rare earth oxide, or at least one rare earth.
  • a method is disclosed in which a sulfate dissolved in accordance with the above is added, the resulting powdery precipitate is calcined, and the resulting rare earth oxysulfate is reduced.
  • Japanese Patent Publication No. 2004-525848 discloses that a rare earth oxysulfide powder having a specific surface area of at least 10 m 2 / g is adjusted to a particle size of less than 10 ⁇ m by adding an organic pulverization liquid by a wet pulverization method.
  • a powder body having a compact density of 40 to 60% is produced from the above, and the obtained powder body is sintered at a temperature of 1200 to 1450 ° C. in a vacuum or an inert gas at a normal pressure, thereby increasing the density.
  • a method of manufacturing a translucent scintillator ceramic is disclosed.
  • the rare earth oxysulfide powder obtained by the production method of JP-A-2000-313619 contains particles having a large particle size, a high-density sintered body cannot be obtained by pressureless sintering. Therefore, in order to obtain a high-density sintered body, it is necessary to sinter with a hot press or a hot isostatic press, which is costly.
  • the particle size is adjusted by wet-grinding the rare earth oxysulfide with the addition of the organic pulverization liquid, but sulfur is released from the rare-earth oxysulfide during grinding, Lattice defects consisting of sulfur vacancies are introduced into the rare earth oxysulfide. Even after the rare earth oxysulfide is sintered to become a ceramic scintillator, the lattice defects remain, and the emission intensity of the ceramic scintillator is reduced.
  • an object of the present invention is to provide a method for manufacturing a ceramic scintillator that suppresses a decrease in light emission intensity and easily obtains a high-density sintered body.
  • Another object of the present invention is to provide a radiation detector suitable for a ceramic scintillator obtained by such a manufacturing method, and a scintillator array and an X-ray CT apparatus using the ceramic scintillator.
  • the inventors added a grinding process before performing the reduction process to obtain the rare earth oxysulfide, rather than giving the grinding process after obtaining the rare earth oxysulfide powder.
  • the inventors have obtained the knowledge that sulfur desorption can be suppressed while adjusting the particle diameter, thereby completing the present invention.
  • a rare earth compound and sulfuric acid and / or sulfate are mixed and reacted to obtain a product, and the product is calcined to obtain a calcined powder.
  • a calcining step, a reduction step of reducing the calcined powder to obtain a rare earth oxysulfide powder, a molding step of forming the rare earth oxysulfide powder to obtain a compact, and a sintering to sinter the compact A method for producing a ceramic scintillator including a sintering step, characterized by including a pulverizing step of adjusting the particle size of the product and / or calcined powder at least before the reduction step.
  • a pulverization step for adjusting the particle size of the product after the mixing step it is preferable to calcine at 1000 ° C. or lower in the calcining step and to reduce at 900 ° C. or lower in the reduction step.
  • the reduction is preferably performed at 900 ° C. or less in the reduction step.
  • the mixing step is preferably mixed in a liquid and wet-pulverized in the pulverizing step.
  • the rare earth compound is preferably at least one selected from the group consisting of rare earth oxides, hydroxides, halides, nitrates, sulfates, acetates, phosphates, and carbonates.
  • the rare earth compound preferably contains at least gadolinium oxide or at least gadolinium oxide and praseodymium oxide.
  • the rare earth compound a rare earth compound of one kind of rare earth element may be used, or a rare earth compound of a plurality of rare earth elements may be used. In the case of mixing a plurality of rare earth elements of rare earth elements, it is preferable that in the mixing step, the rare earth compounds having a small amount are added in order to an aqueous solution containing sulfate ions.
  • an annealing step for annealing the sintered body is included after the sintering step.
  • the ceramic scintillator of the present invention is obtained by the above method.
  • the scintillator array and radiation detector of the present invention are characterized by including such a ceramic scintillator.
  • the particle size can be adjusted and the desorption of sulfur can be suppressed. Therefore, a ceramic scintillator manufactured using such rare earth oxysulfide powder is composed of a high-density sintered body, has a large light emission intensity, and exhibits a highly sensitive response to radiation.
  • One of the important features of the present invention is that it has been found that sulfur desorption can be suppressed by applying a pulverization step before the reduction step to obtain the rare earth oxysulfide powder. The reason is not clear, but before the reduction process to generate rare earth oxysulfide, it is a more stable compound than rare earth oxysulfide, and even if a grinding process is applied, sulfur desorption is suppressed. I guess it was.
  • the present invention even if a powder having high sinterability is obtained by applying a pulverization process, the desorption of sulfur can be suppressed, so that the problem of decrease in the emission intensity of the obtained ceramic scintillator can be solved. It becomes.
  • the ceramic scintillator of the present invention its manufacturing method, a scintillator array, and a radiation detector are explained in detail, the present invention is not limited to the following embodiment.
  • FIG. 1 shows a flowchart of a method of manufacturing a ceramic scintillator according to a first embodiment of the present invention.
  • the rare earth compound may be at least one selected from the group consisting of oxides, hydroxides, halides, nitrates, sulfates, acetates, phosphates and carbonates of rare earth elements.
  • Rare earth oxides are particularly preferred as raw materials that are easy to obtain and chemically stable.
  • Rare earth elements are scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium 17 elements of (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) are shown.
  • the rare earth compound powder a rare earth compound of one kind of rare earth elements among the rare earth elements may be used, or a rare earth compound of a plurality of rare earth elements may be used.
  • the rare earth element is preferably gadolinium.
  • the amount of sulfuric acid and / or sulfate added is desirably sufficient to obtain a rare earth oxysulfide of the general formula: RE 2 O 2 S (RE represents a rare earth element).
  • the addition amount of sulfuric acid and / or sulfate may be 0.5 mol of sulfate ion per 1 mol of rare earth elements, and is more than 0.5 mol in consideration of component deviation due to sulfur desorption in the production process.
  • the amount may be, for example, 0.5 to 1.75 mol. In particular, when the amount is 0.75 to 1.75 mol, rare earth oxysulfide powder with few different phases can be obtained.
  • the rare earth element in addition to the rare earth element contained in the rare earth compound, includes a rare earth element contained in the sulfate when a sulfate containing the rare earth element is used.
  • sulfate ions include sulfate ions contained in rare earth compounds when a rare earth compound containing sulfate ions is used.
  • (1-2) Mixing Step In the mixing step, the rare earth compound and sulfuric acid or sulfate are mixed and reacted, and the produced product is recovered.
  • a method of mixing the rare earth compound and sulfuric acid for example, (1) a method of adding a rare earth compound powder to sulfuric acid and stirring and reacting, and (2) adding a rare earth compound powder to water and stirring And a method of reacting by adding sulfuric acid.
  • the concentration of sulfuric acid is not particularly limited, but from the viewpoint of the reaction rate with the rare earth compound, 0.1 to 2 mol of diluted sulfuric acid per liter of water is preferable.
  • the rare earth compound powder may be added by known means. When adding a rare earth compound of a plurality of rare earth elements, it is preferable to add to the sulfuric acid in order from a rare earth compound with a small amount of rare earth elements. This is because the composition in the product is less likely to segregate by reacting and diffusing a rare amount of rare earth compound in advance.
  • the concentration of the rare earth compound-water mixture is not particularly limited, but from the viewpoint of dispersibility with the rare earth compound (uniformity of composition) and reaction rate after addition of sulfuric acid, 0.05 to 1 per liter of water. 2 mol is preferred.
  • the sulfuric acid concentration is preferably 10 to 98% by mass.
  • the rare earth compound and sulfate When the rare earth compound and sulfate are mixed, fuming sulfuric acid, ammonium sulfate, or the like can be used as the sulfate, but it is desirable to use the same rare earth element sulfate as the rare earth oxysulfide powder.
  • a method of mixing the rare earth compound and the sulfate for example, (3) a method of adding a sulfate to the brine, adding a powder of the rare earth compound to the obtained aqueous solution, stirring and reacting, and (4) adding the brine to the brine
  • An example is a method in which a rare earth compound powder is added and stirred, and then an aqueous sulfate solution is added and reacted. Any known method can be used to add the sulfate.
  • Reaction heat is generated by mixing rare earth compound powder and sulfate ions in water.
  • the mixed solution together with the generated precipitation product may be heated to a predetermined temperature and maintained for a predetermined time. Heating promotes product generation.
  • the generated precipitation product may be collected by heating and drying after separating the precipitation product from the mixed solution, or the liquid may be evaporated by heating together with the mixed solution. When the whole liquid mixture is heated, ripening proceeds at the same time, which is preferable because man-hours can be reduced.
  • the obtained product has a composition mainly composed of a mixed salt of a rare earth sulfate and a rare earth compound or a rare earth sulfate, although it varies depending on the molar ratio of sulfuric acid or sulfate to be mixed with the rare earth compound.
  • (1-3) Grinding step In the grinding step, the obtained product is ground to adjust the particle size.
  • known means such as wet pulverization using a liquid such as water or ethanol, or dry pulverization not using the liquid as a medium can be used, but the apparatus is relatively inexpensive in consideration of the previous and subsequent processes.
  • wet pulverization using a wet ball mill with good dispersibility and high pulverization efficiency is preferable.
  • the product is put into the wet pulverization apparatus together with the reaction solution, and the pulverization step is performed by wet pulverization, so that drying of the obtained product can be omitted. Since the product is soft powder, it is easy to grind. Further, before the precipitated product is filtered from the mixed solution, wet pulverization may be performed in a state where the product is contained in the solution.
  • the pulverized product obtained in the calcination process is calcined.
  • the calcination step is preferably performed in air at atmospheric pressure.
  • the calcination temperature is preferably from 300 to 1000 ° C., and more preferably from 600 to 900 ° C., because there is little variation in what is obtained after calcination.
  • the calcining temperature is higher than 1000 ° C., the grain growth of the pulverized product is activated and a large deviation occurs in the particle diameter. If it is less than 300 ° C, the calcination reaction does not proceed sufficiently. Gases such as H 2 S and SO x containing sulfur generated at this time can be recovered by a known technique such as bubbling in a neutralized aqueous solution.
  • the calcined powder obtained by calcining has a composition mainly composed of rare earth sulfate and rare earth oxysulfate or rare earth oxysulfate, although it varies depending on the molar ratio of sulfuric acid or sulfate to be mixed with the rare earth compound. .
  • the calcined powder obtained by calcining in the reduction process is reduced using a gas such as hydrogen, hydrocarbons such as methane, propane, or the like as a reducing agent.
  • the reduction treatment may include, for example, the reducing agent and an inert atmosphere such as nitrogen (N 2 ) or argon (Ar) depending on the reaction rate, and is preferably performed at a temperature of 900 ° C. or lower. Gases such as H 2 S and SO x containing sulfur generated at this time can also be recovered by a known technique such as bubbling in a neutralized aqueous solution.
  • the reduction temperature is 900 ° C. or lower, the reduction treatment can be performed while suppressing grain growth of the calcined powder.
  • the reduction time is preferably 1 to 180 minutes. If it is 900 ° C. or less, depending on the amount, a longer time may be used so that grain growth does not occur.
  • the particle size is adjusted by pulverization before the reduction step, and the reduction treatment is performed under the condition that suppresses the increase of the particle size, thereby reducing the sulfur without causing desorption in the pulverization step.
  • a rare earth oxysulfide having the desired particle size is obtained.
  • the reduction temperature is set to 900 ° C. or lower, the grain growth of the calcined powder is suppressed, so that it is not necessary to perform the pulverization step again after the reduction. If the pulverization step is performed after reduction to rare earth oxysulfide, sulfur is lost and defects are likely to occur. You may perform the crushing process for crushing the rare earth oxysulfide particle
  • the obtained rare earth oxysulfide powder is granulated to produce a granulated powder.
  • a known method may be used for the granulation step.
  • a granulated powder of rare earth oxysulfide a molded body is produced by a method known per se such as uniaxial pressing or cold isostatic pressing.
  • the molding pressure is larger than the molding pressure for obtaining a molded body that can obtain a sufficient density in at least a subsequent sintering step, and smaller than the molding pressure at which desulfurization due to contact between powder particles during pressurization does not occur.
  • a sintered body is obtained by sintering the obtained molded body in an inert atmosphere such as nitrogen (N 2 ) or argon (Ar).
  • an inert atmosphere such as nitrogen (N 2 ) or argon (Ar).
  • N 2 nitrogen
  • Ar argon
  • a jig such as a crucible or a setter to be used is preferably a stable material that is neither oxidized nor reduced at high temperatures.
  • the sintering temperature is preferably 1300 to 1600 ° C, more preferably 1500 to 1600 ° C.
  • the equipment without pressure structure or pressure structure such as HP or HIP is cheaper. Therefore, it is preferable to sinter at a pressure of about atmospheric pressure. Since the particle size of the rare earth oxysulfide powder is adjusted to be small by the pulverization process, a high-density sintered body can be obtained without performing pressure sintering. Further, the sintered body may be annealed in an inert atmosphere in order to remove distortion and the like of the obtained sintered body. The light emission intensity is further improved by annealing.
  • the obtained sintered body can be used as a ceramic scintillator.
  • the obtained sintered body is gadolinium oxysulfide using praseodymium as a light emitting element and cerium as an additive for adjusting afterglow. It becomes a ceramic scintillator. Since the rare earth oxysulfide obtained by the above process has few sulfur deficiencies and lattice defects in the pulverization process, the ceramic scintillator of the present invention produced using such a rare earth oxysulfide is composed of a high-density, translucent sintered body. It has a large emission intensity and shows a highly sensitive response to radiation.
  • FIG. 2 shows a flowchart of a method for producing a rare earth oxysulfide according to a second embodiment of the present invention.
  • the second embodiment is the same as the first embodiment except that the pulverization step is performed after the calcination step.
  • the temperature may temporarily become high and some powder particles may grow, but in the second embodiment, the grown powder particles can also be pulverized together to adjust the particle size.
  • the scintillator array of the present invention is formed by arranging a plurality of scintillators on a scintillator substrate provided with a reflective material.
  • a known scintillator array configuration / manufacturing method can be used.
  • the obtained ceramic scintillator is fixed to a support plate via a double-sided adhesive sheet, a groove is formed in the scintillator substrate to form a grooved scintillator substrate having a plurality of scintillator cells, and the groove is used for a reflector. It can be manufactured by filling a liquid curable resin, curing the liquid curable resin to form a cured scintillator cell resin, and then peeling the double-sided pressure-sensitive adhesive sheet from the cured scintillator cell resin.
  • the radiation detector of the present invention includes the above scintillator and a detection element such as a silicon photodiode for detecting light emission of the scintillator.
  • a detection element such as a silicon photodiode for detecting light emission of the scintillator.
  • the light emitting surface of the scintillator array using the ceramic scintillator obtained by the above-described method and the light receiving surface of the light receiving element face each other and can be manufactured by bonding with an optical resin.
  • This radiation detector is preferably mounted on a medical diagnostic imaging apparatus such as X-ray CT and PET (Positron Emission Tomography) / CT.
  • the ceramic scintillator, the manufacturing method thereof, the scintillator array, and the radiation detector of the present invention are not limited to the following examples.
  • Example 1 A ceramic scintillator was manufactured based on the first embodiment in which the product obtained in the mixing step was pulverized.
  • Reduction step The calcined powder was put in an alumina crucible, and the reduction treatment was performed by using a reduction furnace in a hydrogen atmosphere and holding at 800 ° C. for 3 hours in a hydrogen gas atmosphere. H 2 O gas and H 2 S gas generated during the reduction treatment were treated with a gas treatment device. Rare earth oxysulfide (Gd, Pr, Ce) 2 O 2 S was obtained by this reduction reaction.
  • the rare earth oxysulfide was pressure-molded at 49 MPa using a uniaxial pressure molding machine, vacuum-sealed in a vinyl bag, and pressure-molded at 294 MPa with a CIP molding machine.
  • Example 2 A ceramic scintillator was manufactured under the same conditions as in Example 1 except that the order of the pulverization step (3) and the calcination step (4) was changed based on the second embodiment for pulverizing the calcined product.
  • reaction product obtained in the mixing step (2) was placed in an alumina crucible and calcined at 900 ° C. for 1 hour in air at atmospheric pressure using a GOS calcining furnace.
  • the H 2 O gas and SO 3 gas generated during the reaction were processed with a gas processing apparatus.
  • the obtained calcined product (100 g) was placed in a ball mill together with ethanol (200 g) and wet-ground at 100 rpm for 15 hours.
  • the pulverized slurry was dried at 100 ° C. for 4 to 6 hours.
  • the dried product was further pulverized using a mortar until it passed through a sieve having an opening of 500 ⁇ m, whereby a fine-particle calcined product was obtained.
  • a reduction step (5), a forming step (6) and a sintering step (7) were carried out in the same manner as in Example 1 to obtain a ceramic scintillator.
  • Comparative Example 1 A ceramic scintillator was produced under the same conditions as in Example 1 except that the pulverization step (3) was not performed.
  • Comparative Example 2 An example in which the pulverization step is performed after the reduction step is shown below.
  • the weighing step (1), the mixing step (2), the calcining step (4), and the reduction step (5) were performed in this order in the same manner as in Example 1.
  • the sintered body density of the ceramic scintillators of Example 1 and Example 2 and Comparative Example 1 and Comparative Example 2 was measured using the Archimedes method, and the luminescence intensity was measured using a tube voltage of a W target using a tube voltage. X-rays were generated under the conditions of 90 kV and tube current 20 mA, and this was irradiated to a ceramic scintillator and measured using a light receiving element of a Si photodiode. The luminescence intensity was relatively shown with the result of Example 2 as 100.
  • the intensity measured using the light receiving element of the Si photodiode during X-ray irradiation was measured using the light receiving element of the Si photodiode after elapse of 3 milliseconds (ms) after the X-ray irradiation was stopped.
  • the intensity is shown as “3 ms afterglow”.
  • the results are shown in Table 1.
  • the ceramic scintillator of Comparative Example 1 in which the pulverization process was not performed had a low sintered body density and a low light emission intensity.
  • Comparative Example 2 in which the pulverization step was performed after the reduction step the sintered body density was high, but the emission intensity was low.
  • ceramics manufactured using the reduced rare earth oxysulfide powder after adjusting the particle size by carrying out the pulverization step before the reduction step to obtain the rare earth oxysulfide, and suppressing the increase of the particle size It was found that the scintillator has a high density of the sintered body and a large light emission intensity. Inferring from the light emission mechanism of ceramic scintillators, the extremely large 3ms afterglow value is thought to be due to sulfur defects.
  • Example 3 Weighing step (1), mixing step (2), grinding step (3) as in Example 1 except that 81.81 g of 96 mass% sulfuric acid was weighed in the weighing step and the grinding time was 40 hours in the grinding step.
  • the rare earth oxysulfide powder was prepared by performing the calcination step (4) and the reduction step (5).
  • a ceramic scintillator was produced in the same manner as in Example 1 using such rare earth oxysulfide powder.
  • Example 4 The weighing step (1), the mixing step (2), the calcining step (4) as in Example 2 except that 81.81 g of 96 mass% sulfuric acid was weighed in the weighing step and the grinding time was 40 hours in the grinding step. ), Pulverization step (3), and reduction step (5) were performed to produce rare earth oxysulfide powder. A ceramic scintillator was produced in the same manner as in Example 2 using such rare earth oxysulfide powder.
  • Comparative Example 3 Except for weighing 81.81 g of 96 mass% sulfuric acid in the weighing process, the weighing process (1), mixing process (2), calcining process (4) and reduction process (5) were carried out in the same manner as in Comparative Example 1. An oxysulfide powder was prepared. A ceramic scintillator was produced in the same manner as in Comparative Example 1 using such rare earth oxysulfide powder.
  • Comparative Example 4 Weighing step (1), mixing step (2), calcining step (4) as in Comparative Example 2, except that 81.81 g of 96 mass% sulfuric acid was weighed in the weighing step and the grinding time was 40 hours in the grinding step. ) And reduction step (5), followed by a pulverization step to produce rare earth oxysulfide powder. A ceramic scintillator was produced in the same manner as in Comparative Example 2 using such rare earth oxysulfide powder.
  • FIG. 3 shows the particle size distribution of the rare earth oxysulfide powders of Example 3, Example 4, Comparative Example 3, and Comparative Example 4.
  • the particle size distribution was measured by a wet laser diffraction method using a particle size distribution measuring apparatus LA-950 manufactured by Horiba, Ltd.
  • a dispersion medium in which hexametaphosphoric acid was dissolved as a dispersant in pure water was used. After dropping the sample, the sample was stirred and irradiated with ultrasonic waves for 10 minutes, and then the particle size distribution was measured.
  • the particle diameter was distributed larger than that in the other examples.
  • the particle size distribution after the reduction step is suppressed from becoming large by adjusting the particle size by the pulverization step before the reduction step for obtaining the rare earth oxysulfide powder.
  • the average particle size of the rare earth oxysulfide powders of Examples 3 and 4 was larger than that of Comparative Example 4 because heat was applied in the reduction step after the pulverization step.
  • Example 4 When the sintered body density, emission intensity, and 3 ms afterglow of the ceramic scintillators of Example 3, Example 4, Comparative Example 3, and Comparative Example 4 were determined by the same method as in Example 1, the same as in Examples 1 and 2 Results were obtained.
  • the ceramic scintillator of Comparative Example 3 that did not perform the pulverization process had a low sintered body density and a low light emission intensity.
  • Comparative Example 4 in which the pulverization step was performed after the reduction step the sintered body density was high, but the emission intensity was low. From this, it was found that the ceramic scintillators of Examples 3 and 4 had a larger average particle diameter than that of Comparative Example 4, but were excellent in emission intensity and 3 ms afterglow.
  • a ceramic scintillator having a high density of the sintered body and a high light emission intensity can be obtained even if the amount of sulfuric acid in the weighing step is halved compared to Examples 1 and 2.
  • Example 5 A ceramic scintillator was produced in the same manner as in Example 3 except that water was used in place of ethanol as a grinding solvent in the grinding step, and grinding was performed for 15 hours.
  • the sintered body density of the obtained ceramic scintillator was 7.34 g / cm 3 , the emission intensity was 101%, and the 3 ms afterglow was 181 ppm. Therefore, even when water is used in place of ethanol as a grinding solvent in the grinding process, a ceramic scintillator consisting of a high-density sintered body, having a large light emission intensity and showing a highly sensitive response to radiation is obtained. It was confirmed that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

希土類化合物と硫酸及び/又は硫酸塩とを混合して反応させ、生成物を得る混合工程と、生成物を仮焼して仮焼粉を得る仮焼工程と、仮焼粉を還元して希土類オキシ硫化物粉末を得る還元工程と、希土類オキシ硫化物粉末を成形して成形体を得る成形工程と、成形体を焼結する焼結工程と、含むセラミックスシンチレータの製造方法であって、少なくとも還元工程より前に、生成物及び/又は仮焼粉の粒径を調整する粉砕工程を含むことを特徴とするセラミックスシンチレータの製造方法。

Description

セラミックスシンチレータ及びその製造方法、並びにシンチレータアレイ及び放射線検出器
 本発明は、X線CT装置等の放射線検出器に好適なセラミックスシンチレータ及びその製造方法、並びにそれを用いたシンチレータアレイ及び放射線検出器に関する。
 X線診断装置の一つにコンピュータ断層撮影装置(Computed Tomography:以下CT装置と省略)がある。このCT装置は扇状のファンビームX線を発生するX線管と、多数のX線検出素子を被検体の周囲に配置させたX線検出器とから構成される。まず、X線管から出たファンビームX線は被検体に照射され、被検体を透過したX線の大きさをX線検出器で測定し、コンピュータでそのデータを解析することによって断層面内の状態を表示する機能を持つ。測定したデ-タに基づいてコンピュータ内で解析してX線を照射した断層面の個々の位置におけるX線吸収率が算出され、その吸収率に応じた画像が視覚化される。
 X線等の電離放射線を検出するための放射線検出器として、Pr,Ce,Eu,Tb等を発光元素としたGd2O2S,Y2O2S,Lu2O2S等の希土類オキシ硫化物粉末を焼結したセラミックスシンチレータとシリコンフォトダイオードを組み合わせた放射線検出素子を用いた放射線検出器が開発実用化されている。セラミックスシンチレータを用いた検出器では、放射線検出素子を小型化することができるとともに、チャンネル数を増やすことが容易であることから、解像度の高い画像を得ることが可能となる。
 こうした放射線検出素子においては、放射線の吸収に応じてシンチレータが発する光の強度(発光強度)が大きいほど高感度となる。また最近放射線を利用した診断装置には人体被爆線量の低減が強く求められてきており、走査時間の短縮が重要課題となってきている。現状より更に走査時間を短くしようとすると、一つの検出素子における積分時間は短くなり、積分時間中に吸収する放射線総量は低下することになる。そのため、特に発光効率が高い(発光強度が大きい)ことが必要である。
 特開2000-313619号公報は、シンチレータに用いる希土類オキシ硫化物粉末の製造方法として、少なくとも一つの希土類の酸化物を水中に懸濁させ、希土類の酸化物1molにつき硫酸1mol、又は少なくとも1つの希土類に相応して溶かした硫酸塩を添加し、得られた粉末状沈殿物を仮焼し、得られた希土類オキシ硫酸塩を還元する方法を開示している。
 特表2004-525848号公報は、少なくとも10 m2/gの比表面積を有する希土類オキシ硫化物粉末を湿式粉砕法で有機粉砕液の添加下に粉末の粒径を10μm未満に調節し、この粉末から40~60%の成形体密度を有する粉末体を製造し、得られた粉末体を真空中又は不活性ガス中で1200~1450℃の温度で常圧下で焼結させることで、高密度で半透明のシンチレータセラミックを製造する方法を開示している。
 特開2000-313619号公報の製造方法で得られた希土類オキシ硫化物粉末は粒径が大きい粒子を含むため、無加圧焼結では高密度な焼結体は得られない。そのため、高密度な焼結体を得るためには、ホットプレスや熱間静水圧プレスで焼結する必要があり、コストがかかる。
 特表2004-525848号公報の製造方法では希土類オキシ硫化物を有機粉砕液添加下で湿式粉砕することで粒径を調節するが、粉砕の際に希土類オキシ硫化物から硫黄の脱離が生じ、希土類オキシ硫化物に硫黄の空孔からなる格子欠陥が導入される。希土類オキシ硫化物が焼結されセラミックスシンチレータとなった後もこの格子欠陥は残存し、セラミックスシンチレータの発光強度を低下させる。
 従って、本発明の目的は、発光強度の低下を抑制し、且つ容易に高密度な焼結体が得られるセラミックスシンチレータの製造方法を提供することである。
 本発明の別の目的は、かかる製造方法により得られるセラミックスシンチレータ、及びそれを使用したシンチレータアレイ及びX線CT装置等に好適な放射線検出器を提供することである。
 上記目的に鑑み鋭意研究の結果、発明者らは、希土類オキシ硫化物粉末を得た後に粉砕工程を付与するのではなく、希土類オキシ硫化物を得る還元工程を行う前に粉砕工程を加入することにより、粒子径を調整しつつ、硫黄の脱離を抑制できるという知見を得て、この発明を完成した。
 すなわち、本発明のセラミックスシンチレータの製造方法は、希土類化合物と硫酸及び/又は硫酸塩とを混合して反応させ、生成物を得る混合工程と、前記生成物を仮焼して仮焼粉を得る仮焼工程と、前記仮焼粉を還元して希土類オキシ硫化物粉末を得る還元工程と、前記希土類オキシ硫化物粉末を成形して成形体を得る成形工程と、前記成形体を焼結する焼結工程とを含むセラミックスシンチレータの製造方法であって、少なくとも還元工程より前に、生成物及び/又は仮焼粉の粒径を調整する粉砕工程を含むことを特徴とする。
 前記混合工程の後に生成物の粒径を調整する粉砕工程を含む場合、前記仮焼工程において1000℃以下で仮焼し、前記還元工程において900℃以下で還元するのが好ましい。前記仮焼工程の後に仮焼粉の粒径を調整する粉砕工程を含む場合、前記還元工程において900℃以下で還元するのが好ましい。前記混合工程は液体中で混合し、前記粉砕工程において湿式粉砕するのが好ましい。
 前記還元工程の後に、前記希土類オキシ硫化物粉末の粒径を調整する粉砕工程を含まないのが好ましい。前記焼結工程では成形体に大気圧を超える圧力を印加せず、且つ不活性雰囲気中で焼結するのが好ましい。前記希土類化合物は、希土類元素の酸化物、水酸化物、ハロゲン化物、硝酸塩、硫酸塩、酢酸塩、リン酸塩、及び炭酸塩からなる群から選択される少なくとも一つであるのが好ましい。前記希土類化合物は少なくとも酸化ガドリニウムを含むか、少なくとも酸化ガドリニウム及び酸化プラセオジムを含むのが好ましい。
 前記希土類化合物として、1種類の希土類元素の希土類化合物を用いても良いし、複数の希土類元素の希土類化合物を用いても良い。複数の希土類元素の希土類化合物を混合する場合、前記混合工程において、量の少ない希土類化合物から順に硫酸イオンを含む水溶液に添加するのが好ましい。
 前記焼結工程の後に、前記焼結体をアニールするアニール工程を含むのが好ましい。
 本発明のセラミックスシンチレータは、上記方法により得られることを特徴とする。
 本発明のシンチレータアレイ及び放射線検出器は、かかるセラミックスシンチレータを備えていることを特徴とする。
 本発明によれば、希土類オキシ硫化物粉末を得る還元工程を行う前に粉砕工程を適用することで、粒子径を調整し、硫黄の脱離を抑制できる。従って、かかる希土類オキシ硫化物粉末を用いて製造するセラミックスシンチレータは高密度な焼結体からなり、大きな発光強度を有し、放射線に対して高感度な応答を示す。
本発明の第1の実施態様によるセラミックスシンチレータの製造方法を示す図である。 本発明の第2の実施態様によるセラミックスシンチレータの製造方法を示す図である。 希土類オキシ硫化物粉末の粒度分布を示すグラフである。
 本発明の重要な特徴の一つは、希土類オキシ硫化物粉末を得る還元工程を行う前に粉砕工程を適用することで、硫黄の脱離を抑制することができることを見出したことにある。その理由は明確ではないが、希土類オキシ硫化物を生成する還元工程を行なう前においては、希土類オキシ硫化物よりも安定な化合物となっており、粉砕工程を付与しても硫黄の脱離が抑制されたものと推測する。
 このように本発明では粉砕工程を適用して焼結性の高い粉末を得ても、硫黄の脱離を抑制できるため、得られるセラミックスシンチレータの発光強度の低下の問題を解消することができるものとなる。以下、本発明のセラミックスシンチレータ及びその製造方法並びにシンチレータアレイ及び放射線検出器を詳細に説明するが、本発明は下記の実施形態に限定されるものではない。
[1] 第1の実施形態
 本発明の第1の実施形態によるセラミックスシンチレータの製造方法のフローチャートを図1に示す。
(1-1) 秤量工程
 まず秤量工程にて、所定の量の希土類化合物粉末と硫酸又は硫酸塩とを準備する。希土類化合物は希土類元素の酸化物、水酸化物、ハロゲン化物、硝酸塩、硫酸塩、酢酸塩、リン酸塩及び炭酸塩からなる群から選択される少なくとも1つを用いることができるが、高純度が得やすく、かつ化学的に安定な原料として、希土類元素の酸化物が特に好ましい。
 希土類元素は、スカンジウム(Sc),イットリウム(Y),ランタン(La),セリウム(Ce),プラセオジム(Pr),ネオジム(Nd),プロメチウム(Pm),サマリウム(Sm),ユウロピウム(Eu),ガドリニウム(Gd),テルビウム(Tb),ジスプロシウム(Dy),ホルミウム(Ho),エルビウム(Er),ツリウム(Tm),イッテルビウム(Yb)及びルテチウム(Lu)の17種類の元素を示す。希土類化合物粉末として、上記希土類元素のうち、1種類の希土類元素の希土類化合物を用いても良く、複数の希土類元素の希土類化合物を用いても良い。1種類の希土類元素の希土類化合物を用いる場合、希土類元素はガドリニウムであるのが好ましい。複数の希土類元素の希土類化合物を用いる場合、希土類元素として少なくともガドリニウムを含むのが好ましく、ガドリニウムに加えてプラセオジムをさらに含んでいても良い。
 硫酸及び/又は硫酸塩の添加量は、一般式:RE2O2S(REは希土類元素を示す。)の希土類オキシ硫化物が得られるのに十分であるのが望ましい。具体的には、硫酸及び/又は硫酸塩の添加量は、希土類元素1molに対して硫酸イオンが0.5 molでも良く、製造工程での硫黄の離脱による成分ずれを考慮して、0.5 molよりも多い量、例えば0.5~1.75 molであっても良い。特に0.75~1.75 molであれば、異相の少ない希土類オキシ硫化物粉末を得ることができる。ここで上記希土類元素には、希土類化合物に含まれる希土類元素に加えて、希土類元素を含む硫酸塩を用いる場合、硫酸塩に含まれる希土類元素も含まれる。また硫酸イオンには、硫酸及び/又は硫酸塩に含まれる硫酸イオンに加えて、硫酸イオンを含む希土類化合物を用いる場合、希土類化合物に含まれる硫酸イオンも含まれる。
(1-2) 混合工程
 混合工程にて、希土類化合物と硫酸又は硫酸塩とを混合して反応させ、生成した生成物を回収する。希土類化合物と硫酸を混合する方法としては、例えば、(1) 硫酸に希土類化合物の粉末を添加し、攪拌して反応させる方法と、(2) 水に希土類化合物の粉末を添加し、攪拌した後、硫酸を添加して反応させる方法が挙げられる。
 方法(1) の場合、硫酸の濃度は特に限定されないが、希土類化合物との反応速度の観点から、水1リットルにつき0.1~2molの希硫酸であるのが好ましい。希土類化合物の粉末は公知の手段で添加して良い。複数の希土類元素の希土類化合物を添加する場合、希土類元素の量の少ない希土類化合物から順に硫酸に添加するのが好ましい。それにより、量の少ない希土類化合物を事前に反応させ拡散させておくことで、生成物中の組成が偏析しにくくなるためである。
 方法(2) の場合、希土類化合物-水混合液の濃度は特に限定されないが、希土類化合物との分散性(組成の均一性)と硫酸添加後の反応速度の観点から、水1リットルにつき0.05~2molであるのが好ましい。上記混合液に硫酸を公知の手段で添加して良い。硫酸濃度は10~98 mass%であるのが好ましい。尚、希土類化合物が希土類酸化物のように殆ど水に不溶の場合、水中で粉末粒子が分散した状態の混合液となる。
 希土類化合物と硫酸塩とを混合する場合、硫酸塩として発煙硫酸、硫安等を用いることができるが、希土類オキシ硫化物粉末と同じ希土類元素の硫酸塩を用いるのが望ましい。希土類化合物と硫酸塩を混合する方法として、例えば、(3) 水に硫酸塩を添加し、得られた水溶液に希土類化合物の粉末を添加し、攪拌して反応させる方法と、(4) 水に希土類化合物の粉末を添加し、攪拌した後、硫酸塩の水溶液を添加して反応させる方法が挙げられる。硫酸塩の添加はいずれも公知の方法を用いることができる。
 希土類化合物粉末と硫酸イオンとを水中で混合させることにより反応熱が発生する。希土類化合物粉末と硫酸イオンとを添加して反応させた後の混合液中の希土類元素濃度と混合液の温度とは、負の相関関係がある。そのため、反応熱により混合液の温度が上昇することにより、生成物が沈殿する。発生した沈殿生成物ごと混合液を所定の温度まで加温し、所定の時間維持しても良い。加温により生成物の発生が促される。発生した沈殿生成物の回収は、沈殿生成物を混合液と分離した後に加熱乾燥しても良く、混合液ごと加熱して、液体を蒸発させても良い。混合液ごと加熱させた場合、同時に熟成も進むため工数が低減できるので好ましい。
 得られた生成物は、混合する硫酸又は硫酸塩と希土類化合物のモル比によっても異なるが、希土類硫酸塩と希土類化合物との混合塩、又は希土類硫酸塩を主成分とする組成を有する。
(1-3) 粉砕工程
 粉砕工程にて、得られた生成物を粉砕し、粒度を調節する。生成物の粉砕は水やエタノールなどの液体を媒体とした湿式粉砕や、液体を媒体としない乾式粉砕等の公知の手段を用いることができるが、前後の工程を考慮し、装置が比較的安価で、分散性も良く、粉砕効率も高い湿式ボールミルを用いた湿式粉砕であるのが好ましい。
 沈殿生成物を得る混合工程の後に、生成物を反応液ごと湿式粉砕の装置に投入して、粉砕工程を湿式粉砕で行うことにより、得られた生成物の乾燥を省略することができる上に、生成物が柔らかい粉状であるため粉砕しやすい。また沈殿生成物を混合液からろ過させる前に、液中に生成物が含まれている状態で湿式粉砕を行っても良い。
(1-4) 仮焼工程
 仮焼工程にて、得られた粉砕物を仮焼する。仮焼工程は大気圧の空気中で行うのが好ましい。仮焼温度は300~1000℃が好ましく、600~900℃であれば、仮焼後に得られるもののばらつきがすくなくなるため、より好ましい。仮焼温度が1000℃超であると粉砕物の粒成長が活性化して粒径に大きなズレが生じる。300℃未満では仮焼の反応が十分に進まない。このとき発生した硫黄を含むH2SやSOxなどのガスは、中和水溶液中にてバブリングするなどの公知の技術で回収できる。
 仮焼により得られた仮焼粉は、混合する硫酸又は硫酸塩と希土類化合物のモル比によっても異なるが、希土類硫酸塩と希土類オキシ硫酸塩、又は希土類オキシ硫酸塩を主成分とする組成を有する。
(1-5) 還元工程
 還元工程にて、仮焼により得られた仮焼粉を、還元剤として水素やメタン、プロパン等の炭化水素等のガス等を使用して、還元処理する。還元処理は、例えば前記還元剤と、反応速度に応じて窒素(N2)やアルゴン(Ar)のような不活性雰囲気を含んでいても良く、900℃以下の温度で行うのが好ましい。このときに発生する硫黄を含むH2SやSOxなどのガスも、中和水溶液中にてバブリングするなどの公知の技術で回収できる。還元温度が900℃以下であると、仮焼粉の粒成長を抑制しつつ、還元処理を行うことができる。還元時間は1~180分であるのが好ましい。900℃以下であれば量に応じて、粒成長しない程度に、より長い時間でも構わない。
 このように、還元工程を行う前に粉砕により粒子径を調整し、粒子径が大きくなるのを抑制する条件で還元処理を行なうことにより、粉砕工程における硫黄の脱離を発生させることなく、還元工程後に所望の粒子経を有する希土類オキシ硫化物が得られる。還元温度を900℃以下とすることで、仮焼粉の粒成長を抑制されるため、還元後に再度粉砕工程を行う必要がなくなる。還元して希土類オキシ硫化物になった後で粉砕工程を行うと、硫黄が抜けて欠陥の原因となりやすい。還元工程において凝集した希土類オキシ硫化物粒子を解砕するための解砕工程を行っても良い。
(1-6) 成形工程
 得られた希土類オキシ硫化物粉末を造粒し、造粒粉末を生成する。造粒工程は公知の方法を用いて良い。希土類オキシ硫化物の造粒粉末を用いて、一軸プレスや冷間等方圧加圧等のそれ自体は公知な方法を用いて成形体を作製する。成形圧は、少なくとも後の焼結工程において十分な密度が得られる成形体を得るための成形圧より大きく、加圧時の粉末粒子同士の接触による脱硫が発生しない成形圧より小さい。
(1-7) 焼結工程
 得られた成形体を窒素(N2)やアルゴン(Ar)などの不活性雰囲気中で焼結することにより、焼結体が得られる。希土類オキシ硫化物は酸化雰囲気で加熱すると、酸化して希土類酸化物に変化し、還元雰囲気中で加熱すると、還元されて硫黄や酸素の欠陥ができるため、不活性雰囲気中で焼結することが好ましい。使用するルツボやセッターなどの治具は、高温で酸化も還元もせず、安定した材質が好ましい。焼結の温度は1300~1600℃が好ましく、1500~1600℃がより好ましい。このときHP(ホットプレス)やHIP(熱間等方圧プレス)などにより、加圧下で焼結しても良いが、HPやHIPのような加圧構造や耐圧構造を有しない装置のほうが安価であることなどから大気圧程度の圧力で焼結するのが好ましい。希土類オキシ硫化物粉末は粉砕工程により粒径が小さく調整されているため、加圧焼結を行わなくても高密度な焼結体を得ることができる。さらに、得られた焼結体の歪などを取り除くために不活性雰囲気中で焼結体をアニールしても良い。アニールすることで発光強度がさらに向上する。
 得られた焼結体はセラミックスシンチレータとして用いることができる。例えば、希土類オキシ硫化物の希土類元素としてガドリニウム、プラセオジム及びセリウムを用いる場合、得られた焼結体は、プラセオジムを発光元素とし、セリウムを残光を調節するための添加物としたガドリニウムオキシ硫化物のセラミックスシンチレータとなる。上記工程により得られる希土類オキシ硫化物は粉砕工程による硫黄の欠落や格子欠陥が少ないため、かかる希土類オキシ硫化物を用いて製造する本発明のセラミックスシンチレータは高密度で半透明の焼結体からなり、大きな発光強度を有し、放射線に対して高感度な応答を示す。
[2] 第2の実施形態
 本発明の第2の実施形態による希土類オキシ硫化物の製造方法のフローチャートを図2に示す。第2の実施形態は、粉砕工程を仮焼工程の後に行うこと以外は、第1の実施形態と同様である。仮焼工程において、一時的に高温になり一部の粉末粒子が成長することがあるが、第2の実施形態では成長した粉末粒子も一緒に粉砕し、粒度を調整することができる。
[3] シンチレータアレイ
 本発明のシンチレータアレイは、反射材を備えたシンチレータ基板に複数の上記シンチレータを配列してなる。シンチレータアレイの構成・製造方法は公知のものを用いることができる。例えば、得られたセラミックスシンチレータを、両面粘着シートを介して支持プレートに固定し、前記シンチレータ基板に溝を形成して複数のシンチレータセルを有する溝付きシンチレータ基板を形成し、前記溝に反射材用液状硬化性樹脂を充填し、前記液状硬化性樹脂を硬化させることによりシンチレータセル樹脂硬化体を形成し、次いで前記シンチレータセル樹脂硬化体から前記両面粘着シートを剥離することで製造することができる。
[4] 放射線検出器
 本発明の放射線検出器は、上記のシンチレータと、このシンチレータの発光を検出するシリコンフォトダイオード等の検出素子とを有する。このときシリコンフォトダイオードのアレイに対応させて、上記シンチレータアレイを用いることにより、効率的に放射線検出器を形成できるため好ましい。例えば、上述の方法で得たセラミックスシンチレータを用いたシンチレータアレイの発光面と受光素子の受光面を対向させて、光学樹脂で接着させることで製造することができる。この放射線検出器は、X線CT、PET(Positron Emission Tomography)/CTなどの医療用の画像診断装置に搭載することが好適である。発光強度が大きい本発明のシンチレータを用いることにより、X線に対し高感度で、応答性が高く、さらに安定性の優れた高性能の放射線検出器が得られる。
 以下、本発明について実施例を用いてさらに具体的に説明する。なお、本発明のセラミックスシンチレータ及びその製造方法並びにシンチレータアレイ及び放射線検出器は下記の実施例に限定されるものではない。
実施例1
 混合工程において得られた生成物を粉砕する第1の実施形態に基づいて、セラミックスシンチレータを製造した。
(1) 秤量工程
 まず3Lビーカーに純水1600 mlを準備し、濃度96 mass%の硫酸163.62 gを秤量し、それを3Lビーカーの水に添加し、希硫酸を生成した。
(2) 混合工程
 3Lビーカーの希硫酸に硝酸セリウム0.0113 g、酸化プラセオジム0.2561 g及び酸化ガドリニウム290.00 gをこの順で添加した。希硫酸と硝酸セリウム、酸化プラセオジム及び酸化ガドリニウムが沈殿反応し、生成物が発生する。得られた懸濁液をスターラーで撹拌しつつ、ホットバスで90℃に加温し、150分間以上維持した。
 懸濁液を撹拌しながら、ブフナーロートでろ過し、生成物を得た。生成物を120℃で12時間維持して乾燥した後、乳鉢を用いて目開き500μmのふるいを通るまで解砕した。
(3) 粉砕工程
 ボールミルに生成物100 gとエタノール200 mlを入れ、100 rpmで15時間湿式粉砕した。粉砕後のスラリーを100℃で4~6時間乾燥した。乾燥した生成物を、乳鉢を用いて目開き500μmのふるいを通るまでさらに解砕することで、微粒子の生成物を得られた。
(4) 仮焼工程
 湿式粉砕した生成物をアルミナるつぼに入れ、大気雰囲気の電気炉を使用し、大気圧の空気中にて900℃で1時間仮焼を行った。反応時に発生したH2Oガス及びSO3ガスはガス処理装置で処理を行った。
(5) 還元工程
 アルミナるつぼに仮焼処理を行った粉末を入れ、水素雰囲気の還元炉を使用し、水素ガス雰囲気下で、800℃で3時間保持し、還元処理を行った。還元処理時に発生するH2Oガス及びH2Sガスはガス処理装置で処理した。この還元反応により希土類オキシ硫化物(Gd, Pr, Ce)2O2Sが得られた。
(6) 成形工程
 この希土類オキシ硫化物を一軸加圧成形機を用いて49 MPaで加圧成形後、ビニル袋に真空封止しCIP成形機にて294 MPaで加圧成形した。
(7) 焼結工程
 得られた成形体を高温焼結炉を用いて、窒素雰囲気中で1500℃に保持し、焼結した。焼結体は微量酸素を含むアルゴン雰囲気中にて1100℃で2時間熱処理し、焼結時に生じた酸素欠陥を補填するアニール処理を行い、セラミックスシンチレータを得た。
実施例2
 仮焼物を粉砕する第2の実施形態に基づき、粉砕工程(3)と仮焼工程(4)の順番を入れ替えた以外は、実施例1と同様の条件でセラミックスシンチレータを製造した。
 すなわち、混合工程(2)により得られた反応生成物をアルミナるつぼに入れ、GOS仮焼炉を使用し、大気圧の空気中にて900℃で1時間仮焼を行った。反応時に発生したH2Oガス及びSO3ガスはガス処理装置で処理を行った。
 得られた仮焼物100 gをエタノール200 mlと共にボールミルに入れ、100 rpmで15時間湿式粉砕した。粉砕後のスラリーを100℃で4~6時間乾燥した。乾燥した生成物を、乳鉢を用いて目開き500μmのふるいを通るまでさらに解砕することで、微粒子の仮焼物を得られた。この微粒子の仮焼物を用いて実施例1と同様に還元工程(5)、成形工程(6)及び焼結工程(7)を行い、セラミックスシンチレータを得た。
比較例1
 粉砕工程(3)を行わない以外は、実施例1と同様の条件でセラミックスシンチレータを製造した。
比較例2
 還元工程後に粉砕工程を行う例を以下に示す。秤量工程(1)及び混合工程(2)、仮焼工程(4)、還元工程(5)をこの順に実施例1と同様に行った。
 還元工程(5)により得られた希土類オキシ硫化物粉末100 gをエタノール200 mlと共にボールミルに入れ、100 rpmで15時間湿式粉砕した。粉砕後のスラリーを100℃で4~6時間乾燥した。乾燥した生成物を、乳鉢を用いて目開き500μmのふるいを通るまでさらに解砕することで、微粒子の希土類オキシ硫化物粉末を得た。この微粒子の希土類オキシ硫化物粉末を用いて実施例1と同様に成形工程(6)及び焼結工程(7)を行い、セラミックスシンチレータを得た。
 実施例1及び実施例2と、比較例1及び比較例2のセラミックスシンチレータの焼結体密度をアルキメデス法を用いて測定し、発光強度は、WターゲットのX線管球を用いて、管電圧90 kV、管電流20 mAの条件でX線を発生させ、これをセラミックスシンチレータに照射し、Siフォトダイオードの受光素子を用いて測定した。発光強度は、実施例2の結果を100として、相対的に示した。また、X線照射中にSiフォトダイオードの受光素子を用いて測定された強度に対する、X線照射を停止してから3ミリ秒(ms)経過後にSiフォトダイオードの受光素子を用いて測定された強度を「3ms残光」として示した。以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、粉砕工程を行わなかった比較例1のセラミックスシンチレータは焼結体密度が低く、発光強度が小さかった。また還元工程後に粉砕工程を行った比較例2は焼結体密度は高かったが、発光強度が小さかった。このことから希土類オキシ硫化物を得る還元工程に行う前に粉砕工程を行って粒子径を調整し、粒子径が大きくなることを抑制した上で還元した希土類オキシ硫化物粉末を用いて製造したセラミックスシンチレータは、焼結体の密度が高く、かつ大きな発光強度を有することが分かった。セラミックスシンチレータの発光メカニズムから推察すると、3ms残光の数値が極端に大きくなるのは、硫黄の欠陥による影響ではないかと考えられる。
 実施例3
 秤量工程で濃度96 mass%の硫酸81.81 gを秤量し、粉砕工程で粉砕時間を40時間とした以外は実施例1と同様に秤量工程(1),混合工程(2),粉砕工程(3),仮焼工程(4) 及び還元工程(5)を行い、希土類オキシ硫化物粉末を作製した。かかる希土類オキシ硫化物粉末を用いて実施例1と同様にセラミックスシンチレータを作製した。
 実施例4
 秤量工程で濃度96 mass%の硫酸81.81 gを秤量し、粉砕工程で粉砕時間を40時間とした以外は実施例2と同様に秤量工程(1),混合工程(2),仮焼工程(4),粉砕工程(3),及び還元工程(5)を行い、希土類オキシ硫化物粉末を作製した。かかる希土類オキシ硫化物粉末を用いて実施例2と同様にセラミックスシンチレータを作製した。
 比較例3
 秤量工程で濃度96 mass%の硫酸81.81 gを秤量した以外は比較例1と同様に秤量工程(1),混合工程(2),仮焼工程(4)及び還元工程(5)を行い、希土類オキシ硫化物粉末を作製した。かかる希土類オキシ硫化物粉末を用いて比較例1と同様にセラミックスシンチレータを作製した。
 比較例4
 秤量工程で濃度96 mass%の硫酸81.81 gを秤量し、粉砕工程で粉砕時間を40時間とした以外は比較例2と同様に秤量工程(1),混合工程(2),仮焼工程(4) 及び還元工程(5)を行った後、粉砕工程を行い、希土類オキシ硫化物粉末を作製した。かかる希土類オキシ硫化物粉末を用いて比較例2と同様にセラミックスシンチレータを作製した。
 実施例3、実施例4、比較例3及び比較例4の希土類オキシ硫化物粉末の粒度分布を図3に示す。粒度分布の測定は、株式会社堀場製作所の粒子径分布測定装置LA-950を使用して、湿式レーザー回折法により測定した。試料の分散には、純水に分散剤としてヘキサメタリン酸を溶解した分散媒を使用し、試料投下後に撹拌しつつ、超音波を10分間照射した後に、粒度分布を測定した。図3から分かるように、粉砕工程を有しない比較例3は粒子経が他の例と比べて大きいほうに分布していた。このことから、希土類オキシ硫化物粉末を得る還元工程を行う前に粉砕工程により粒子径を調整することで、還元工程の後の粒度分布が大きくならないよう抑制されているものと考察される。なお実施例3及び4の希土類オキシ硫化物粉末の平均粒径は、粉砕工程後に還元工程にて熱が加わるため、比較例4より大きかった。
 実施例3、実施例4、比較例3及び比較例4のセラミックスシンチレータの焼結体密度、発光強度及び3ms残光を実施例1と同じ方法で求めたところ、実施例1及び2と同様の結果が得られた。粉砕工程を行わなかった比較例3のセラミックスシンチレータは焼結体密度が低く、発光強度が小さかった。また還元工程後に粉砕工程を行った比較例4は焼結体密度は高かったが、発光強度が小さかった。このことから、実施例3及び4のセラミックスシンチレータは比較例4と比べて平均粒径が大きいが、発光強度及び3ms残光に優れていることが分かった。また実施例1及び2と比べて秤量工程における硫酸量を半分にしても、焼結体の密度が高く、かつ大きな発光強度を有するセラミックスシンチレータが得られることが分かった。
 実施例5
 粉砕工程の粉砕溶媒としてエタノールの代わりに水を用いて、15時間粉砕した以外は実施例3と同様にセラミックスシンチレータを作製した。得られたセラミックスシンチレータの焼結体密度は7.34g/cm3であり、発光強度は101%であり、3ms残光は181ppmであった。このことから粉砕工程の粉砕溶媒としてエタノールの代わりに水を用いた場合でも、高密度な焼結体からなり、大きな発光強度を有し、放射線に対して高感度な応答を示すセラミックスシンチレータが得られることを確認した。

Claims (14)

  1.  希土類化合物と硫酸及び/又は硫酸塩とを混合して反応させ、生成物を得る混合工程と、
     前記生成物を仮焼して仮焼粉を得る仮焼工程と、
     前記仮焼粉を還元して希土類オキシ硫化物粉末を得る還元工程と、
     前記希土類オキシ硫化物粉末を成形して成形体を得る成形工程と、
     前記成形体を焼結する焼結工程と、
    を含むセラミックスシンチレータの製造方法であって、
     少なくとも還元工程より前に、生成物及び/又は仮焼粉の粒径を調整する粉砕工程を含む
    ことを特徴とするセラミックスシンチレータの製造方法。
  2.  前記混合工程後に前記粉砕工程を行った後、前記仮焼工程において1000℃以下で仮焼し、前記還元工程において900℃以下で還元することを特徴とする請求項1に記載のセラミックスシンチレータの製造方法。
  3.  前記仮焼工程後に前記粉砕工程を行った後、前記還元工程において900℃以下で還元することを特徴とする請求項1に記載のセラミックスシンチレータの製造方法。
  4.  前記混合工程は液体中で混合し、前記粉砕工程において湿式粉砕することを特徴とする請求項1~3のいずれか1つに記載のセラミックスシンチレータの製造方法。
  5.  前記還元工程の後に、前記希土類オキシ硫化物粉末の粒径を調整する粉砕工程を含まないことを特徴とする請求項1~4のいずれか1つに記載のセラミックスシンチレータの製造方法。
  6.  前記焼結工程では成形体に大気圧を超える圧力を印加せず、且つ不活性雰囲気中で焼結することを特徴とする請求項1~5のいずれか1つに記載のセラミックスシンチレータの製造方法。
  7.  前記希土類化合物は、希土類元素の酸化物、水酸化物、ハロゲン化物、硝酸塩、硫酸塩、酢酸塩、リン酸塩、及び炭酸塩からなる群から選択される少なくとも一つであることを特徴とする請求項1~6のいずれか1つに記載のセラミックスシンチレータの製造方法。
  8.  前記希土類化合物は少なくとも酸化ガドリニウムを含むことを特徴とする請求項7に記載のセラミックスシンチレータの製造方法。
  9.  前記希土類化合物は少なくとも酸化ガドリニウム及び酸化プラセオジムを含むことを特徴とする請求項7に記載のセラミックスシンチレータの製造方法。
  10.  前記混合工程において、複数の希土類元素の希土類化合物を硫酸及び/又は硫酸塩に添加して混合する際、量の少ない希土類化合物から順に添加することを特徴とする請求項1~9のいずれか1つに記載のセラミックスシンチレータの製造方法。
  11.  前記焼結体をアニールするアニール工程をさらに含むことを特徴とする請求項1~10のいずれか1つに記載のセラミックスシンチレータの製造方法。
  12.  請求項1~11のいずれか1つに記載の方法で製造されたセラミックスシンチレータ。
  13.  請求項12に記載のセラミックスシンチレータを備えたシンチレータアレイ。
  14.  請求項12に記載のセラミックスシンチレータを備えた放射線検出器。
PCT/JP2014/073915 2013-10-08 2014-09-10 セラミックスシンチレータ及びその製造方法、並びにシンチレータアレイ及び放射線検出器 WO2015053033A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/027,796 US10207957B2 (en) 2013-10-08 2014-09-10 Ceramic scintillator and its production method, and scintillator array and radiation detector
JP2015541491A JPWO2015053033A1 (ja) 2013-10-08 2014-09-10 セラミックスシンチレータ及びその製造方法、並びにシンチレータアレイ及び放射線検出器
CN201480055626.0A CN105637062B (zh) 2013-10-08 2014-09-10 陶瓷闪烁体及其制造方法、以及闪烁体阵列和放射线检测器
EP14852205.5A EP3056555B1 (en) 2013-10-08 2014-09-10 Method for producing a ceramic scintillator, a scintillator array, and a radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-211383 2013-10-08
JP2013211383 2013-10-08

Publications (1)

Publication Number Publication Date
WO2015053033A1 true WO2015053033A1 (ja) 2015-04-16

Family

ID=52812853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073915 WO2015053033A1 (ja) 2013-10-08 2014-09-10 セラミックスシンチレータ及びその製造方法、並びにシンチレータアレイ及び放射線検出器

Country Status (5)

Country Link
US (1) US10207957B2 (ja)
EP (1) EP3056555B1 (ja)
JP (1) JPWO2015053033A1 (ja)
CN (1) CN105637062B (ja)
WO (1) WO2015053033A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043619A1 (ja) * 2015-09-11 2017-03-16 株式会社三徳 希土類オキシ硫化物の製造方法、希土類オキシ硫化物、及び蓄冷材
JP2019044177A (ja) * 2017-08-30 2019-03-22 日立金属株式会社 セラミック蛍光材料、セラミックシンチレータおよび放射線検出器、並びにセラミック蛍光材料の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312215B (zh) * 2016-08-05 2021-03-26 神岛化学工业株式会社 稀土类硫氧化物蓄冷材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913625A (ja) * 1982-07-09 1984-01-24 Asahi Chem Ind Co Ltd 希土類元素のオキシサルフアイドの製造法
JPH07223861A (ja) * 1994-01-26 1995-08-22 Siemens Ag 発光体セラミックの製造方法
JP2000313619A (ja) 1999-03-25 2000-11-14 Siemens Ag 希土類オキシ硫化物粉末の製造方法
JP2002220587A (ja) * 2001-01-26 2002-08-09 National Institute Of Advanced Industrial & Technology 高輝度発光材料の製造方法
JP2004525848A (ja) 2001-02-22 2004-08-26 シーメンス アクチエンゲゼルシヤフト シンチレーターセラミックの製造法および該シンチレーターセラミックの使用
JP2006117489A (ja) * 2004-10-22 2006-05-11 National Institute For Materials Science 希土類酸硫化物の製造方法
JP2008501611A (ja) * 2004-05-17 2008-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 蛍光セラミック及びその製造方法
WO2010001624A1 (ja) * 2008-07-03 2010-01-07 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置
JP2013100388A (ja) * 2011-11-07 2013-05-23 Niigata Univ 希土類元素の使用量の少ない蛍光ランプとそれに用いる蛍光体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813688A (ja) * 1981-07-20 1983-01-26 Mitsubishi Chem Ind Ltd 螢光体の製造方法
JPH078983B2 (ja) * 1986-04-26 1995-02-01 三菱化学株式会社 螢光体
US5116559A (en) 1991-02-26 1992-05-26 General Electric Company Method of forming yttria-gadolinia ceramic scintillator using hydroxide coprecipitation step
JP2989184B1 (ja) * 1998-12-16 1999-12-13 日立金属株式会社 セラミックスシンチレータ
US6504156B1 (en) * 1999-07-16 2003-01-07 Kabushiki Kaisha Toshiba Ceramic scintillator material and manufacturing method thereof, and radiation detector therewith and radiation inspection apparatus therewith
JP4959877B2 (ja) 2001-03-19 2012-06-27 株式会社東芝 セラミックシンチレータ、およびそれを用いた放射線検出器と放射線検査装置
WO2002103259A1 (fr) * 2001-06-18 2002-12-27 Konoshima Chemical Co., Ltd. Matiere d'entreposage au froid a base d'un oxysulfure metallique de terre rare et dispositif d'entreposage au froid
JP2005054046A (ja) 2003-08-04 2005-03-03 Fuji Photo Film Co Ltd 蛍光体の製造方法
US7488432B2 (en) * 2003-10-28 2009-02-10 Nichia Corporation Fluorescent material and light-emitting device
JP5118886B2 (ja) * 2007-05-21 2013-01-16 国立大学法人 熊本大学 酸素吸放出材及びそれを含む排ガス浄化用触媒
WO2015045870A1 (ja) 2013-09-25 2015-04-02 日立金属株式会社 希土類オキシ硫化物の製造方法、セラミックスシンチレータ及びその製造方法並びにシンチレータアレイ及び放射線検出器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913625A (ja) * 1982-07-09 1984-01-24 Asahi Chem Ind Co Ltd 希土類元素のオキシサルフアイドの製造法
JPH07223861A (ja) * 1994-01-26 1995-08-22 Siemens Ag 発光体セラミックの製造方法
JP2000313619A (ja) 1999-03-25 2000-11-14 Siemens Ag 希土類オキシ硫化物粉末の製造方法
JP2002220587A (ja) * 2001-01-26 2002-08-09 National Institute Of Advanced Industrial & Technology 高輝度発光材料の製造方法
JP2004525848A (ja) 2001-02-22 2004-08-26 シーメンス アクチエンゲゼルシヤフト シンチレーターセラミックの製造法および該シンチレーターセラミックの使用
JP2008501611A (ja) * 2004-05-17 2008-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 蛍光セラミック及びその製造方法
JP2006117489A (ja) * 2004-10-22 2006-05-11 National Institute For Materials Science 希土類酸硫化物の製造方法
WO2010001624A1 (ja) * 2008-07-03 2010-01-07 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置
JP2013100388A (ja) * 2011-11-07 2013-05-23 Niigata Univ 希土類元素の使用量の少ない蛍光ランプとそれに用いる蛍光体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3056555A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043619A1 (ja) * 2015-09-11 2017-03-16 株式会社三徳 希土類オキシ硫化物の製造方法、希土類オキシ硫化物、及び蓄冷材
CN108025924A (zh) * 2015-09-11 2018-05-11 株式会社三德 稀土类硫氧化物的制造方法、稀土类硫氧化物以及蓄冷材料
JPWO2017043619A1 (ja) * 2015-09-11 2018-08-02 株式会社三徳 希土類オキシ硫化物の製造方法、希土類オキシ硫化物、及び蓄冷材
CN108025924B (zh) * 2015-09-11 2022-04-08 株式会社三德 稀土类硫氧化物的制造方法、稀土类硫氧化物以及蓄冷材料
JP2019044177A (ja) * 2017-08-30 2019-03-22 日立金属株式会社 セラミック蛍光材料、セラミックシンチレータおよび放射線検出器、並びにセラミック蛍光材料の製造方法

Also Published As

Publication number Publication date
EP3056555A1 (en) 2016-08-17
CN105637062B (zh) 2018-05-25
CN105637062A (zh) 2016-06-01
EP3056555B1 (en) 2020-08-05
JPWO2015053033A1 (ja) 2017-03-09
US10207957B2 (en) 2019-02-19
EP3056555A4 (en) 2017-06-21
US20160251573A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP7269994B2 (ja) 陽電子放出断層撮影のための透明セラミックガーネットシンチレーター検出器
EP2826835B1 (en) Solid scintillator, radiation detector and radiographic examination device
US8431042B2 (en) Solid state scintillator material, solid state scintillator, radiation detector, and radiation inspection apparatus
WO2015045870A1 (ja) 希土類オキシ硫化物の製造方法、セラミックスシンチレータ及びその製造方法並びにシンチレータアレイ及び放射線検出器
US20130034715A1 (en) Method of Fabricating Doped Lutetium Aluminum Garnet (LuAG) or Other Lutetium Aluminum Oxide Based Transparent Ceramic Scintillators
WO2010095737A1 (ja) 固体シンチレータ、放射線検出器およびx線断層写真撮影装置
JP2007161577A (ja) 多結晶質透明セラミック製品及び製造方法
Xie et al. Fabrication and properties of Eu: Lu2O3 transparent ceramics for X-ray radiation detectors
WO2015053033A1 (ja) セラミックスシンチレータ及びその製造方法、並びにシンチレータアレイ及び放射線検出器
Huang et al. Fabrication of Gd2O2S: Tb scintillation ceramics from the uniformly doped nanopowder
Hu et al. Fabrication and scintillation properties of Pr: Lu3Al5O12 transparent ceramics from co-precipitated nanopowders
JP2005047798A (ja) 希土類セラミック・ガーネットの製造
Xie et al. Eu: Lu2O3 transparent ceramics fabricated by vacuum sintering of co-precipitated nanopowders
JP2010174211A (ja) 固体シンチレータ、放射線検出器、放射線検査装置、固体シンチレータ製造用粉末および固体シンチレータの製造方法
Wang et al. Fabrication of Gd2O2S: Pr, Ce, F scintillation ceramics by pressureless sintering in nitrogen atmosphere
JPH0585824A (ja) アンモニウムで分散させたシユウ酸塩共沈物からイツトリア−ガドリニアセラミツクシンチレータを製造する方法
Liu et al. Fabrication of Gd2O2S: Pr scintillation ceramics from water-bath synthesized nanopowders
CN110204336B (zh) 一种硫氧化钆粉体和闪晶陶瓷的制备方法
Sun et al. Co-precipitation synthesis of gadolinium aluminum gallium oxide (GAGG) via different precipitants
Xu et al. Co-precipitation synthesis of La 2 O 2 SO 4: Tb 3+ phosphor and its conversion to La 2 O 2 S: Tb 3+ ceramic scintillator via pressureless sintering in hydrogen
Gonçalves et al. Study of radiation induced effects in the luminescence of nanostructured Al2O3: Yb, Er crystals
Cha et al. Synthesis and scintillation characterization of nanocrystalline Lu2O3 (Eu) powder for high-resolution X-ray imaging detectors
Lee et al. Novel method of producing nanoparticles for gadolinium-scintillator-based digital radiography
Kim et al. After-Glow Extinction of Nano Phosphors Synthesized by Different Sintering Methods for Radiography
CN117682856A (zh) 闪烁陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541491

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15027796

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014852205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014852205

Country of ref document: EP