WO2017132843A1 - 用于对粒子进行包衣或制粒的流化床装置及方法 - Google Patents

用于对粒子进行包衣或制粒的流化床装置及方法 Download PDF

Info

Publication number
WO2017132843A1
WO2017132843A1 PCT/CN2016/073224 CN2016073224W WO2017132843A1 WO 2017132843 A1 WO2017132843 A1 WO 2017132843A1 CN 2016073224 W CN2016073224 W CN 2016073224W WO 2017132843 A1 WO2017132843 A1 WO 2017132843A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
draft tube
air
fluidized bed
flow
Prior art date
Application number
PCT/CN2016/073224
Other languages
English (en)
French (fr)
Inventor
刘益明
卢会芬
刘飞
刘一涛
陈敏
Original Assignee
刘益明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘益明 filed Critical 刘益明
Priority to US16/075,002 priority Critical patent/US10625228B2/en
Priority to PCT/CN2016/073224 priority patent/WO2017132843A1/zh
Priority to JP2018539939A priority patent/JP6578447B2/ja
Priority to CN201680001647.3A priority patent/CN106536034B/zh
Priority to CA3013091A priority patent/CA3013091C/en
Priority to EP16888668.7A priority patent/EP3412360B1/en
Publication of WO2017132843A1 publication Critical patent/WO2017132843A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes
    • B01F33/406Mixers using gas or liquid agitation, e.g. with air supply tubes in receptacles with gas supply only at the bottom
    • B01F33/4061Mixers using gas or liquid agitation, e.g. with air supply tubes in receptacles with gas supply only at the bottom through orifices arranged around a central cone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/08Granular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/092Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed agitating the fluidised bed, e.g. by vibrating or pulsating
    • F26B3/0926Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed agitating the fluidised bed, e.g. by vibrating or pulsating by pneumatic means, e.g. spouted beds

Definitions

  • the present invention relates to a cyclone generator for a fluidized bed apparatus for coating or granulating particles, a fluidized bed apparatus comprising the cyclone generator, and for coating particles in the fluidized bed apparatus Or the method of granulation.
  • the invention also relates to a dual-conductor for replacing a single draft tube of a fluidized bed apparatus for coating or granulating particles, and a fluidized bed comprising the double-conductor combined with a cyclone generator A device and a method for coating or granulating particles in the fluidized bed device.
  • the high rate of rising airflow through the air distribution plate carries the particles in the diversion
  • the cylinder moves upwards, where the particles are coated or granulated by a spray released from the nozzle of the lance, and the particles then encounter a low rate of weaker ascending airflow in the expansion zone above the draft tube, when the airflow rate is insufficient to support
  • the particles which fall by gravity into the downward flow bed zone, re-enter the inside of the draft tube under the suction of the gap existing in the ring and encounter a high rate of rising gas flow, thus enabling the flow in the upstream flow bed zone.
  • a modification of such a device includes an airflow diverter that blows particles away from the nozzle during spraying, the airflow diverter comprising a sleeve extending around the gun body and having a plurality of round holes adjacent the nozzle .
  • the sleeve is operatively coupled to a source of compressed air that urges air to exit radially outwardly through a circular aperture in the sleeve as the steering airflow and the relatively strong upward flow through the air distribution plate Upon encountering, a radially outward steered updraft is created which allows the spray pattern to develop more fully and increase the effective area of the spray area, so that the steered updraft pushes the particles away from the nozzle and prevents the particles from passing through the spray area
  • the particles may collide with the inner wall of the draft tube at a high velocity vector in the radial direction, thereby posing a risk of damage to the coating film or particles.
  • a series of embodiments of the prior art device include an air vortex generator for increasing and promoting the process, a cylindrical guide tube positioned vertically above the nozzle and concentrically positioned with the nozzle, the nozzle Installed in a circular hole in the air distribution plate and placed on the same level as the air distribution plate to form an annular notch around the nozzle, the air vortex generator being positioned below the air distribution plate and at the inflatable base Inside the seat, comprising an air guiding wall located below the air distribution plate and fitted at the edge of the annular slot, the air guiding wall separating a rotationally symmetric space having a horizontal cross-sectional area that expands downward and can typically be implemented to expand downward
  • the deflecting piece is rotationally symmetrically constructed at a lower portion of the air guiding wall and each deflecting piece may typically have a vertical portion and a slanted portion to deflect the airflow in the same direction, the air vortex
  • Another modification of such a device includes another air vortex generator to achieve a more uniform particle coating, reduce particle adhesion and be suitable for smaller processes in the process relative to conventional devices.
  • a particle-shaped air vortex generator having a plurality of arrangement slots open outwardly and at an angle to the vertical direction, the air vortex generator being mounted in a central region of the air distribution plate below the cylindrical guide tube and Coaxial with a spray gun here, and diverting the rising air into a vortex as a result of the tilting of the plurality of grooves, the air vortex feeding the particles into the spray area within the draft tube to obtain a coating spray, as an on-axis
  • the air vortex increases the heat exchange of the two-phase flow, and because of better heat exchange, a more uniform particle coating can be expected, particle adhesion is reduced, and the interference is reduced.
  • the air vortex generated by the disc-shaped air vortex generator has a strong surrounding central region of the lance and is weaker away from the peripheral region of the lance, so that the air vortex damages the development of the spray pattern and interferes with the droplet. Fully atomized, there may be a risk of excessive wetting and uneven wetting.
  • aerodynamic methods that contribute to the development of spray morphology and particle flow morphology can advantageously improve the quality of products and processes, thereby improving the aerodynamics approach.
  • it allows the full development of spray morphology and particle flow morphology.
  • the convection path of the optimized product enables the particles to receive uniform spraying, ensuring maximum spray efficiency and very stable operation with increased spray rate.
  • the type of nozzle is typically pneumatically atomized, for example using a high velocity air jet to disperse the liquid jet into a conical cloud or a small droplet of spray, preferably a dual flow nozzle.
  • the inventive concept is an aerodynamic method for introducing a rotating ascending airflow near the lance in the upstream flow bed zone in the draft tube to facilitate the development of the spray morphology and particle flow morphology while placing the particles Rotating the ascending path and allowing the particles to rotate independently due to minimal friction with the inner wall of the draft tube, thereby increasing the chance of the particles being more evenly sprayed as they pass through the spray area above the nozzle, thus ensuring a fluidized bed arrangement
  • the particles in the spray do not enter the spray zone before the spray form is sufficiently developed to contact the spray droplets, and the wear of the particles is reduced due to the helical upward movement of the particles along the inner wall of the draft tube.
  • the inventive concept is based on horizontal direction generation/vertical direction guidance to form a cyclonic airflow such that the cyclonic airflow can be in a predetermined vertical interval of the draft tube Continuous and tangential acceleration of the particles contributes to the development of the spray pattern and particle flow morphology, optimizing the convection path of the product.
  • the cyclone generator according to the present invention can be retrofitted to the conventional fluidized bed apparatus in an accessory manner to improve performance.
  • Another concept of the present invention is a pneumatic kinetic method that uses a dual draft tube instead of a single draft tube and introduces a settling gas flow in the settled fluid bed zone between the two draft tubes, such that the sprayed
  • the particles can be distinguished according to the particle size of the particles, and the particles of different particle sizes are separately treated separately, thereby avoiding the adhesion of small particles due to high surface energy in the coating or granulation process, and the small particles are This is selectively cyclically processed to rapidly increase the particle size, so that all particles form a uniform particle size, while eliminating or reducing the interparticle spraying due to the mutual occlusion effect between the particles.
  • the adverse effects of unevenness enhance the adaptability of the fluidized bed apparatus of the present invention to particles having high surface energy, and expand the application range of the coating and granulation process.
  • the present invention provides a cyclone generator for a fluidized bed apparatus for coating or granulating particles, the fluidized bed apparatus comprising a product container, an inflatable base located at a lower portion, and a product container An air distribution plate between the inflatable base and a flow guide, the fluidized bed apparatus further comprising at least one spray gun including a spray gun body and having an upper end equipped with a nozzle and a lower end passing through the air distribution plate.
  • the draft tube is positioned perpendicular to the gun in the product container and suspended above the air distribution plate, and the cyclone generator is mounted on the gun body.
  • the cyclone generator is connected to the compressed air source through the air distribution plate, and the cyclone generator has a tubular sleeve extending around the periphery of the gun body, and an air chamber is defined between the sleeve and the gun body. And the sleeve has a plurality of guide slots, and air from the source of compressed air is directed to rotate outwardly through the guide slots through the air chamber to provide a swirling airflow circumferentially outward relative to the lance in the draft tube.
  • the guiding slot extends outwardly in a radial tangential line within the wall of the sleeve.
  • the guiding slot extends outwardly in a radially progressive tangent within the wall of the sleeve.
  • the guide slots extend radially outwardly and upwardly within the wall of the sleeve, and the air flow is directed to rotate outward and upward through the guide slots.
  • the guide slot is at an elevation angle of between 5 and 80 degrees from the horizontal.
  • the guiding slot is at an elevation angle of 15 to 60 with respect to the horizontal.
  • a cyclonic air flow is provided in a predetermined vertical section of the draft tube to avoid turbulence of airflow and particles outside the flow guide.
  • the sleeve includes an upper end and a lower end, the guide slot extending axially between the upper end and the lower end.
  • the lower end of the sleeve is fixed with a composite member, and is self-pressing.
  • the air line extending from the air-entrained air source is connected to the composite member, and a cover ring is also fixed at the lower end thereof, and the air distribution plate is sandwiched between the composite member and the cover ring.
  • an expansion opening extending through the composite member and the cover ring is provided, the expansion opening being adapted to fit the joint to connect the air line, thereby connecting the source of compressed air.
  • a cylindrical metal mesh is placed between the upper and lower ends of the sleeve to prevent particles from entering through the guide slots when the fluidized bed apparatus is interrupted.
  • the cyclone generator can have a plurality of shaped sleeves and/or composite columns.
  • the draft tube is cylindrical or approximately cylindrical.
  • Another aspect of the present invention is to provide a fluidized bed apparatus for coating or granulating particles, comprising:
  • a product container having an expansion chamber for containing particles
  • An inflatable base disposed below the product container and including an intake duct extending from the first source;
  • An air distribution plate disposed at a bottom of the expansion chamber, the air distribution plate having a plurality of air passage openings, and the air flow from the inflation base enters the product container through the air passage opening;
  • At least one spray gun positioned vertically above the air distribution plate for spraying an upward spray of solution into the expansion chamber for coating or granulating the particles;
  • At least one flow guide barrel positioned perpendicular to the spray gun within the product container and suspended above the air distribution plate;
  • the aperture of the air distribution plate in the vertical projection area of the draft tube is larger than the aperture of the opening outside the vertical projection area of the draft tube, thereby forming a larger air volume in the area of the opening having a larger aperture a stronger updraft with a higher wind speed and a weaker ascending airflow with a smaller air volume and a lower wind speed in the region of the aperture having a smaller aperture, thereby forming aerodynamic dynamics in the expansion chamber for the particles Divided on the guide tube a flowing bed zone and a downstream fluid bed zone;
  • the lance is combined with a cyclone generator as previously described, and the cyclone generator provides a cyclonic airflow relative to the circumferential direction of the lance through the air chamber and the plurality of guide slots, providing a strong rise in the aperture provided by the larger aperture
  • the combined action of the gas stream and the cyclone flow creates a swirling updraft in the draft tube such that the particles travel along a circular path that rotates upward in the ascending flow bed region and falls down the downflow bed region.
  • the flow guide has an open upper end and a lower end, the upper end extending upward into an expansion zone between the upstream flow bed zone and the downstream flow bed zone in aerodynamics, the lower end suspension
  • An air gap is formed above the air distribution plate and forms an annular gap with the air distribution plate.
  • a rotating updraft is generated in a predetermined vertical section of the draft tube.
  • At least one second guide tube is further provided, the second guide tube has a larger diameter than the guide tube and is positioned coaxially with the guide tube for the guide tube and the first An approximately circular air passage is formed between the two guide tubes.
  • the air distribution plate has no openings in the annular vertical projection area between the draft tube and the second draft tube.
  • the second draft tube has an open upper end and a lower end.
  • the upper end of the second draft tube is at the same level as the upper end of the draft tube and together forms an annular opening.
  • the lower end of the second draft tube and the lower end of the draft tube together form another annular opening, while the lower end of the second draft tube forms a second annular gap with the air distribution plate.
  • a settled fluidized bed zone is formed between the draft tube and the second draft tube, and particles having a smaller particle size rotate upward along the upstream flow bed region due to less momentum and flow in the settling flow.
  • the bed area falls down the circular path.
  • the second draft tube is cylindrical or approximately cylindrical.
  • Yet another aspect of the present invention is to provide a method for coating or granulating particles in a fluidized bed apparatus as described above, the method comprising:
  • a relatively strong ascending air flow is guided for the particles to form an upflow flow bed zone and a descending flow bed zone separated by a draft tube in aerodynamics, wherein the strong updraft gas carries the particles upwards through the upward direction.
  • a rotating updraft is generated in the draft tube under the combined action of a relatively strong updraft and a cyclone flow, thereby causing the particles to rotate up the upstream flow bed zone and in the downstream flow bed zone and/or the settling flow bed zone Fall down the loop path to run.
  • the guiding particles are caused to rotate outwardly before entering the spray zone and fly away from the lance.
  • a rotating updraft is created in a predetermined vertical section of the draft tube to effect acceleration of the particles in the rotational and ascending directions during the predetermined vertical interval.
  • the stronger updraft and cyclone streams are individually controlled to vary the axial rate and tangential rate of the rotating ascending gas stream, respectively, thereby optimally optimizing the operational characteristics of the rotating ascending airflow in two dimensions.
  • the particles are imparted with a rotation motion due to slight friction with the inner wall of the draft tube, so that the cyclone flow produces a better tangential acceleration effect on the particles, thereby facilitating uniform uniformity of the particles.
  • the cyclone generator according to the invention With the cyclone generator according to the invention, sufficient development of the spray pattern and sufficient atomization of the spray solution are allowed, and the cyclone generator allows the rotating updraft to allow sufficient development of the particle flow pattern and carry the particles along the upstream flow bed zone
  • the ascending path moves, on the one hand, ensures that the particles are uniformly sprayed as they pass through the spray area, and on the other hand prevents damage by the particles from hitting the inner wall of the flow tube at high speed.
  • the cyclone generator according to the present invention is capable of eliminating or reducing the adhesion of wetted particles.
  • the particles By the fluidized bed apparatus according to the present invention, wherein the cyclone generator causes the rotating ascending air carrying particles to enter the rotational ascending path in the upstream fluidized bed region, the particles thereby form particles which vertically spiral upward in the draft tube
  • the flow pattern is such that the inner wall of the adjacent draft tube has a high particle density and the particle density of the core region is relatively low, and the released droplets fly concentrically to the spiral particle with little or no particle interference. Near the flow, thus increasing the chance that the particles will concentrically meet the mist droplets near the inner wall of the spiral particle flow, and the stick wall effect in the prior art is eliminated or reduced by preventing the droplets from reaching the inner wall of the draft tube.
  • the amount of air flowing through the cyclone generator and the gas pressure can be monitored and controlled to improve the performance of the fluidized bed apparatus throughout the entire process as the particle size of the product increases. Furthermore, with the fluidized bed apparatus according to the present invention, a relatively low temperature is generated in the upstream fluidized bed zone due to the expansion of the compressed air released from the air guiding slot of the spin wind generator, the relative low temperature reducing the droplets from the released The evaporation of the wetted particles facilitates the formation of the coating film or particles and improves the utilization of the spray by eliminating or reducing the spray drying effect in the process. Further, with the fluidized bed apparatus according to the present invention, it is possible to optimize the flow characteristics of the spray form and the particle flow form in the spray area, thereby increasing the spray rate.
  • air is used in a wide variety of ways, including atmospheric and artificial gases, as defined herein and in the context of the accompanying context.
  • particles is used in a wide variety of ways, as defined herein and in the context of the accompanying context, as well as the particulate material to be coated and the fine powder to be granulated.
  • the term "product” is used in a wide range of aspects, as well as semi-finished and finished products in the preparation process.
  • Figure 1 shows an axial cross-sectional side view of a fluidized bed apparatus in accordance with a first embodiment of the present invention
  • Figure 2 shows a perspective view of a cyclone generator according to a first embodiment of the present invention, wherein the cylindrical metal mesh of the cyclone generator is in a deployed shape
  • Figure 3 shows an axial cross-sectional side view of a spray gun according to a first embodiment of the present invention, together with a cyclone generator mounted thereon,
  • Figure 4 shows a radial cross-sectional plan view of a sleeve in accordance with a first embodiment of the present invention, together with a spray gun,
  • Figure 5 shows an axial cross-sectional side view of a fluidized bed apparatus in accordance with a first embodiment of the present invention, showing the convection path of the product
  • Figure 6 shows a schematic cross-sectional view of a first embodiment of the present invention, wherein the fluidized bed apparatus has a plurality of nozzles and a draft tube,
  • Figure 7 is a horizontal sectional view showing the fluidized bed apparatus of the first embodiment shown in Figure 6, and
  • Figure 8 shows an axial cross-sectional side view of a fluidized bed apparatus in accordance with a second embodiment of the present invention showing the convection path of the product.
  • a fluidized bed apparatus 10 includes a product container 20 having an expansion chamber 21 for containing particles, an inflation base 30 located at a lower portion of the product container 20, and air placed between the product container 20 and the inflation base 30. Distribution plate 40.
  • the upper end 22 of the product container 20 can be open to connect to a filter housing (not shown) located above it having an air filter structure and an air outlet.
  • the intake duct 31 opens into the inflator base 30 from a first source of air (not shown).
  • the air distribution plate 40 has a plurality of air passage openings 41, 42 through which airflow from the lower inflatable base 30 can enter the product container 20.
  • a generally cylindrical guide tube 50 is suspended from the center of the vessel 20 and separates the centrally located upstream flow bed zone 23 and the peripheral downstream flow bed zone 24 in the vessel 20.
  • the draft tube 50 has an open upper end 51 and a lower end 52, the upper end 51 of which extends upwardly into the expansion zone 25 between the upstream flow bed zone 23 and the downstream flow bed zone 24 in aerodynamics, with the lower end 52 suspended Above the air distribution plate 40 and with the air distribution plate 40 An annular gap 53.
  • the aperture of the opening 41 in the vertical projection area of the air distribution plate 40 of the air distribution plate 40 is larger than the aperture of the opening 42 outside the vertical projection area of the draft tube, so that a large amount of air is formed in the area of the opening 41.
  • a relatively high updraft with a high wind speed creates a weaker updraft with a smaller air volume and a lower wind speed in the region of the opening 42 , thereby forming a draft of the aerodynamics in the vessel 20 for the particles.
  • a separate centrally located upstream flow bed zone 23 and a downstream downstream flow bed zone 24 are located.
  • the lance 60 is mounted vertically on the central concentric shaft of the draft tube 50 and extends through the air distribution plate 40 into the upstream fluidized bed zone 23 of the vessel 20.
  • the top of the lance 60 is equipped with a nozzle 61 that receives compressed air supplied through an air supply source (not shown) and pressure-sprays a solution supplied through a liquid supply source (not shown).
  • the above structure is a conventional structure of a fluidized bed apparatus that is common in the art, as is well known in the industry.
  • a cyclone generator 70 that can be combined with a lance 60 in a conventional fluidized bed apparatus as described above is additionally provided to provide a circumferentially outward cyclonic airflow relative to the lance 60.
  • the cyclone generator 70 includes a sleeve 71 that can be mounted on the lance body 62, the sleeve 71 including an upper end 77 and a lower end 78 that extend axially between the upper end 77 and the lower end 78.
  • the cyclone generator 70 further includes a composite member 81 and a cover ring 82 fixed to the lower end 78, wherein the air line 73 extending from the compressed air source is connected to the cover ring 82 and the composite member 81 through the joint 72, and the bottom of the composite member 81 includes Suitable for the projection 83 that is embedded in the central opening of the air distribution plate 40, so that the air distribution plate 40 is sandwiched between the composite member 81 and the cover ring 82, and the sleeve 71, the composite member 81 and the cover ring 82 are screwed together or Fastened to the gun body 62 and co-assembled on the air distribution plate 40, the nut 64 of the lance 60 is screwed onto the lance body 62, as shown in Figures 2, 3 and 5.
  • the sleeve 71 also includes an inner groove 91 that is adapted to be embedded in a seal, such as an O-ring 92.
  • the composite member 81 also includes an inner groove 93 that is adapted to be embedded in a seal, such as an O-ring 94.
  • the cyclone generator 70 is also provided with expansion openings 84, 85 extending axially through the composite member 81 and the cover ring 82, the expansion opening 84 being adapted to fit the joint 72, which is coupled to the second air tube Line 73 is in turn connected to a source of compressed air (not shown).
  • the expansion opening 85 is adapted to fit a joint 65 that connects the liquid line 63 and the first air line 66 and is then correspondingly connected to a liquid supply (not shown) and a compressed air supply (not shown), respectively.
  • the liquid conduit 67 extends upwardly within the lance gun body 62 to provide the nozzle 61 with liquid from the liquid line 63 for releasing the spray, as shown in Figures 2 and 3.
  • a cyclone generator 70 mounted on the lance body 62 forms a generally cylindrical air chamber 74 between the inner wall 76 of the sleeve 71 and the outer wall 68 of the lance body 62, having an expanded lower end 75.
  • the O-rings 92, 94 seal the upper and lower ends of the air chamber 74, respectively, as shown in FIG.
  • the sleeve 71 of the cyclone generator 70 is a hollow tubular or cylindrical member that is circumferentially covered with a cylindrical metal mesh 95 to prevent particles from entering through the guide slots 79 when the fluidized bed apparatus 10 is interrupted.
  • the guide slot 79 extends radially outwardly within the wall of the tubular sleeve member 71.
  • the guide slots 79 are rotationally symmetrically arranged along the circumference of the sleeve 71 and extend radially outwardly within the wall of the sleeve 71.
  • the guide slot 79 can be oriented at an elevation angle to the horizontal, for example from 5 to 80 or preferably from 15 to 60, as shown in Figures 3 and 4.
  • This characteristic of the guide slot 79 enables cyclonic motion of the air as it enters the upstream flow bed zone 23 from the air chamber 74 through the slot 79. It is important that the notches 79 extend outwardly in the same tangential direction within the wall of the sleeve 71, which means that the notches 79 should provide the same clockwise or counterclockwise flow of air flowing near the lance 60, thereby enhancing the The cyclone effect of the airflow.
  • FIG. 5 shows the convection path of the product in the fluidized bed apparatus 10 using the cyclone generator 70 in accordance with the present invention.
  • the pressurized air supplied from the first air source through the first air duct 31 in a conventional manner is respectively discharged through the openings 41 and 42 of the air distribution plate 40 to form an updraft, and the second air source passes through the second air line.
  • the compressed air of the 73 and the joint 72 enters the air chamber 74, and the air flow is exhausted through the slot 79 to produce a swirling airflow that is rotated outward relative to the lance 60, as indicated by arrow A in FIG.
  • a rotating updraft is generated in the upstream flow bed zone 23.
  • the high rate of rotational updraft allows the particle flow pattern to develop sufficiently and carry particles into the rotational ascending path, while the particles are imparted by slight friction with the inner wall of the draft tube 50.
  • the rotation motion (not shown) causes the particles to increase the chance of more uniform spraying when subsequently passing over the spray area above the nozzle 61, as indicated by arrow B in Figure 5, the amount of swirling the updraft allows the spray pattern to rise in rotation
  • the particles are fully developed before contact.
  • the low velocity gas flow encountered by the particles causes the particles to fall downward within the downflow bed zone 24, as indicated by arrow C in FIG.
  • the extent to which the particles are dried in the downward path is such that a weaker ascending air flow through the peripheral region of the air distribution plate 40 is sufficient to avoid agglomeration in the fluidized layer. Due to the suction formed by the rotating updraft at the annular gap 53, the particles are then drawn into the upstream fluid bed zone 23 through the gap 53. Thus, the spraying of particles in the upstream fluidized bed zone 23 and the drying in the downstream fluidized bed zone 24 form a cycle.
  • the cyclone generator 70 provides a pneumatic dynamics method with a rotating ascending gas flow that is beneficial to the full development of the spray morphology and particle flow morphology, and on the other hand optimizes the convection path of the product such that the particles are uniformly sprayed.
  • a second embodiment of the present invention is a modification based on the first embodiment of the present invention, wherein a second draft tube 54 is provided in addition to the draft tube 50 to be in the guide tube 50 and A downward settling gas flow is provided between the second draft tubes 54.
  • the second guide tube 54 which is also generally cylindrical, has a larger diameter than the guide tube 50 and is positioned coaxially with the guide tube 50 to form a circle between the guide tube 50 and the second guide tube 54.
  • Annular air passage 26 for example, a cylindrical draft tube 50 and a second draft tube 54 are mounted in the center of the container 20 and collectively separate the centrally located upstream fluid bed zone 23, the peripheral downstream flow bed zone 24, and the clamp in the vessel 20.
  • the second draft tube 54 has an open upper end 55 and a lower end 56.
  • its upper end 55 is at the same level as the upper end 51 of the draft tube 50 and together forms an annular opening 57, while its lower end 56 is low in vertical height.
  • the lower end 52 of the draft tube 50 so that there is a predetermined height difference between the two, and the lower end 56 and the lower end 52 of the draft tube 50 together form another annular opening 58 while the lower end 56 and the air are distributed
  • the plate 40 forms a second annular gap 59.
  • the annular vertical projection area of the air distribution plate 40 between the draft tube 50 and the second guide tube 54 does not have an opening.
  • Figure 8 shows the convection path of the product in the fluidized bed apparatus 10 incorporating the draft tube 50 and the cyclone generator 70 using the second draft tube 54 in accordance with the second embodiment of the present invention.
  • the second embodiment of the present invention shown in Fig. 8 is similar to the first embodiment of the present invention shown in Fig. 5 in that the pressurized air supplied from the first air source through the first air duct 31 is worn in a conventional manner.
  • the openings 41 and 42 of the air distribution plate 40 are exhausted to form an updraft, and the compressed air from the second source through the second air line 73 and the joint 72 enters the air chamber 74, and the air is discharged through the slot 79 to produce
  • the cyclonic airflow that is rotated outward relative to the lance 60 is as indicated by arrow A in FIG. Under the combined action of a strong updraft and a cyclone flow, a rotating updraft is generated in the upstream flow bed zone 23.
  • the high rate of rotational ascending airflow allows the particle flow pattern to develop sufficiently and carry the particles into the rotational ascending path, while the particles are imparted with a rotational motion (not shown) due to slight friction with the inner wall of the draft tube 50, such that the particles are Subsequent passage of the spray area above the nozzle 61 increases the chance of more uniform spraying, as indicated by arrow B in Figure 8, the amount of swirling updraft allows the spray pattern to be fully developed prior to contact with the ascending particles.
  • the second embodiment of the present invention shown in FIG. 8 is different from the first embodiment of the present invention shown in FIG. 5 in that the lower end 56 of the second guide vane 54 is additionally provided at a lower vertical level than the diversion flow.
  • the lower end 52 of the barrel 50 thus has a predetermined height difference therebetween such that the rotating updraft creates a suction at the annular opening 58 between the lower end 56 of the second draft tube 54 and the lower end 52 of the draft tube 50.
  • the settling flow bed zone 27 of the toroidal air passage 26 between the draft tube 50 and the second draft tube 54 then forms a settled gas stream.
  • the large particles continue to fly into the expansion zone 25 above the draft tube 50 due to the large momentum, and the low-rate rising airflow encountered by the large particles causes the large particles to flow in the downward flow bed.
  • the area 24 falls downward, as indicated by arrow C in FIG.
  • the small particles fall and are dried in the settled fluidized bed zone 27 of the annular air passage 26 between the draft tube 50 and the second draft tube 54, due to the large specific surface area of the small particles and the high velocity flowing airflow. It is allowed to dry in the settling path to a degree sufficient to avoid adhesion between small particles. Large particles are dried in the down path The degree of drying is such that a weaker updraft through the peripheral region of the air distribution plate 40 is sufficient to avoid agglomeration in the fluidized layer.
  • the draft tube 50 is combined with the second draft tube 54 to provide a provision within the settled fluid bed zone 27 of the annular air passage 26 between the flow guide barrel 50 and the second flow guide barrel 54.
  • the aerodynamic method of the settling gas flow makes it possible to distinguish the sprayed particles according to the particle size of the particles, and separately treat the particles with different particle sizes due to different spraying effects.
  • the particles enter the swirling ascending airflow and are continuously accelerated in the rotational vertical direction in the predetermined vertical section of the draft tube 50, so that All of the particles wetted by the spray zone fly away from the upper end 51 of the draft tube 50 at approximately the same tangential velocity.
  • the particle size determines the mass of the particles and determines the momentum of its flight, the effect of the settling flow in the settling zone 28.
  • the momentum of the particle flight determines the radial distance of the flight and the radial interval of the flight, so that the settling flow of the settling zone 28 has a distinguishing effect on particles of different particle sizes.
  • the velocity of the rotating ascending airflow can be varied to change the tangential velocity of the particles flying away from the upper end 51 of the draft tube 50 so that the falling into the settled fluidized bed zone can be selectively effected.
  • the particle size range of the particles is adjusted to increase the ability of the fluidized bed apparatus 10 to be optimized for process requirements.
  • the significance of the second embodiment of the invention in practical applications is that, on the one hand, small particles have a high surface energy and are avoided in the coating or granulation process. Its falling into the fluidized layer prevents it from forming adhesions with large particles, while the small particles avoid sticking to each other due to being in a high-speed flowing gas stream, thereby eliminating or reducing agglomeration of the product.
  • small particles are selectively cyclically processed to reduce the difference in particle size from large particles until all products form particles of uniform particle size, which improves the quality of the product, especially in the granulation process. in this way.
  • the unsprayed particles due to the mutual occlusion effect between the particles when passing through the spray region are selectively circulated through the settled fluidized bed region 27 due to their small mass, eliminating or reducing the mutual occlusion due to the particles.
  • the adverse effect of uneven spraying between particles caused by the effect improves the quality of particle spraying, especially for particles requiring coating, the surface of which can form a more uniform coating film.
  • the fluidized bed apparatus 10 according to the second embodiment of the present invention improves the adaptability and optimization ability for processing the process requirements of having high surface energy particles, and expands the coating and system due to the advantages of the above several aspects. The scope of application of the granular process.
  • the cyclone generator 70 of the present invention is coaxially mounted within the flow guide barrel 50, and the cyclonic airflow provided therein is defined within the flow guide barrel 50, avoiding convection paths to the flow and product outside the flow guide. interference.
  • the cyclone generator 70 of the present invention provides a cyclonic airflow in a predetermined vertical section of the draft tube 50, so that the rotating updraft generated by the combination of the strong ascending airflow and the cyclone airflow has stable aerodynamic characteristics.
  • the cyclonic airflow provided by the cyclone generator 70 of the present invention can be adjusted by changing its air volume and pressure, so that the aerodynamic characteristics of the rotating ascending airflow have precise controllability, and the fluidized bed of the present invention is improved.
  • the adaptability and optimization capabilities of device 10 for a particular process need.
  • the cyclone generator 70 of the present invention can be directly and simply installed on a conventional fluidized bed apparatus to achieve improvement and performance improvement, can save a large amount of social resources, and improve the application and promotion value of the present invention.
  • the amount and pressure of the airflow exiting through the cyclone generator 70 can be easily controlled and monitored using valves and meters (not shown).
  • the particles to be treated may be cycled multiple times between the upstream fluid bed zone 23 and the downstream fluid bed zone 24 until the desired degree of treatment is reached, followed by the treated product. It is removed from the container 20.
  • the particles to be treated may be differentiated according to the particle size of the particles after being sprayed, and particles of different particle sizes are treated differently, and the small particles are
  • the upstream flow bed zone 23 and the settled fluid bed zone 27 may be cycled multiple times until the desired treatment is achieved, while the large particles may be cycled multiple times between the upstream flow bed zone 23 and the downstream flow bed zone 24 until the desired treatment is achieved. To the extent that the processed product is subsequently removed from the container 20.
  • the fluidized bed apparatus 10 according to the present invention and the method according to the present invention provide a more fully developed possibility for the spray pattern from the nozzle 61 and the particle flow pattern in the draft tube, such that the spray from the nozzle 61 More fully atomized, the particles are more uniformly sprayed as they pass through the spray area, eliminating or reducing agglomeration of the product.
  • the fluidized bed apparatus 10 according to the present invention and the method according to the present invention also treat the sprayed particles differently and differentially according to the particle size of the particles, thereby improving the performance of the fluidized bed apparatus 10 and the quality of the product.
  • the fluidized bed apparatus 10 can be sufficiently used in existing processes such as coating, granulation, and drying.
  • the process according to the invention can be used adequately for all materials, such as fines, granules, granules, beads, pellets, pellets, capsules and minitablets.
  • the method according to the invention can be used as a step in a combined process, preferably using a device 10 according to the invention.
  • the lance 60 and the cyclone generator 70 in accordance with the present invention can be applied to systems other than the fluidized bed apparatus 10 that requires aerodynamic methods that may not require the spray gun 60 to be mounted vertically upwards. It is the spray gun 60 that can be at an angle to the main axis of the container 20.
  • the lance 60 and the cyclone generator 70 according to the present invention can also be applied without the draft tube 50. Additionally, optionally, the cyclone generator 70 can be integrated with the lance 60 to prevent particle interference with the spray pattern and particle flow pattern.
  • the cyclone generator 70 according to the present invention has a plurality of guide slots 79 extending in the axial direction, although embodiments of the present invention describe four guide slots 79 and their construction, it is apparent that a greater or lesser number of guide slots Port 79 can also be used to accomplish the objectives of the present invention.
  • each of the guide slots 79 can also be radially or radially in the same or similar configuration to the wall of the sleeve 71 of the cyclone generator 70.
  • An extended plurality of axially aligned guide circular holes or air nozzles are combined, and the air flow is exhausted through the guide circular holes or air nozzles to generate a swirling airflow that is rotated outward relative to the spray gun 60.
  • the number of guide tubes according to the present invention may be a separately applied guide tube 50 or a combination of the guide tube 50 and the second guide tube 54, even a larger number of guide tubes The combination.
  • the shape of the guide tube of the present invention may be a rotationally symmetrical cylindrical shape or an approximately cylindrical shape, such as a rotationally symmetric venturi shape, on the premise of the aerodynamic characteristics of the draft tube according to the present invention. Venturi-like or partial venturi shape.
  • the multiple guide tubes of the combined application may take the same or similar shape or may take on different shapes.
  • the diversion of two or more combined applications is provided on the premise of the aerodynamic characteristics of the guide tubes according to the present invention. There may also be a certain height difference at the upper end of the barrel. Additionally, the annular gap between each of the draft tubes and the air distribution plate 40 can be adjusted to accommodate batch growth of the product throughout the process and variations in the convection path of the product.
  • Embodiments of the present invention describe an air distribution plate 40 that can also be generated by other structures or distributions into the fluidized bed apparatus 10.
  • the opening 41 of the air distribution plate has a larger aperture and the opening 42 has a smaller aperture, however, the cyclonic airflow can be varied by adjusting the amount and pressure of the cyclone generator 70.
  • the axial velocity and tangential velocity are such that the function of the increased updraft can be partially compensated or completely replaced by increasing the amount of wind and axial velocity of the cyclonic airflow such that the aperture of the aperture 41 is not necessarily greater than the aperture of the aperture 42.
  • the air distribution plate 40 of the present invention may alternatively be in the shape of a horizontal circular plate, or may be in the shape of a cone or a central portion of the inner side of the guide flow tube 50 to facilitate the air.
  • the particles of the fluidized layer on the outside of the guide tube 50 on the distribution plate 40 move toward the central region inside the flow tube 50.
  • a first embodiment comprising a plurality of processing modules as shown in Figures 6 and 7, the modules are placed on a generally circular air distribution plate 40 in the same or similar configuration and configuration.
  • the particles to be treated circulate in substantially the same form in each treatment module, so that the particles essentially consume the same time as they pass through the spray cloud, where a high quality uniform treatment is obtained, thereby increasing the spray rate and speeding up the operation.
  • the risk of particle sticking and clogging of the nozzle 61 is also eliminated or reduced, and the risk of flow resistance change due to particle agglomeration is also eliminated, and the particle flow pattern in the draft tube 50 is spirally ascending. The fact that the wear of the particles is reduced.
  • the second embodiment may also include a plurality of processing modules (not shown) that are placed on a generally circular air distribution plate 40 in the same or similar configuration and configuration.
  • the particles to be treated are circulated in a substantially identical manner in each treatment module, so that the sprayed particles can be distinguished according to the particle size of the particles, and the particles of different particle sizes are treated differently, thereby Adhesion due to small particles is avoided in the coating or granulation process, and small particles are selectively and continuously circulated to form a uniform particle size, while eliminating or reducing the mutual occlusion effect between the particles.
  • the adverse effect of uneven spraying between particles improves the adaptability of the fluidized bed apparatus 10 of the present invention to particles having high surface energy, and expands the application range of the coating and granulation process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Glanulating (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Nozzles (AREA)

Abstract

一种用于对粒子进行包衣或制粒的的流化床装置(10)及方法,流化床装置(10)包括旋风发生器(70)其中旋风发生器(70)安装在流化床装置(10)的喷枪枪体(62)上并且穿过空气分配板(40)连接压缩空气气源,旋风发生器(70)具有围绕喷枪枪体(62)的周围延伸的管状套筒(71),在套筒(71)与喷枪枪体(62)之间限定有空气室(74),并且套筒(71)具有多个导向槽口(79),来自压缩空气气源的空气经由空气室(74)通过导向槽口(79)被引导旋转向外以在流化床装置(10)的导流筒(50)中提供相对于喷枪(60)沿圆周向外的旋风气流。该装置优化了喷雾区域内的喷雾形态和粒子流形态的流动特性,提高了流化床的性能。

Description

用于对粒子进行包衣或制粒的流化床装置及方法 技术领域
本发明涉及一种用于对粒子进行包衣或制粒的流化床装置的旋风发生器、包括该旋风发生器的流化床装置及用于在该流化床装置中对粒子进行包衣或制粒的方法。本发明还涉及一种用于对粒子进行包衣或制粒的流化床装置的用于代替单一导流筒的双导流筒、还包括该双导流筒结合旋风发生器的流化床装置及用于在该流化床装置中对粒子进行包衣或制粒的方法。
背景技术
已知已经有多种专门的设备和装置用于包衣或制粒的目的,这类装置通常包括垂直置于容器内的圆筒形的导流筒以及与导流筒同心安装的喷枪,该导流筒被悬置于具有开孔的、其上衬有金属网的空气分配板之上,并且导流筒将容器分隔出位于中央的上行流动床区及周边的下行流动床区。该空气分配板的处于导流筒的垂直投影区域内的中央区域的开孔孔径较大而处于导流筒的垂直投影区域外的周边区域开孔孔径较小。在导流筒和空气分配板之间垂直地存在环状的间隙,作为粒子从下行流动床区到上行流动床区的环状通道。
由于通过空气分配板中央区域上升的较强上升气流的高速率,使得在导流筒筒壁下方的环状的间隙以及导流筒下方的空气分配板上的环状边界区域向内产生了极小的静压,同时由于通过空气分配板周边区域上升的较弱上升气流使得粒子保持在一种悬浮的半流化状态,该较弱上升气流在空气分配板的周边区域之上产生流化层,刚好能够防止流化层中待处理粒子的粘连并且保持粒子轻微运动。因此,由于较强上升气流产生的极小静压作用,在导流筒外侧的流化层的待处理粒子将通过导流筒筒壁下方的环状的间隙向导流筒内侧移动。
通过空气分配板上升的高速率较强上升气流携带着粒子在导流 筒内向上运动,粒子在此经过由喷枪的喷嘴释出的喷雾而被包衣或制粒,粒子随后在导流筒上方的膨胀区遇到低速率较弱上升气流,当气流速率不足以支持粒子,粒子在重力作用下落入下行流动床区,粒子在存在于环状的间隙的吸力作用下而重新进入导流筒内侧并遭遇高速率较强上升气流,因此得以实现在上行流动床区进行包衣或制粒、在下行流动床区进行干燥的一个循环。在现有技术中,该较强上升气流有待优化以提高工艺和产品的质量。
此类装置的一种改进型(见US6773747B2)包括在喷雾过程中将粒子吹离喷嘴的气流转向器,该气流转向器包括围绕喷枪枪体延伸并在临近喷嘴处有多个圆孔的套筒。该套筒可操作性地与压缩空气气源连接,该压缩空气气源推动空气通过套筒上的圆孔在径向上沿圆周向外排出,当转向气流与通过空气分配板的较强上升气流相遇后即产生径向向外的转向上升气流,该转向上升气流允许喷雾形态更加充分的发育而增加喷雾区域的有效面积,因此该转向上升气流将粒子推离喷嘴且防止粒子在通过喷雾区域前向喷嘴坍塌,所以该工艺在降低过湿、不均匀润湿和结块时允许以更高速率喷雾。然而,由于该工艺中的转向气流在径向上的速度矢量高,使得粒子可能以径向上的高速度矢量碰撞导流筒内壁,从而出现对包衣膜或颗粒损害的风险。
该已有技术装置的一系列实施例(见US5718764和US6492024B1)包括为提高和促进工艺的空气涡流发生器、垂直置于喷嘴上方且与该喷嘴同心定位的圆筒形的导流筒,该喷嘴被安装在空气分配板上的圆形孔内且与所述空气分配板放置于同一水平面上,从而围绕喷嘴形成环状槽口,该空气涡流发生器被定位于空气分配板下方且位于充气基座内,其包括位于空气分配板下方且装配在环状槽口边缘的空气导向壁,该空气导向壁分隔出具有水平横截面积向下扩张的旋转对称空间并且可以典型地实施成向下扩张的锥体,偏转片被旋转对称地构建在空气导向壁的下部并且每个偏转片可以典型地具有垂直部分和倾斜部分以使得气流朝同一方向偏转,空气涡流由 此生成并通过喷嘴周围的环状槽口,随后该空气涡流携带粒子在导流筒内沿螺旋上升的路径通过喷雾区域和上行流动床区。已经证实如此受控的空气涡流经过喷雾区域时,由于粒子的螺旋上升运动而有助于增加粒子与释出的雾滴接触的机会。然而,由于在轴向上的高速度矢量,该空气涡流在粒子进入喷雾区域前妨碍了喷雾形态和粒子流形态充分的发育,可能出现过湿、不均匀润湿和结块的风险。
此类装置的另一种改进型(见US2011/0315079A1)包括另一种空气涡流发生器,以在工艺中相对于传统装置获得更加均匀的粒子包衣、减少粒子的粘连和适用于更小的粒子,该圆盘形的空气涡流发生器具有向外开放且与垂直方向呈夹角的多个配置槽,该空气涡流发生器装配在圆筒形的导流筒下方的空气分配板中央区域且与在此的一支喷枪同轴,并且将上升空气转向为涡流以作为多个槽的倾斜的结果,该空气涡流将粒子送入导流筒内的喷雾区域以获得包衣喷涂,作为在轴向流动方向距离上的更长路径的结果,该空气涡流提高了双相流动的热交换,因为更好的热交换,因此可期待得到更加均匀的粒子包衣、减少粒子的粘连和克服更小粒子包衣工艺中的问题。然而,一方面,由于空气涡流的轴向速率与切线速率不具有单独控制性,所以其轴向速率与切线速率的比率不具有可改变性,空气涡流不能满足特定工艺在批量、粒径和工艺属性等方面变化的个性化要求,这意味着空气涡流不能被优化以适应特定工艺。另一方面,该圆盘形的空气涡流发生器产生的空气涡流具有围绕喷枪的中央区域较强而远离喷枪的周边区域较弱的特点,使得空气涡流损害了喷雾形态的发育从而干扰了雾滴的充分雾化,可能出现过湿、不均匀润湿的风险。再一方面,由于空气涡流通过发生器后的瞬间膨胀和粒子在发生器上的突然加速,使得空气涡流损害了粒子流形态的发育从而干扰了粒子的运动,这意味着在工艺中粒子被赋予不良的不规则的运动。
显而易见,有助于喷雾形态和粒子流形态发育的气动动力学方法可有利地改进产品和工艺的质量,由此改进后的气动动力学方法 一方面允许喷雾形态和粒子流形态的充分发育,另一方面优化后的产品的对流路径使得粒子能够接受均匀的喷涂,在增加喷雾速率的情况下保证了喷雾效率的最大化和非常稳定的操作,并且产生具有优良物理性状的高质量产品。喷嘴的型号通常采用气动雾化的,例如采用高速空气射流以便将液体射流分散成圆锥状云或喷雾形态的小雾滴,优选地采用双流喷嘴。
发明内容
为此,本发明的构思是一种在导流筒中上行流动床区内喷枪附近引入旋转上升气流的气动动力学方法,以便有助于喷雾形态和粒子流形态的发育,同时通过将粒子置于旋转上升路径并允许粒子因与导流筒内壁之间存在极小的摩擦而分别自转,从而增加了粒子在随后经过喷嘴上方的喷雾区域时得到更加均匀的喷涂机会,如此得以保证流化床装置中的粒子在喷雾形态充分发育使得雾滴浓度降低之前不会进入喷雾区域在此与雾滴接触,并且由于粒子沿导流筒的内壁呈螺旋状上升运动而使得粒子的磨损减小。与现有技术中基于垂直方向产生/水平方向导向而形成的空气涡流不同,本发明的构思基于水平方向产生/垂直方向导向以形成旋风气流,使得旋风气流可以在导流筒的预定的垂直区间对粒子进行持续稳定地切线加速,有助于喷雾形态和粒子流形态的发育,优化了产品的对流路径。并且,根据本发明的旋风发生器能够以附件的方式对传统流化床装置进行简单的改造加装以提高性能。
本发明的另一个构思是一种代替使用单一导流筒而采用双导流筒并在两个导流筒之间的沉降流动床区内引入沉降气流的气动动力学方法,使得对经过喷涂的粒子可以根据粒子的粒径加以区分,并分别对不同粒径的粒子进行区别性的处理,从而在包衣或制粒工艺中避免小粒子因具有高表面能而形成的粘连,并且小粒子由此被选择性地连续循环处理而快速增加粒径,使全部粒子形成均匀的粒径,同时消除或减少了由于粒子间的相互遮挡效应而产生的粒子间喷涂 不均的不良影响,提高了本发明的流化床装置对于具有高表面能粒子的适应能力,拓展了包衣和制粒工艺的应用范围。
为了实现以上目的,本发明提供一种用于对粒子进行包衣或制粒的流化床装置的旋风发生器,该流化床装置包括产品容器、位于下部的充气基座、设置在产品容器与充气基座之间的空气分配板、和导流筒,所述流化床装置还包括至少一支喷枪,该喷枪包括喷枪枪体并且其上端配备有喷嘴、其下端穿过空气分配板。导流筒在产品容器内与喷枪同轴垂直地定位并且悬置于空气分配板上方,旋风发生器安装在喷枪枪体上。根据本发明,旋风发生器穿过空气分配板连接压缩空气气源,并且旋风发生器具有围绕喷枪枪体的周围延伸的管状的套筒,在套筒与喷枪枪体之间限定有空气室,并且套筒具有多个导向槽口,来自压缩空气气源的空气经由空气室通过导向槽口被引导旋转向外以在导流筒中提供相对于喷枪沿圆周向外的旋风气流。
根据本发明的一个优选方案,导向槽口在套筒的壁内以径向切线向外延伸。
根据本发明的一个优选方案,导向槽口在套筒的壁内以径向渐进切线向外延伸。
根据本发明的一个优选方案,导向槽口在套筒的壁内以径向切线向外和向上延伸,气流通过导向槽口被引导旋转向外和向上。
根据本发明的一个优选方案,导向槽口与水平面呈5°至80°的仰角。
根据本发明的一个优选方案,导向槽口与水平面呈15°至60°的仰角。
根据本发明的一个优选方案,在导流筒的预定的垂直区间提供旋风气流,以避免对导流筒外的气流和粒子产生扰动。
根据本发明的一个优选方案,套筒包括上端和下端,导向槽口在上端和下端之间沿轴向延伸。
根据本发明的一个优选方案,套筒的下端固定有复合件,自压 缩空气气源延伸的空气管线连接到复合件,并且其下端还固定有盖圈,空气分配板被夹在复合件与盖圈之间。
根据本发明的一个优选方案,设有延伸穿过复合件和盖圈的扩展开孔,该扩展开孔适于装配接头以连接空气管线、进而连接压缩空气气源。
根据本发明的一个优选方案,套筒的上端和下端之间覆盖圆筒形的金属网,以当流化床装置运行中断时防止粒子通过导向槽口进入。
根据本发明的一个优选方案,旋风发生器可以具有多种形状的套筒和/或复合柱。
根据本发明的一个优选方案,导流筒是圆筒形的或近似圆筒形的。
本发明的另一方案在于,提供一种用于对粒子进行包衣或制粒的流化床装置,包括:
产品容器,具有用于容纳粒子的膨胀室;
充气基座,设置在产品容器下方并且包括自第一气源延伸的进气管道;
空气分配板,定位安置在膨胀室的底部,空气分配板具有多个空气通道开孔,来自充气基座的气流通过空气通道开孔进入所述产品容器;
至少一支喷枪,垂直定位在空气分配板上方,用于喷射向上的溶液喷雾进入膨胀室以便对粒子进行包衣或制粒;
至少一个导流筒,该导流筒在产品容器内与喷枪同轴垂直地定位并且悬置于空气分配板上方;
其中,空气分配板的处于导流筒的垂直投影区域内的开孔的孔径大于处于导流筒的垂直投影区域外的开孔的孔径,从而在孔径较大的开孔的区域形成风量较大、风速较高的较强上升气流而在孔径较小的开孔的区域形成风量较小、风速较低的较弱上升气流,由此对于粒子而言在膨胀室中在气动动力学方面形成由导流筒分隔的上 行流动床区和下行流动床区;以及
喷枪与如前所述的旋风发生器结合,并且旋风发生器通过空气室和多个导向槽口提供相对于喷枪沿圆周向外的旋风气流,在由孔径较大的开孔提供的较强上升气流和旋风气流的共同作用下在导流筒中产生旋转上升气流,使得粒子沿着在上行流动床区旋转向上并且在下行流动床区坠落向下的循环路径运行。
根据本发明的一个优选方案,导流筒具有开放的上端和下端,所述上端向上延伸进入在气动动力学方面在上行流动床区与下行流动床区之间的膨胀区,所述下端悬置于空气分配板上方并且与空气分配板形成环状的间隙。
根据本发明的一个优选方案,在导流筒的预定的垂直区间产生旋转上升气流。
根据本发明的一个优选方案,还设有至少一个第二导流筒,该第二导流筒具有比导流筒更大的直径并且与导流筒同轴地定位以在导流筒和第二导流筒之间形成近似圆环形的空气通道。
根据本发明的一个优选方案,空气分配板的处于导流筒和第二导流筒之间的环状的垂直投影区域内不具有开孔。
根据本发明的一个优选方案,第二导流筒具有开放的上端和下端。
根据本发明的一个优选方案,第二导流筒的上端与导流筒的上端处于同一水平面并且共同形成环状的开口。
根据本发明的一个优选方案,第二导流筒的下端与导流筒的下端共同形成另一环状的开口,同时,第二导流筒的下端与空气分配板形成第二环状的间隙。
根据本发明的一个优选方案,在导流筒和第二导流筒之间形成沉降流动床区,粒径较小的粒子由于较小的动量沿着在上行流动床区旋转向上并且在沉降流动床区坠落向下的循环路径运行。
根据本发明的一个优选方案,第二导流筒是圆筒形的或近似圆筒形的。
本发明的又一方案在于,提供一种用于在如前所述的流化床装置中对粒子进行包衣或制粒的方法,该方法包括:
在流化床装置的产品容器中对于粒子而言引导较强上升气流在气动动力学方面形成由导流筒分隔的上行流动床区和下行流动床区,其中较强上升气流携带粒子向上通过上行流动床区并在此通过用于喷射溶液喷雾进入膨胀室的至少一支喷枪对所述粒子进行包衣或制粒;以及
引导旋风气流在气动动力学方面使粒子相对于喷枪沿圆周向外产生旋转运动;
因此在较强上升气流和旋风气流的共同作用下在导流筒中产生旋转上升气流,由此使得粒子沿着在上行流动床区旋转向上并且在下行流动床区和/或所述沉降流动床区坠落向下的循环路径运行。
根据本发明的一个优选方案,引导粒子在进入喷雾区域前产生旋转运动向外飞离喷枪。
根据本发明的一个优选方案,在导流筒的预定的垂直区间产生旋转上升气流,以便在所述预定的垂直区间对粒子产生旋转及上升方向的加速。
根据本发明的一个优选方案,单独控制较强上升气流和旋风气流,以便分别改变旋转上升气流的轴向速率与切线速率,从而在两个维度上最佳地优化旋转上升气流的运行特征。
根据本发明的一个优选方案,粒子由于与导流筒的内壁之间的轻微摩擦而被赋予自转运动,使得旋风气流对粒子产生较好的切线加速效果,从而有利于粒子均匀地接受喷涂。
通过根据本发明的旋风发生器,允许喷雾形态的充分发育和喷射溶液的充分雾化,并且该旋风发生器使得旋转上升气流允许粒子流形态的充分发育并携带粒子在上行流动床区内沿旋转上升路径运动,如此一方面保证粒子在经过喷雾区域时获得均匀地喷涂,另一方面防止粒子因高速撞向导流筒内壁而造成的损害。此外,根据本发明的旋风发生器能够消除或减少润湿的粒子的粘连。
通过根据本发明的流化床装置,其中的旋风发生器使得旋转上升气流携带粒子在上行流动床区内进入旋转上升路径,粒子由此形成在导流筒内垂直地呈螺旋状上升运动的粒子流形态,如此使得临近导流筒的内壁具有高的粒子密度而核心区域的粒子密度相对很低,同时,释出的雾滴在较少或没有粒子干扰的情况下同心地飞向螺旋状粒子流附近,因此增加了粒子同心地与雾滴在螺旋状粒子流内壁附近相遇的机会,并且由于能够防止雾滴到达导流筒的内壁而消除或减小了现有工艺中的粘壁效应。
在根据本发明的流化床装置中,流过旋风发生器的风量和气压可以得到监测和控制,以便在随着产品粒径增大的整个工艺过程中提高流化床装置的性能。此外,通过根据本发明的流化床装置,由于自旋风发生器的空气导向槽口释放的压缩空气的膨胀而在上行流动床区产生相对低温,该相对低温减少了来自于释出的雾滴和润湿的粒子的蒸发,从而有利于包衣膜或颗粒的形成,并且由于消除或减小了工艺中的喷雾干燥效应因此而提高了喷雾的利用率。此外,通过根据本发明的流化床装置,能够优化喷雾区域内喷雾形态和粒子流形态的流动特性,从而提高了喷雾速率。
以上及其它目的通过本发明的下列描述将得以明晰。
术语用法的定义:
在本文限定及所附上下文范围内,术语“空气”用于广泛的方面,也包括大气和人工气体。
在本文限定及所附上下文范围内,术语“粒子”用于广泛的方面,也包括待包衣的粒状物料和待制粒的细粉。
在本文限定及所附上下文范围内,术语“产品”用于广泛的方面,也包括制备过程中的半成品和最终成品。
附图说明
图1示出了根据本发明第一实施例的流化床装置的轴向截面侧视图,
图2示出了根据本发明第一实施例的旋风发生器的透视图,其中旋风发生器的圆柱状金属网呈现展开状,
图3示出了根据本发明第一实施例的喷枪连同装配在其上的旋风发生器的轴向截面侧视图,
图4示出了根据本发明第一实施例的套筒连同喷枪的径向截面俯视图,
图5示出了根据本发明第一实施例的流化床装置的轴向截面侧视图,其中示出了产品的对流路径,
图6示出了根据本发明第一实施例的截面示意图,其中流化床装置具有多个喷嘴和导流筒,
图7示出了图6所示的第一实施例的流化床装置的水平截面图,以及
图8示出了根据本发明第二实施例的流化床装置的轴向截面侧视图,其中示出了产品的对流路径。
具体实施方式
参照图1,流化床装置10包括具有膨胀室21的用于容纳粒子的产品容器20、位于产品容器20下部的充气基座30、以及置于产品容器20和充气基座30之间的空气分配板40。产品容器20的上端22可以开放以连接于位于其上方的过滤器外罩(未显示),其具有空气过滤器结构和空气出口。进气管道31自第一气源(未显示)通入充气基座30。
空气分配板40具有多个空气通道开孔41、42,来自下部的充气基座30的气流可以通过所述空气通道开孔41、42进入产品容器20。通常为圆筒形的导流筒50悬置于容器20的中央并在容器20中分隔出位于中央的上行流动床区23和位于周边的下行流动床区24。导流筒50具有开放的上端51、下端52,其上端51向上延伸进入在气动动力学方面位于上行流动床区23与下行流动床区24之间的膨胀区25,而其下端52悬置于空气分配板40上方并且与空气分配板40形 成环状的间隙53。空气分配板40的处于导流筒50的垂直投影区域内的开孔41的孔径大于处于导流筒的垂直投影区域外的开孔42的孔径,从而在开孔41的区域形成风量较大、风速较高的较强上升气流而在开孔42的区域形成风量较小、风速较低的较弱上升气流,由此对于粒子而言在容器20中在气动动力学方面形成由导流筒50分隔的位于中央的上行流动床区23和位于周边的下行流动床区24。喷枪60垂直地安装在导流筒50的中央同心轴上并且延伸通过空气分配板40进入容器20的上行流动床区23。喷枪60的顶部配备有喷嘴61,该喷嘴61接收通过空气供源(未显示)提供的压缩空气并且带压喷射通过液体供源(未显示)提供的溶液。
以上结构是本领域常见的流化床装置的惯常结构,如行业内所周知。
第一实施例
根据本发明的第一实施例,额外提供一种能够与上述常见流化床装置中的喷枪60结合的旋风发生器70以提供相对于喷枪60的沿圆周向外的旋风气流。特别地,旋风发生器70包括可装配在喷枪枪体62上的套筒71,该套筒71包括上端77和下端78,导向槽口79在上端77和下端78之间沿轴向延伸。并且旋风发生器70还包括固定在下端78的复合件81和盖圈82,其中自压缩空气气源延伸的空气管线73通过接头72连接到盖圈82和复合件81,复合件81的底部包括适合于被嵌入空气分配板40的中央开孔的凸出部83,因此空气分配板40被夹在复合件81和盖圈82之间,套筒71、复合件81和盖圈82一起拧紧或紧固在喷枪枪体62上并且共同装配在空气分配板40上,喷枪60的螺帽64被拧紧在喷枪枪体62上,如图2、图3和图5所示。套筒71还包括内槽91,其适于嵌入密封件,例如O形环92。相似地,复合件81也包括内槽93,其适于嵌入密封件,例如O形环94。
旋风发生器70还设有沿轴向延伸穿过复合件81和盖圈82的扩展开孔84、85,扩展开孔84适于装配接头72,其连接第二空气管 线73,并继而连接压缩空气气源(未显示)。扩展开孔85适于装配接头65,其连接液体管线63和第一空气管线66,并继而分别相对应地连接液体供源(未显示)和压缩空气供源(未显示)。液体导管67在喷枪枪体62内向上延伸以便为喷嘴61提供来自于液体管线63的液体用于释放喷雾,如图2和图3所示。
装配于喷枪枪体62上的旋风发生器70在套筒71的内壁76和喷枪枪体62的外壁68之间形成通常为圆筒形的空气室74,其具有扩展的下端75。O形环92、94分别将空气室74的上、下两端密封,如图3所示。
旋风发生器70的套筒71是中空的管状或圆筒状部件,其外周覆盖有圆筒形的金属网95以当流化床装置10运行中断时防止粒子通过导向槽口79进入。导向槽口79在管状套筒部件71的壁内以径向切线向外延伸。特别地,导向槽口79沿套筒71圆周呈旋转对称排列且在套筒71的壁内以径向渐进切线向外延伸。导向槽口79可以被导向为与水平面呈仰角,例如与水平面呈5°至80°或优选15°至60°,如图3和图4所示。当空气从空气室74经过槽口79进入上行流动床区23时,导向槽口79的这种特征使得能够实现空气的旋风运动。重要的是槽口79在套筒71的壁内以相同的切线方向向外延伸,这意味着槽口79应该提供相同的顺时针或者逆时针方向的在喷枪60附近流动的气流,因而提升了气流的旋风运动效果。
图5示出了在使用根据本发明的旋风发生器70的流化床装置10中产品的对流路径。以传统方式由第一气源经过第一空气管道31提供的带压空气分别穿过空气分配板40的开孔41和42被排出以形成上升气流,而由第二气源经过第二空气管线73及接头72的压缩空气进入空气室74,气流通过槽口79被排出以产生相对于喷枪60旋转向外的旋风气流,如图5中箭头A所示。在较强上升气流和旋风气流的共同作用下,在上行流动床区23产生旋转上升气流。高速率的旋转上升气流允许粒子流形态充分地发育并携带粒子进入旋转上升路径,同时,粒子由于与导流筒50的内壁之间的轻微摩擦而被赋 予自转运动(未显示),使得粒子在随后经过喷嘴61上方的喷雾区域时增加了更加均匀喷涂的机会,如图5中箭头B所示,旋转上升气流的风量允许喷雾形态在与旋转上升的粒子接触前得到充分地发育。当通过喷雾区域润湿的粒子进入导流筒50上方的膨胀区25时,粒子遇到的低速率气流使得粒子在下行流动床区24内向下坠落,如图5中箭头C所示。粒子在向下路径中被干燥的程度使得通过空气分配板40周边区域的较弱上升气流足以避免流化层中出现结块。由于旋转上升气流在环状的间隙53处形成的吸力,粒子随后通过该间隙53被吸入上行流动床区23。故而,粒子在上行流动床区23中的喷涂和在下行流动床区24中的干燥形成了循环。旋风发生器70提供了一种具有旋转上升气流的气动动力学方法,这一方面有益于喷雾形态和粒子流形态的充分发育,另一方面优化了产品的对流路径使得粒子获得均匀的喷涂。
第二实施例
如图8所示,本发明的第二实施例是基于本发明的第一实施例的改进方案,其中除了导流筒50之外还设有第二导流筒54以在导流筒50和第二导流筒54之间提供向下的沉降气流。通常也呈圆筒形的第二导流筒54具有比导流筒50更大的直径并且与导流筒50同轴地定位以在导流筒50和第二导流筒54之间形成圆环形的空气通道26。例如为圆筒形的导流筒50和第二导流筒54安装于容器20的中央并在容器20中共同分隔出位于中央的上行流动床区23、位于周边的下行流动床区24以及夹在导流筒50和第二导流筒54之间的沉降流动床区27。第二导流筒54具有开放的上端55和下端56,特别地,其上端55与导流筒50的上端51处于同一水平面并且共同形成环状的开口57,而其下端56在垂直高度上低于导流筒50的下端52从而在两者之间存在一个预定的高度差,并且其下端56与导流筒50的下端52共同形成另一环状的开口58,同时其下端56与空气分配板40形成第二环状的间隙59。空气分配板40的处于导流筒50和第二导流筒54之间的环状的垂直投影区域内不具有开孔。
图8示出了在使用根据本发明第二实施例的第二导流筒54结合导流筒50和旋风发生器70的流化床装置10中产品的对流路径。图8所示的本发明第二实施例与图5所示的本发明第一实施例的相似之处在于,以传统方式由第一气源经过第一空气管道31提供的带压空气分别穿过空气分配板40的开孔41和42被排出以形成上升气流,而由第二气源经过第二空气管线73及接头72的压缩空气进入空气室74,气流通过槽口79被排出以产生相对于喷枪60旋转向外的旋风气流,如图8中箭头A所示。在较强上升气流和旋风气流的共同作用下,在上行流动床区23产生旋转上升气流。高速率的旋转上升气流允许粒子流形态充分地发育并携带粒子进入旋转上升路径,同时,粒子由于与导流筒50的内壁之间的轻微摩擦而被赋予自转运动(未显示),使得粒子在随后经过喷嘴61上方的喷雾区域时增加了更加均匀喷涂的机会,如图8中箭头B所示,旋转上升气流的风量允许喷雾形态在与旋转上升的粒子接触前得到充分地发育。图8所示的本发明第二实施例与图5所示的本发明第一实施例的不同之处在于,由于额外提供的第二导流筒54的下端56在垂直高度上低于导流筒50的下端52从而在两者之间存在一个预定的高度差,使得旋转上升气流在第二导流筒54的下端56和导流筒50的下端52之间的环状的开口58形成吸力,并继而在导流筒50和第二导流筒54之间的圆环形的空气通道26的沉降流动床区27形成沉降气流。当通过喷雾区域润湿的粒子进入导流筒50和第二导流筒54之间环状的开口57上方的沉降区28时,小粒子由于动量小而随沉降气流落入环状的开口57,如图8中箭头D所示,而大粒子由于动量大而继续飞行进入导流筒50上方的膨胀区25,大粒子在此遇到的低速率较弱上升气流使得大粒子在下行流动床区24内向下坠落,如图8中箭头C所示。小粒子在位于导流筒50和第二导流筒54之间的圆环形的空气通道26的沉降流动床区27内下落并被干燥,由于小粒子比表面积较大而且处于高速流动的气流中使得其在沉降路径中被干燥的程度足以避免小粒子之间出现粘连。而大粒子在向下路径中被干 燥的程度使得通过空气分配板40周边区域的较弱上升气流足以避免流化层中出现结块。由于旋转上升气流在环状的间隙53处并继而在环状的开口58处形成的吸力,小粒子随后通过环状的开口58并继而通过环状的间隙53被吸入上行流动床区23。由于旋转上升气流在环状的间隙53处并继而在第二环状的间隙59处形成的吸力,大粒子随后通过第二环状的间隙59并继而通过环状的间隙53被吸入上行流动床区23。故而,小粒子在上行流动床区23中的喷涂和在沉降流动床区27中的干燥形成了循环,而大粒子在上行流动床区23中的喷涂和在下行流动床区24中的干燥形成了循环。由于在沉降流动床区27内不存在通过空气分配板40排出的上升气流,小粒子的循环相对于大粒子的循环周期更短,接受喷涂的机会相对较大。由此,导流筒50与第二导流筒54结合以在位于导流筒50和第二导流筒54之间的圆环形的空气通道26的沉降流动床区27内提供一种具有沉降气流的气动动力学方法,使得对经过喷涂的粒子可以根据粒子的粒径加以区分,并分别对由于不同喷涂效果形成不同粒径的粒子进行区别性地处理。
应该注意到,在图8所示的根据本发明第二实施例的产品的对流路径中,粒子进入旋转上升气流并在导流筒50的预定的垂直区间沿旋转上升方向得到持续的加速,使得通过喷雾区域润湿的全部粒子以近乎相同的切线速度飞离导流筒50的上端51,粒子的粒径决定了粒子的质量从而决定了其飞行的动量,在沉降区28的沉降气流的作用下,粒子飞行的动量决定了其飞行的径向距离和所下落的径向区间,使得沉降区28的沉降气流对不同粒径的粒子具有区分作用。而通过调节较强上升气流和旋风气流的风量和压力可以改变旋转上升气流的速度从而改变粒子飞离导流筒50的上端51的切线速度,使得可以选择性地对落入沉降流动床区27的粒子的粒径范围加以调节,从而提高了流化床装置10针对工艺需求的优化能力。
还应该注意到,本发明第二实施例在实际应用中的意义在于,一方面,由于小粒子具有较高的表面能,在包衣或制粒工艺中避免 其落入流化层可以防止其与大粒子形成粘连,而小粒子由于处于高速流动的气流之中而避免互相粘连,从而消除或减少了产品的结块。另一方面,小粒子被选择性地连续循环处理,使其缩小了与大粒子在粒径上的差距,直至全部产品形成粒径均匀的粒子,提高了产品的质量,在制粒工艺中尤其如此。再一方面,在经过喷雾区域时由于粒子间的相互遮挡效应而未经喷涂的粒子,由于其质量小而被选择性地经由沉降流动床区27循环,消除或减少了由于粒子间的相互遮挡效应而产生的粒子间喷涂不均的不良影响,提高了粒子喷涂的质量,尤其对于需要包衣的粒子,其表面可以形成更加均匀的包衣膜。又一方面,由于上述几个方面的优点,根据本发明第二实施例的流化床装置10提高了对于处理具有高表面能粒子的工艺需求的适应能力和优化能力,拓展了包衣和制粒工艺的应用范围。
显而易见,通过对本发明的第一实施例和第二实施例的描述充分展示了本发明的旋风发生器70相对于现有技术的气流转向器和空气涡流发生器的优点。一方面,本发明的旋风发生器70被同轴安装在导流筒50内,其提供的旋风气流被限定在导流筒50内,避免了对导流筒外的气流和产品的对流路径的干扰。另一方面,本发明的旋风发生器70在导流筒50的预定的垂直区间提供旋风气流,使得由较强上升气流和旋风气流共同作用产生的旋转上升气流具有稳定的气动动力学特征,有助于喷雾形态和粒子流形态的充分发育从而能够稳定地促进雾滴的雾化和粒子的加速。再一方面,本发明的旋风发生器70提供的旋风气流可以通过改变其风量和压力来加以调节,使得旋转上升气流的气动动力学特征具有精确的可控性,提高了本发明的流化床装置10对于特定工艺需求的适应能力和优化能力。又一方面,本发明的旋风发生器70可以直接地和简单地加装在传统流化床装置上从而实现改进和性能提升,可以节约大量的社会资源,提高了本发明的应用和推广价值。
经由旋风发生器70排出的气流的风量和压力可以容易地通过使用阀门和仪表(未显示)得到控制和监测。
尽管在此仅描述了本发明第一实施例的一个单循环,待处理粒子在上行流动床区23和下行流动床区24之间可多次循环直到达到期望处理的程度,随后经处理的产品从容器20被移去。相似地,尽管在此仅描述了本发明第二实施例的一个单循环,待处理粒子经过喷涂后可以根据粒子的粒径被区分,不同粒径的粒子被进行区别性地处理,小粒子在上行流动床区23和在沉降流动床区27之间可多次循环直到达到期望处理的程度,而大粒子在上行流动床区23和下行流动床区24之间可多次循环直到达到期望处理的程度,随后经处理的产品从容器20被移去。
相应地,根据本发明的流化床装置10和根据本发明的方法为出自喷嘴61的喷雾形态和处于导流筒内的粒子流形态提供了更加充分发育的可能,使得出自喷嘴61的喷液得到更加充分地雾化,粒子在经过喷雾区域时能够得到更加均匀的喷涂,消除或减少了产品的结块。根据本发明的流化床装置10和根据本发明的方法还对经过喷涂的粒子根据粒子的粒径进行区分和区别性地处理,进而提高了流化床装置10的性能和产品的质量。
鉴于根据本发明的流化床装置10的优点,该流化床装置10可以充分地用于现有的工艺,例如包衣、制粒和干燥。另外,根据本发明的方法可以充分地用于所有物料,例如细粉、粒状物料、颗粒、小珠、小球、小丸、胶囊和微型片剂。
此外,根据本发明的方法可以作为联合工艺中的一个步骤,优选地采用根据本发明的装置10。
以上描述的实施例可以具有各种变型。例如,喷枪60及根据本发明的旋风发生器70可被应用在需要采用气动动力学方法的流化床装置10之外的其它系统,此系统可能不需要将喷枪60竖直朝上安装,而是喷枪60可以与容器20的主轴呈一个夹角。喷枪60及根据本发明的旋风发生器70也可在没有导流筒50的情况下被应用。另外,选择性地,旋风发生器70可以同喷枪60整合为一体以防止粒子对于喷雾形态和粒子流形态的干扰。
根据本发明的旋风发生器70具有沿轴向延伸的多个导向槽口79,尽管本发明实施例描述了四个导向槽口79及其构建方式,显而易见,数量更多或更少的导向槽口79也可以用于实现本发明的目的。在符合本发明的旋风发生器70的气动动力学特征的前提下,每个导向槽口79也可以由在旋风发生器70的套筒71的壁内以彼此相同或相似的构建方式沿径向延伸的多个沿轴向排列的导向圆孔或空气喷嘴组合形成,气流通过导向圆孔或空气喷嘴被排出以产生相对于喷枪60旋转向外的旋风气流。
对应于每个喷枪60,根据本发明的导流筒的数量可以是一个单独应用的导流筒50或导流筒50与第二导流筒54的组合,甚至可以是更多数量导流筒的组合。在符合本发明的导流筒的气动动力学特征的前提下,本发明的导流筒的形状可以呈旋转对称的圆筒形,也可以呈近似圆筒形,例如旋转对称的文丘里形(Venturi-like)或部分文丘里形。组合应用的多个导流筒可以呈现相同或相似的形状,也可以呈现不同的形状。尽管本发明第二实施例中描述两个组合应用的导流筒的上端处于同一水平面,在符合本发明的导流筒的气动动力学特征的前提下,两个或多个组合应用的导流筒的上端也可以存在一定的高度差。另外,各个导流筒和空气分配板40之间的环状的间隙可以调节以适应整个工艺过程中产品的批量增长和产品的对流路径的变化。
本发明实施例描述了空气分配板40,上升气流也可以通过其它结构或分配方式产生而进入流化床装置10。尽管为了便于理解的原因,本发明实施例描述空气分配板的开孔41具有较大的孔径而开孔42具有较小的孔径,然而由于通过调节旋风发生器70的风量和压力可以改变旋风气流的轴向速率与切线速率,使得可以通过增加旋风气流的风量和轴向速率以部分补偿或全部代替较强上升气流的功能,从而开孔41的孔径不是必需大于开孔42的孔径。另外,选择性地,本发明的空气分配板40可以呈水平圆板形状,也可以呈圆锥形或其它向导流筒50内侧的中央区域倾斜的形状,以利于处于空气 分配板40上导流筒50外侧的流化层的粒子向导流筒50内侧的中央区域移动。
在如图6和图7所示的包括多个处理模块的第一实施例中,所述模块以相同或相似的配置和结构被放置在普通的圆形的空气分配板40上。待处理粒子在每一处理模块中以实质相同的形态进行循环,使得粒子在经过喷雾云时实质上消耗相同的时间,在此获得高质量的均匀处置,由此提高了喷雾速率并且加快了操作,也使得粒子粘连和喷嘴61堵塞的风险消除或减小,因粒子聚集成团而造成流动阻力变化的风险也被排除,并且由于粒子在导流筒50内的粒子流形态呈螺旋状上升运动的事实从而使得粒子的磨损减小。相似地,第二实施例也可以包括多个处理模块(未附图示),所述模块以相同或相似的配置和结构被放置在普通的圆形的空气分配板40上。待处理粒子在每一处理模块中区别性地以实质相同的形态进行循环,使得对经过喷涂的粒子可以根据粒子的粒径加以区分,并分别对不同粒径的粒子进行区别性地处理,从而在包衣或制粒工艺中避免因小粒子形成的粘连,并且小粒子被选择性地连续循环处理,使产品形成均匀的粒径,同时消除或减少了由于粒子间的相互遮挡效应而产生的粒子间喷涂不均的不良影响,提高了本发明的流化床装置10对于具有高表面能粒子的适应能力,拓展了包衣和制粒工艺的应用范围。
鉴于在此结合优选的实施例已经对本发明进行了演示和描述,显而易见,在符合本发明权利要求预期的广泛范围内可以进行变型、替换和附加。

Claims (30)

  1. 一种用于对粒子进行包衣或制粒的流化床装置(10)的旋风发生器(70),该流化床装置(10)包括产品容器(20)、位于下部的充气基座(30)、设置在所述产品容器(20)与所述充气基座(30)之间的空气分配板(40)、和导流筒(50),所述流化床装置(10)还包括至少一支喷枪(60),该喷枪(60)包括喷枪枪体(62)并且所述喷枪(60)的上端配备有喷嘴(61)、所述喷枪(60)的下端穿过所述空气分配板(40),所述导流筒(50)在所述产品容器(20)内与所述喷枪(60)同轴垂直地定位并且悬置于所述空气分配板(40)上方,旋风发生器(70)安装在所述喷枪枪体(62)上,其特征在于,所述旋风发生器(70)穿过所述空气分配板(40)连接压缩空气气源并且所述旋风发生器(70)具有围绕所述喷枪枪体(62)的周围延伸的管状的套筒(71),在所述套筒(71)与所述喷枪枪体(62)之间限定有空气室(74),并且所述套筒(71)具有多个导向槽口(79),来自所述压缩空气气源的空气经由所述空气室(74)通过所述导向槽口(79)被引导旋转向外以在所述导流筒(50)中提供相对于所述喷枪(60)沿圆周向外的旋风气流。
  2. 根据权利要求1所述的旋风发生器(70),其特征在于,所述导向槽口(79)在所述套筒(71)的壁内以径向切线向外延伸。
  3. 根据权利要求2所述的旋风发生器(70),其特征在于,所述导向槽口(79)在所述套筒(71)的壁内以径向渐进切线向外延伸。
  4. 根据权利要求2所述的旋风发生器(70),其特征在于,所述导向槽口(79)在所述套筒(71)的壁内以径向切线向外和向上延伸,气流通过所述导向槽口(79)被引导旋转向外和向上。
  5. 根据权利要求1至4中任一项所述的旋风发生器(70),其特征在于,所述导向槽口(79)与水平面呈5°至80°的仰角。
  6. 根据权利要求5所述的旋风发生器(70),其特征在于,所述导向槽口(79)与水平面呈15°至60°的仰角。
  7. 根据权利要求1至4中任一项所述的旋风发生器(70),其特征在于,在所述导流筒(50)的预定的垂直区间提供所述旋风气流。
  8. 根据权利要求1至4中任一项所述的旋风发生器(70),其特征在于,所述套筒(71)包括上端(77)和下端(78),所述导向槽口(79)在所述上端(77)和所述下端(78)之间沿轴向延伸。
  9. 根据权利要求8所述的旋风发生器(70),其特征在于,在所述套筒(71)的下端(78)固定有复合件(81),自所述压缩空气气源延伸的空气管线(73)连接到所述复合件(81),并且所述套筒(71)还包括盖圈(82),所述空气分配板(40)被夹在所述复合件(81)与所述盖圈(82)之间。
  10. 根据权利要求8所述的旋风发生器(70),其特征在于,设有沿轴向延伸穿过所述复合件(81)和所述盖圈(82)的扩展开孔(84),该扩展开孔(84)适于装配接头(72)以连接空气管线(73)、进而连接所述压缩空气气源。
  11. 根据权利要求8所述的旋风发生器(70),其特征在于,在所述套筒(71)的上端(77)和下端(78)之间覆盖圆筒形的金属网(95),以当流化床装置(10)运行中断时防止粒子通过所述导向槽口(79)进入。
  12. 根据权利要求1至4中任一项所述的旋风发生器(70),其特征在于,所述导流筒(50)是圆筒形的或近似圆筒形的。
  13. 一种用于对粒子进行包衣或制粒的流化床装置(10),包括:
    产品容器(20),具有用于容纳粒子的膨胀室(21);
    充气基座(30),设置在所述产品容器(20)下方并且包括自第一气源延伸的进气管道(31);
    空气分配板(40),定位安置在所述膨胀室(21)的底部,所 述空气分配板(40)具有多个空气通道开孔(41、42),来自所述充气基座(30)的气流通过所述空气通道开孔(41、42)进入所述产品容器(20);
    至少一支喷枪(60),垂直定位在所述空气分配板(40)上方,用于喷射向上的溶液喷雾进入所述膨胀室(21)以便对粒子进行包衣或制粒;
    至少一个导流筒(50),该导流筒(50)在所述产品容器(20)内与所述喷枪(60)同轴垂直地定位并且悬置于所述空气分配板(40)上方;
    其特征在于,所述空气分配板(40)的处于所述导流筒(50)的垂直投影区域内的开孔(41)的孔径大于处于所述导流筒(50)的垂直投影区域外的开孔(42)的孔径,从而在所述开孔(41)的区域形成风量较大、风速较高的较强上升气流而在所述开孔(42)的区域形成风量较小、风速较低的较弱上升气流,由此对于所述粒子而言在所述容器(20)中在气动动力学方面形成由所述导流筒(50)分隔的上行流动床区(23)和下行流动床区(24);以及
    所述喷枪(60)与根据权利要求1至12中任一项所述的旋风发生器(70)结合,并且所述旋风发生器(70)通过空气室(74)和多个导向槽口(79)提供相对于所述喷枪(60)沿圆周向外的旋风气流,在所述旋风气流和由孔径较大的所述开孔(41)提供的所述较强上升气流的共同作用下在所述导流筒(50)中产生旋转上升气流,使得所述粒子沿着在所述上行流动床区(23)旋转向上并且在所述下行流动床区(24)坠落向下的循环路径运行。
  14. 根据权利要求13所述的流化床装置(10),其特征在于,所述导流筒(50)具有开放的上端(51)和下端(52),所述导流筒(50)的上端(51)向上延伸进入在气动动力学方面在所述上行流动床区(23)与所述下行流动床区(24)之间的膨胀区(25),所述导流筒(50)的下端(52)悬置于所述空气分配板(40)上方并且与所述空气分配板(40)形成环状的间隙(53)。
  15. 根据权利要求13或14所述的流化床装置(10),其特征在于,在所述导流筒(50)的预定的垂直区间产生旋转上升气流。
  16. 根据权利要求13或14所述的流化床装置(10),其特征在于,还设有至少一个第二导流筒(54),该第二导流筒(54)具有比所述导流筒(50)更大的直径并且与所述导流筒(50)同轴地定位以在所述导流筒(50)和所述第二导流筒(54)之间形成近似圆环形的空气通道(26)。
  17. 根据权利要求16所述的流化床装置(10),其特征在于,所述空气分配板(40)的处于所述导流筒(50)和所述第二导流筒(54)之间的环状的垂直投影区域内不具有开孔。
  18. 根据权利要求16所述的流化床装置(10),其特征在于,所述第二导流筒(54)具有开放的上端(55)和下端(56)。
  19. 根据权利要求18所述的流化床装置(10),其特征在于,所述第二导流筒(54)的上端(55)与所述导流筒(50)的上端(51)处于同一水平面并且共同形成环状的开口(57)。
  20. 根据权利要求18所述的流化床装置(10),其特征在于,所述第二导流筒(54)的下端(56)与所述导流筒(50)的下端(52)共同形成另一环状的开口(58),同时,所述第二导流筒(54)的下端(56)与所述空气分配板(40)形成第二环状的间隙(59)。
  21. 根据权利要求16所述的流化床装置(10),其特征在于,在所述导流筒(50)和所述第二导流筒(54)之间形成沉降流动床区(27),粒径较小的粒子由于较小的动量沿着在所述上行流动床区(23)旋转向上并且在所述沉降流动床区(27)坠落向下的循环路径运行。
  22. 根据权利要求16所述的流化床装置(10),其特征在于,所述第二导流筒(54)是圆筒形的或近似圆筒形的。
  23. 一种用于在根据权利要求13至22中任一项所述流化床装置(10)中对粒子进行包衣或制粒的方法,该方法包括:
    在所述流化床装置(10)的产品容器(20)中对于所述粒子而 言引导所述较强上升气流在气动动力学方面形成由导流筒(50)分隔的上行流动床区(23)和下行流动床区(24),其中所述较强上升气流携带所述粒子向上通过上行流动床区(23)并在此通过用于喷射溶液喷雾进入所述膨胀室(21)的至少一支喷枪(60)对所述粒子进行包衣或制粒;以及
    引导旋风气流在气动动力学方面使所述粒子相对于所述喷枪(60)沿圆周向外产生旋转运动;
    因此在所述较强上升气流和所述旋风气流的共同作用下在所述导流筒(50)中产生旋转上升气流,由此使得所述粒子沿着在所述上行流动床区(23)旋转向上并且在所述下行流动床区(24)和/或所述沉降流动床区(27)坠落向下的循环路径运行。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括使得所述旋风气流通过所述旋风发生器(70)的围绕在所述喷枪(60)的喷枪枪体(62)周围的套筒(71)形成。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括使得旋风气流通过所述套筒(71)以旋转向外和向上方向排出。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,引导所述粒子在进入喷雾区域前产生旋转运动向外飞离所述喷枪(60)。
  27. 根据权利要求26所述方法,其特征在于,其中,通过所述喷枪(60)附近旋转向外的旋风气流引导所述粒子旋转向外飞离所述喷枪(60)。
  28. 根据权利要求23至25中任一项所述的方法,其特征在于,在所述导流筒(50)的预定的垂直区间产生旋转上升气流,以便在所述预定的垂直区间对所述粒子产生旋转及上升方向的加速。
  29. 根据权利要求23至25中任一项所述的方法,其特征在于,单独控制所述较强上升气流和所述旋风气流,以便分别改变所述旋转上升气流的轴向速率与切线速率。
  30. 根据权利要求23至25中任一项所述的方法,其特征在于,所述粒子由于与所述导流筒(50)的内壁之间的轻微摩擦而被赋予自转运动。
PCT/CN2016/073224 2016-02-02 2016-02-02 用于对粒子进行包衣或制粒的流化床装置及方法 WO2017132843A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/075,002 US10625228B2 (en) 2016-02-02 2016-02-02 Fluidized bed device and method for coating particles or granulation
PCT/CN2016/073224 WO2017132843A1 (zh) 2016-02-02 2016-02-02 用于对粒子进行包衣或制粒的流化床装置及方法
JP2018539939A JP6578447B2 (ja) 2016-02-02 2016-02-02 粒子へのコーティング又は造粒に用いられる流動層装置及び方法
CN201680001647.3A CN106536034B (zh) 2016-02-02 2016-02-02 用于对粒子进行包衣或制粒的流化床装置及方法
CA3013091A CA3013091C (en) 2016-02-02 2016-02-02 Fluidized bed apparatus and method for particle-coating or granulating
EP16888668.7A EP3412360B1 (en) 2016-02-02 2016-02-02 Swirlgenerator, fluidized bed device and method for coating particles or for granulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073224 WO2017132843A1 (zh) 2016-02-02 2016-02-02 用于对粒子进行包衣或制粒的流化床装置及方法

Publications (1)

Publication Number Publication Date
WO2017132843A1 true WO2017132843A1 (zh) 2017-08-10

Family

ID=58335761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073224 WO2017132843A1 (zh) 2016-02-02 2016-02-02 用于对粒子进行包衣或制粒的流化床装置及方法

Country Status (6)

Country Link
US (1) US10625228B2 (zh)
EP (1) EP3412360B1 (zh)
JP (1) JP6578447B2 (zh)
CN (1) CN106536034B (zh)
CA (1) CA3013091C (zh)
WO (1) WO2017132843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107638295A (zh) * 2017-11-07 2018-01-30 上海涵欧制药设备有限公司 一种流化床底喷包衣装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6903230B2 (ja) * 2017-10-16 2021-07-14 ティエンジン セナックス バイオテクノロジー シーオー., エルティーディー.Tianjin Cenax Biotechnology Co., Ltd. 流動層設備に用いられる電気噴霧装置、流動層装置及び方法
CN107511118B (zh) * 2017-10-17 2019-08-13 福建农林大学 一种旋转气流流化装置及片状材料的流化方法
CN107754627A (zh) * 2017-11-08 2018-03-06 常州大学 旋转流化床粉体混合机
WO2020118231A1 (en) * 2018-12-06 2020-06-11 Jabil Inc. Apparatus, system and method of forming polymer microspheres for use in additive manufacturing
CN112497560A (zh) * 2020-11-27 2021-03-16 江苏溯源中威新材料科技有限公司 一种多彩抗静电epp珠粒及其制备方法
CN112827428A (zh) * 2020-12-31 2021-05-25 宜春万申制药机械有限公司 一种底喷流化床导流筒装置
CN113662853B (zh) * 2021-07-30 2024-07-12 淮北冬傲信息技术有限公司 一种圆形颗粒药品制造用流化床包衣机
CN113731760B (zh) * 2021-09-09 2022-05-31 青岛豪德博尔实业有限公司 一种矿用涂塑管的可调式连续流化床
CN113926377B (zh) * 2021-10-19 2024-04-30 天津策浪生物科技有限公司 用于流化床装置的导流筒及流化床装置
KR102445447B1 (ko) * 2022-03-04 2022-09-20 대성기계공업 주식회사 양극물질 통합처리장치
CN115011409B (zh) * 2022-05-17 2024-01-30 厦门大昌生物技术服务有限公司 一种复合精油的包被方法及包被装置
CN115121403B (zh) * 2022-07-27 2023-05-16 芜湖久弘重工股份有限公司 一种铸造大型数控机床消失模涂料喷涂装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253944B1 (zh) * 1964-01-13 1966-05-31
US4394350A (en) * 1980-04-30 1983-07-19 Phillips Petroleum Company Method and apparatus for vortex flow carbon black production
US6773747B2 (en) * 2002-02-19 2004-08-10 Vector Corporation Wurster air diverting method
US20060130748A1 (en) * 2004-12-18 2006-06-22 Bender Martin P Wurster fluid bed coater with agglomeration enhancement screen
US20080000419A1 (en) * 2006-06-30 2008-01-03 Fluid Air, Inc. Wurster fluid bed coater with fluidizing gas distribution plate bypass
WO2010107401A2 (en) * 2009-03-19 2010-09-23 Brinox, D.O.O. Enhanced processing device for coating particles via a new airflow vortex generator method
CN203609667U (zh) * 2013-12-16 2014-05-28 永信药品工业(昆山)有限公司 流化床底喷装置的气流调节结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0741603T3 (da) * 1994-01-27 1999-08-23 Aeromatic Fielder Ag Apparat til coating af faste partikler
JPH1133386A (ja) * 1997-07-22 1999-02-09 Kawasaki Heavy Ind Ltd 回分造粒・コーティング方法及びその装置
US7429407B2 (en) * 1998-12-30 2008-09-30 Aeromatic Fielder Ag Process for coating small bodies, including tablets
JP4053379B2 (ja) * 2002-09-04 2008-02-27 株式会社パウレック 流動層装置
JP2004130194A (ja) * 2002-10-09 2004-04-30 Pauretsuku:Kk 流動層装置
SI22923B (sl) * 2008-12-01 2017-12-29 Brinox, D.O.O. Procesna naprava za oblaganje delcev

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253944B1 (zh) * 1964-01-13 1966-05-31
US3253944A (en) * 1964-01-13 1966-05-31 Wisconsin Alumni Res Found Particle coating process
US4394350A (en) * 1980-04-30 1983-07-19 Phillips Petroleum Company Method and apparatus for vortex flow carbon black production
US6773747B2 (en) * 2002-02-19 2004-08-10 Vector Corporation Wurster air diverting method
US20060130748A1 (en) * 2004-12-18 2006-06-22 Bender Martin P Wurster fluid bed coater with agglomeration enhancement screen
US20080000419A1 (en) * 2006-06-30 2008-01-03 Fluid Air, Inc. Wurster fluid bed coater with fluidizing gas distribution plate bypass
WO2010107401A2 (en) * 2009-03-19 2010-09-23 Brinox, D.O.O. Enhanced processing device for coating particles via a new airflow vortex generator method
CN203609667U (zh) * 2013-12-16 2014-05-28 永信药品工业(昆山)有限公司 流化床底喷装置的气流调节结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3412360A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107638295A (zh) * 2017-11-07 2018-01-30 上海涵欧制药设备有限公司 一种流化床底喷包衣装置

Also Published As

Publication number Publication date
CA3013091C (en) 2021-06-08
EP3412360A4 (en) 2019-09-04
US10625228B2 (en) 2020-04-21
CA3013091A1 (en) 2017-08-10
US20190374917A1 (en) 2019-12-12
JP6578447B2 (ja) 2019-09-18
EP3412360B1 (en) 2020-11-11
EP3412360A1 (en) 2018-12-12
CN106536034B (zh) 2019-01-18
CN106536034A (zh) 2017-03-22
JP2019504759A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017132843A1 (zh) 用于对粒子进行包衣或制粒的流化床装置及方法
US6367165B1 (en) Device for treating particulate product
CN108883385B (zh) 用于流化床设备的电喷雾装置、流化床设备及方法
EP0922187B1 (en) Cyclone dryer and method of drying
AU552676B2 (en) Improvements in or relating to the distribution of particular material
WO1998009122A9 (en) Improved cyclonic dryer
GB2187972A (en) Apparatus and process for pelletising or similar treatment of particles
CN112304031B (zh) 一种用于大颗粒物料快速干燥的旋流流化床干燥器
KR890003447B1 (ko) 공정가스 도입장치
CN108553929B (zh) 一种气流式喷雾干燥器用雾化喷嘴
US3737106A (en) 360{20 {11 spray nozzle
GB2070967A (en) Gas-liquid contactor
JP4053379B2 (ja) 流動層装置
JP5130404B2 (ja) 噴流層内での微粒子状の物質の処理のための方法及び装置
CN209508309U (zh) 一种欧冶炉竖炉炉顶喷雾装置
CN113926377B (zh) 用于流化床装置的导流筒及流化床装置
JPS5924356Y2 (ja) 気体と液状体とを接触させる装置
RU2645384C1 (ru) Установка для сушки диспергированных материалов в кипящем слое инертных тел
RU2689495C2 (ru) Установка для сушки пастообразных материалов в закрученном взвешенном слое инертных тел
CN208678401U (zh) 一种气流式喷雾干燥器用雾化喷嘴
JP2645376B2 (ja) 粒子のコーティング方法および粒子のコーティング装置
RU2637588C1 (ru) Вихревая распылительная сушилка для дисперсных материалов
RU2659413C1 (ru) Установка для сушки диспергированных материалов
RU2398163C2 (ru) Способ тепломассообмена в вихревом псевдоожиженном слое и аппарат для его осуществления
RU2645797C1 (ru) Установка для сушки диспергированных материалов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539939

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3013091

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888668

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888668

Country of ref document: EP

Effective date: 20180903