WO2017131134A1 - クラッチ誤締結対応制御装置 - Google Patents
クラッチ誤締結対応制御装置 Download PDFInfo
- Publication number
- WO2017131134A1 WO2017131134A1 PCT/JP2017/002867 JP2017002867W WO2017131134A1 WO 2017131134 A1 WO2017131134 A1 WO 2017131134A1 JP 2017002867 W JP2017002867 W JP 2017002867W WO 2017131134 A1 WO2017131134 A1 WO 2017131134A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- satisfied
- control
- condition
- rotational speed
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/101—Infinitely variable gearings
- B60W10/107—Infinitely variable gearings with endless flexible members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
- F16H61/662—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
- F16H61/662—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
- F16H61/66272—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/40—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
- F16H63/50—Signals to an engine or motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
- F16H2059/6807—Status of gear-change operation, e.g. clutch fully engaged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
- F16H59/70—Inputs being a function of gearing status dependent on the ratio established
- F16H2059/702—Rate of change of gear ratio, e.g. for triggering clutch engagement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
- F16H59/70—Inputs being a function of gearing status dependent on the ratio established
- F16H2059/704—Monitoring gear ratio in CVT's
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/1276—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/1284—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention determines the erroneous engagement (unreleasable state, erroneous complete engagement) of the clutch interposed between the electric motor and the hydraulic continuously variable transmission, and copes with the erroneous engagement.
- the present invention relates to a control device.
- a hybrid vehicle including a second clutch to be connected is known (for example, see Patent Document 1).
- the second clutch is capable of slip engagement in addition to complete engagement (engagement) and release.
- the second clutch between the motor and the hydraulic continuously variable transmission is slip-engageable and the pump is driven by the output of the motor, the amount of oil in the continuously variable transmission is reduced while the vehicle speed is decreasing.
- a shortage of balance occurs, in addition to releasing the second clutch, it is possible to secure the rotation speed of the motor and secure the oil amount of the pump by slip-engaging the second clutch.
- Measures to be taken in this case are required to ensure the running performance of the vehicle while not damaging the continuously variable transmission or reducing the damage of the continuously variable transmission.
- the present invention has been made by paying attention to such a problem, and is continuously variable transmission that is connected to an electric motor for driving a vehicle via a clutch and is operated by oil pressure of an oil pump driven by the electric motor. It is possible to reduce the load applied to the continuously variable transmission due to erroneous engagement of the clutch, and to ensure the vehicle traveling performance while reducing the damage given to the continuously variable transmission. It is an object of the present invention to provide a control device that can cope with erroneous clutch engagement.
- a clutch erroneous engagement control device of the present invention includes an electric motor that is a drive source of a vehicle, a mechanical oil pump that is drivingly connected to the electric motor, and a primary pulley.
- a continuously variable transmission including a secondary variator and an endless power transmission member wound around these pulleys, and a hydraulic variator that operates using hydraulic pressure from the oil pump; and the electric motor;
- a friction engagement type clutch interposed between the continuously variable transmission and the clutch control for controlling the clutch to any one of full engagement, slip engagement, and release according to a traveling state of the vehicle.
- vehicle control means for controlling the electric motor to rotate at a target rotational speed based on an output request to the electric motor and a state of the clutch.
- a clutch misengagement control device that performs control corresponding to misengagement in which the clutch is accidentally completely engaged, and that determines that the clutch is in an erroneous engagement state when a predetermined determination condition is satisfied.
- the secondary hydraulic pressure detecting means for detecting the secondary hydraulic pressure that is the hydraulic pressure of the secondary pulley, and the clutch erroneous engagement determination device, if it is determined that the clutch is erroneously engaged, the output torque of the drive source is And an erroneous engagement countermeasure control unit that performs torque adjustment control that is adjusted according to the secondary hydraulic pressure detected by the secondary hydraulic pressure detection unit.
- the erroneous engagement countermeasure control means performs the torque adjustment control with a torque adjustment request lower limit value that maintains a rotational speed of the drive source necessary for power transmission.
- the torque adjustment control when the secondary hydraulic pressure increases, the output torque of the drive source is maintained, and when the secondary hydraulic pressure decreases, the output torque of the drive source is set according to the secondary hydraulic pressure. It is preferable to reduce.
- the erroneous fastening response control means performs the torque adjustment control, and there is a request to increase the output torque to the drive source, the output torque when the output torque of the drive source increases. It is preferable to limit the rate of increase of.
- the clutch erroneous engagement determination device includes a range detection unit that detects a selection range of the continuously variable transmission, a vehicle speed detection unit that detects a vehicle speed of the vehicle, and a motor rotation that detects a rotation speed of the electric motor.
- Detection means rotational speed difference detection means for detecting an input / output rotational speed difference of the clutch, clutch control mode information selected by the vehicle control means, detection information from the range detection means and the vehicle speed detection means If all of the conditions including that the clutch control mode is not complete engagement, the selected range is a travel range, and the vehicle speed is equal to or higher than a predetermined value are satisfied, When the permission condition determining means determines that the permission condition is satisfied, and the permission condition determining means determines that the permission condition is satisfied, the input / output rotation speed is applied to the clutch.
- the abnormal temporary determination means for determining whether or not the abnormal temporary determination condition including the first temporary determination condition is satisfied based on the detection information of the rotational speed difference detection means, and the abnormal temporary determination means If it is determined that the provisional determination condition is satisfied, it is determined based on the detection information of the motor rotation detection means whether or not an abnormality determination condition that the rotation speed of the electric motor is lower than the lower limit rotation speed is satisfied.
- an abnormality determining means for determining that the clutch is in the erroneously engaged state when the abnormality determining condition is satisfied.
- the abnormal tentative determination condition further includes a second tentative determination condition that the rotational speed of the electric motor has deviated by a predetermined difference or more toward a lower speed side than the target rotational speed
- the abnormal temporary determination means determines whether the first temporary determination condition and the second temporary determination condition are satisfied based on detection information of the rotation speed difference detection means and the motor rotation detection means, and It is preferable to determine that the abnormal temporary determination condition is satisfied when both the first temporary determination condition and the second temporary determination condition are satisfied.
- the abnormal temporary determination unit determines that the abnormal temporary determination condition is satisfied when both the first temporary determination condition and the second temporary determination condition are satisfied for a set time or longer.
- the protection control means when it is determined that the clutch is erroneously engaged and completely engaged, performs torque adjustment control for adjusting the output torque of the electric motor.
- the load caused by repeated slips and grips on the pulley of the endless power transmission member of the continuously variable transmission can be reduced due to this, and the damage given to the continuously variable transmission by this load is suppressed. Can protect the machine.
- FIG. 1 is a schematic configuration diagram showing a vehicle powertrain and its control system, illustrating a clutch erroneous engagement determination device and a clutch erroneous engagement response control device according to an embodiment of the present invention. It is a figure regarding the hydraulic supply system of the vehicle concerning one embodiment of the present invention, (a) is a hydraulic supply system figure, and (b) is a figure showing the characteristic of an oil pump. It is a block diagram which shows the control system of the clutch incorrect engagement determination apparatus which concerns on one Embodiment of this invention, and a clutch incorrect engagement response control apparatus. It is a time chart explaining the clutch erroneous engagement determination which concerns on one Embodiment of this invention.
- FIG. 1 is a schematic configuration diagram showing a power train of an electric vehicle equipped with a continuously variable transmission for a vehicle according to the present embodiment and a control system thereof.
- this vehicle includes an engine (internal combustion engine) 1, a motor generator (electric motor with a power generation function, hereinafter also referred to as MG for short) 2, a forward / reverse switching mechanism 4 and a variator (continuously variable transmission).
- a continuously variable transmission hereinafter also referred to as CVT
- CL 1 first clutch
- CL 2 second clutch
- CL 2 second clutch
- the vehicle is configured as a hybrid vehicle.
- this hybrid vehicle is provided with the first clutch 6 between the engine 1 and the MG 2, and the driving mode includes an HEV mode in which the first clutch 6 is engaged, an EV mode in which the first clutch 6 is released, have.
- the HEV mode includes an engine single travel mode in which only the engine 1 is used as a power source, and a combined travel mode in which MG2 torque is added to the engine 1 torque.
- the second clutch 7 is provided between the MG 2 and the variator 5 in the CVT 3.
- the output shaft of the engine 1 and the input side of the rotating shaft 2A of the MG 2 are connected via a first clutch 6 having a variable torque capacity. Further, the output side of the rotary shaft 2A of the MG 2 and the input shaft of the continuously variable transmission 3 are connected via a forward / reverse switching mechanism 4 (second clutch 7). The output shaft of the CVT 3 is connected to drive wheels 9 and 9 through a differential gear 8.
- the first clutch 6 In the HEV mode, the first clutch 6 is engaged, and in the CVT 3, the power of the engine 1 input through the first clutch 6 and the power input from the MG 2 are combined and input through the clutch 7. This is shifted and output to the drive wheels 9, 9. In the EV mode, the first clutch 6 is released, and the continuously variable transmission 3 shifts the power input from the motor generator 2 via the clutch 7 and outputs it to the drive wheels 9 and 9.
- a rotating shaft of a mechanical oil pump (hereinafter also referred to as an oil pump or a mechanical OP) 50 is connected to the rotating shaft 2A of the MG2.
- the oil pump 50 rotates according to the rotation of the MG 2 and can discharge oil with an oil amount and hydraulic pressure corresponding to the rotation speed.
- the hydraulic pressure is adjusted to a predetermined pressure by a regulator valve.
- the hydraulic oil (hydraulic pressure) from the oil pump 50 is supplied to the first and second clutches 6 and 7 and the primary pulley 51 and the secondary pulley 52 of the variator 5 described later, as shown in the hydraulic pressure supply system diagram of FIG. Supplied to each oil chamber.
- FIG. 2B is a graph showing pump characteristics in which the rotational speed (horizontal axis) and hydraulic pressure (vertical axis) of a mechanical oil pump (mechanism OP) 50 driven by MG 2 are correlated.
- the mechanical oil pump has a characteristic that when the rotational speed decreases, the hydraulic pressure discharged in accordance with the decrease in the rotational speed also decreases. Therefore, when the rotational speed of MG2 decreases, the rotational speed of oil pump 50 decreases, and the hydraulic pressure decreases accordingly. As the oil pressure decreases, the oil balance becomes more severe, and belt slip occurs due to insufficient oil pressure.
- this vehicle has an integrated control device (HCM, Hybrid Control Module) 10 as a vehicle control means for controlling the entire power train as a control system, and an automatic control for controlling the CVT 5 under the control of the HCM 10.
- HCM Hybrid Control Module
- a transmission control device (ATCU, Automatic transmission Control Unit) 30 is provided.
- Each of the HCM 10 and the ATCU 30 includes a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), an input / output interface (I / O interface), and the like.
- the HCM 10 has a function of performing various controls of the vehicle.
- the HCM 10 has a function of controlling the engine 1 (engine control unit) 11 and a function of controlling the motor generator 2 (motor control unit) 12.
- the engine 1 and the motor generator 2 are integrated and controlled.
- the HCM 10 outputs to the ATCU 30 command information related to the shift such as the target gear ratio RATIO_t of the CVT 3 and the target primary rotation speed Npri_t.
- the HCM 10 detects the shift position of a shift lever (not shown) and outputs an shifter signal (IHSW) 91 according to the shift position, and an accelerator position sensor that detects an accelerator pedal operation amount (accelerator opening) APO.
- APS a primary pulley rotation sensor 93 that detects an actual rotation speed (actual primary rotation speed) Npri_r of a primary pulley 51 of a variator 5 described later, and an actual rotation speed (actual secondary rotation speed) of a secondary pulley 52 of a variator 5 described later.
- Secondary pulley rotation sensor 94 that detects Nsec_r, throttle opening sensor 95 that detects the throttle valve opening (throttle opening) TVO, and brake switch 96 that detects whether or not a brake pedal (not shown) is operated (ON / OFF).
- Secondary pulley 52 Secondary hydraulic pressure sensor 97 for detecting an actual hydraulic pressure (secondary hydraulic pressure) Psec_r of the oil chamber, an oil temperature sensor 98 for detecting the temperature of the hydraulic oil is connected, the detection information is input from these sensors. Further, the detection information is also input to the ATCU 30 as appropriate.
- the target primary rotational speed Npri_t is set based on information such as the accelerator opening APO, the vehicle speed Vsp, and the brake signal, for example.
- the vehicle speed Vsp can be calculated from the secondary pulley rotation speed Nsec.
- the target primary rotational speed Npri_t is set to increase or decrease according to the vehicle speed Vsp.
- the first clutch 6 is for connecting the engine 1 to the motor generator 2 or disconnecting it from the motor generator 2, and for example, a wet multi-plate friction clutch is applied. Engagement and release of the first clutch 6 are controlled by a first clutch hydraulic pressure generated by a hydraulic unit (not shown). Further, the hydraulic unit is controlled by the ATCU 30 based on a control command corresponding to the travel mode from the HCM 10.
- the HCM 10 determines whether or not the vehicle driving force of the engine 1 is necessary based on the vehicle speed Vsp, the acceleration / deceleration, the driver's accelerator pedal operation, the charging state of the vehicle driving battery 20, and the like, and selects the traveling mode. Then, the state of the first clutch 6 and the engine 1 is set. If the vehicle driving force of the engine 1 is required, the first clutch 6 is engaged to enter the HEV mode. If the vehicle driving force of the engine 1 is not required, the engine 1 is stopped and the first clutch 6 is released to release the EV. Mode.
- a forward clutch 7a and a reverse brake 7b provided in the forward / reverse switching mechanism 4 by the planetary gear 4A are applied. That is, the forward clutch 7a is the second clutch 7 during forward travel, and the reverse brake 7b is the second clutch 7 during reverse travel.
- These forward clutch 7a and reverse brake 7b are wet multi-plate friction clutches that can be completely engaged, slip-engaged (slip state), and released.
- the forward clutch 7a and the reverse brake 7b are also controlled by a second clutch hydraulic pressure generated by a hydraulic unit (not shown). In this case, selection of the clutch control mode such as complete engagement, slip engagement, and release of the second clutch 7 is performed by a clutch control unit (clutch control means) (not shown) of the HCM 10 according to the travel mode and the like.
- a third driving mode [hereinafter referred to as WSC (Wet Start), in which the second clutch 7 is slip-engaged, particularly in the case of starting or accelerating at a high load such as sudden start or reacceleration from a low vehicle speed.
- WSC Weight Start
- the HCM 10 controls the motor rotation speed of the MG2 and controls the slip engagement of the second clutch 7 with a transmission torque capacity corresponding to the required driving force.
- the HCM 10 sets the target primary rotational speed Npri_t and performs the slip engagement between the MG2 and the second clutch 7 so that the actual primary pulley rotational speed Npri_r becomes the target primary rotational speed Npri_t, as in the normal shift control described above.
- the overall state is controlled as follows. First, the target differential rotation ⁇ N CL2 — t of the second clutch 7 is set from the accelerator opening APO, the vehicle speed Vsp, and the shift range information, and the target rotation Nm_t of MG2 is determined from the target primary rotational speed Npri_t and the target differential rotation ⁇ N CL2 — t. Then, the number of revolutions of MG2 is controlled.
- the actual differential rotation ⁇ N CL2 _r of the second clutch 7 is obtained from the actual primary pulley rotation speed Npri_r and the actual rotation speed Nm_r of MG2, and the second differential rotation ⁇ N CL2 _r becomes the target differential rotation ⁇ N CL2 _t.
- the hydraulic pressure supplied to the clutch 7 is controlled.
- the HCM 10 is controlled according to the target primary rotational speed Npri_t in the travel modes other than the WSC mode, and in particular, the torque sharing of each drive source in the combined travel mode in which the engine 1 and the MG2 are used together is the accelerator opening APO.
- control is performed according to the charging state of the battery 20, the oil temperature, the operating state of the brake, and the like.
- the CVT 3 includes the forward / reverse switching mechanism 4 and the variator 5.
- the variator 5 includes an endless power such as a primary pulley 51, a secondary pulley 52, and a belt or a chain wound around the pulleys 51 and 52. And a transmission member (hereinafter referred to as a belt) 53.
- the ATCU 30 includes a shift control unit 30A and an abnormality monitoring unit 30B as functional elements.
- the shift control unit 30A includes the hydraulic pressure of the first clutch 6, the hydraulic pressure of the forward clutch 7a and the reverse brake 7b of the forward / reverse switching mechanism 4, the hydraulic pressure (primary pulley pressure) of the primary pulley 51 of the variator 5, and the secondary pulley 52.
- Each hydraulic pressure (secondary pulley pressure) is set, and each set hydraulic pressure is generated and supplied by controlling the solenoid of the solenoid valve of the hydraulic unit (primary solenoid for the primary pulley pressure and secondary solenoid for the secondary pulley pressure).
- the shift control unit 30A includes a clutch control unit (clutch control means) that controls the second clutch 7 (forward clutch 7a, reverse brake 7b).
- the clutch control unit of the shift control unit 30A is controlled by the clutch control unit of the HCM 10.
- the engagement state of the second clutch 7 is controlled accordingly.
- slip engagement is used to smoothly move between the fully engaged state and the fully released state while sliding a plurality of friction plates.
- HCM10 is a motor speed control MG2, control slipping engagement so shift control unit 30A according to a command HCM10 is the second clutch 7 above the target differential speed .DELTA.N CL2 _t .
- the speed change control unit 30A sets the target speed change ratio RATIO_t of the variator 5 so that the belt 53 does not slip and achieves the target speed change ratio. Controls pulley pressure and secondary pulley pressure.
- the target gear ratio RATIO_t at this time is set so that the target primary rotational speed Npri_t from the HCM 10 can be achieved.
- the abnormality monitoring unit 30B some abnormality occurs in the second clutch 7 itself or in the control of the second clutch 7, and the second clutch 7 that should originally be slip-engaged is accidentally completely engaged (erroneously engaged).
- the rotational speed difference between the input and output of the second clutch 7, the low speed side of the actual rotational speed Nm_r (actual rotational speed) of MG2 with respect to the target rotational speed Nm_t (target rotational speed of MG2) The detachment state and the decrease state of the actual rotational speed Nm_r of MG2 are monitored respectively to determine an erroneous fastening abnormality.
- the abnormality monitoring unit 30B determines whether a preset permission condition is satisfied, and performs an abnormality determination when the permission condition is satisfied. Further, in the abnormality determination, it is determined whether or not the temporary abnormality determination condition is satisfied. If the abnormal temporary determination condition is satisfied, it is determined whether or not the abnormality confirmation condition is satisfied. . Moreover, if the abnormality monitoring part 30B determines an erroneous fastening abnormality, it will perform control corresponding to this. For this reason, as shown in FIGS. 1 and 3, the abnormality monitoring unit 30B includes, as functional elements, a permission condition determination unit (permission condition determination unit) 31, an abnormal provisional determination unit (abnormal provisional determination unit) 32, and an abnormality confirmation. A part (abnormality determination means) 33 and an erroneous fastening correspondence control part (erroneous fastening correspondence control means) 34 are provided.
- This permission condition corresponds to a precondition that the situation where the second clutch 7 is erroneously engaged and the oil amount balance becomes severe occurs.
- the permission conditions include the following conditions (a) to (e): It has been. If these conditions (a) to (e) are all satisfied, the permission condition is satisfied. (A) The travel range is selected. (B) The clutch control mode of the second clutch 7 is switched from full engagement to slip engagement or disengagement. The control mode is not complete engagement (d) The vehicle speed is less than the predetermined vehicle speed (e) The oil temperature of the hydraulic oil is higher than the predetermined temperature.
- the IHSW 91 abnormality, the MG2 rotation abnormality, the primary pulley rotation sensor 93 Even when there is one device abnormality related to the erroneous engagement abnormality determination, such as an abnormality in the secondary pulley rotation sensor 94, an abnormality in the oil temperature sensor 98, an electric abnormality in the solenoid for hydraulic control of the second clutch 7, an abnormality in data communication, or the like. If it occurs, the erroneous fastening abnormality determination process is prohibited.
- the condition (a) can be determined based on the shift range signal output from the IHSW 91. If the shift range signal is other than the P and N ranges (for example, the D range and the R range), the condition is satisfied. Conditions (b) and (c) can be obtained from the instruction information of the HCM 10.
- the condition (b) “a certain time has elapsed” means that the second clutch 7 actually shifts to slip engagement or release after the clutch control mode is switched from full engagement to slip engagement or release. However, there is a response delay and this is taken into consideration. Conditions (b) and (c) mean that the second clutch 7 is in the slip engagement or release state if there is no abnormality.
- Condition (d) means that the vehicle is in a low vehicle speed traveling state in which the WSC mode is implemented.
- Condition (e) excludes a situation where the oil temperature of the hydraulic oil is low immediately after the vehicle is started.
- the temporary abnormality determination unit 32 determines whether the temporary abnormality determination condition is satisfied when the permission condition is satisfied.
- the abnormal provisional judgment condition includes the following first provisional judgment condition [condition (1)] and second provisional judgment condition [condition (2)], and a state where both of these two provisional judgment conditions are satisfied. If it continues for the set time or longer, the temporary abnormality determination condition is satisfied.
- the set time is a minute time for eliminating the influence of the reading accuracy of the sensor.
- the abnormality determination unit 33 determines whether or not the abnormality determination condition is satisfied under a situation where the abnormality temporary determination condition is satisfied.
- the following conditions (3) and (4) are provided as the abnormality confirmation condition.
- (3) The actual rotational speed Nm_r of MG2 is lower than a preset lower limit rotational speed (EV idle rotational speed).
- HCM 10 switches the clutch control mode (CL2 mode) of second clutch 7 from complete engagement to slip engagement (WSC) to avoid a decrease in rotation of MG2.
- WSC slip engagement
- FIG. 4 the state of the CL2 mode instruction is indicated by a solid line, and the actual CL2 state (normal state) according to the CL2 mode instruction is indicated by a chain line.
- the HCM 10 controls the rotation of the MG 2 together with this.
- the MG2 is rotationally controlled by giving a motor target rotational speed Nm_t corresponding to the target idle rotational speed.
- the target idle speed (HEV idle speed) is set to a value equal to or higher than the EV idle speed (lower limit speed) that is the minimum speed during EV traveling.
- the rotational speed of MG2 follows the rotational speed of the primary pulley 51 as shown by the solid line, and differential rotation (input / output rotational speed difference) occurs in the second clutch 7. do not do. Therefore, the condition (1) is established. Further, the actual motor rotational speed Nm_r deviates from the motor target rotational speed Nm_t to the low speed side. As the vehicle speed decreases, this discrepancy gradually increases and the condition (2) is satisfied. Then, the actual rotational speed Nm_r of MG2 becomes lower than the lower limit rotational speed (EV idle rotational speed) due to the decrease in the vehicle speed, and the condition (3) is satisfied at time t3. Further, since the condition (1) is satisfied, the condition (4) is also satisfied.
- FIG. 5 is a graph showing a determination region of the erroneous clutch engagement determination. If there is an erroneous engagement of the second clutch 7, the rotation of the MG2 follows the rotation of the primary pulley 51 and decreases as the vehicle speed Vsp decreases. In a situation where the rotational speed of MG2 is in the abnormal temporary determination region, the abnormal temporary determination conditions of conditions (1) and (2) are determined, and the actual rotational speed Nm_r of MG2 is lower than the lower limit rotational speed (EV idle rotational speed). At this point, the erroneous engagement of the second clutch 7 can be determined immediately.
- the secondary hydraulic pressure detected by the secondary hydraulic sensor 97 is the output torque of the drive source (corresponding to the input torque to the CVT 3).
- Torque adjustment control that is adjusted according to Psec_r (here, torque down control for reducing torque) is performed.
- the drive sources are the engine 1 and MG2, and for example, the engine 1 and MG2 are the drive sources in the HEV mode, and the MG2 is the drive source in the EV mode, depending on the travel mode.
- MG2 is assumed to be the drive source.
- the torque reduction control is performed when the abnormality determination unit 33 determines that the abnormality has been determined.
- the torque reduction control itself has a permission condition.
- the following conditions (a ′) and (b ′) are provided as permission conditions for the torque down control. If these conditions (a ′) and (b ′) are both satisfied, the permission condition is satisfied.
- Travel range is selected
- Motor target rotation speed Nm_t> predetermined value here, EV idle rotation speed
- the predetermined time is a response of MG2 time
- IHSW 91 abnormality, MG2 rotation abnormality, primary pulley rotation sensor 93 abnormality, secondary pulley rotation sensor 94 abnormality, throttle opening sensor 95 abnormality, secondary hydraulic sensor 97 abnormality, second clutch 7 oil pressure control Torque-down control is prohibited if any one of the device abnormalities related to the erroneous fastening abnormality determination, such as the electrical abnormality of the solenoid or the data communication abnormality occurs.
- torque-down control is started.
- the state of motor rotation speed Nm_r ⁇ predetermined value here, EV idle rotation speed
- the torque-down condition (1 ′) is not satisfied, the permission condition (a ′) is not satisfied, or there is a request for increasing the output torque to the MG2.
- the torque-down control is canceled.
- the motor target rotation speed Nm_t is set and the rotation speed of the MG2 is controlled as described above.
- the MG2 is appropriately rotated. It cannot be controlled. Therefore, torque down control is performed to reduce the output torque of MG2 in accordance with the secondary hydraulic pressure Psec_r.
- FIG. 6 is a time chart illustrating torque down control. As indicated by a solid line (torque down according to the SEC pressure) in FIG. 6, when an erroneous engagement abnormality of the second clutch 7 is determined at time t3, torque reduction is performed in accordance with the secondary hydraulic pressure Psec_r. In other words, if the secondary oil pressure Psec_r decreases, belt slip is likely to occur. Therefore, the output torque of the drive source MG2 is decreased corresponding to the secondary oil pressure Psec_r, and the belt slip is suppressed by suppressing the input torque to the CVT3. (Time t3 to time t4).
- a lower limit value (torque down request lower limit value as a torque down adjustment lower limit value) is provided for torque reduction so as to maintain the rotational speed of the drive source (MG2) necessary for power transmission.
- the secondary hydraulic pressure Psec_r is reduced, the output torque is reduced to the lower limit.
- the output torque may be held and controlled on the protection side (side where belt slip is avoided).
- the secondary oil pressure Psec_r falls below the protection level, the output torque is lowered in correspondence with the secondary oil pressure Psec_r. In this way, even when the slip state of the belt 53 is fluctuating between the slip side and the grip side, the fluctuation range is suppressed, the vertical movement of the secondary hydraulic pressure Psec_r is also suppressed, and the calculation of the torque down request is properly performed. can do.
- the torque down control for example, when there is a request to increase the output torque from the MG2 such as when the accelerator is turned off, the torque down control is canceled and the output torque of the MG2 is restored (that is, increased).
- the increase in the output torque of the MG 2 is carried out by limiting the increase speed to a preset increase speed (lamp A).
- FIG. 7 shows the secondary hydraulic pressure Psec and the motor rotation when the accelerator is turned on at time t6 and the output torque of MG2 is returned (increased) according to the accelerator opening at the time of torque down control with the accelerator off. It is a time chart which shows the example of a fluctuation
- the return (increase) of the output torque of MG2 is performed while limiting to a preset increase speed. Further, the increase speed to be limited may be changed depending on whether or not the accelerator is turned on at the time of releasing the torque-down control due to the failure of the conditions (1 ′) and (a ′). For example, if the accelerator is on, the output torque of MG2 is increased by limiting to lamp B, and if the accelerator is not on, the output torque of MG2 is limited by limiting to lamp C (slower than lamp B). increase.
- the clutch erroneous engagement determination device and the clutch erroneous engagement response control device are configured as described above.
- Judgment and erroneous fastening response control can be performed.
- the flowcharts of FIGS. 9 and 10 are executed in a predetermined control cycle until the abnormality is determined or the key switch is turned off when the key switch of the vehicle is turned on.
- the determination of the erroneous engagement of the clutch is performed first by determining the permission conditions of the conditions (a) to (e) (step S10).
- the determination of the permission condition is performed after confirming that the situation does not correspond to the prohibition condition. Then, it is determined whether or not the permission condition is satisfied (step S20). If the permission condition is not satisfied, the process returns. If the permission condition is satisfied, the provisional abnormality abnormality determination of the conditions (1) and (2) is made.
- a condition determination process is performed (step S30). The process for determining the abnormal provisional determination condition will be described later.
- step S40 it is determined whether or not the abnormal temporary determination condition is satisfied. If the abnormal temporary determination condition is not satisfied, the process returns. If the abnormal temporary determination condition is satisfied, the abnormality determination condition of the condition (4) is The determination process of the condition for determining the abnormality (3) is established (step S50). In this abnormality determination condition determination process, it is determined whether or not the actual motor rotation speed Nm_r is lower than the EV idle rotation speed that is the lower limit rotation speed. Then, it is determined whether or not the actual motor rotation speed Nm_r is lower than the EV idle rotation speed (abnormality determination condition is satisfied) (step S60). If the abnormality determination condition is not satisfied, the routine returns and the abnormality determination condition is satisfied. Then, the abnormality is determined (step S70), an abnormality signal is output to the HCM 10 (step S80), and the torque reduction control is supported by the HCM 10 as an abnormality response control, and limp home is performed (step S90).
- TM in FIG. 9B is a timer value, and the timer value TM counts the time when both the conditions (1) and (2) are satisfied.
- step S31 it is determined whether or not there is a differential rotation (input / output rotational speed difference) between the input and output of the second clutch 7 in the condition (1) (step S31). If there is a differential rotation between the input and output of the second clutch 7, the timer value TM is reset to 0 (step S37) and the process returns. If there is no differential rotation between the input and output of the second clutch 7, the condition (2) It is determined whether or not the actual rotational speed Nm_r of MG2 deviates more than a predetermined difference toward the low speed side from the target rotational speed Nm_t (step S32).
- the timer value TM is reset to 0 (step S37) and the process returns, and the actual rotational speed Nm_r of MG2 If it deviates more than a predetermined difference to the low speed side from Nm_t, the timer value TM is counted up (step S33).
- step S34 it is determined whether or not the timer value TM has reached the predetermined value TM1 (predetermined count period) (step S34). If the timer value TM does not reach the predetermined value TM1, the process returns, and the timer value TM becomes the predetermined value TM1. If the condition is reached, it is determined that the conditions (1) and (2) are continuously established for a predetermined count period, and it is temporarily determined that there is a fastening abnormality, that is, there is a fastening abnormality (step S35).
- the erroneous fastening response control can be performed as shown in FIG.
- F is a control flag, and the flag F is set to 1 during torque-down control, and is set to 0 otherwise.
- permission condition determination processing for conditions (a ′) and (b ′) is performed (step T10). The determination of the permission condition is performed after confirming that the situation does not correspond to the prohibition condition.
- step T20 it is determined whether or not the permission condition is satisfied. If the permission condition is not satisfied, it is determined whether or not the flag F is 1, that is, whether or not the torque-down control is currently being performed (step S20). T150). If the flag F is not 1, the process returns. If the flag F is 1, the torque reduction control currently being executed is immediately released (step T160). This immediate release is to increase the output torque of MG2 without limiting the increase speed. Further, the flag F is set to 0 (step T170), and the process returns.
- condition (1 ′) that is, the state where the motor rotation speed Nm_r of MG2 is less than a predetermined value (EV idle rotation speed) continues for a predetermined count period.
- step T40 it is determined whether or not the torque is reduced (step T40). If it is determined that the torque is reduced, the flag F is set to 1 (step T50) and it is determined whether or not the accelerator is off (step T60). ). If the accelerator is off, it is determined whether or not the torque down request value is less than the lower limit value (step T70). If the torque down request value is less than the lower limit value, the torque is reduced at the lower limit value (step T80). If is not less than the lower limit value, torque reduction is performed with the torque reduction request value (step T90).
- step T60 if it is determined in step T60 that the accelerator is on, the torque-down control is canceled, and the increase in the output torque of MG2 is performed by limiting the increase speed to a preset increase speed (ramp A) (step T100). .
- step T40 it is determined whether or not the flag F is 1, that is, whether torque reduction control is currently being performed (step T110). If the current torque-down control is not in progress, the process returns. If the flag F is 1, that is, if the current torque-down control is in progress, the flag F is set to 0 (step T112), and it is determined whether the accelerator is on (step T120).
- step T130 If it is determined that the accelerator is on, the torque-down control is canceled, and the increase in the output torque of MG2 is performed by limiting the increase speed to a preset increase speed (ramp B) (step T130). If it is determined that the accelerator is off, the torque-down control is canceled, and the increase in the output torque of MG2 is performed by limiting the increase speed to a preset increase speed (ramp C that is gentler than ramp B) (step T140). ).
- the abnormality is temporarily determined from the temporary abnormality determination conditions (1) and (2) that can be determined immediately after the erroneous engagement abnormality occurs, and thus the temporary abnormality determination is performed. If there is a time lag from the occurrence of erroneous engagement abnormality until the determination can be started, an abnormality that needs to be dealt with under the condition that the abnormality confirmation condition (4) similar to the temporary abnormality determination condition (1) is satisfied.
- the erroneous fastening abnormality is determined from the abnormality determination condition (3) that can be reliably determined.
- the time (set time) for determining the abnormality according to the abnormality determination condition (3) can be set only to ensure the reliability of the detected value, so that the time from the occurrence of the abnormality to the determination of the abnormality can be shortened. it can.
- the abnormal temporary determination condition is satisfied when both of the abnormal temporary determination condition conditions (1) and (2) are satisfied, and the abnormal temporary determination is performed more reliably. If the condition (1) is satisfied, it can be set that the abnormality temporary determination condition is satisfied.
- the clutch misengagement control by the clutch misengagement control device is linked with the determination of the clutch misengagement determination device of the present embodiment.
- the clutch misengagement determination method of the clutch itself is not limited to the clutch misengagement determination device of the present embodiment, and other methods may be used to determine clutch misengagement and perform clutch misengagement control. Good.
- the above-mentioned conditions are applied as permission conditions, prohibition conditions, torque-down conditions, and conditions for releasing the torque-down control for the clutch erroneous engagement control.
- the hybrid vehicle is exemplified as the vehicle.
- the present invention may be a vehicle using an electric motor as a drive source, and may be applied to an electric vehicle using only the electric motor as a drive source.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Control Of Transmission Device (AREA)
- Hybrid Electric Vehicles (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
(2)前記誤締結対応制御手段は、前記トルク調整制御を、動力伝達に必要な前記駆動源の回転速度を維持するトルク調整要求下限値で制限して実施することが好ましい。
(3)前記トルク調整制御では、前記セカンダリ油圧が上昇した場合には前記駆動源の出力トルクを保持し、前記セカンダリ油圧が低下した場合には前記駆動源の出力トルクを前記セカンダリ油圧に応じて低下させることが好ましい。
(4)前記誤締結対応制御手段は、前記トルク調整制御を実施している際に、前記駆動源に対して出力トルクの増加要求があったら、前記駆動源の出力トルクの増加時に前記出力トルクの増加速度を制限することが好ましい。
(5)前記誤締結対応制御手段は、前記トルク調整制御を終了する際には、前記駆動源の出力トルクを所定の増加速度で徐々に増加復帰させることが好ましい。
(6)前記クラッチ誤締結判定装置は、前記無段変速機の選択レンジを検出するレンジ検出手段と、前記車両の車速を検出する車速検出手段と、前記電動モータの回転速度を検出するモータ回転検出手段と、前記クラッチの入出力回転速度差を検出する回転速度差検出手段と、前記車両制御手段により選択された前記クラッチ制御モード情報と、前記レンジ検出手段,前記車速検出手段からの検出情報とに基づいて、前記クラッチ制御モードが完全係合でないこと、前記選択レンジが走行レンジであること、及び、前記車速が所定値以上であること、を含む各条件の全てが成立したら、許可条件が成立したと判定する許可条件判定手段と、前記許可条件判定手段により前記許可条件が成立したと判定されたら、前記クラッチに入出力回転速度差がないことである第1仮判定条件を含む異常仮判定条件が成立したか否かを前記回転速度差検出手段の検出情報に基づいて判定する異常仮判定手段と、前記異常仮判定手段により異常仮判定条件が成立したと判定されたら、前記電動モータの回転速度が前記下限回転速度よりも低いことである異常確定条件が成立したか否かを前記モータ回転検出手段の検出情報に基づいて判定し、異常確定条件が成立したら前記クラッチが誤締結状態であると確定する異常確定手段とを有することが好ましい。
(7)前記異常仮判定条件は、前記電動モータの回転速度が前記目標回転速度よりも低速側に所定差以上乖離したことである第2仮判定条件をさらに含み、
前記異常仮判定手段は、前記第1仮判定条件及び前記第2仮判定条件が成立したか否かを前記回転速度差検出手段及び前記モータ回転検出手段の検出情報に基づいて判定し、前記第1仮判定条件及び前記第2仮判定条件が共に成立したら前記異常仮判定条件が成立したと判定することが好ましい。
(8)前記異常仮判定手段は、前記第1仮判定条件及び前記第2仮判定条件が共に成立した状態が設定時間以上継続したら前記異常仮判定条件が成立したと判定することが好ましい。
また、以下の説明では、回転速度について、回転数と表記するが、これらはいずれも単位時間当たりの回転数であるので、回転速度と同等である。
また、以下の説明では、検出値と目標値とを明確に区別する際には、各値を示す文字に、検出値なら「_r」を、目標値なら「_t」を添付する。
図1は本実施形態にかかる車両用無段変速機が装備された電動車両のパワートレイン及びその制御系統を示す模式的構成図である。図1に示すように、本車両は、エンジン(内燃機関)1と、モータジェネレータ(発電機能付き電動モータ、以下、略してMGともいう)2と、前後進切替機構4とバリエータ(無段変速機構)5とを有する自動変速機としての無段変速機(以下、CVTともいう)3と、第1クラッチ(以下、略してCL1ともいう)6と、第2クラッチ(以下、略してCL2ともいう)7と、ディファレンシャルギア8と、駆動輪9,9と、を備えた、ハイブリッド車両として構成されている。
また、第2クラッチ7は、MG2とCVT3内のバリエータ5との間に設けられている。
次に、このようなパワートレインの制御系を説明する。
図1に示すように、本車両には、制御系統として、パワートレイン全体を制御する車両制御手段としての統合制御装置(HCM,Hybrid Control Module)10と、HCM10の制御下でCVT5を制御する自動変速機制御装置(ATCU,Automatic transmissionControl Unit)30とが備えられている。なお、HCM10,ATCU30は、いずれも中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)等を備えたマイクロコンピュータで構成される。
CVT3は、上記の前後進切替機構4とバリエータ5とを備え、バリエータ5は、プライマリプーリ51と、セカンダリプーリ52と、これらのプーリ51,52に掛け回されたベルト又はチェーンといった無端状の動力伝達部材(以下、ベルトと称する)53とを備えている。
変速制御部30Aは、前記第1クラッチ6の油圧と、前後進切替機構4の前進クラッチ7a,後退ブレーキ7bの油圧と、バリエータ5のプライマリプーリ51の油圧(プライマリプーリ圧)及びセカンダリプーリ52の油圧(セカンダリプーリ圧)とを、それぞれ設定し、油圧ユニットの電磁弁のソレノイド(プライマリプーリ圧に関してはプライマリソレノイド、セカンダリプーリ圧に関してはセカンダリソレノイド)の制御により、設定した各油圧を生成し供給する。
また、異常監視部30Bは、誤締結異常を判定したら、これに対応する制御を行なう。
このため、異常監視部30Bには、図1,図3に示すように、機能要素として、許可条件判定部(許可条件判定手段)31、異常仮判定部(異常仮判定手段)32、異常確定部(異常確定手段)33、誤締結対応制御部(誤締結対応制御手段)34がそれぞれ設けられている。
ここで、許可条件判定部31が判定を行なう許可条件を説明する。
この許可条件は、第2クラッチ7が誤締結をしていて油量収支が厳しくなる状況が発生する前提条件に相当し、許可条件には以下の(a)~(e)の各条件が設けられている。これらの(a)~(e)の各条件が何れも成立したら許可条件が成立する。
(a)走行レンジが選択されていること
(b)第2クラッチ7のクラッチ制御モードが完全係合からスリップ係合又は解放に切り替えられて一定時間が経過していること
(c)現在もクラッチ制御モードが完全係合でないこと
(d)車速が所定車速未満であること
(e)作動油の油温が所定温度よりも高いこと
ただし、IHSW91の異常、MG2の回転異常、プライマリプーリ回転センサ93の異常、セカンダリプーリ回転センサ94の異常、油温センサ98の異常、第2クラッチ7の油圧制御用のソレノイドの電気異常、データ通信異常等、誤締結異常判定に係る機器の異常が1つでも発生したら誤締結異常判定処理を禁止する。
条件(b),(c)はHCM10の指示情報から得ることができる。条件(b)の「一定時間が経過していること」は、クラッチ制御モードが完全係合からスリップ係合又は解放に切り替えられてから第2クラッチ7が実際にスリップ係合又は解放に移行するのに応答遅れがありこれを考慮したものである。条件(b),(c)は異常がなければ第2クラッチ7がスリップ係合又は解放の状態にあることを意味する。
条件(d)は、車両がWSCモードを実施する低車速走行状態であることを意味する。
条件(e)は車両の始動直後等に作動油の油温が低い状況を除外するものである。
(1)第2クラッチ7の入力側(モータ回転数Nm_r)と出力側(プライマリプーリ回転数Npri_r)とに差回転(入出力回転速度差)がないこと
(2)MG2の実回転数Nm_rが目標回転数Nm_tよりも低速側に所定差以上乖離していること
この異常確定条件には以下の条件(3),(4)が設けられている。
(3)MG2の実回転数Nm_rが予め設定された下限回転数(EVアイドル回転数)よりも低いこと
(4)第2クラッチ7の入力側(モータ回転数Nm_r)と出力側(プライマリプーリ回転数Npri_r)とに差回転(入出力回転速度差)がないこと
図4に例示するように、HEV走行モードで、第2クラッチ7を完全係合(締結)した状態で、アクセルオフで走行していて、車速が低下し始めて(時点t1)、これに伴ってMG2の回転数が低下していくと、時点t2でHCM10は第2クラッチ7のクラッチ制御モード(CL2モード)を、完全係合からスリップ係合(WSC)に切り替えてMG2の回転低下を回避する制御を行なう。なお、図4では、CL2モード指示の状態を実線で示し、CL2モード指示に従った実際のCL2の状態(正常時)を鎖線で示している。
なお、本実施形態では、異常確定部33で異常確定の判定がされたらトルクダウン制御を実施するが、このトルクダウン制御自体にも、許可条件が設けられている。
このトルクダウン制御の許可条件は、以下の(a´),(b´)の各条件が設けられている。これらの(a´),(b´)の各条件が何れも成立したら許可条件が成立する。
(a´)走行レンジが選択されていること
(b´)モータ目標回転数Nm_t>所定値(ここでは、EVアイドル回転数)の状態が所定時間継続していること(所定時間はMG2の応答時間)
ただし、IHSW91の異常、MG2の回転異常、プライマリプーリ回転センサ93の異常、セカンダリプーリ回転センサ94の異常、スロットル開度センサ95の異常、セカンダリ油圧センサ97の異常、第2クラッチ7の油圧制御用のソレノイドの電気異常、データ通信異常等、誤締結異常判定に係る機器の異常が1つでも発生したらトルクダウン制御を禁止する。
(1´)モータ回転数Nm_r<所定値(ここでは、EVアイドル回転数)の状態が所定カウント期間継続していること(所定カウント期間はセンサの読み取り精度の影響を排除する微少時間)
また、トルクダウン制御を開始後、トルクダウン条件(1´)が成立しなくなったり、許可条件(a´)が成立しなくなったり、MG2に対して出力トルクの増加要求があったりして、この状態が所定カウント期間継続(所定カウント期間はセンサの読み取り精度の影響を排除する微少時間)したら、トルクダウン制御を解除する。
つまり、セカンダリ油圧Psec_rが低下すれば、ベルトスリップを招き易くなるので、駆動源であるMG2の出力トルクをセカンダリ油圧Psec_rに対応させて低下させ、CVT3への入力トルクを抑えることでベルトスリップを抑制する(時点t3~時点t4)。
本発明の一実施形態に係るクラッチ誤締結判定装置及びクラッチ誤締結対応制御装置は、上述のように構成されているので、例えば、図9,図10のフローチャートに示すように、クラッチ誤締結の判定、及び、誤締結対応制御を実施することができる。なお、図9,図10のフローチャートは、車両のキースイッチが入れられると、異常確定が判定されるまで或いはキースイッチが切られるまで、所定の制御周期で実施される。
図10に示すように、まず、条件(a´),(b´)の許可条件の判定処理を実施する(ステップT10)。なお、許可条件の判定は禁止条件に相当する状況でないことを確認した上で行なう。
本装置では、このような確認時間が不要となるので、条件(3)の状態が発生したら速やかに異常を確定することができる。
以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、上記実施形態を本発明の趣旨を逸脱しない範囲で種々変形して適用することが可能である。
Claims (8)
- 車両の駆動源である電動モータと、前記電動モータに駆動連結された機械式のオイルポンプと、プライマリプーリ及びセカンダリプーリとこれらのプーリに掛け回された無端状の動力伝達部材とを有し前記オイルポンプからの油圧を用いて作動する油圧式のバリエータを備えた無段変速機と、前記電動モータと前記無段変速機との間に介装された摩擦係合式のクラッチと、前記クラッチを前記車両の走行状態に応じて完全係合,スリップ係合及び解放の何れかの状態に制御するクラッチ制御手段と、前記電動モータへの出力要求と前記クラッチの状態とに基づいて前記電動モータを目標回転速度で回転するように制御する車両制御手段と、を有する車両において、前記クラッチが誤って完全係合する誤締結に対応する制御を行なうクラッチ誤締結対応制御装置であって、
所定の判定条件が成立したら前記クラッチが誤締結状態であると判定するクラッチ誤締結判定装置と、
前記セカンダリプーリの油圧であるセカンダリ油圧を検出するセカンダリ油圧検出手段と、
前記クラッチ誤締結判定装置により、前記クラッチが誤締結状態であることが判定されたら、前記駆動源の出力トルクを、前記セカンダリ油圧検出手段で検出される前記セカンダリ油圧に応じて調整するトルク調整制御を実施する誤締結対応制御手段と、を有する
、クラッチ誤締結対応制御装置。 - 前記誤締結対応制御手段は、前記トルク調整制御を、動力伝達に必要な前記駆動源の回転速度を維持するトルク調整要求下限値で制限して実施する
、請求項1記載のクラッチ誤締結対応制御装置。 - 前記トルク調整制御では、前記セカンダリ油圧が上昇した場合には前記駆動源の出力トルクを保持し、前記セカンダリ油圧が低下した場合には前記駆動源の出力トルクを前記セカンダリ油圧に応じて低下させる
、請求項1又は2記載のクラッチ誤締結対応制御装置。 - 前記誤締結対応制御手段は、前記トルク調整制御を実施している際に、前記駆動源に対して出力トルクの増加要求があったら、前記駆動源の出力トルクの増加時に前記出力トルクの増加速度を制限する
、請求項1~3の何れか1項に記載のクラッチ誤締結対応制御装置。 - 前記誤締結対応制御手段は、前記トルク調整制御を終了する際には、前記駆動源の出力トルクを所定の増加速度で徐々に増加復帰させる
、請求項1~4の何れか1項に記載のクラッチ誤締結対応制御装置。 - 前記クラッチ誤締結判定装置は、
前記無段変速機の選択レンジを検出するレンジ検出手段と、
前記車両の車速を検出する車速検出手段と、
前記電動モータの回転速度を検出するモータ回転検出手段と、
前記クラッチの入出力回転速度差を検出する回転速度差検出手段と、
前記車両制御手段により選択された前記クラッチ制御モード情報と、前記レンジ検出手段,前記車速検出手段からの検出情報とに基づいて、前記クラッチ制御モードが完全係合でないこと、前記選択レンジが走行レンジであること、及び、前記車速が所定値以上であること、を含む各条件の全てが成立したら、許可条件が成立したと判定する許可条件判定手段と、
前記許可条件判定手段により前記許可条件が成立したと判定されたら、前記クラッチに入出力回転速度差がないことである第1仮判定条件を含む異常仮判定条件が成立したか否かを前記回転速度差検出手段の検出情報に基づいて判定する異常仮判定手段と、
前記異常仮判定手段により異常仮判定条件が成立したと判定されたら、前記電動モータの回転速度が前記下限回転速度よりも低いことである異常確定条件が成立したか否かを前記モータ回転検出手段の検出情報に基づいて判定し、異常確定条件が成立したら前記クラッチが誤締結状態であると確定する異常確定手段とを有する
、請求項1~5の何れか1項に記載のクラッチ誤締結対応制御装置。 - 前記異常仮判定条件は、前記電動モータの回転速度が前記目標回転速度よりも低速側に所定差以上乖離したことである第2仮判定条件をさらに含み、
前記異常仮判定手段は、前記第1仮判定条件及び前記第2仮判定条件が成立したか否かを前記回転速度差検出手段及び前記モータ回転検出手段の検出情報に基づいて判定し、前記第1仮判定条件及び前記第2仮判定条件が共に成立したら前記異常仮判定条件が成立したと判定する
、請求項6記載のクラッチ誤締結対応制御装置。 - 前記異常仮判定手段は、前記第1仮判定条件及び前記第2仮判定条件が共に成立した状態が設定時間以上継続したら前記異常仮判定条件が成立したと判定する
、請求項7記載のクラッチ誤締結対応制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/073,513 US10598277B2 (en) | 2016-01-29 | 2017-01-27 | Control device that handles erroneous clutch engagement |
EP17744364.5A EP3409979B1 (en) | 2016-01-29 | 2017-01-27 | Control device that handles erroneous clutch engagement |
JP2017563838A JP6614588B2 (ja) | 2016-01-29 | 2017-01-27 | クラッチ誤締結対応制御装置 |
CN201780005812.7A CN108431463B (zh) | 2016-01-29 | 2017-01-27 | 离合器误联接对应控制装置 |
KR1020187019919A KR102060910B1 (ko) | 2016-01-29 | 2017-01-27 | 클러치 오체결 대응 제어 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016016443 | 2016-01-29 | ||
JP2016-016443 | 2016-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017131134A1 true WO2017131134A1 (ja) | 2017-08-03 |
Family
ID=59398485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002867 WO2017131134A1 (ja) | 2016-01-29 | 2017-01-27 | クラッチ誤締結対応制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10598277B2 (ja) |
EP (1) | EP3409979B1 (ja) |
JP (1) | JP6614588B2 (ja) |
KR (1) | KR102060910B1 (ja) |
CN (1) | CN108431463B (ja) |
WO (1) | WO2017131134A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019108897A (ja) * | 2017-12-15 | 2019-07-04 | ジヤトコ株式会社 | 自動変速機の制御装置 |
JP2021197470A (ja) * | 2020-06-16 | 2021-12-27 | トヨタ自動車株式会社 | 異常要因判定装置、車両用制御装置、および車両用制御システム |
US11400808B2 (en) | 2019-09-10 | 2022-08-02 | Subaru Corporation | Hybrid vehicle system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109595321A (zh) * | 2018-12-30 | 2019-04-09 | 芜湖万里扬变速器有限公司 | 纯电动车辆用无级变速系统 |
US11242927B2 (en) * | 2019-05-23 | 2022-02-08 | GM Global Technology Operations LLC | Robust hydraulic system disturbance detection and mitigation |
US11815177B2 (en) * | 2019-07-08 | 2023-11-14 | Jatco Ltd | Diagnostic device and control device for automatic transmission |
US11112004B2 (en) | 2019-10-01 | 2021-09-07 | Allison Transmission, Inc. | Transmission control systems to adjust clutch pressure and torque based on grade |
DE102019127419A1 (de) * | 2019-10-11 | 2021-04-15 | Schaeffler Technologies AG & Co. KG | Notbetriebsverfahren für ein Umschlingungsgetriebe bei Anpressdruckabfall, sowie Antriebsstrang |
WO2021213580A1 (de) * | 2020-04-21 | 2021-10-28 | Schaeffler Technologies AG & Co. KG | Verfahren und fluidsystem zur aktuierung einer übersetzungsgetriebekomponente und einer trennvorrichtung |
CN111810629B (zh) * | 2020-07-22 | 2022-01-07 | 钦州绿传科技有限公司 | 一种车辆中机械泵失效的检测及控制方法及车辆 |
JP7392606B2 (ja) * | 2020-08-07 | 2023-12-06 | トヨタ自動車株式会社 | 動力伝達装置の異常判定装置 |
JP2023028659A (ja) * | 2021-08-20 | 2023-03-03 | 株式会社Subaru | 電気自動車 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02169333A (ja) * | 1988-12-22 | 1990-06-29 | Mazda Motor Corp | 無段変速機を備えた車両のエンジン制御装置 |
JPH0331035A (ja) * | 1989-06-29 | 1991-02-08 | Mazda Motor Corp | 車両のスリップ制御装置 |
JP2004316843A (ja) * | 2003-04-18 | 2004-11-11 | Jatco Ltd | ベルト式無段変速機の制御装置 |
JP2007198234A (ja) * | 2006-01-26 | 2007-08-09 | Jatco Ltd | 自動変速機の制御装置 |
JP2011241755A (ja) * | 2010-05-18 | 2011-12-01 | Toyota Motor Corp | 車両の制御装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002051407A (ja) * | 2000-08-03 | 2002-02-15 | Toyota Motor Corp | パワートレーンの制御装置 |
JP4200669B2 (ja) * | 2001-05-21 | 2008-12-24 | トヨタ自動車株式会社 | ハイブリッド自動車 |
JP4935268B2 (ja) | 2006-09-21 | 2012-05-23 | 日産自動車株式会社 | 車両の制御装置 |
US8348797B2 (en) * | 2008-04-04 | 2013-01-08 | GM Global Technology Operations LLC | Hydraulic clutch control system |
JP2012206663A (ja) | 2011-03-30 | 2012-10-25 | Jatco Ltd | ハイブリッド車両の変速制御装置 |
JP2013181554A (ja) * | 2012-02-29 | 2013-09-12 | Nissan Motor Co Ltd | 車両の変速制御装置 |
JP5926299B2 (ja) * | 2014-01-23 | 2016-05-25 | 富士重工業株式会社 | 無段変速機の異常検知装置、及び、無段変速機の異常検知方法 |
JP5997193B2 (ja) * | 2014-02-14 | 2016-09-28 | 富士重工業株式会社 | 無段変速機の異常検知装置、及び、無段変速機の異常検知方法 |
CN103836182A (zh) * | 2014-03-28 | 2014-06-04 | 大陆汽车投资(上海)有限公司 | 配备液力变矩器的带式cvt的控制系统和方法 |
JP6919985B2 (ja) * | 2017-05-19 | 2021-08-18 | トヨタ自動車株式会社 | 車両用動力伝達装置 |
-
2017
- 2017-01-27 US US16/073,513 patent/US10598277B2/en active Active
- 2017-01-27 CN CN201780005812.7A patent/CN108431463B/zh active Active
- 2017-01-27 JP JP2017563838A patent/JP6614588B2/ja active Active
- 2017-01-27 WO PCT/JP2017/002867 patent/WO2017131134A1/ja active Application Filing
- 2017-01-27 KR KR1020187019919A patent/KR102060910B1/ko active IP Right Grant
- 2017-01-27 EP EP17744364.5A patent/EP3409979B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02169333A (ja) * | 1988-12-22 | 1990-06-29 | Mazda Motor Corp | 無段変速機を備えた車両のエンジン制御装置 |
JPH0331035A (ja) * | 1989-06-29 | 1991-02-08 | Mazda Motor Corp | 車両のスリップ制御装置 |
JP2004316843A (ja) * | 2003-04-18 | 2004-11-11 | Jatco Ltd | ベルト式無段変速機の制御装置 |
JP2007198234A (ja) * | 2006-01-26 | 2007-08-09 | Jatco Ltd | 自動変速機の制御装置 |
JP2011241755A (ja) * | 2010-05-18 | 2011-12-01 | Toyota Motor Corp | 車両の制御装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019108897A (ja) * | 2017-12-15 | 2019-07-04 | ジヤトコ株式会社 | 自動変速機の制御装置 |
US11400808B2 (en) | 2019-09-10 | 2022-08-02 | Subaru Corporation | Hybrid vehicle system |
JP2021197470A (ja) * | 2020-06-16 | 2021-12-27 | トヨタ自動車株式会社 | 異常要因判定装置、車両用制御装置、および車両用制御システム |
JP7384118B2 (ja) | 2020-06-16 | 2023-11-21 | トヨタ自動車株式会社 | 異常要因判定装置、車両用制御装置、および車両用制御システム |
Also Published As
Publication number | Publication date |
---|---|
KR20180093049A (ko) | 2018-08-20 |
EP3409979A4 (en) | 2018-12-19 |
US20190040949A1 (en) | 2019-02-07 |
US10598277B2 (en) | 2020-03-24 |
JP6614588B2 (ja) | 2019-12-04 |
CN108431463B (zh) | 2019-12-31 |
KR102060910B1 (ko) | 2019-12-30 |
EP3409979A1 (en) | 2018-12-05 |
EP3409979B1 (en) | 2019-12-04 |
CN108431463A (zh) | 2018-08-21 |
JPWO2017131134A1 (ja) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6614588B2 (ja) | クラッチ誤締結対応制御装置 | |
JP5252171B2 (ja) | 車両用制御装置 | |
EP1939059B1 (en) | Mode changeover control device for a hybrid vehicle | |
JP5981650B2 (ja) | ハイブリッド車両の故障判定装置及びその故障判定方法 | |
JP6152422B2 (ja) | ハイブリッド車両の故障判定装置及びその故障判定方法 | |
CN108027054A (zh) | 带式无级变速器及其故障判断方法 | |
US10377367B2 (en) | Control device for hybrid vehicle and control method of the same | |
JP6651368B2 (ja) | クラッチ誤締結判定装置及びこれを用いたクラッチ誤締結対応制御装置 | |
KR20220008436A (ko) | 마일드 하이브리드 차량 및 마일드 하이브리드 차량의 제어 방법 | |
JP6089601B2 (ja) | 補機制御装置 | |
US10718390B2 (en) | Abnormality detection device for automatic transmission | |
CN106660550B (zh) | 车辆的控制装置及控制方法 | |
US11407303B2 (en) | Control device | |
JP5696502B2 (ja) | ハイブリッド車両の制御装置 | |
JP6595366B2 (ja) | ハイブリッド車両のクラッチ誤解放検出装置及びハイブリッド車両 | |
US11524670B2 (en) | Control device for vehicle and control method for vehicle | |
JP6670620B2 (ja) | 車両用無段変速機の異常判定装置及び異常時対応装置 | |
JP2017036739A (ja) | 無段変速機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17744364 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017563838 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20187019919 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187019919 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017744364 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017744364 Country of ref document: EP Effective date: 20180829 |